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MODIFIED BDF2 SCHEMES FOR SUBDIFFUSION MODELS

WITH A SINGULAR SOURCE TERM

MINGHUA CHEN, JIANKANG SHI∗, AND ZHI ZHOU

Abstract. The aim of this paper is to study the time stepping scheme for approximately solving

the subdiffusion equation with a weakly singular source term. In this case, many popular time
stepping schemes, including the correction of high-order BDF methods, may lose their high-order
accuracy. To fill in this gap, in this paper, we develop a novel time stepping scheme, where the

source term is regularized by using an m-fold integral-derivative and the equation is discretized
by using a modified BDF2 convolution quadrature. We prove that the proposed time stepping
scheme is second-order, even if the source term is nonsmooth in time and incompatible with the
initial data. Numerical results are presented to support the theoretical results. The proposed

approach is applicable for stochastic subdiffusion equation.
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1. Introduction

For anomalous, non-Brownian diffusion, a mean squared displacement often fol-
lows the following power-law

⟨x2(t)⟩ ≃ Kαt
α.

Prominent examples for subdiffusion include the classical charge carrier transport in
amorphous semiconductors, tracer diffusion in subsurface aquifers, porous systems,
dynamics of a bead in a polymeric network, or the motion of passive tracers in
living biological cells [22, 23]. Subdiffusion of this type is characterised by a long-
tailed waiting time probability density function ψ(t) ≃ t−1−α, corresponding to the
time-fractional diffusion equation with and without an external force field [23, Eq.
(88)]

∂tu(x, t)− ∂1−αt Au(x, t) = f(x, t), 0 < α < 1.(♠)

Here f is a given source function, and the operator A = ∆ denotes Laplacian on
a polyhedral domain Ω ⊂ Rd (d = 1, 2, 3) with a homogenous Dirichlet boundary
condition. The fractional derivative is taken in the Riemann-Liouville sense, that
is, ∂1−αt f = ∂tJ

αf with the fractional integration operator

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ =
1

Γ(α)
tα−1 ∗ f(t),

and ∗ denotes the Laplace convolution: (f ∗ g)(t) =
∫ t
0
f(t− τ)g(τ)dτ .

Since the Riemann-Liouvile fractional derivative and the Caputo fractional de-
rivative can be written in the form [26, p. 76]

∂αt u(x, t) =
CD

α

t u(x, t) +
1

Γ(1− α)
t−αu(x, 0),
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which implies that the equivalent form of (♠) can be rewritten as

∂tu(x, t)− CD
1−α
t Au(x, t) = f(x, t) +

Au(x, 0)

Γ(α)
t−(1−α), 0 < α < 1(♡)

with the Caputo fractional derivative

CD
α

t u(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds, 0 < t ≤ T.

Applying the fractional integration operator J1−α to both sides of (♠), we obtain
the equivalent form of (♠) as, see [21, Eq. (1.6)] or [31, Eq. (2.3)], namely,

CD
α

t u(x, t)−Au(x, t) =
1

Γ(1− α)
t−α ∗ f(x, t), 0 < α < 1.(♣)

As another example, the fractal mobile/immobile models for solute transport
associated with power law decay PDF describing random waiting times in the im-
mobile zone, lead to the following models [29, Eq. (15)]

∂tu(x, t) +
CD

α

t u(x, t)−Au(x, t) = − 1

Γ(1− α)
t−αu(x, 0), 0 < α < 1.(♢)

Note that the right hand side in the aforementioned PDE models (♠)-(♢) might
be nonsmooth in the time variable. In this paper, we consider the subdiffusion
model with weakly singular source term:

(1) CD
α

t u(x, t)−Au(x, t) = g(x, t) := tµ ◦ f(x, t)

with the initial condition u(x, 0) = u0(x) := v, and the homogeneous Dirichlet
boundary conditions. The symbol ◦ can be either the convolution ∗ or the product,
and µ is a parameter such that

µ > −1 if ◦ denotes convolution, and µ > −α if ◦ denotes product.

