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EFFICIENT AND LONG-TIME ACCURATE SECOND-ORDER

DECOUPLED METHOD FOR THE BLOOD SOLUTE DYNAMICS

MODEL
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Abstract. In this paper, we study the blood solute dynamics model to understand the rela-
tionship between the widespread pathologies of the vascular system, the specific features of the
blood flow in a diseased district, and the effect of the flow pattern on the transfer processes of
solute within arterial lumen and wall. The proposed finite element algorithm is based on the

second-order backward differentiation formula and the explicit treatment of the coupling terms,
which allow us to solve the decoupled Navier-Stokes equations, advection-diffusion equation, and
pure diffusion equation at each time step. We derive the unconditional and long-time stability

in the sense that the solution remains uniformly bounded in time, leading to uniform time error
estimation. The long-time accurate behavior is one of the most desirable physical processes for the
development of cardiovascular diseases that occurs over long-time scale. To validate the proposed
method and demonstrate the exclusive features of the blood solute dynamical model, we perform

four numerical experiments. Moreover, the impact of the development of atherosclerosis lesion
and abdominal aortic aneurysm are studied by illustrating the complicated flow characteristics,
streamlines, pressure contours, solute concentration, wall shear stress, and long-time accuracy on
the several geometrical setups for the physiological interests.

Key words. Blood solute dynamics, second-order method, partitioned algorithm, unconditional
stability, long-time stability.

1. Introduction

Over the past few decades, atherosclerosis and aneurysm considered as the most
prevalent kind of cardiovascular diseases, have been studied extensively to identify
the causes, genesis and the risk factors to achieve some methodologies for improving
the human health by developing new prophylactic, diagnostic and therapeutic pro-
cedures [1, 3, 5, 4, 2, 6, 7, 8, 9]. Atherosclerosis is the hardening of large arteries due
to the penetration and the development of the fatty plaque within the arterial wall,
which leads to a gradual narrowing of the arteries. On the other hand, abdominal
aortic aneurysms (AAAs) occur in the abdominal aortic artery where the artery
has a balloon-shaped expansion; hence, the increase in the lumen diameter reaches
up to 50 % of its standard diameter [2, 10, 11, 12, 13, 14]. Thus, the study of such
cardiovascular diseases (atherosclerosis and aneurysm) involves the contribution of
mass transport across the permeable endothelial layer and fluid dynamics of blood.
On the other hand, in [10, 15], authors identified that hypertension is one of the
main reason which enhanced the inner arterial wall due to the significant effects
on the macromolecule distribution. Moreover, the dependence of shear stress on
the solute transport from blood to the stenosis artery wall has been discussed in
[11, 18, 16, 17].

Based on the arterial anatomy and the high dependence of the development of
lesions on the transport procedure within the arteries, scientists have been set up
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some partial differential equation models and numerical tools to study the blood
flow. In [16, 17, 19], the authors introduced the wall-free model to describe the
dynamic of the macromolecules (Low-Density-Lipoprotein (LDL), albumin, oxygen,
etc.) from the lumen to the arterial wall through the endothelial layer, which is
considered as the common interface. The wall-free model is based on the coupling of
the Navier-Stokes equations to describe the blood motion in the vascular tissue, the
solute concentration in the lumen is modeled by the advection-diffusion equation,
while the solute dynamics inside the wall is considered as a given quantity. On
the other hand, a more sophisticated and realistic blood solute dynamics model
is proposed in [20, 21, 22, 23] by considering the fluid-wall phenomena. In the
fluid-wall model the solute dynamics into the vascular wall is taken into account
and modeled by the pure diffusion equation by neglecting the convective field due
to the small variety of blood velocity in the wall. Furthermore, the conservation
of solute concentration and the exchange of flux of solute through the permeable
membrane from lumen to the arterial wall are governed by two coupling conditions
[22, 23]. In nature, the blood vessel is elastic, deform due to the cardiovascular
system, while certain studies assumed the arterial wall as a rigid structure [19, 24].

It is worthwhile noting that many numerical methods have been developed to
decouple the original problem for the accurate and efficient resolution of the multi-
domain, and multiphysics problems [25, 26, 29, 27, 28, 33, 30, 31, 32]. The long-time
feature is essential for the realization of the development of cardiovascular diseases,
thus the long-time accuracy of the algorithm is highly desirable. Jiang investigated
a second-order ensemble method based on a blended backward differentiation time-
stepping algorithm for the time-dependent Navier-Stokes equations in [34]. The
unconditional long-time stability for a particular velocity-vorticity discretization of
the 2D Navier-Stokes equations studied in [35]. Hou et al. derived the second-order
convergence of a projection scheme for the incompressible Navier-Stokes equations
in [36]. Besides, the second-order schemes have been considered to decouple the sys-
tem of Navier/Stokes-Darcy equations extensively. In [37], Layton et al. proposed
uncoupled Crank-Nicolson Leapfrog (CNLF ) and BD2-AB2 schemes and derived
the stability of the system. Chen et al. [38] proved the unconditional and uniform
stability of two second-order BDF2 and AMB2 schemes, which imply the uniform
control of the error. In [39], a third-order scheme has been studied, while in [40], the
authors presented a second-order decouple scheme and uncouple the velocity and
pressure by artificial compression method. A second-order partitioned method with
different subdomain time steps for the evolutionary Stokes-Darcy system presented
in [41]. In [42], Heister et al. considered the decoupled, unconditionally stable,
higher-order discretizations for MHD flow simulation. The long-time stability of
the extrapolated BDF2 time-stepping methods for the Navier-Stokes equations
and related multiphysics problems have been studied in [43]. Ravindran [44], pro-
posed the second-order BDF2 partitioned time-stepping algorithm for solving the
transient viscoelastic fluid flow. Moreover, some numerical methods for the blood
solute dynamics model have been presented. In [47], the author proposed a robust
modified characteristics variational multiscale (MCVMS) method, which is based
on the combination of the characteristics temporal discretization to deal with the
difficulty caused due to the nonlinear terms, and the projection-based variational
multiscale (VMS) technique to stabilize the spurious oscillation caused by the lower
diffusivity of the solute concentration. Also, an IMEX scheme and a data-passing
scheme for the blood model were considered in [46].
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In this paper, we propose and analyze an efficient and long-time accurate second-
order backward differentiation partitioned time-stepping algorithm for a sophisti-
cated blood solute dynamics model governed by the Navier-Stokes equations for the
blood flow motion and the advection-diffusion equations for the solute transport
in the lumen, and pure diffusion equation to describe the solute concentration in
the arterial wall. To the best of our knowledge, this is the first approach to inves-
tigate the blood solute dynamical model with the second-order long-time accurate
decoupled finite element method. Herein, we discretize the system in time via
second-order backward differentiation formula BDF2 and the explicit treatment of
the interface terms. Hence this numerical method leads to solve each subproblem
independently at an individual time step, which allow us to use legacy code. We
analyze the unconditional and long-time stability of the proposed scheme over a
long-time interval 0 ≤ tn < ∞ in the sense that the solutions remain uniformly
bounded in time, which lead us to derive uniform in time error estimate. The
optimal error estimates over the long-time interval for the proposed scheme are de-
rived. Long-time accuracy is the highly desirable feature because one would want
to have reliable numerical results over a long-time scale. The validity of the pro-
posed scheme for the blood solute dynamical model is illustrated by performing
four numerical experiments.

The rest of the manuscript is organized as follow. In Section 2, we introduce
the blood solute dynamics model. Some notations, mathematical preliminaries,
and variational formulation are presented in Section 3. The second-order decouple
backward differentiation scheme BDF2, unconditional and long-time stability are
discussed in Section 4. In Section 5, we derive the error estimation for the fully dis-
crete scheme. In Section 6, numerical tests are presented to illustrate the stability,
accuracy, and efficiency of the numerical method. At last, in Section 7, we report
some concluding remarks.

2. Blood solute dynamics model description

In this section, we consider a multiphysics model of solute dynamics in the
blood lumen and the arterial wall [22, 23, 46, 47], see Figure 1. The domain
Ω consists of two subdomains including the lumen Ωf and arterial wall Ωw in
Rd, d = 2, 3. The common interface between the lumen and the arterial wall is
denoted by Γ = ∂Ωf ∩ ∂Ωw , which can be considered a permeable membrane.

The time-dependent Navier-Stokes equations is used to describe the incompress-
ible Newtonian fluid flow in the lumen

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f in Ωf , t > 0,(1)

∇ · u = 0 in Ωf , t > 0,(2)

u = b on ∂Ωf \ Γ, u = 0 on Γ, t > 0,(3)

u = u0 with ∇ · u0 = 0 on Ωf , t = 0,(4)

here u : Ωf × R+ −→ Rd is the fluid velocity, p : Ωf × R+ −→ R is the kinematic
pressure, f is the external force and ν is the kinematic viscosity. Moreover, b and
u0 are the given boundary (on ∂Ωf \ Γ) and initial data.

The solute concentration in the lumen is governed by the advection-diffusion
equation

∂Cf

∂t
−∇ · (µf∇Cf ) + u · ∇Cf = ff in Ωf , t > 0,(5)

Cf = 0 on ∂Ωf \ Γ, t > 0,(6)
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Figure 1. Geometrical description of the arterial lumen and the wall.

where Cf : Ωf × R+ −→ R is the concentration of the considered solute in the
domain Ωf , µf is the diffusivity tensor which is a function of the rate of deformation

tensor d, such that dij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), i, j = 1, 2, ..., d and ff is the force term,

which could be the effect of the chemical interaction between the solute and other
molecules in the blood.

Because the velocity inside the wall domain is very low, the solute dynamics is
modeled by the pure diffusion equation

∂Cw

∂t
−∇ · (µw∇Cw ) = fw in Ωw , t > 0,(7)

Cw = 0 on ∂Ωw \ Γ, t > 0,(8)

such that, Cw : Ωw×R+ −→ R denote the solute concentration in the arterial wall,
µw is the diffusivity tensor and fw is a source term in the wall.

We consider the matching conditions at the interface Γ [22, 23], such that

µw
∂Cw

∂nw
= −nf · (µf∇Cf ) on Γ,(9)

nf · (µf∇Cf ) + ζ(Cf − Cw ) = 0 on Γ,(10)

where nf and nw are the unit normal vectors to the lumen and arterial wall, re-
spectively. The positive definite Lipschitz continuous function ζ denotes the per-
meability of the wall, which is a function of the shear stress σ(u), ζ =| σ(u) |, such
that σ(u) = τ · T (u) · nf and T (u) = 2νd, where τ is the tangential vector on the
wall.

It is worthwhile noting that the first interface condition (9) guarantees the con-
servation of solute concentration in both domains Ωf and Ωw . On the other hand,
the second coupling condition (10) indicates that the exchange of flux solute through
the permeable membrane Γ is related to the difference of concentration in the lumen
and the wall multiplied by the permeability ζ.

3. Notations and preliminaries

In this section, we define the following functional spaces and notations. The
inner product in L2(Ω) space and its induced norm is denoted by (, ) and ∥ · ∥,
respectively. Furthermore, the L∞(Ω) norm is denoted by ∥ · ∥∞ and Hs denotes
the Hilbert space of functions and its distributional derivatives of order 0 ≤ s in
L2(Ω). To set the variational formulation of solute dynamics in blood flow and
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arterial walls, we define the following spaces [45].

V : = H1
0 (Ωf )

d = {v ∈ H1(Ωf )
d : v = 0 on ∂Ωf},

Q : = L2
0(Ωf ) = {q ∈ L2(Ωf ) :

∫
Ωf

qdx = 0},

Xf : = H1
∂Ωf\Γ(Ωf ) = {Cf ∈ H1(Ωf ) : Cf = 0 on ∂Ωf \ Γ},

Xw : = H1
∂Ωw\Γ(Ωw) = {Cw ∈ H1(Ωw) : Cw = 0 on ∂Ωw \ Γ}.

Define the product space

X = Xf ×Xw = {(Cf , Cw); ∀Cf ∈ Xf , Cw ∈ Xw},

which is equipped with the following norm

∥ Cfw ∥2=∥ Cf ∥2 + ∥ Cw ∥2, ∀Cfw ∈ X.