The well-posedness could be proved using the separation of variables and Mittag–
Leffler functions, see e.g. [27, Eq. (2.11)].

Note that many existing time stepping schemes may lose their high-order accu-
racy when the source term is nonsmooth in the time variable. As an example, it
was reported in [11, Section 4.1] that the convolution quadrature generated by k
step BDF method (with initial correction) converges with order O(τ1+µ), provided
that the source term behaves like tµ, µ > 0, see Lemma 3.2 in [35], also see Table
1. The aim of this paper is to fill in this gap.

It is well-known that the smoothness of all the data of (1) (e.g., f = 0) does
not imply the smoothness of the solution u which has an initial layer at t → 0+

(i.e., unbounded near t = 0) [26, 27, 33]. There are already two predominant
discretization techniques in time direction to restore the desired convergence rate for
subdiffusion under appropriate regularity source function. The first type is that the
nonuniform time meshes/graded meshes are employed to compensate/capture the
singularity of the continuous solution near t = 0 under the appropriate regularity
source function and initial data, see [3, 15, 17, 20, 25, 24, 33]. See also spectral
method with specially designed basis functions [4, 8, 38]. The second type is based
on correction of high-order BDFk or Lk approximation, and then the desired high-
order convergence rates can be restored even for nonsmooth initial data [5, 19, 18,
9, 11, 35]. For fractional ODEs, one idea is to use starting quadrature weights to
correct the fractional integrals [18] (or fractional substantial calculus [1])

Jαg(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1g(τ)dτ with g(t) = tµf(t), µ > −1,
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where the algorithms rely on expanding the solution into power series of t. For
fractional PDEs, a common practice is to split the source term into

g(t) = g(0) +
k−1∑
l=1

tl

l!
∂ltg(0) +

tk−1

(k − 1)!
∗ ∂kt g.

Then approximating g(0) by ∂τJ
1g(0) may a modified BDF2 scheme with correc-

tion in the first step [5]. The correction of high-order BDFk or Lk convolution
quadrature is well developed in [11, 32, 37] when the source term is sufficiently
smooth in the time variable. How to deal with a more general source term, which
might be nonsmooth in the time variable, is still scarcely discussed in the litera-
ture. We recommend interested readers to refer to the concise overview [10] and
the monograph [13] for a comprehensive understanding of the topic.

In this paper, we develop a novel second-order time stepping scheme (IDm-
BDF2) for solving the subdiffusion (1) with a weakly singular source term, where the
low regular source term is regularized by using an m-fold integral-derivative (IDm)
and the equation is discretized by using a modified BDF2 convolution quadrature.
We prove that the proposed time stepping scheme is second-order, even if the source
term is nonsmooth in time and incompatible with the initial data. Numerical results
are presented to support the theoretical results. Note that in [39] second-order time-
stepping schemes are proposed for nonsmooth source data. In comparison with [39],
the current paper offers significant contributions and improvements in the following
aspects:

(i) Theoretically, the argument in [39] highly relies on the assumption on the
source term g(x, t) that (cf. Assumption 1 in [39])

∥ĝ(s)∥L2(Ω) ≤ c|s|−µ−1 with − 1 < µ < 0,

for all s ∈ Σθ = {s ∈ C\{0} : | arg s| < θ}. This assumption is indeed
restrictive and only covers the case where the singular source function is
given by g(x, t) = tµf(x), with f being time-independent. To address this
limitation, in our work, we propose a refined error analysis that extends to
a more general set of problem data, specifically tµ ∗ f(t) and tµf(t). This
broader analysis allows for a wider range of source functions and enhances
the applicability of our approach.