The variational formulation of the equation (1)−(10) is given as: find u ∈ L2(0, T ;V )∩
L∞(0, T ; (L2(Ωf ))

d), p ∈ L2(0, T ;Q), Cf ∈ L2(0, T ;Xf ) and Cw ∈ L2(0, T ;Xw),
∀t ∈ (0, T ] and ∀(v, q, ϕf , ϕw) ∈ (V,Q,Xf , Xw), such that

(
∂u

∂t
,v) + ν(∇u,∇v) + C∗(u,u,v)− (∇ · v, p) =(f,v),(11)

(∇ · u, q) =0,(12)

(
∂Cf

∂t
, ϕf ) + (µf∇Cf ,∇ϕf ) + b∗(u, Cf , ϕf ) + (Cf − Cw , ϕf )Γ =(ff , ϕf ),(13)

(
∂Cw

∂t
, ϕw ) + (µw∇Cw ,∇ϕw ) + (Cw − Cf , ϕw )Γ =(fw , ϕw ),(14)

such that the skew-symmetric form of the trilinear terms can be written as [43]

C∗(u,v,w) =
1

2
((u · ∇)v,w)− 1

2
((u · ∇)w,v) ∀u,v,w ∈ V,(15)

b∗(u, Cf , ϕf ) =
1

2
((u · ∇)Cf , ϕf )−

1

2
((u · ∇)ϕf , Cf ) ∀u ∈ V ;Cf , ϕf ∈ Xf .(16)

By adapting the results illustrated in [48], we introduce following lemma for the
trilinear forms.

Lemma 1. [56] For all u,v,w ∈ V ;Cf , ϕf ∈ Xf

C∗(u,v,w) = −C∗(u,w,v),

b∗(u, Cf , ϕf ) = −b∗(u, ϕf , Cf ),

| C∗(u,v,w) | ≤ c̄ ∥ ∇u ∥∥ ∇v ∥∥ ∇w ∥,
| b∗(u, Cf , ϕf ) | ≤ c ∥ ∇u ∥∥ ∇Cf ∥∥ ∇ϕf ∥ .

Next, we recall the following basic inequalities, [45, 49].
Trace inequality: If ctrf and ctrw are strictly positive constants depending on
the domain Ωf and Ωw, respectively but independent of mesh size such that v ∈
V (orXf ) and ϕ ∈ Xw satisfies

∥ v ∥Γ≤ ctrf ∥ v ∥ 1
2 ∥ ∇v ∥ 1

2 , ∥ v ∥Γ≤ ctrf ∥ ∇v ∥ .

∥ ϕ ∥Γ≤ ctrw ∥ ϕ ∥ 1
2 ∥ ∇ϕ ∥ 1

2 , ∥ ϕ ∥Γ≤ ctrw ∥ ∇ϕ ∥ .
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Poincaré inequality: If cpf and cpw are strictly positive constants depending on
the domain Ωf and Ωw, respectively but independent of mesh size such that for
v ∈ V (orXf ) and ϕ ∈ Xw satisfies

∥ v ∥≤ cpf ∥ ∇v ∥, ∥ ϕ ∥≤ cpw ∥ ∇ϕ ∥ .

Young’s inequality: ∀a, b, c, ϵ ≥ 0, we have

a
1
2 b

1
2 c ≤ ϵ

2
a2 +

b2

8ϵ3
+

ϵ

2
c2.

Standard inequality: If d = dim(Ωf ) and u ∈ V , we have

∥ ∇ · u ∥≤
√
d ∥ ∇u ∥ .

We introduce a family of regular finite element triangulations {Tfh}h>0 (resp.
{Twh}h>0) of the domain Ωf (resp. Ωw), where the subscript h refer to the level
of refinement of the triangulations. The simulation time T can be divided into N

smaller time intervals with [0, T ] =
∪N−1

n=0 [t
n, tn+1], where tn = n∆t,∆t = T

N .
Denote (Vh , Qh , Xfh , Xwh) ⊂ (V,Q,Xf , Xw ) the conforming finite element spaces

which contain piecewise continuous polynomials of degree (k) and (k − 1 ) such that

Vh :={vh ∈ C(Ωf )
d,vh |K ∈ Pk (K)d, ∀K ∈ Tfh},

Qh :={qh ∈ C(Ωf ), qh|K ∈ Pk−1 (K),∀K ∈ Tfh},
Xfh :={Cfh ∈ C(Ωf ), Cfh |K ∈ Pk (K), ∀K ∈ Tfh},
Xwh :={Cwh ∈ C(Ωw ), Cwh |K ∈ Pk (K),∀K ∈ Twh},
Wh :={vh ∈ Vh : (∇ · vh , qh) = 0 ∀qh ∈ Qh}.

The finite element spaces of the velocity and pressure (Vh, Qh) are assumed to
satisfy the discrete inf − sup condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

∥ qh ∥∥ ∇vh ∥
≥ β > 0,

such that β is independent of the mesh size h. The above finite element spaces
satisfy the following approximation properties

inf
vh∈Vh

{∥ u− vh ∥ +h ∥ ∇(u− vh)}

≤ chk+1 ∥ u ∥k+1 ∀u ∈ Hk+1(Ωf )
d ∩ V,

inf
qh∈Qh

∥ p − qh ∥≤ chk ∥ p ∥k, ∀p ∈ Hk(Ωf )
d ∩Q(17)

inf
ϕf∈Xfh

{∥ Cf − ϕfh ∥ +h ∥ ∇(Cf − ϕfh)}

≤ chk+1 ∥ Cf ∥k+1 ∀Cf ∈ Hk+1(Ωf )
d ∩Xf ,

inf
ϕw∈Xwh

{∥ Cw − ϕwh ∥ +h ∥ ∇(Cw − ϕwh)}

≤ chk+1 ∥ Cw ∥k+1 ∀Cw ∈ Hk+1(Ωw )
d ∩Xw .

4. Numerical scheme and its stability

In this section, we propose the second-order backward differentiation partitioned
time-stepping scheme for the blood solute dynamics problem and the explicit treat-
ment of the interface terms. Moreover, we prove the unconditional stability and
long-time stability of the proposed algorithm.
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4.1. The second-order backward differentiation partitioned time-stepping

scheme (BDF2). Algorithm. Suppose that ∆t > 0, for each N =
T

∆t
, given

(un−1
h , Cn−1

fh , Cn−1
wh ), (un

h, C
n
fh, C

n
wh) ∈ Vh×Xfh×Xwh, for n = 1, 2, 3, ..., N −1 and

∀(vh, ϕfh, ϕwh) ∈ Vh × Xfh × Xwh, find (un+1
h , Cn+1

fh , Cn+1
wh ) ∈ Vh × Xfh × Xwh,

such that(
3un+1

h − 4un
h + un−1

h

2∆t
,vh

)
+ C∗(2un

h − un−1
h ,un+1

h ,vh) + ν(∇un+1
h ,∇vh)

− (∇ · vh, p
n+1
h ) = (fn+1,vh),(18)

(∇ · un+1
h , q) = 0,(19)(

3Cn+1
fh − 4Cn

fh + Cn−1
fh

2∆t
, ϕfh

)
+ b∗(2un

h − un−1
h , Cn+1

fh , ϕfh) + (µf∇Cn+1
fh ,∇ϕfh)

+ (Cn+1
fh − (2Cn

wh − Cn−1
wh ), ϕfh)Γ = (f n+1

f , ϕfh),(20)(
3Cn+1

wh − 4Cn
wh + Cn−1

wh

2∆t
, ϕwh

)
+ (µw∇Cn+1

wh ,∇ϕwh)

+ (Cn+1
wh − (2Cn

fh − Cn−1
fh ), ϕwh)Γ = (f n+1

w , ϕwh).(21)

4.2. Unconditional and long-time stability of the algorithm. In this sub-
section, we derive the unconditional and long-time stability of the BDF2 algorithm
for the blood solute dynamics model.

Firstly, we report some important preliminaries and notations which are neces-
sary for the estimation. The symmetric G-matrix can be defined as

G =

(
1
2 −1
−1 5

2

)
and its associated G-norm by ∥ χ ∥2G= (χ,Gχ), ∀χ ∈ (L2(Ω))2.
By adapting the results from [50], the G-norm and the L2-norm are equivalent,
where there ∃ cu, cl > 0, such that

cl ∥ χ ∥G≤∥ χ ∥≤ cu ∥ χ ∥G .(22)

To estimate the stability of the proposed algorithm, we introduce the following
well-known lemmas.

Lemma 2. [50] Set χ0 = [v0,v1]T and χ1 = [v1,v2]T. Then for any vi ∈
L2(Ω), i = 0, 1, 2
the following relation holds(3

2
v2 − 2v1 +

1

2
v0,v2

)
=

1

2
(∥ χ1 ∥2G − ∥ χ0 ∥2G) +

1

4
∥ v2 − 2v1 + v0 ∥2 .

Lemma 3. Set χn−1 = [vn−1,vn]T. Then for vn and vn−1 ∈ L2(Ω), we have

∥ −2vn + vn−1 ∥2≤ 2 ∥ χn−1 ∥2G .

Proof. Let χn−1 = [vn−1,vn]T, such that vn−1,vn ∈ L2(Ω).
We can write (χn−1, Gχn−1) as follow

(χn−1, Gχn−1) =

((
vn−1

vn

)
,

(
1
2 −1
−1 5

2

)(
vn−1

vn

))
,

∥ χn−1 ∥2G= (χn−1, Gχn−1) =

∫
(
1

2
vn−1 − vn,−vn−1 +

5

2
vn)(vn−1,vn)
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=
1

2
∥ vn−1 ∥2 −2(vn−1,vn) +

5

2
∥ vn ∥2

=
1

2

(
∥ vn−1 ∥2 −4(vn−1,vn) + 4 ∥ vn ∥2

)
+

1

2
∥ vn ∥2

=
1

2

(
∥ 2vn − vn−1 ∥2 + ∥ vn ∥2

)
≥ 1

2
∥ 2vn − vn−1 ∥2,

hence, we complete the proof. �

For convenience, some mathematical notations are provided

Dvn+1 =
3

2
vn+1 − 2vn +

1

2
vn−1, δvn+1 = vn+1 − 2vn + vn−1.(23)

4.3. Unconditional stability of the BDF2 algorithm.

Theorem 1. The proposed second-order backward differentiation decoupled algo-
rithm BDF2 (18)-(21) is unconditionally stable on (0, T ] and satisfies

Bn +Mn ≤
(
1 + c1∆t

)(
Bn−1 +Mn−1

)
+

c2pf∆t

ν
∥ fn+1 ∥2 +

3c2p∆t

α
∥ f n+1

fw ∥2,

where

Bn =∥ ωn
u ∥2G +

ν∆t

4
∥ ∇un+1 ∥2,

Mn =∥ ωn ∥2G +
α∆t

1 + c1∆t
∥ ∇Cn+1

fw ∥2 +
α∆t

3(1 + c1∆t)
∥ ∇Cn

fw ∥2,

c1 =
81c4trfc

4
trw

α3
α = min{µf , µw}.

Proof. For the sake of simplicity, we drop the index identifying the mesh size h.
Plugging v = 2∆tun+1 into the equation (18) and q = 2∆tpn+1 into the equa-
tion (19). After that by using Lemma 2, Cauchy-Schwarz inequality and Young’s
inequality, we can get

∥ ωn
u ∥2G − ∥ ωn−1

u ∥2G +
1

2
∥ δun+1 ∥2 +2ν∆t ∥ ∇un+1 ∥2

≤
c2pf∆t

ν
∥ fn+1 ∥2 +ν∆t ∥ ∇un+1 ∥2,(24)

such that ωn
u = [un,un−1]T.

Remove the non-negative term
1

2
∥ δun+1 ∥2 and add

ν∆t

4
∥ ∇un ∥2 on the both

sides of (24), we get(
∥ ωn

u ∥2G +
ν∆t

4
∥ ∇un+1 ∥2

)
+

3ν∆t

4
∥ ∇un+1 ∥2 +

ν∆t

4
∥ ∇un ∥2

≤
(
∥ ωn−1

u ∥2G +
ν∆t

4
∥ ∇un ∥2

)
+

c2pf∆t

ν
∥ fn+1 ∥2 .(25)

Let Bn =∥ ωn
u ∥2G +

ν∆t

4
∥ ∇un+1 ∥2, then

Bn ≤ Bn−1 +
c2pf∆t

ν
∥ fn+1 ∥2 .(26)
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To estimate (20)− (21), firstly, we denote Cn
fw = (Cn

f , C
n
w ), ϕ

n
fw = (ϕn

f , ϕ
n
w ) ∈ Xh =

Xfh ×Xwh and f nfw = (f nf , f nw ). Setting ϕf = Cn+1
f in (20) and ϕw = Cn+1

w in (21),
we get(

3Cn+1
fw − 4Cn

fw + Cn−1
fw

2∆t
, Cn+1

fw

)
+ (µf∇Cn+1

f ,∇Cn+1
f ) + (µw∇Cn+1

w ,∇Cn+1
w )

+
(
Cn+1

f − (2Cn
w − Cn−1

w ), Cn+1
f

)
Γ
+
(
Cn+1

w − (2Cn
f − Cn−1

f ), Cn+1
w

)
Γ

=(f n+1
fw , Cn+1

fw ).

(27)

Multiplying by 2∆t both sides of (27) and using Lemma 2, we obtain

∥ ωn ∥2G − ∥ ωn−1 ∥2G +
1

2
∥ δ Cn+1

fw ∥2 +2∆t(µf∇Cn+1
f ,∇Cn+1

f )

+ 2∆t(µw∇Cn+1
w ,∇Cn+1

w ) + 2∆t ∥ Cn+1
fw ∥2Γ

=2∆t(f n+1
fw , Cn+1

fw ) + 2∆t(2Cn
w − Cn−1

w , Cn+1
f )Γ + 2∆t(2Cn

f − Cn−1
f , Cn+1

w )Γ,

(28)

where ωn = [Cn
fw, C

n−1
fw ]T. Moreover, the bilinear terms satisfy

(µf∇Cn+1
f ,∇Cn+1

f ) + (µw∇Cn+1
w ,∇Cn+1

w )

≥α
(
∥ ∇Cn+1

f ∥2 + ∥ ∇Cn+1
w ∥2

)
= α ∥ ∇Cn+1

fw ∥2,(29)

with α = min{µf , µw}.
Now we bound the right-hand side of (28). For the interface terms, we use Cauchy-
Schwarz inequality and trace inequality to get

2∆t(2Cn
w − Cn−1

w , Cn+1
f )Γ + 2∆t(2Cn

f − Cn−1
f , Cn+1

w )Γ

≤2∆t
(
∥ 2Cn

w − Cn−1
w ∥Γ∥ Cn+1

f ∥Γ + ∥ 2Cn
f − Cn−1

f ∥Γ∥ Cn+1
w ∥Γ

)
≤2ctrfctrw∆t

(
∥ 2Cn

w − Cn−1
w ∥ 1

2 ∥ 2∇Cn
w −∇Cn−1

w ∥ 1
2 ∥ ∇Cn+1

f ∥

+ ∥ 2Cn
f − Cn−1

f ∥ 1
2 ∥ 2∇Cn

f −∇Cn−1
f ∥ 1

2 ∥ ∇Cn+1
w ∥

)
≤2ctrfctrw∆t

(
∥ 2Cn

w − Cn−1
w ∥ 1

2 (
√
2 ∥ ∇Cn

w ∥ 1
2 + ∥ ∇Cn−1

w ∥ 1
2

)
∥ ∇Cn+1

f ∥

+ ∥ 2Cn
f − Cn−1

f ∥ 1
2

(√
2 ∥ ∇Cn

f ∥ 1
2 + ∥ ∇Cn−1

f ∥ 1
2

)
∥ ∇Cn+1

w ∥

=2ctrfctrw∆t
(
I1 + I2 + I3 + I4

)
.

(30)

Using Young’s inequality and Lemma 3, each term of the right-hand side of (30)
can be bounded as

I1 =
√
2 ∥ 2Cn

w − Cn−1
w ∥ 1

2 ∥ ∇Cn
w ∥ 1

2 ∥ ∇Cn+1
f ∥

≤ ϵ

6
∥ ∇Cn+1

f ∥2 +
27

4ϵ3
∥ 2Cn

w − Cn−1
w ∥2 +

ϵ

3
∥ ∇Cn

w ∥2

≤ ϵ

6
∥ ∇Cn+1

f ∥2 +
27

2ϵ3
∥ ωn ∥2G +

ϵ

3
∥ ∇Cn

w ∥2,

I2 = ∥ 2Cn
w − Cn−1

w ∥ 1
2 ∥ ∇Cn−1

w ∥ 1
2 ∥ ∇Cn+1

f ∥

≤ ϵ

6
∥ ∇Cn+1

f ∥2 +
27

8ϵ3
∥ 2Cn

w − Cn−1
w ∥2 +

ϵ

6
∥ ∇Cn−1

w ∥2
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≤ ϵ

6
∥ ∇Cn+1

f ∥2 +
27

4ϵ3
∥ ωn ∥2G +

ϵ

6
∥ ∇Cn−1

w ∥2 .

Similar for I3 and I4

I3 =
√
2 ∥ 2Cn

f − Cn−1
f ∥ 1

2 ∥ ∇Cn
f ∥ 1

2 ∥ ∇Cn+1
w ∥

≤ ϵ

6
∥ ∇Cn+1

w ∥2 +
27

2ϵ3
∥ ωn ∥2 +

ϵ

3
∥ ∇Cn

f ∥2,

I4 =∥ 2Cn
f − Cn−1

f ∥ 1
2 ∥ ∇Cn−1

f ∥ 1
2 ∥ ∇Cn+1

w ∥

≤ ϵ

6
∥ ∇Cn+1

w ∥2 +
27

4ϵ3
∥ ωn ∥2G +

ϵ

6
∥ ∇Cn−1

f ∥2 .

Choosing ϵ =
α

ctrfctrw
and combining the above inequalities with the equation (30),

yields

2∆t(2Cn
w − Cn−1

w , Cn+1
f )Γ + 2∆t(2Cn

f − Cn−1
f , Cn+1

w )Γ

≤
81c4trfc

4
trw∆t

α3
∥ ωn ∥2G +

2α∆t

3
∥ ∇Cn+1

fw ∥2

+
2α∆t

3
∥ ∇Cn

fw ∥2 +
α∆t

3
∥ ∇Cn−1

fw ∥2 .(31)

For the forcing terms, we use Cauchy-Schwarz inequality, Poincaré inequality and
Young’s inequality

2∆t(f n+1
fw , Cn+1

fw ) ≤
3c2p∆t

α
∥ f n+1

fw ∥2 +
α∆t

3
∥ ∇Cn+1

fw ∥2 .(32)

Substituting the above estimates in (28) and drop the non-negative terms
1

2
∥

δ Cn+1
fw ∥2 and 2∆t ∥ Cn+1

fw ∥2Γ, we get

∥ ωn ∥2G +2α∆t ∥ ∇Cn+1
fw ∥2≤

(
1 +

81c4trfc
4
trw∆t

α3

)
∥ ωn−1 ∥2G +

2α∆t

3
∥ ∇Cn+1

fw ∥2

+
2α∆t

3
∥ ∇Cn

fw ∥2 +
α∆t

3
∥ ∇Cn−1

fw ∥2

+
α∆t

3
∥ ∇Cn+1

fw ∥2 +
3c2p∆t

α
∥ f n+1

fw ∥2 .(33)

Now adding
α∆t

3
∥ ∇Cn

fw ∥2 on the both sides of (33), we have

∥ ωn ∥2G +α∆t ∥ ∇Cn+1
fw ∥2 +

α∆t

3
∥ ∇Cn

fw ∥2

≤(1 +
81c4trfc

4
trw∆t

α3
) ∥ ωn−1 ∥2G +α∆t ∥ ∇Cn

fw ∥2

+
α∆t

3
∥ ∇Cn−1

fw ∥2 +
3c2p∆t

α
∥ f n+1

fw ∥2 .(34)

Setting the following term Mn =∥ ωn ∥2G +
α∆t

1 + c1∆t
∥ ∇Cn+1

fw ∥2 +
α∆t

3(1 + c1∆t)
∥

∇Cn
fw ∥2, where c1 =

81c4trfc
4
trw

α3
, the above inequality can be rewritten as

Mn +
α∆tc1

1 + c1∆t
∥ ∇Cn+1

fw ∥2 +
α∆tc1

3(1 + c1∆t)
∥ ∇Cn

fw ∥2
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≤(1 + c1∆t)Mn−1 +
3c2p∆t

α
∥ f n+1

fw ∥2 .(35)

Neglecting all the positive terms from the left-hand side of (35), we get

Mn ≤ (1 + c1∆t)Mn−1 +
3c2p∆t

α
∥ f n+1

fw ∥2 .(36)

Combining (26) and (36) to get

Bn +Mn ≤
(
1 + c1∆t

)(
Bn−1 +Mn−1

)
+

c2pf∆t

ν
∥ fn+1 ∥2 +

3c2p∆t

α
∥ f n+1

fw ∥2,

hence, the proof is completed. �
4.4. The long-time stability of the BDF2 scheme.

Theorem 2. Assume that the time step restriction ∆t ≤ α3

384c4trfc
4
trw

is satisfied,

then the solution of the BDF2 scheme (18) − (21) is uniformly bounded over 0 ≤
tn < ∞.

Proof. The derivation of the long-time stability of the second-order decoupled back-
ward differentiation scheme for the incompressible Navier-Stokes equations can be
found in [43]. Hence, we omit the detail derivation of (18) − (19) herein. On the
other hand, we derive the long-time stability of the advection-diffusion equation
and pure diffusion equation (20) − (21) for the blood solute dynamics model. To
prove the long-time stability, we add and subtract new terms in the interface term,
(27) becomes

∥ ωn ∥2G − ∥ ωn−1 ∥2G +
1

2
∥ δ Cn+1

fw ∥2

+ 2∆t(µf∇Cn+1
f ,∇Cn+1

f ) + 2∆t(µw∇Cn+1
w ,∇Cn+1

w )

+ (Cn+1
f , Cn+1

f )Γ + (Cn+1
w − 2Cn

w + Cn−1
w , Cn+1

f )Γ − (Cn+1
w , Cn+1

f )Γ

+ (Cn+1
w , Cn+1

w )Γ + (Cn+1
f − 2Cn

f + Cn−1
f , Cn+1

w )Γ − (Cn+1
f , Cn+1

w )Γ

=2∆t(f n+1
fw , Cn+1

fw ).(37)

Rearranging the terms of (37), we get

∥ ωn ∥2G − ∥ ωn−1 ∥2G +
1

2
∥ δ Cn+1

fw ∥2 +2∆t(µf∇Cn+1
f ,∇Cn+1

f )

+ 2∆t(µw∇Cn+1
w ,∇Cn+1

w ) + 2∆t ∥ Cn+1
f − Cn+1

w ∥2Γ
=2∆t(f n+1

fw , Cn+1
fw )− 2∆t(δCn+1

w , Cn+1
f )Γ − 2∆t(δCn+1

f , Cn+1
w )Γ.(38)

Estimate the terms of the right-hand side of (38) by using Cauchy-Schwarz inequal-
ity, trace inequality and Young’s inequality on the interface terms

−2∆t(δCn+1
f , Cn+1

w )Γ ≤2∆t ∥ δCn+1
f ∥Γ∥ Cn+1

w ∥Γ
≤2ctrfctrw∆t ∥ δCn+1

f ∥ 1
2 ∥ ∇δCn+1

f ∥ 1
2 ∥ ∇Cn+1

w ∥

≤2ctrfctrw∆t ∥ δCn+1
f ∥ 1

2

(
∥ ∇Cn+1

f ∥ 1
2

+
√
2 ∥ ∇Cn

f ∥ 1
2 + ∥ ∇Cn−1

f ∥ 1
2

)
∥ ∇Cn+1

w ∥ .(39)

Each terms of the right-hand side of the equation (39) are bounded by applying
Young’s inequality

∥ δCn+1
f ∥ 1

2 ∥ ∇Cn+1
f ∥ 1

2 ∥ ∇Cn+1
w ∥
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≤ ϵ

8
∥ ∇Cn+1

w ∥2 +
ϵ

16
∥ ∇Cn+1

f ∥2 +
16

ϵ3
∥ δCn+1

f ∥2,(40)

√
2 ∥ δCn+1

f ∥ 1
2 ∥ ∇Cn

f ∥ 1
2 ∥ ∇Cn+1

w ∥

≤ ϵ

8
∥ ∇Cn+1

w ∥2 +
ϵ

16
∥ ∇Cn

f ∥2 +
64

ϵ3
∥ δCn+1

f ∥2,(41)