(ii) The numerical scheme employed in our work differs significantly from the
one presented in [39]. In [39], the solution u(t) is approximated using
∂τJ

1u(t). To facilitate the approximation, an auxiliary function U(t) =
J1u(t) is introduced, which requires solving a time stepping scheme to ad-
dress an evolution problem derived by integrating the original subdiffusion
equation. Once an approximate solution for U(t) is obtained, a numerical
differentiation method is applied to derive the numerical approximation for
u(t). In contrast, in our current paper, we adopt a more direct approach.
We directly solve the numerical approximation for u(t) using the approx-
imate source g(t) ≈ ∂τJ

1g. This method is more efficient and practical,
eliminating the need for an intermediate auxiliary function.

Therefore, the current paper represents a significant improvement over the results
presented in [39], both in terms of theoretical advancements and numerical aspects.

The paper is organized as follows. In Section 2, we introduce the development
of the IDm-BDF2 scheme for model (1). In Section 3 and 4, based on operational
calculus, the detailed convergence analysis of IDm-BDF2 is provided, respectively,
for general source function f(x, t) and certain form tµf(x). Then the desired results
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with the low regularity source term tµ ◦ f(x, t) are obtained in Section 5. To show
the effectiveness of the presented schemes, the results of numerical experiments are
reported in Section 6. Finally, we conclude the paper with some remarks in the last
section.

2. IDm-BDF2 Method

In this section, we first provide IDm-BDF2 method for solving subdiffusion (1)
if the source term g(x, t) possess the mild regularity. Let V (t) = u(t) − v with
V (0) = 0. Then the model (1) can be rewritten as

(2) ∂αt V (t)−AV (t) = Av + g(t), 0 < t ≤ T.

From [19] and [34], we know that the operator A satisfies the following resolvent
estimate ∥∥(z −A)−1

∥∥ ≤ cϕ|z|−1 ∀z ∈ Σϕ

for all ϕ ∈ (π/2, π), where Σθ := {z ∈ C\{0} : | arg z| < θ} is a sector of the
complex plane C. Hence, zα ∈ Σθ′ with θ′ = αθ < θ < π for all z ∈ Σθ. Then,
there exists a positive constant c such that

(3)
∥∥∥(zα −A)

−1
∥∥∥ ≤ c|z|−α ∀z ∈ Σθ.

2.1. Discretization schemes. Let G(t) = J1g(t) and G(t) = J2g(t). By first
fundamental theorem of calculus, we may rewrite (2) as

(4) ID1 Method : ∂αt V (t)−AV (t) = ∂t(tAv +G(t)), 0 < t ≤ T,

(5) ID2 Method : ∂αt V (t)−AV (t) = ∂2t

(
t2

2
Av + G(t)

)
, 0 < t ≤ T.

Let tn = nτ, n = 0, 1, . . . , N , be a uniform partition of the time interval [0, T ]
with the step size τ = T

N , and let un denote the approximation of u(t) and gn =
g(tn). The convolution quadrature generated by BDF2 approximates the Riemann-
Liouville fractional derivative ∂αt φ(tn) by

(6) ∂ατ φ
n :=

1

τα

n∑
j=0

ωjφ
n−j

with φn = φ(tn). Here the weights ωj are the coefficients in the series expansion

(7) δατ (ξ) =
1

τα

∞∑
j=0

ωjξ
j with δτ (ξ) :=

1

τ

(
3

2
− 2ξ +

1

2
ξ2
)
.

Then IDm-BDF2 method for (4) and (5) are, respectively, designed by

(8) ID1− BDF2 Method : ∂ατ V
n −AV n = ∂τ (tnAv +Gn).

(9) ID2− BDF2 Method : ∂ατ V
n −AV n = ∂2τ

(
t2n
2
Av + Gn

)
.

Remark 2.1. In the time semidiscrete approximation (8) and (9), we require
v ∈ D(A), i.e., the initial data v is reasonably smooth. However one can use
the schemes (8) and (9) to prove the error estimates with the nonsmooth data
v ∈ L2(Ω), see Theorems 5.2 and 5.3. Here, we mainly focus on the time semidis-
crete approximation (8) and (9), since the spatial discretization is well understood.
For example, we choose vh = Rhv if v ∈ D(A) and vh = Phv if v ∈ L2(Ω) following
[34, 36].
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2.2. Solution representation for (4) and (5). Taking the Laplace transform in
both sides of (4), it leads to

V̂ (z) = (zα −A)−1
(
z−1Av + zĜ(z)

)
.

By the inverse Laplace transform, there exists [11]

(10) V (t) =
1

2πi

∫
Γθ,κ

ezt(zα −A)−1
(
z−1Av + zĜ(z)

)
dz

with

(11) Γθ,κ = {z ∈ C : |z| = κ, | arg z| ≤ θ} ∪ {z ∈ C : z = re±iθ, r ≥ κ}
and θ ∈ (π/2, π), κ > 0.

Similarly, applying the Laplace transform in both sides of (5), it yields

V̂ (z) = (zα −A)−1
(
z−1Av + z2Ĝ(z)

)
.

By the inverse Laplace transform, we obtain

V (t) =
1

2πi

∫
Γθ,κ

ezt(zα −A)−1
(
z−1Av + z2Ĝ(z)

)
dz.(12)

2.3. Discrete solution representation for (8) and (9). Given a sequence
(κn)

∞
0 and take κ̃(ζ) =

∑∞
n=0 κnζ

n to be its generating power series. Let us first
introduce the elementary identities

γl(ξ) =
∞∑
n=1

nlξn =

(
ξ
d

dξ

)l
1

1− ξ
, l ≥ 1 and γ0(ξ) =

∞∑
n=1

ξn =
ξ

1− ξ
.

Lemma 2.1. Let δτ (ξ) be given in (7) and γ1(ξ) =
∑∞
n=1 nξ

n, G(t) = J1g(t).
Then the discrete solution of (8) is represented by

V n =
1

2πi

∫
Γτ
θ,κ

eztn(δατ (e
−zτ )−A)−1δτ (e

−zτ )τ
(
γ1(e

−zτ )τAv + G̃(e−zτ )
)
dz

with Γτθ,κ = {z ∈ Γθ,κ : |ℑz| ≤ π/τ}.

Proof. Multiplying the (8) by ξn and summing over n with V 0 = 0, we obtain
∞∑
n=1

∂ατ V
nξn −

∞∑
n=1

AV nξn =
∞∑
n=1

∂τ (tnAv +Gn)ξn.

From (6) and (7), we have
∞∑
n=1

∂ατ V
nξn =

∞∑
n=1

1

τα

n∑
j=0

ωjV
n−jξn=

∞∑
n=0

1

τα

n∑
j=0

ωjV
n−jξn=

∞∑
j=0

1

τα

∞∑
n=j

ωjV
n−jξn

=
∞∑
j=0

1

τα

∞∑
n=0

ωjV
nξn+j =

1

τα

∞∑
j=0

ωjξ
j

∞∑
n=0

V nξn = δατ (ξ)Ṽ (ξ).

Similarly, one has
∞∑
n=1

∂τ tnAvξ
n = δτ (ξ)γ1(ξ)τAv,

∞∑
n=1

∂τG
nξn = δτ (ξ)G̃(ξ)

with γ1(ξ) =
ξ

(1−ξ)2 . It leads to

(13) Ṽ (ξ) = (δατ (ξ)−A)
−1
δτ (ξ)

(
γ1(ξ)τAv + G̃(ξ)

)
.
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According to Cauchy’s integral formula, and the change of variables ξ = e−zτ , and
Cauchy’s theorem, one has [11]
(14)

V n =
τ

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )

(
γ1(e

−zτ )τAv + G̃(e−zτ )
)
dz

with Γτθ,κ = {z ∈ Γθ,κ : |ℑz| ≤ π/τ}. The proof is completed. �

Lemma 2.2. Let δτ (ξ) be given in (7) and γ2(ξ) =
∑∞
n=1 n

2ξn, G(t) = J2g(t).
Then the discrete solution of (9) is represented by

V n =
τ

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δ2τ (e
−zτ )

(
γ2(e

−zτ )

2
τ2Av + G̃(e−zτ )

)
dz

with Γτθ,κ = {z ∈ Γθ,κ : |ℑz| ≤ π/τ}.