∥ δCn+1
f ∥ 1

2 ∥ ∇Cn−1
f ∥ 1

2 ∥ ∇Cn+1
w ∥

≤ ϵ

8
∥ ∇Cn+1

w ∥2 +
ϵ

16
∥ ∇Cn−1

f ∥2 +
16

ϵ3
∥ δCn+1

f ∥2 .(42)

We can obtain the similar estimations for the term −2∆t(δCn+1
w , Cn+1

f )Γ as just

derived for −2∆t(δCn+1
f , Cn+1

w )Γ in the equation (39). Combining the estimations

of −2∆t(δCn+1
f , Cn+1

w )Γ and −2∆t(δCn+1
w , Cn+1

f )Γ and setting ϵ =
α

ctrfctrw
, we

can obtain

− 2∆t
(
(δCn+1

f , Cn+1
w )Γ + (δCn+1

w , Cn+1
f )Γ

)
≤ 7α∆t

8
∥ ∇Cn+1

f ∥2 +
7α∆t

8
∥ ∇Cn+1

w ∥2

+
α∆t

8

(
∥ ∇Cn

f ∥2 + ∥ ∇Cn−1
f ∥2 + ∥ ∇Cn

w ∥2 + ∥ ∇Cn−1
w ∥2

)
+

192c4trc
4
tw∆t

α3
∥ δCn+1

f ∥2 +
192c4trfc

4
trw∆t

α3
∥ δCn+1

w ∥2

=
7α∆t

8
∥ ∇Cn+1

fw ∥2 +
α∆t

8

(
∥ ∇Cn

fw ∥2 + ∥ ∇Cn−1
fw ∥2

)
+

192c4trfc
4
trw∆t

α3
∥ δCn+1

fw ∥2 .(43)

By using Poincaré inequality and Young’s inequality, the forcing term can be bound-
ed as

−2∆t(f n+1
fw , Cn+1

fw ) ≤
8c2p∆t

α
∥ f n+1

fw ∥2 +
α∆t

8
∥ ∇Cn+1

fw ∥2 .(44)

Substituting (43) and (44) into (38) and drop the non-negative term 2∆t ∥ Cn+1
f −

Cn+1
w ∥2Γ, provides

∥ ωn ∥2G +
(1
2
−

192c4trfc
4
trw∆t

α3

)
∥ δ Cn+1

fw ∥2 +α∆t ∥ ∇Cn+1
fw ∥2

≤ ∥ ωn−1 ∥2G +
α∆t

8
∥ ∇Cn

fw ∥2 +
α∆t

8
∥ ∇Cn−1

fw ∥2 +
8c2p∆t

α
∥ f n+1

fw ∥2 .

If the time step ∆t satisfied the following restriction

∆t ≤ α3

384c4trfc
4
trw

,(45)

then

∥ ωn ∥2G +α∆t ∥ ∇Cn+1
fw ∥2

≤ ∥ ωn−1 ∥2G +
α∆t

8
∥ ∇Cn

fw ∥2 +
α∆t

8
∥ ∇Cn−1

fw ∥2 +
8c2p∆t

α
∥ f n+1

fw ∥2 .(46)
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Adding
3α∆t

8
∥ ∇Cn

fw ∥2 on the both sides of the inequality (46) yields

∥ ωn ∥2G +α∆t ∥ ∇Cn+1
fw ∥2 +

3α∆t

8
∥ ∇Cn

fw ∥2

≤ ∥ ωn−1 ∥2G +
α∆t

2
∥ ∇Cn

fw ∥2 +
α∆t

8
∥ ∇Cn−1

fw ∥2 +
8c2p∆t

α
∥ f n+1

fw ∥2 .(47)

Set Mn =∥ ωn ∥2G +
α∆t

2
∥ ∇Cn+1

fw ∥2 +
α∆t

8
∥ ∇Cn

fw ∥2, then the above inequality

can be bounded in the following way

Mn +
α∆t

2
∥ ∇Cn+1

fw ∥2 +
α∆t

4
∥ ∇Cn

fw ∥2≤ Mn−1 +
8c2p∆t

α
∥ f n+1

fw ∥2 .(48)

Using Poincaré inequality and the equivalence property of the L2-norm and the
G-norm, the two terms of the left-hand side of (48) can be written as

α

2
∥ ∇Cn+1

fw ∥2 +
α

4
∥ ∇Cn

fw ∥2

≥α

4
∥ ∇Cn+1

fw ∥2 +
α

8
∥ ∇Cn

fw ∥2 +
α

8c2p

(
∥ Cn+1

fw ∥2 + ∥ Cn
fw ∥2

)
≥α

4
∥ ∇Cn+1

fw ∥2 +
α

8
∥ ∇Cn

fw ∥2 +
αc2l
8c2p

∥ ωn ∥2G

≥γ∗
(
∥ ωn ∥2G +

α∆t

2
∥ ∇Cn+1

fw ∥2 +
α∆t

8
∥ ∇Cn

fw ∥2
)

=γ∗Mn,(49)

where γ∗ = min
{αc2l
8c2p

,
1

2∆t

}
. Replacing the above bound into (48), gives

(1 + γ∗∆t)Mn ≤ Mn−1 +
8c2p∆t

α
∥ f n+1

fw ∥2 .(50)

By the induction argument, the inequality (50) can be written as

Mn ≤ (1 + γ∗∆t)−nM0 +
8c2p∆t

α
∥ f n+1

fw ∥2
n−1∑
i=0

( 1

1 + γ∗∆t

)i

.(51)

Since
1

1 + γ∗∆t
< 1 and n −→ ∞, then

n−1∑
i=0

1

(1 + γ∗∆t)i
=1 +

1

(1 + γ∗∆t)
+ ...+

1

(1 + γ∗∆t)n−1

=

1−
( 1

1 + γ∗∆t

)n

1− 1

1 + γ∗∆t

=
1

γ∗∆t

1 + γ∗∆t

=
1 + γ∗∆t

γ∗∆t
.

Plugging the above geometric series results and using the triangle inequality, the
equivalence of the L2-norm and the G-norm in (51), we obtain

∥ Cn+1
fw ∥2 + ∥ Cn

fw ∥2 +∆t ∥ ∇(Cn+1
fw + Cn

fw) ∥2

≤c̃(1 + γ∗∆t)−n
(
∥ C0

fw ∥2 +∆t ∥ ∇C0
fw ∥2 + ∥ C1

fw ∥2 +∆t ∥ ∇C1
fw ∥2

)
+

8c2p(1 + γ∗∆t)

αγ∗ ∥ f n+1
fw ∥2,
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which illustrates the uniform stability. �

5. Convergence analysis of the second-order backward differentiation
partitioned time-stepping scheme

To illustrate the optimal error estimate, we assume that the exact solution of
(u, p, Cf , Cw) satisfies the following regularity conditions

u ∈ Lp(0, T,Hk+1(Ωf )),utt ∈ Lp(0, T,Hk+1(Ωf )),uttt ∈ Lp(0, T,H1(Ωf )),

p ∈ Lp(0, T, L2(Ωf )),

Cf ∈ Lp(0, T,Hk+1(Ωf )), Ctt,f ∈ Lp(0, T,Hk+1(Ωf )), Cttt,f ∈ Lp(0, T,H1(Ωf )),

(52)

Cw ∈ Lp(0, T,Hk+1(Ωw)), Ctt,w ∈ Lp(0, T,Hk+1(Ωw)),

(53)

Cttt,w ∈ Lp(0, T,H1(Ωw)), p = 2,∞.

Moreover, we introduce the following discrete norms

∥| v |∥2L2(0,T,Hk(Ωf |w)) = ∆t
N∑

n=0

∥ vn ∥2Hk(Ωf|w) .

∥| v |∥2L∞(0,T,Hk(Ωf|w)) = max
0≤n≤N

∥ v ∥Hk(Ωf|w),

and define the following errors

en+1
u = u(tn+1)− ϕu + ϕu − un+1

f = ηn+1
u + φn+1

u ∀ϕu ∈ V,

en+1
f = Cf (t

n+1)− ϕf + ϕf − Cn+1
f = ηn+1

f + φn+1
f ∀ϕf ∈ Xf ,(54)

en+1
w = Cw (t

n+1)− ϕw + ϕw − Cn+1
w = ηn+1

w + φn+1
w ∀ϕw ∈ Xw .

Theorem 3. Let u, p, Cf and Cw are the exact solution of the solute dynamics
model (1) − (10) holds the regularity assumptions (52) for p = 2, and if the time
step restriction

∆t ≤ α3

384c4trfc
4
trw

holds, then the approximate solution of the scheme (18)−(21) satisfies the following
error estimate

∥ eN+1
u ∥2 + ∥ eNu ∥2 + ∥ eN+1

fw ∥2 + ∥ eNfw ∥2 + ∥ ∇eN+1
u ∥2 + ∥ ∇eN+1

fw ∥2

+ ∥ ∇eNfw ∥2 +∆t

N∑
n=0

∥ ∇(en+1
u + enu) ∥2 +∆t

N∑
n=0

∥ ∇(en+1
fw + enfw) ∥2

≤c̃
(
∆t4 + h2k

)
.(55)

Moreover, if the solution is long-time regular in the sense the solution satisfies
the regularity assumptions (52) for p = ∞ and T = ∞, then for any 0 ≤ tn < ∞,
there exists a strictly positive constant c̃, such that

∥ eN+1
u ∥2 + ∥ eNu ∥2 + ∥ eN+1

fw ∥2 + ∥ eNfw ∥2

+ ∥ ∇eN+1
u ∥2 + ∥ ∇eN+1

fw ∥2 + ∥ ∇eNfw ∥2

≤c̃(1 + γmin)
−n

(
∥ φ1

u ∥2 + ∥ φ0
u ∥2 + ∥ φ1

fw ∥2 + ∥ φ0
fw ∥2

+∆t ∥ ∇φ1
u ∥2 +∆t ∥ ∇φ1

fw ∥2 +∆t ∥ ∇φ0
fw ∥2

)
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+ c̃
(
∆t4 + h2k

)
.(56)

Proof. To derive the convergence analysis of the blood solute dynamics model,
firstly, we deduce the error estimates for the Navier-Stokes equations. Secondly, we
derive the error estimate of the advection-diffusion and pure diffusion equation.

Consider the proposed BDF2 scheme (18)− (21) over the discretely divergence
free space Wh = {vh ∈ Vh : (∇ · vh , qh) = 0, ∀qh ∈ Qh}, instead of Vh, which lead
to vanish the pressure term (pn+1,∇·v). Subtracting (18) from (11) and (19) from
(12) at t = tn+1, gives us the following error equation

1

∆t
(Den+1

u ,v) + ν(∇en+1
u ,v)− (p(tn+1),∇ · v)

+ C∗(u(tn+1),u(tn+1),v)− C∗(2un − un−1,un+1,v)

=− (rn+1
u ,v),(57) (

∇ · (u(tn+1)− un+1), q
)
= 0,(58)

where rn+1
u = ut(t

n+1)− 1

∆t
Du(tn+1).