Proof. Multiplying the (9) by ξn and summing over n with V 0 = 0, we obtain
∞∑
n=1

∂ατ V
nξn −

∞∑
n=1

AV nξn =
∞∑
n=1

∂2τ

(
t2n
2
Av + Gn

)
ξn.

The similar arguments can be performed as Lemma 2.1, it yields
∞∑
n=1

∂ατ V
nξn = δατ (ξ)Ṽ (ξ),

∞∑
n=1

∂2τ t
2
nAvξ

n = δ2τ (ξ)γ2(ξ)τ
2Av,

∞∑
n=1

∂2τGnξn = δ2τ (ξ)G̃(ξ), γ2(ξ) =
ξ + ξ2

(1− ξ)3
,

and

(15) Ṽ (ξ) = (δατ (ξ)−A)
−1
δ2τ (ξ)

(
γ2(ξ)

2
τ2Av + G̃(ξ)

)
.

Using Cauchy’s integral formula, and the change of variables ξ = e−zτ , and Cauchy’s
theorem, one has

(16) V n =
τ

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δ2τ (e
−zτ )

(
γ2(ξ)

2
τ2Av + G̃(e−zτ )

)
dz

with Γτθ,κ = {z ∈ Γθ,κ : |ℑz| ≤ π/τ}. The proof is completed. �

3. Convergence analysis: General source function g(x, t)

In this section, we provide the detailed convergence analysis of ID1-BDF2 in (8)
approximation for the subdiffusion (4), and ID2-BDF2 can be similarly augmented.

3.1. A few technical lemmas. First, we give some lemmas that will be used.

Lemma 3.1. [11] Let δτ (ξ) be given in (7). Then there exist the positive constants
c1, c2, c and θ ∈ (π/2, θε) with θε ∈ (π/2, π), ∀ε > 0 such that

c1|z| ≤ |δτ (e−zτ )| ≤ c2|z|, |δτ (e−zτ )− z| ≤ cτ2|z|3,
|δατ (e−zτ )− zα| ≤ cτ2|z|2+α, δτ (e

−zτ ) ∈ Σπ/2+ε ∀z ∈ Γτθ,κ.

Lemma 3.2. Let δτ (ξ) be given in (7) and γl(ξ) =
∑∞
n=1 n

lξn with l = 0, 1, 2.
Then there exists a positive constants c such that∣∣∣∣γl(e−zτ )l!

τ l+1 − z−l−1

∣∣∣∣ ≤ cτ l+1, ∀z ∈ Γτθ,κ,

where θ ∈ (π/2, π) is sufficiently close to π/2.
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Proof. The arguments can be performed in [32] for l = 1, 2. For l = 0, we have
e−zτ

1−e−zτ τ − 1
1−e−zτ τ = −τ . On the other hand, using

1

1− e−zτ
τ − z−1 =

z − (1− e−zτ ) τ−1

(1− e−zτ ) τ−1z
,

and Lemma 3.1, it yields |1− e−zτ | ≥ c1|z|τ and∣∣(1− e−zτ )τ−1z
∣∣ ≥ c|z|2 ∀z ∈ Γτθ,κ.(17)

Since

∣∣z − (1− e−zτ
)
τ−1

∣∣ =
∣∣∣∣∣∣z −

1−
∞∑
j=0

(−zτ)j

j!

 τ−1

∣∣∣∣∣∣ =
∣∣∣∣∣∣z −

−
∞∑
j=1

(−zτ)j

j!

 τ−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣z − z

∞∑
j=0

(−zτ)j

(j + 1)!

∣∣∣∣∣∣ =
∣∣∣∣∣∣τz2

∞∑
j=0

(−zτ)j

(j + 2)!

∣∣∣∣∣∣ ≤ cτ |z|2 .