For all v ∈ Wh and any λ ∈ Wh, we have(
p(tn+1),∇ · v

)
=

(
p(tn+1)− λn+1,∇ · v

)
.(59)

Thus
1

∆t
(Dφn+1

u ,v) + ν(∇φn+1
u ,∇v)

=− (rn+1
u ,v)− 1

∆t
(Dηn+1

u ,v)− ν(∇ηn+1
u ,∇v)

− C∗(u(tn+1),u(tn+1),v
)
+ C∗(2un − un−1,un+1,v)

+
(
p(tn+1)− λn+1,∇ · v

)
.(60)

Plugging v = φn+1
u and q = φn+1

p into the equation (60), we get

1

∆t
(Dφn+1

u , φn+1
u ) + ν(∇φn+1

u ,∇φn+1
u )

=− (rn+1
u , φn+1

u )− 1

∆t
(Dηn+1

u , φn+1
u )− ν(∇ηn+1

u ,∇φn+1
u )

− C∗(u(tn+1),u(tn+1), φn+1
u ) + C∗(2un − un−1,un+1, φn+1

u )

+
(
p(tn+1)− λn+1,∇ · φn+1

u

)
.(61)

Multiplying both sides of equation (61) by 2 and using Lemma 2, we obtain

1

∆t

(
∥ χn

u ∥2 − ∥ χn−1
u ∥2 +

1

2
∥ δφn+1

u ∥2
)
+ 2ν ∥ ∇φn+1

u ∥2

=− 2(rn+1
u , φn+1

u )− 2

∆t
(Dηn+1

u , φn+1
u )− 2ν(∇ηn+1

u , φn+1
u )

− 2C∗
(
u(tn+1),u(tn+1), φn+1

u

)
+ 2C∗(2un − un−1,un+1, φn+1

u )

+ 2
(
p(tn+1)− λn+1,∇ · φn+1

u

)
,(62)

with χn
u = [φn+1

u , φn
u]

T.
Next, we estimate each term of the right-hand side of equation (62) one by one.

Using Cauchy-Schwarz inequality and Young’s inequality, we obtain

−2(rn+1
u , φn+1

u ) ≤
8c2pf
ν

∥ rn+1
u ∥2 +

ν

8
∥ ∇φn+1

u ∥2,(63)
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− 2

∆t
(Dηn+1

u , φn+1
u ) ≤

8c2pf
ν

∥ 1

∆t
Dηn+1

u ∥2 +
ν

8
∥ ∇φn+1

u ∥2,(64)

−2ν(∇ηn+1
u , φn+1

u ) ≤ 8νc2pf ∥ ∇ηn+1
u ∥2 +

ν

8
∥ ∇φn+1

u ∥2 .(65)

Using the approximation properties (17), and the following inequality: for suffi-

ciently small h ≤ h1 with Ch
1
2
1 ≤ C1, and by using the inverse inequality ∥vh∥m,q ≤

Chl−m+n( 1
q−

1
p )∥vh∥l,p, there holds

∥∇ηn+1
u ∥L3 ≤ Ch−1+3( 1

3−
1
2 )∥ηn+1

u ∥L2

≤ Ch− 3
2 ∥ηn+1

u ∥L2

≤ Ch
1
2 ≤ C1.

thus, the trilinear terms can be estimated as

−2C∗(u(tn+1),u(tn+1), φn+1
u ) + 2C∗(2un − un−1,un+1, φn+1

u )

=− 2C∗(u(tn+1),u(tn+1), φn+1
u ) + 2C∗(u(tn+1),un+1, φn+1

u )− 2C∗(u(tn+1)

− 2un + un−1,un+1, φn+1
u )

=− 2C∗(u(tn+1),u(tn+1)− un+1, φn+1
u )

− 2C∗(u(tn+1) + un+1 − un+1 − 2un + un−1,un+1, φn+1
u )

=− 2C∗(u(tn+1), ηn+1
u , φn+1

u )

− 2C∗(u(tn+1)− un+1,un+1, φn+1
u )− 2C∗(δun+1,un+1, φn+1

u )

=− 2C∗(u(tn+1), ηn+1
u , φn+1

u ) + 2C∗(u(tn+1)− un+1, ηn+1
u , φn+1

u )

− 2C∗(u(tn+1)− un+1,u(tn+1), φn+1
u ) + 2C∗(δun+1, ηn+1

u , φn+1
u )

− 2C∗(δun+1,u(tn+1), φn+1
u ) + 2C∗(δu(tn+1), ηn+1

u , φn+1
u )

− 2C∗(δu(tn+1), ηn+1
u , φn+1

u )

=− 2C∗(u(tn+1), ηn+1
u , φn+1

u ) + 2C∗(u(tn+1)− un+1, ηn+1
u , φn+1

u )

− 2C∗(u(tn+1)− un+1,u(tn+1), φn+1
u ) + 2C∗(δ(u(tn+1)− un+1), ηn+1

u , φn+1
u )

− 2C∗(δ(u(tn+1)− un+1),u(tn+1), φn+1
u )− 2C∗(δu(tn+1), ηn+1

u , φn+1
u )

+ 2C∗(δu(tn+1),u(tn+1), φn+1
u )

≤c̄(∥u(tn+1)∥L4∥∇ηn+1
u ∥L2∥φn+1

u ∥L4 + ∥u(tn+1)− un+1∥L2∥∇ηn+1
u ∥L3∥φn+1

u ∥L6

+ ∥u(tn+1)− un+1∥L2∥∇u(tn+1)∥L3∥φn+1
u ∥L6

+ ∥δ(u(tn+1)− un+1)∥L2∥∇ηn+1
u ∥L3∥φn+1

u ∥L6

+ ∥δ(u(tn+1)− un+1)∥L2∥∇u(tn+1)∥L3∥φn+1
u ∥L6

+ ∥δu(tn+1)∥L2∥∇ηn+1
u ∥L3∥φn+1

u ∥L6

+ ∥δu(tn+1)∥L3∥∇u(tn+1)∥L2∥φn+1
u ∥L6

≤C2
1 (∥ηn+1

u ∥2 + ∥φn+1
u ∥2 + ∥δηn+1

u ∥2 + ∥δφn+1
u ∥2)

+ c̄(∥∇ηn+1
u ∥2 + ∥δu(tn+1)∥2) + ν

16
∥∇φn+1

u ∥2.
(66)

The last term can be bounded as

2
(
p(tn+1)− λn+1,∇ · φn+1

u

)
≤ ∥ p(tn+1)− λn+1 ∥∥ ∇ · φn+1

u ∥
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≤16d

ν
∥ p(tn+1)− λn+1 ∥2 +

ν

16
∥ ∇φn+1

u ∥2 .(67)

Plugging the above estimates (63)− (67) into the equation (62), to obtain

∥ χn
u ∥2 − ∥ χn−1

u ∥2 +(
1

2
− C2

1∆t) ∥ δφn+1
u ∥2 +

3ν∆t

2
∥ ∇φn+1

u ∥2

≤
4c2pf∆t

ν
∥ rn+1

u ∥2 +
4c2pf∆t

ν
∥ 1

∆t
Dηn+1

u ∥2

+ (4νc2pf + c̄)∆t ∥ ∇ηn+1
u ∥2 +c̄∆t∥δu(tn+1)∥2

+
16d∆t

ν
∥ p(tn+1)− λn+1 ∥2) + C2

1∆t(∥ηn+1
u ∥2 + ∥φn+1

u ∥2 + ∥δηn+1
u ∥2).(68)

Adding
ν∆t

4
∥ ∇φn

u ∥2 on the both sides of the above inequality and rearranging

the terms to achieve

An + (
1

2
− C2

1∆t) ∥ δφn+1
u ∥2 +

µ∆t

4

(
∥ ∇φn+1

u ∥2 + ∥ ∇φn
u ∥2

)
+ ν∆t ∥ ∇φn+1

u ∥2

≤An−1 +
4c2pf∆t

ν
∥ rn+1

u ∥2 +
4c2pf∆t

ν
∥ 1

∆t
Dηn+1

u ∥2

+ (4νc2pf + c̄)∆t ∥ ∇ηn+1
u ∥2 +c̄∆t∥δu(tn+1)∥2

+
16d∆t

ν
∥ p(tn+1)− λn+1 ∥2) + C2

1∆t(∥ηn+1
u ∥2 + ∥φn+1

u ∥2 + ∥δηn+1
u ∥2).

(69)

such that An=∥ χn
u ∥2 +

ν∆t

4
∥ ∇φn+1

u ∥2.
In the following, we derive the convergence analysis for the advection-diffusion

equation and pure diffusion equation of the blood solute dynamics model.
Subtracting (20) and (21) from (13) and (14), the error equation can be con-

structed as

1

∆t
(Den+1

fw , ϕfw ) + µf (∇en+1
f ,∇ϕf )

+ µw (∇en+1
w ,∇ϕw ) + C∗(u(tn+1), Cf (t

n+1), ϕf )

− C∗(2un − un−1, Cn+1
f , ϕf ) + (en+1

f , ϕf )Γ − (Cw (t
n+1)− 2Cn

w + Cn−1
w , ϕf )Γ

+ (en+1
w , ϕw )Γ − (Cf (t

n+1)− 2Cn
f + Cn−1

f , ϕw )Γ

=− (rn+1
fw , ϕfw ),

(70)

where

rn+1
fw = (rn+1

f , rn+1
w ), rn+1

i = Ct,i(t
n+1)− 1

∆t
DCi(t

n+1), for i = f, w.

Using (54), choosing ϕn+1
f = φn+1

f and ϕw = φn+1
w , adding and subtracting the

terms (Cn+1
f , φn+1

w )Γ and (Cn+1
w , φn+1

f )Γ, the error equation (70) can be rewritten
as

1

∆t
(Dφn+1

fw , φn+1
fw ) + µf (∇φn+1

f ,∇φn+1
f ) + µw (∇φn+1

w ,∇φn+1
w )

+ C∗(u(tn+1), Cf (t
n+1), φn+1

f )− C∗(2un − un−1, Cn+1
f , φn+1

f ) + (φn+1
f , φn+1

f )Γ

+ (φn+1
w , φn+1

w )Γ + (ηn+1
f , φn+1

f )Γ + (ηn+1
w , φn+1

w )Γ

− (φn+1
w , φn+1

f )Γ − (ηn+1
w , φn+1

f )Γ
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− (φn+1
f , φn+1

w )Γ − (ηn+1
f , φn+1

w )Γ − (δCn+1
w , φn+1

f )Γ − (δCn+1
f , φn+1

w )Γ

=− (rn+1
fw , φfw )−

1

∆t
(Dηn+1

fw , φn+1
fw )− µf (∇ηn+1

f ,∇φn+1
f )− µw (∇ηn+1

w ,∇φn+1
w ).

(71)

Multiplying both sides of equation (71) by 2, using Lemma 2, adding and subtract-
ing the term 2

(
∇Cf (t

n+1), φn+1
w

)
Γ
, we get

1

∆t

(
∥ χn ∥2G − ∥ χn−1 ∥2G +

1

2
∥ δφn+1

fw ∥2
)

+ 2α ∥ ∇φn+1
fw ∥2 +2 ∥ φn+1

f − φn+1
w ∥2Γ

≤− 2(rn+1
fw , ϕfw )−

2

∆t
(Dηn+1

fw , φn+1
fw )− 2α(∇ηn+1

fw ,∇φn+1
fw )

+ 2(ηn+1
w − ηn+1

f , φn+1
f − φn+1

w )Γ − 2C∗(u(tn+1), Cf (t
n+1), ϕn+1

f )

+ 2C∗(2un − un−1, Cn+1
f , ϕn+1

f ) + 2(δCw (t
n+1), φn+1

f )Γ + 2(δCf (t
n+1), φn+1

w )Γ

− 2(δφn+1
f , φn+1

w )Γ − 2(δφn+1
w , φn+1

f )Γ − 2(δηn+1
f , φn+1

w )Γ − 2(δηn+1
w , φn+1

f )Γ,

(72)

where χn = [φn+1
fw , φn

fw ]
T.

Estimate the terms involving the right-hand side of the above inequality one by
one, we obtain

−2(rn+1
fw , φfw ) ≤

c2p
εfw

∥ rn+1
fw ∥2 +εfw ∥ ∇φn+1

fw ∥2,(73)

− 2

∆t
(Dηn+1

fw , φn+1
fw ) ≤

c2p
εfw

∥ 1

∆t
Dηn+1

fw ∥2 +εfw ∥ ∇φn+1
fw ∥2,(74)

−2α(∇ηn+1
fw ,∇φn+1

fw ) ≤ 1

εfw
∥ ∇ηn+1

fw ∥2 +εfw ∥ ∇φn+1
fw ∥2 .(75)

To estimate the interface terms, we use Cauchy-Schwarz inequality and trace in-
equality

2(ηn+1
f , φn+1

f )Γ + 2(ηn+1
w , φn+1

w )Γ − 2(ηn+1
w , φn+1

f )Γ − 2(ηn+1
f , φn+1

w )Γ

≤2 ∥ ηn+1
f ∥Γ∥ φn+1

f ∥Γ +2 ∥ ηn+1
w ∥Γ∥ φn+1

w ∥Γ
+ 2 ∥ ηn+1

w ∥Γ∥ φn+1
f ∥Γ +2 ∥ ηn+1

f ∥Γ∥ φn+1
w ∥Γ

≤2c2trf ∥ ∇ηn+1
f ∥∥ ∇φn+1

f ∥ +2c2trw ∥ ∇ηn+1
w ∥∥ ∇φn+1

w ∥

+ 2ctrfctrw ∥ ∇ηn+1
w ∥∥ ∇φn+1

f ∥ +2ctrfctrw ∥ ∇ηn+1
f ∥∥ ∇φn+1

w ∥

≤
2c4trf
εfw

∥ ∇ηn+1
f ∥2 +

εfw
2

∥ ∇φn+1
f ∥2 +

2c4trw
εfw

∥ ∇ηn+1
w ∥2 +

εfw
2

∥ ∇φn+1
w ∥2

+
2c2trfc

2
trw

εfw
∥ ∇ηn+1

w ∥2 +
εfw
2

∥ ∇φn+1
f ∥2

+
2c2trfc

2
trw

εfw
∥ ∇ηn+1

f ∥2 +
εfw
2

∥ ∇φn+1
w ∥2

≤
2c4trf
εfw

∥ ∇ηn+1
f ∥2 +

2c4trw
εfw

∥ ∇ηn+1
w ∥2
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+
2c2trfc

2
trw

εfw
∥ ∇ηn+1

fw ∥2 +εfw ∥ ∇φn+1
wf ∥2 .(76)

And

2
(
δCw (t

n+1), φn+1
f

)
Γ
≤ 2 ∥ δCw (t

n+1) ∥Γ∥ φn+1
f ∥Γ

≤
c2trfc

2
trw

εfw
∥ ∇δCw (t

n+1) ∥2 +εfw ∥ ∇φn+1
f ∥2 .(77)

Also

2
(
δCf (t

n+1), φn+1
w

)
Γ
≤ 2 ∥ δCf (t

n+1) ∥Γ∥ φn+1
w ∥Γ

≤
c2trfc

2
trw

εfw
∥ ∇δCf (t

n+1) ∥2 +εfw ∥ ∇φn+1
w ∥2 .(78)

In the similar way, we achieve

−2(δηn+1
f , φn+1

w )Γ ≤
c2trfc

2
trw

εfw
∥ ∇δηn+1

f ∥2 +εfw ∥ ∇φn+1
w ∥2,(79)

−2(δηn+1
fw , φn+1

f )Γ ≤
c2trfc

2
trw

εfw
∥ ∇δηn+1

w ∥2 +εfw ∥ ∇φn+1
f ∥2 .(80)

Adapting the similar techniques as illustrated in (39)−(41), the two interface terms
can be bounded by

2(δφn+1
f , φn+1

w )Γ + 2(δφn+1
w , φn+1

f )Γ

≤7α

8
∥ ∇φn+1

fw ∥2 +
α

8

(
∥ ∇φn

fw ∥2 + ∥ ∇φn−1
fw ∥2

)
+

192c4trc
4
tw

α3
∥ δφn+1

fw ∥2 .

(81)

By the same technique in (66), we have

− 2
(
b∗(u(tn+1), Cf (t

n+1), φn+1
f

)
− b∗

(
2un − un−1, Cn+1

f , φn+1
f )

)
≤C2

1 (∥ηn+1
u ∥2 + ∥φn+1

u ∥2 + ∥δηn+1
u ∥2 + ∥δφn+1

u ∥2)
+ c̄(∥∇ηn+1

f ∥2 + ∥δu(tn+1)∥2) + ϵfw∥∇φn+1
f ∥2.(82)

Plugging the above estimates (73)−(82) into the equation (72) and taking ϵfw =
α

72
, to achieve

∥ χn ∥2G +
(1
2
− 192c3trc

3
tw∆t

α3

)
∥ δφn+1

fw ∥2

+ α∆t ∥ ∇φn+1
fw ∥2 +2∆t ∥ φn+1

f − φn+1
w ∥2Γ

≤ ∥ χn−1 ∥2G +
α∆t

8
(∥ ∇φn

fw ∥2 + ∥ ∇φn−1
fw ∥2)

+ c
(
∆t ∥ rn+1

fw ∥2 +∆t ∥ 1

∆t
Dηn+1

fw ∥2

+∆t ∥ ∇ηn+1
fw ∥2 +∆t ∥ ∇δCfw (t

n+1) ∥2

+∆t ∥ ∇δηn+1
fw ∥2 + ∥ δu(tn+1) ∥2

)
+

ν∆t

2
∥ ∇φn+1

u ∥2

+ C2
1∆t(∥ηn+1

u ∥2 + ∥φn+1
u ∥2 + ∥δηn+1

u ∥2+ ∥ δφn+1
u ∥2)

+ c̄∆t(∥∇ηn+1
f ∥2 + ∥δu(tn+1)∥2).(83)
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If the time step restriction ∆t ≤ α3

384c4trfc
4
trw

is satisfied and by dropping the non-

negative term 2∆t ∥ φn+1
f − φn+1

w ∥2Γ, yields

∥ χn ∥2G +α∆t ∥ ∇φn+1
fw ∥2

≤ ∥ χn−1 ∥2G +
α∆t

8
(∥ ∇φn

fw ∥2 + ∥ ∇φn−1
fw ∥2)

+ c
(
∆t ∥ rn+1

fw ∥2 +∆t ∥ 1

∆t
Dηn+1

fw ∥2

+∆t ∥ ∇ηn+1
fw ∥2 +∆t ∥ ∇δCfw (t

n+1) ∥2

+∆t ∥ ∇δηn+1
fw ∥2 + ∥ δu(tn+1) ∥2

)
+

ν∆t

2
∥ ∇φn+1

u ∥2

+ C2
1∆t(∥ηn+1

u ∥2 + ∥φn+1
u ∥2 + ∥δηn+1

u ∥2+ ∥ δφn+1
u ∥2)

+ c̄∆t(∥∇ηn+1
f ∥2 + ∥δu(tn+1)∥2).(84)

Following the similar steps as in (48) to get

En +
α∆t

2
∥ ∇φn+1

fw ∥2 +
α∆t

4
∥ ∇φn

fw ∥2

≤En−1 + c
(
∆t ∥ rn+1

fw ∥2 +∆t ∥ 1

∆t
Dηn+1

fw ∥2

+∆t ∥ ∇ηn+1
fw ∥2 +∆t ∥ ∇δCfw (t

n+1) ∥2

+∆t ∥ ∇δηn+1
fw ∥2 + ∥ δu(tn+1) ∥2

)
+

ν∆t

2
∥ ∇φn+1

u ∥2

+ C2
1∆t(∥ηn+1

u ∥2 + ∥φn+1
u ∥2 + ∥δηn+1

u ∥2+ ∥ δφn+1
u ∥2)

+ c̄∆t(∥∇ηn+1
f ∥2 + ∥δu(tn+1)∥2).(85)

where En=∥ χn ∥2G +
α∆t

2
∥ ∇φn+1

fw ∥2 +
α∆t

8
∥ ∇φn

fw ∥2 . Combining (69) and

(85) and applying the triangle inequality, we obtain

An + En + (
1

2
− 2C2

1∆t) ∥ δφn+1
u ∥2

+
3∆t

2
∥ ∇(φn+1

u + φn
u) ∥2 +

α∆t

4
∥ ∇(φn+1

fw + φn
fw) ∥2

≤An−1 + En−1 + c̃
(
∆t ∥ rn+1

u ∥2

+∆t ∥ rn+1
fw ∥2 +∆t ∥ 1

∆t
Dηn+1

u ∥2 +∆t ∥ 1

∆t
Dηn+1

fw ∥2

+∆t ∥ ∇ηn+1
u ∥2 +∆t ∥ ∇ηn+1

fw ∥2 +∆t ∥ ∇u(tn+1) ∥2

+∆t ∥ ∇δCfw (t
n+1) ∥2 +∆t ∥ ∇δηn+1

fw ∥2 +
16d∆t

ν
∥ p(tn+1)− λn+1 ∥2

)
+ C2

1∆t(∥ηn+1
u ∥2 + ∥φn+1

u ∥2 + ∥δηn+1
u ∥2) + c̄∆t(∥∇ηn+1

f ∥2 + ∥δu(tn+1)∥2).(86)

Now we estimate each term of the right-hand side of equation (86) one by one. By
using Taylor expansion and the approximation properties (17), we get

∥ rn+1
u ∥2 ≤ c0∆t3

∫ tn+1

tn−1

∥ uttt ∥2 dt ≤ c0∆t4 ∥ uttt ∥2L∞(0,tn+1,L2) .(87)

∥ rn+1
fw ∥2 ≤ c0∆t3

∫ tn+1

tn−1

∥ Cfw ,ttt ∥2 dt ≤ c0∆t4 ∥ Cfw ,ttt ∥2L∞(0,tn+1,L2) .(88)
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∥ δu(tn+1) ∥2 ≤ c0∆t3
∫ tn+1

tn−1

∥ uttt ∥2 dt

≤ c0∆t4 ∥ uttt ∥2L∞(0,tn+1,L2) .(89)

∥ ∇δCfw (t
n+1) ∥2 ≤ c0∆t3

∫ tn+1

tn−1

∥ ∇Cfw ,ttt ∥2 dt

≤ c0∆t4 ∥ ∇Cfw ,ttt ∥2L∞(0,tn+1,L2) .(90)

∥ 1

∆t
Dηn+1

u ∥2 ≤ c0h
2(k+1) ∥ 1

∆t
Du(tn+1) ∥2Hk+1

≤ c0h
2(k+1)

∆t

∫ tn+1

tn−1

∥ ut ∥2Hk+1 dt

≤ c0h
2(k+1) ∥ ut ∥2L∞(0,tn+1,Hk+1) .(91)

∥ 1

∆t
Dηn+1

fw ∥2 ≤ c0h
2(k+1)

∆t

∫ tn+1

tn−1

∥ Cfw ,t ∥2Hk+1 dt

≤ c0h
2(k+1) ∥ Cfw ,t ∥2L∞(0,tn+1,Hk+1) .(92)

∥ ∇δηn+1
u ∥2 ≤ c0h

2k ∥ δu(tn+1) ∥2Hk+1

≤ c0h
2k∆t3

∫ tn+1

tn−1

∥ utt ∥2Hk+1 dt

≤ c0h
2k∆t4 ∥ utt ∥2L∞(0,tn+1,Hk+1) .(93)

∥ ∇δηn+1
fw ∥2 ≤ c0h

2k∆t3
∫ tn+1

tn−1

∥ Cfw ,tt ∥2Hk+1 dt

≤ c0h
2k∆t4 ∥ Cfw ,tt ∥2L∞(0,tn+1,Hk+1) .(94)

∥ ∇ηn+1
u ∥2≤ c0h

2k ∥ un+1 ∥2Hk+1 .(95)

∥ ∇ηn+1
fw ∥2≤ c0h

2k ∥ Cn+1
fw ∥2Hk+1 .(96)

We bound the pressure term in the following way

∥ p(tn+1)− λn+1 ∥2≤ c0h
2k ∥ p ∥2Hk .(97)

By inserting (87)-(97) into (86), sum over 0 to N − 1, we obtain

AN + EN +
3∆t

2

N−1∑
n=0

∥ ∇(φn+1
u + φn

u) ∥2 +
α∆t

4

N−1∑
n=0

∥ ∇(φn+1
fw + φn

fw) ∥2

≤ A0 + E0 + c̃

(
∆t4(∥ uttt ∥2L2(0,tN ,L2) + ∥ Cfw ,ttt ∥2L2(0,tN ,L2))

+ ∆t4(∥ uttt ∥2L2(0,tN ,L2) + ∥ ∇Cfw ,ttt ∥2L2(0,tN ,L2))

+ h2(k+1)(∥ ut ∥2L2(0,tN ,Hk+1) + ∥ Cfw ,t ∥2L2(0,tN ,Hk+1))

+ h2k∆t4(∥ utt ∥2L2(0,tN ,Hk+1) + ∥ Cfw ,tt ∥2L2(0,tN ,Hk+1))

+ h2k ∥| u |∥2L2(0,tN ,Hk+1) +h2k ∥| Cfw |∥2L2(0,tN ,Hk+1)
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+ h2k ∥| p(tn+1) |∥2L2(0,tN ,Hk)

)
+ C2

1∆t
N−1∑
n=0

∥φn+1
u ∥2.(98)

By the the equivalence of the G-norm and L2-norm, we can get

∥ φN+1
u ∥2 + ∥ φN

u ∥2 + ∥ φN+1
fw ∥2 + ∥ φN

fw ∥2 + ∥ ∇φN+1
u ∥2 + ∥ ∇φN+1

fw ∥2

+ ∥ ∇φN
fw ∥2 +∆t

N∑
n=0

∥ ∇(φn+1
u + φn

u) ∥2 +∆t

N∑
n=0

∥ ∇(φn+1
fw + φn

fw) ∥2

≤c̃
(
∥ φ1

u ∥2 + ∥ φ0
u ∥2 + ∥ φ1

fw ∥2 + ∥ φ0
fw ∥2 +∆t ∥ ∇φ1

u ∥2

+∆t ∥ ∇φ1
fw ∥2 +∆t ∥ ∇φ0

fw ∥2
)
+ (∆t4 + h2k) + C2

1∆t
N−1∑
n=0

∥φn+1
u ∥2.