Thus we have ∣∣∣∣ 1

1− e−zτ
τ − z−1

∣∣∣∣ ≤ cτ.

The proof is completed. �

Lemma 3.3. Let δτ (ξ) be given in (7) and γl(ξ) =
∑∞
n=1 n

lξn with l = 0, 1, 2.
Then there exists a positive constants c such that

(18)

∣∣∣∣δτ (e−zτ )γl(e−zτ )l!
τ l+1 − z−l

∣∣∣∣ ≤ cτ l+1 |z|+ cτ2|z|2−l, ∀z ∈ Γτθ,κ,

where θ ∈ (π/2, π) is sufficiently close to π/2.

Proof. Let

δτ (e
−zτ )

γl(e
−zτ )

l!
τ l+1 − z−l = J1 + J2

with

J1 = δτ (e
−zτ )

γl(e
−zτ )

l!
τ l+1 − δτ (e

−zτ )z−l−1 and J2 = δτ (e
−zτ )z−l−1 − z−l.

According to Lemma 3.1 and 3.2, we have

|J1| =
∣∣∣∣δτ (e−zτ )(γl(e−zτ )l!

τ l+1 − z−l−1

)∣∣∣∣ ≤ c2 |z| cτ l+1 ≤ cτ l+1 |z|

and

|J2| =
∣∣(δτ (e−zτ )− z

)
z−l−1

∣∣ ≤ cτ2|z|2−l.
By the triangle inequality, the desired result is obtained. �

Lemma 3.4. Let δατ (ξ) be given by (7) and γl(ξ) =
∑∞
n=1 n

lξn with l = 0, 1, 2.
Then there exists a positive constants c such that∥∥∥∥(δατ (e−zτ )−A

)−1
δτ (e

−zτ )
γl(e

−zτ )

l!
τ l+1 − (zα −A)−1z−l

∥∥∥∥
≤ cτ l+1 |z|1−α + cτ2|z|2−l−α.
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Proof. Let(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )

γl(e
−zτ )

l!
τ l+1 − (zα −A)−1z−l = I + II

with

I =
(
δατ (e

−zτ )−A
)−1

[
δτ (e

−zτ )
γl(e

−zτ )

l!
τ l+1 − z−l

]
,

II =
[(
δατ (e

−zτ )−A
)−1 − (zα −A)−1

]
z−l.

The resolvent estimate (3) and Lemma 3.1 imply directly

(19) ∥
(
δατ (e

−zτ )−A
)−1 ∥ ≤ c|z|−α.

From (19) and Lemma 3.3, we obtain

∥I∥ ≤ cτ l+1 |z|1−α + cτ2|z|2−l−α.

Using Lemma 3.1, (19) and the identity
(20)(
δατ (e

−zτ )−A
)−1 − (zα −A)−1 =

(
zα − δατ (e

−zτ )
) (
δατ (e

−zτ )−A
)−1

(zα −A)−1,

we estimate II as following

∥II∥ ≤ cτ2|z|2+αc|z|−αc|z|−α|z|−l ≤ cτ2|z|2−l−α.

By the triangle inequality, the desired result is obtained. �

Lemma 3.5. Let δατ (ξ) be given by (7) and γ1(ξ) =
∑∞
n=1 nξ

n =
(
ξ ddξ

)
1

1−ξ =
ξ

(1−ξ)2 . Then there exists a positive constants c such that∥∥∥(δατ (e−zτ )−A
)−1

δτ (e
−zτ )γ1(e

−zτ )τ2A− (zα −A)−1z−1A
∥∥∥ ≤ cτ2 |z| .