(99)

By the Gronwall inequality and the triangle inequality, we get

∥ eN+1
u ∥2 + ∥ eNu ∥2 + ∥ eN+1

fw ∥2 + ∥ eNfw ∥2 + ∥ ∇eN+1
u ∥2 + ∥ ∇eN+1

fw ∥2

+ ∥ ∇eNfw ∥2 +∆t
N∑

n=0

∥ ∇(en+1
u + enu) ∥2 +∆t

N∑
n=0

∥ ∇(en+1
fw + enfw) ∥2

≤c̃
(
∥ φ1

u ∥2 + ∥ φ0
u ∥2 + ∥ φ1

fw ∥2 + ∥ φ0
fw ∥2 +∆t ∥ ∇φ1

u ∥2

+∆t ∥ ∇φ1
fw ∥2 +∆t ∥ ∇φ0

fw ∥2
)
+ (∆t4 + h2k).(100)

Long-time error estimate: To prove the long-time error estimate, we rewrite
the terms on the left-hand side of (69) in the following way

µ∆t

4

(
∥ ∇φn+1

u ∥2 + ∥ ∇φn
u ∥2

)
+

ν∆t

2
∥ ∇φn+1

u ∥2

≥νc2l∆t

4c2pf
∥ ∇χn+1

u ∥2G +
ν∆t

2
∥ ∇φn+1

u ∥2

≥γ
(
∥ ∇χn+1

u ∥2G +
µ∆t

4
∥ ∇φn+1

u ∥2
)

=γAn,(101)

where γ = min{2, νc
2
l∆t

4c2pf
}.

Substituting (101) into (69), we get

(1 + γ)An +
1

2
∥ δφn+1

u ∥2 +
ν∆t

2
∥ ∇φn+1

u ∥2

≤An−1 +
4c2pf∆t

ν
∥ rn+1

u ∥2

+
4c2pf∆t

ν
∥ 1

∆t
Dηn+1

u ∥2 +(4νc2pf + c̄)∆t ∥ ∇ηn+1
u ∥2 +c̄∆t∥δu(tn+1)∥2

+
16d∆t

ν
∥ p(tn+1)− λn+1 ∥2)

+ C2
1∆t(∥ηn+1

u ∥2 + ∥φn+1
u ∥2 + ∥δηn+1

u ∥2 + ∥δφn+1
u ∥2).(102)
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Also, the two terms in the right-hand side of (85) can be estimated in the similar
way as (49)

α∆t

2
∥ ∇φn+1

fw ∥2 +
α∆t

4
∥ ∇φn

fw ∥2

≥γ∗
(
∥ χn ∥2G +

α∆t

2
∥ ∇φn+1

fw ∥2 +
α∆t

8
∥ ∇φn

fw ∥2
)

=γ∗En,(103)

such that γ∗ = min
{αc2l∆t

8c2p
,
1

2

}
.

Then

(1 + γ∗)En ≤ En−1 + c
(
∆t ∥ rn+1

fw ∥2 +∆t ∥ 1

∆t
Dηn+1

fw ∥2

+∆t ∥ ∇ηn+1
fw ∥2 +∆t ∥ ∇δCfw (t

n+1) ∥2

+∆t ∥ ∇δηn+1
fw ∥2 + ∥ δu(tn+1) ∥2

)
+

ν∆t

2
∥ ∇φn+1

u ∥2

+ C2
1∆t(∥ηn+1

u ∥2 + ∥φn+1
u ∥2 + ∥δηn+1

u ∥2 + ∥δφn+1
u ∥2)

+ c̄∆t(∥∇ηn+1
f ∥2 + ∥δu(tn+1)∥2).(104)

Define γmin = min{γ, γ∗}, combine (102) and (104) and using (87)− (97)

(1 + γmin)(An + En) + (
1

2
− 2C2

1∆t) ∥ δφn+1
u ∥2

≤ (An−1 + En−1) + c̃∆t
(
∆t4(∥ uttt ∥2L∞(0,∞,L2) + ∥ Cfw ,ttt ∥2L∞(0,∞,L2))

+ ∆t4(∥ ∇utt ∥2L∞(0,∞,Hk+1) + ∥ ∇Cfw ,tt ∥2L∞(0,∞,Hk+1))

+ h2(k+1)(∥ ut ∥2L∞(0,∞,Hk+1) + ∥ Cfw ,t ∥2L∞(0,∞,Hk+1))

+ h2k∆t4(∥ utt ∥2L∞(0,∞,Hk+1) + ∥ Cfw ,tt ∥2L∞(0,∞,Hk+1))
)

+ h2k(∥| u |∥2L∞(0,∞,Hk+1) + ∥| Cfw |∥2L∞(0,∞,Hk+1))

+ h2k ∥| p(tn+1) |∥2L∞(0,∞,Hk) +C2
1∆t∥φn+1

u ∥2.
(105)

Then by induction argument, we get

An + En ≤ (1 + γmin)
−n(A0 + E0) + c̃

(
∆t4 + h2k

)
+ C2

1∆t

N−1∑
n=0

∥φn+1
u ∥2,(106)

similarly by using the triangle inequality, we can achieve the long-time error esti-
mate (56). �

6. Numerical results

To illustrate the theoretical results, four numerical experiments are performed
to show the validity and accuracy of the proposed algorithm. In the first example,
we confirm the predicted convergence rates for the proposed scheme by taking the
exact solution of the model problem. The second numerical test investigates the
blood flow and solute behavior in the bifurcated artery, with and without stenosis.
Moreover, we present the long-time stability of the BDF2 algorithm for the blood
solute dynamics model. In the third example, we conduct numerical experiments
on the double stenoses artery to present the impact of the permeability and shear
stress on the concentration of the blood solute. The fourth example demonstrates



LONG-TIME ACCURATE METHOD FOR THE BLOOD SOLUTE DYNAMICS MODEL 47

Table 1. Convergence performance of BDF2 for fixed ∆t = 0.001
at T=1.0.

h ||u(tn) − un||1 rate ||p(tn) − pn|| rate ||Cf (tn) − Cn
f ||1 rate ||Cw(tn) − Cn

w||1 rate

1/4 0.047824000 0.091399300 0.003204570 0.00857860
1/8 0.012148700 1.9769 0.020391500 2.1642 0.000687313 2.2210 0.00206354 2.0556
1/16 0.002752490 2.1419 0.004918160 2.0517 0.000166088 2.0490 0.000537018 1.9420
1/32 0.000606100 2.1831 0.001169130 2.0726 4.1498e-005 2.0008 0.000133321 2.0100
1/64 0.000164973 1.8773 0.000330698 1.8218 1.02211e-05 2.0214 3.27424e-005 2.0256

Table 2. Convergence performance of BDF2 for time stepsize
∆t = h at T = 1.0.

∆t ||u(tn) − un||1 rate ||p(tn) − pn|| rate ||Cf (tn) − Cn
f ||1 rate ||Cw(tn) − Cn

w||1 rate

1/10 0.005690610 0.010121200 0.000849795 0.001308850
1/20 0.001632060 1.8018 0.002863090 1.8217 0.000213983 1.9896 0.000341998 1.9362
1/30 0.000678053 2.1663 0.001274040 1.9969 9.5982e-005 1.9773 0.000154399 1.9613
1/40 0.000399693 1.8371 0.000740176 1.8877 5.4146e-005 1.9899 8.72836e-005 1.9826
1/50 0.000266068 1.8236 0.000500251 1.7557 3.48286e-005 1.9774 5.81180e-005 1.8225
1/60 0.000185646 1.9740 0.000359595 1.8102 2.39885e-005 2.0450 3.92048e-005 2.1592
1/70 0.000129001 2.36145 0.000275997 1.71641 1.77227e-005 1.96385 2.94223e-005 1.86212
1/80 9.98899e-005 1.91531 0.000230029 1.36437 1.35649e-005 2.00222 2.26074e-005 1.97315
1/90 7.48173e-005 2.45383 0.000199417 1.21245 1.07254e-005 1.99411 1.81025e-005 1.88675

the effect of the dilation of the artery due to the abdominal aortic aneurysm on
the blood flow. We use the well-known Taylor-Hood elements P2−P1 for the fluid
velocity and pressure, and the continuous piecewise quadratic function P2 for both
concentration in the lumen and the arterial wall.

6.1. Convergence test. Let the domain Ω be composed of Ωf = [0, 1] × [0, 1]
and Ωw = [0, 1] × [0,−1], with the common interface Γ = [0, 1] × {0}. The below
analytical solution satisfies the interface conditions:

u1 := 10(x 2 − 2x 3 + x 2)(2y3 − 3y2 + y) cos(t),

u2 := −10(2x 3 − 3x 2 + x )(y4 − 2y3 + y2) cos(t),

p := 10(2x − 1)(2y − 1) cos(t),

Cf := x (1− x )(1− y)e−t,

Cw := x (1− x )(2− y − 3y2)e−t.

The right-hand side data in the partial differential equations, initial conditions are
chosen such that the true solution is satisfied. The parameters value are considered
as: ν = 1.0, µf = 1.0, µw = 1.0 and ζ = 1.0.

In Tables 1, we compute the errors between the exact solution and the ap-
proximate solution for the proposed second-order backward differentiation scheme
with final time T = 1.0, time-step size ∆t = 0.001 and varying mesh size h =
1/4, 1/8, 1/16, 1/32, 1/64 . The result shows that the optimal convergence order
O(h2) is achieved for the velocity and concentration u, Cf , Cw inH1-semi-norm and
pressure p in L2-norm. On the other hand, we set ∆t = h and varying time step
size, ∆t = 1/10, 1/20, 1/30, 1/40, 1/50, 1/60. Table 2 shows that optimal conver-
gence O(∆t2) is obtained in time for u, Cf , Cw in H1-semi-norm and p in L2-norm.

6.2. The bifurcated artery with and without stenosis. The main reason for
cardiovascular disease, including atherosclerosis, is to believe that the transport of
the macromolecules, in particular “Low-Density Lipoprotein (LDL)”, from the lu-
men to the arterial wall leads to narrowing of the artery which disorder the smooth
blood flowing. Thus the study of the blood behavior in the artery gives a better
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Figure 2. Left: a sketch of the simulation domain. Right: illus-
tration of the computational mesh.

understanding of the relationship between the local features of the blood, the effect
of the flow on the concentration of the macromolecules and the development of the
pathologies [51, 52]. In this example, a 2D-simplified conceptual domain is consid-
ered to demonstrate the flow speed, streamlines, pressure field and concentration
behavior in the lumen and the arterial wall, in both bifurcated arteries, with and
without stenosis. On the other hand, we illustrate the effect of the development of
the diseases on blood flow by taking different stenosis size [53, 54]. Furthermore,
the long-time stability and consistency of the proposed scheme are presented.

The geometrical model for the lumen Ωf and the wall Ωw for the bifurcated
artery are shown in Figure 2. The interface Γfw is defined as Γfw = {(x, y) : y =
1.5, 0 ≤ x ≤ 3.4} ∪ {(x, y) : y = −1/6.2x + 10.84/6.2, 3.4 ≤ x ≤ 9.6} ∪ {(x, y) :
y = −0.7/3.6x+ 12.12/3.6, 9.6 ≤ x ≤ 6.6} ∪ {(x, y) : 1.3/3.6x+ 0.12/3.6, 6.6 ≤ x ≤
9.6}∪{(x, y) : y = 1/3.1x+4.35/3.1, 9.6 ≤ x ≤ 3.4}∪{(x, y) : y = 2.5, 3.4 ≤ x ≤ 0}.
The boundaries of the arterial lumen are described in the following way: ∂Ωf =
Γfw∪Γin

f ∪Γout
f , such that: Γin

f = {(x, y) : x = 0, 1.5 ≤ y ≤ 2.5} and Γout
f = {(x, y) :

x = 9.6, 0.5 ≤ y ≤ 1.5} ∪ {(x, y) : x = 9.6, 3.5 ≤ y ≤ 4.5}. On the other hand, the
boundaries of the wall domain are considered as: ∂Ωw = Γfw∪Γw∪Γin

w ∪Γout
w , such

that: Γw = {(x, y) : y = 1.2, 0 ≤ x ≤ 3.4}∪ {(x, y) : y = −1/6.2x+10.84/6.2, 3.4 ≤
x ≤ 9.6} ∪ {(x, y) : y = −1/6.2x+ 5.28/6.2, 9.6 ≤ x ≤ 3.4} ∪ {(x, y) : y = 2.8, 3.4 ≤
x ≤ 0}, Γin

w = {(x, y) : y = 0, 1.5 ≤ x ≤ 1.2} ∪ {(x, y) : y = 0, 2.8 ≤ x ≤ 2.5} and
Γout
w = {(x, y) : x = 9.6, 0.2 ≤ y ≤ 0.5} ∪ {(x, y) : x = 9.6, 1.5 ≤ y ≤ 1.8} ∪ {(x, y) :

x = 9.6, 3.2 ≤ y ≤ 3.5}.
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The current numerical test is performed by imposing the following boundary
conditions. In the upstream of lumen Γin

f , we utilize parabolic profile by consid-

ering ux = 32.0(y − 1.5)(2.5 − y)cms−1 and uy = 0. On the interface Γfw, we
assume no-slip boundary condition u = 0 for the velocity vector field. Constant
inflow condition Cf = 1.0gcm−3 and Cw = 0.5gcm−3 is considered for the solute
concentration of the blood in the lumen and the arterial wall Γin

f and Γin
w , respec-

tively. Homogeneous Neumann boundary condition (−ν∇u + PI) · nf = 0 and
µf∇Cf · nf = 0 are considered on Γout

f and Γout
w for the free out flow. On the

interface between the lumen and wall Γfw, we utilized two interface conditions (9)
and (10). We choose the parameters value in the following manner: the blood vis-
cosity ν = 0.5cm2s−1, the diffusivity in the lumen and wall µf = µw = 0.5cm2s−1,
permeability ζ = 1.0cms−1. The final time, the time step size and the mesh size are
considered as T = 5.0s, ∆t = 0.001s and hmax = 0.1cm, respectively. Figures 3
and 4 present the velocity vector field, concentration of solute and the pressure con-
tours without arteriosclerosis in the bifurcated artery for backward-Euler scheme
(BES) and BDF2, respectively. As expected, the velocity profile, concentration of
blood molecules, and pressure field appear regular and reasonably for the healthy
cases. Obviously, one can observe the higher value of velocity in the upstream side
of the artery, which leads to penetrating a large amount of solute to the arterial
wall. On the other hand, the velocity in the downstream side of the artery gradually
decreases, due to the bifurcation of the artery, which disturbs the uniform blood
flowing, as a consequence, low concentration in the downstream side of the artery.

The impact of the gradual increases of the narrow size of the atherosclerosis on
the blood flow in the bifurcated artery is illustrated in Figures 5 and 6, respec-
tively. The flow speed, solute concentration, and pressure contour shows that the
development of the atherosclerosis has a significant influence on the regular blood
circulation. Hence, the bigger the stenosis, the obstacle is higher for the blood flow
in the bifurcated artery.

In Figure 7, we present the efficiency and long-time stability of the BDF2 scheme
by illustrating the velocity profile for the final time T = 1.0 and T = 10.0, respec-
tively. As expected, both figures appear in a similar pattern, which shows the
long-time efficiency of the proposed method. On the other hand, Figure 8 presents
the long-time behavior and stability of energy ∥ uh ∥2L2(Ωf )

+ ∥ Cfh ∥2L2(Ωf )
+ ∥

Cwh ∥2L2(Ωw) at time-step level with different mesh-size hmax = 0.1, 0.075, 0.05, and

0.025, respectively for the BES and BDF2 schemes. The numerical results show
that the varying mesh sizes do not affect the stability of the presented scheme.

6.3. The double stenoses artery in the case of physiological interest. The
cardiovascular and the arterial disease illustrated that many stenoses might develop
in the artery, which leads to irregular blood flow, as discussed in the previous
experiment for the single stenosis. Thus the geometry of the artery has an important
effect on the blood flow [55]. The main objective of this experiment is to investigate
the magnitudes, streamlines, pressure field due to the presence of double stenoses.
Moreover, we demonstrate the effect of the shear stress on the solute flux through
the interfacial wall.

To perform the current simulation, we consider the double stenosis artery, which
is shown in Figure 9. The interface between the lumen Ωf and the wall Ωw is
assumed as Γfw = {(x, y) : y = 0, 0 ≤ x ≤ 3} ∪ {(x, y) : y = 0.125(1 + cos(2πx −
7π)), 3 ≤ x ≤ 4} ∪ {(x, y) : y = 0, 4 ≤ x ≤ 8} ∪ {(x, y) : y = 0.125(1 + cos(2πx −
17π)), 8 ≤ x ≤ 9} ∪ {(x, y) : y = 0, 9 ≤ x ≤ 12}. The blood solute distribution
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Figure 3. The bifurcated artery for the backward-Euler scheme
(BES). Left: velocity profile. Right: concentration of solute.
Down: pressure contour.

from the lumen to the arterial wall through the permeable endothelial layer Γfw is
described by the two interface conditions (9) and (10).

In the upstream of the lumen Γin
f , we consider the parabolic profile ux = 15(1−

((y−0.5)/0.5)2, uy = 0 and the solute concentration Cf = 1.0gcm−3. The homoge-
neous Neumman boundary condition (−ν∇u+pI) ·nf = 0 and µf∇Cf ·nf = 0 are
imposed in the downstream of the lumen Γout

f . On the other hand, no-slip bound-

ary condition u = 0 is imposed on Γfw ∪Γf . Moreover, we assume Cw = 0.5gcm−3

on the boundary Γin
w ∪ Γw and µw∇Cw · nw = 0 on the wall downstream Γout

w .
The parameters value of this numerical experiment are considered in the follow-

ing way: the blood viscosity is ν = 0.033cm2s−1 and µf = µw = 5.10−5cm2s−1 are
the lumen and the wall diffusivity. The wall permeability ζ is given as a function
of the shear stress σ(u), ζ = K1 +K2 | σ(u) |, such that K1 = 3.11.10−3cm−1s−1
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Figure 4. The bifurcated artery for BDF2. Left: velocity profile.
Right: concentration. Down: pressure contour.

and K2 = 1.57.10−4cm3dyn−1s−1. The final time, the time step size and the mesh
size are considered as T = 1.0s, ∆t = 0.0001s, and h = 1/50cm, respectively.

Figures 11 and 12 show the concentration in the wall boundary, the permeability,
and the shear stress on the wall. The highest value of the concentration in the lumen
and the wall is located in the most constriction part of both stenoses.

The up plot of Figure 10 demonstrates the pressure in the double stenoses artery.
One can see in the upstream side of the first stenosis, the pressure gradually decreas-
es and get a lower value in the most constriction part of the artery. The pressure
contour recovers but does not attain the higher values, thus again the lowest value
in the second stenosis part of the artery. The middle plot of Figure 10 shows the
velocity contours in a double stenosed artery, which illustrate that a higher magni-
tude of velocity is developed inside the constriction of the first stenosis, and slightly
lower in the downstream part. On the other hand, the flow again developed and
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Figure 5. The bifurcated artery for BDF2 with smaller
atherosclerosis. Left: velocity profile. Right: concentration of
solute. Down: pressure contour.

getting the highest value in the constriction of the second stenosis and gradually
decreased in the downstream location. As expected, due to the stenosis presence,
the streamlines are disturbed, which leads to a lack of the blood flow to another
part of the artery. Thus recirculation zones appear in the downstream side of the
first and the second stenosis, which is illustrated in the down plot of Figure 10.

6.4. Abdominal aortic aneurysm. One of the common cardiovascular diseases
that occur in the abdominal aortic artery is the aneurysm, where the artery getting
dilate at the weak area in the arterial wall. In this example, we investigate the
velocity contours, streamlines, pressure field, and the wall shear stress through an
aneurysmatic artery to understand the relation between the aneurysm development
and the hemodynamic factors, such as blood pressure and the wall shear stress. In
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Figure 6. The bifurcated artery for BDF2 with larger atheroscle-
rosis. Left: velocity profile. Right: concentration of solute. Down:
pressure contour.

addition, we study the development of the aneurysm by increasing the dilation of
the diseased distinct [14].

The geometrical description of the aneurysmatic artery is shown in Figure 13.
The common interface Γfw between the lumen Ωf and the wall Ωw is considered
as: Γfw = {(x, y) : y = 0, 0 ≤ x ≤ 4}∪{(x, y) : y = −a(1+ cos(2πx− 9π)), 4 ≤ x ≤
5} ∪ {(x, y) : y = 0, 5 ≤ x ≤ 10} where the interface conditions (9) and (10) are
satisfied. The parameters value and the boundary conditions are imposed same as
the previous numerical experiment, subsection 6.3.

Figure 14, illustrates the impact of the different aneurysmatic artery on the
contours and streamlines due to the loss of arterial wall integrity. As expected, the
vortices begin to appear for gradual increases of the aneurysm. Moreover, it is noted
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Figure 7. The bifurcated artery for BDF2 with long-time sta-
bility for the different final time. Left: velocity profile for T = 1.0.
Right: velocity profile for T = 10.0.
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Figure 8. Energy vs Time on the time step points with different
mesh sizes. Left: BES. Right: BDF2.

that the vortex size increases with the expansion of the balloon-shape aneurysm
until it fills the entire aneurysm.

Figures 15 and 16 shows the concentration behavior and wall share stress on the
interface Γfw. One can observe that the lower flow speed located in the dilation
region of the artery, which leads to minimizing the values of the wall shear stress.
As a result, a few concentrations located in the aneurysmatic area. On the other
hand, the greater the size of the aneurysm produces the smaller shear stress on the
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Figure 9. Up: a pictorial representation of the double stenoses
artery. Down: illustration of the computational mesh.
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Figure 10. Up: the pressure contour for the double stenoses
artery. Middle: the magnitudes and pressure contours for the ve-
locity vector field. Down: the illustration of the streamlines for
the velocity profile.

wall, which essentially leads to a lower concentration in the diseased region. The
right plot of Figure 16 presents an important factor in hemodynamics which is the
blood pressure distribution on the interface Γfw for different dilation size. One can
observe that the pressure starts to decrease in the upstream part till it reaches the
dilation of the artery where it starts again to develop until it reaches the highest
values, while in the downstream part, the pressure gradually decreases.
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Figure 11. Left: arterial wall permeability on the interface Γfw

. Right: arterial shear stress Γfw.
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Figure 13. Up: the geometrical illustration of the abdominal aor-
tic aneurysm. Down: representation of the computational mesh.
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Figure 14. Velocity contours and streamlines for different a-
neurysmatic artery size Γfw = {(x, y) : y = 0, 0 ≤ x ≤ 4}∪{(x, y) :
y = −a(1 + cos(2πx − 9π)). Up: a = 0.05. Up-next: a = 0.1.
Down-previous: a = 0.125. Down: a = 0.25.
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7. Conclusion

In this contribution, we investigate a sophisticated blood solute dynamic model
where the blood flow is governed by the unsteady Navier-Stokes equation, and the
solute concentration is modeled by the convection-diffusion equation. On the other
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hand, the solute dynamics in the wall region is described by the pure diffusion
equation. We propose a BDF2 time-stepping scheme based on the second-order
backward differentiation formulas and the explicit treatment of the interface terms.
Therefore, two decoupled problems can be solved subsequently at each time step,
hence the scheme can be implemented efficiently by using the legacy code. We
show that the proposed algorithm is unconditionally stable and long-time stable
in the sense that the solutions remain uniformly bounded in time. Moreover, the
uniform in a time-bound of the solution further leads to uniform in time error
estimates. The accuracy and the efficiency of the proposed numerical method are
demonstrated by considering four numerical experiments that show the complicated
flow characteristics, magnitudes, pressure field, solute concentration, wall shear
stress, and long-time accuracy on the pseudo-realistic geometrical setups for the
physiological interests.
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