Proof. Using identical (zα −A)−1z−lA = −z−1 + (zα −A)−1zαz−1 and(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )A = −δτ (e−zτ ) +

(
δατ (e

−zτ )−A
)−1

δατ (e
−zτ )δτ (e

−zτ )A,

we get(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )γ1(e

−zτ )τ2A− (zα −A)−1z−1A = J1 + J2 + J3 + J4

with

J1 =
(
δατ (e

−zτ )−A
)−1

δατ (e
−zτ )

(
δτ (e

−zτ )γ1(e
−zτ )τ l+1 − z−1

)
,

J2 =
(
δατ (e

−zτ )−A
)−1 (

δατ (e
−zτ )− zα

)
z−1,

J3 =
((
δατ (e

−zτ )−A
)−1 − (zα −A)−1

)
zα−1, J4 = z−1 − δτ (e

−zτ )γ1(e
−zτ )τ2.

According to (19) and Lemmas 3.1, 3.3 with l = 1, we estimate J1, J2 and J4 as
following

∥J1∥ ≤ c|z|−α|z|ατ2 |z| ≤ cτ2 |z| ,
∥J2∥ ≤ c|z|−ατ2|z|2+α|z|−1 ≤ cτ2|z|, ∥J4∥ ≤ cτ2 |z| .

From Lemma 3.1, (19) and the identity (20), we estimate J3 as following

∥J3∥ ≤ cτ2|z|2+α|z|−α|z|−α|z|α−1 ≤ cτ2|z|.

By the triangle inequality, the desired result is obtained. �
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3.2. Error analysis for general source function g(x, t). From G(t) = J1g(t),
the Taylor expansion of source function with the remainder term in integral form:

1 ∗ g(t) = G(t) = G(0) + tG′(0) +
t2

2
G′′(0) +

t2

2
∗G′′′(t)

= J1g(0) + tg(0) +
t2

2
g′(0) +

t2

2
∗ g′′(t).

Then we obtain the following results with g(−1)(0) = J1g(0).

Lemma 3.6. Let V (tn) and V n be the solutions of (4) and (8), respectively. Let

v = 0 and G(t) := tl

l! g
(l−1)(0) with l = 0, 1, 2. Then

(21) ∥V (tn)− V n∥ ≤
(
cτ l+1tα−2

n + cτ2tα+l−3
n

) ∥∥∥g(l−1)(0)
∥∥∥ .

Proof. Using (10) and (14), there exist

V (tn) =
1

2πi

∫
Γθ,κ

eztn(zα −A)−1 1

zl
g(l−1)(0)dz,

and

V n =
1

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )

γl(e
−zτ )

l!
τ l+1g(l−1)(0)dz,

where θ ∈ (π/2, π) is sufficiently close to π/2, and γl(ξ) =
∑∞
n=1 n

lξn. Let

V (tn)− V n = J1 + J2

with

J1 =
1

2πi

∫
Γτ
θ,κ

eztn
[ (zα −A)

−1

zl

−
(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )

γl(e
−zτ )

l!
τ l+1

]
g(l−1)(0)dz,

and

J2 =
1

2πi

∫
Γθ,κ\Γτ

θ,κ

eztn (zα −A)
−1 1

zl
g(l−1)(0)dz.

According to the triangle inequality, (3) and Lemma 3.4, one has

∥J1∥ ≤ c

∫ π
τ sin θ

κ

ertn cos θ
(
τ l+1r1−α + τ2r2−l−α

)
dr
∥∥∥g(l−1)(0)

∥∥∥
+ c

∫ θ

−θ
eκtn cosψ

(
τ l+1κ2−α + τ2κ3−l−α

)
dψ
∥∥∥g(l−1)(0)

∥∥∥
≤
(
cτ l+1tα−2

n + cτ2tα+l−3
n

) ∥∥∥g(l−1)(0)
∥∥∥ ,

for the last inequality, we use∫ π
τ sin θ

κ

ertn cos θr2−l−αdr = tα+l−3
n

∫ tnπ
τ sin θ

tnκ

es cos θs2−l−αds ≤ ctα+l−3
n ,∫ θ

−θ
eκtn cosψκ3−l−αdψ = tα+l−3

n

∫ θ

−θ
eκtn cosψ (κtn)

3−l−α
dψ ≤ ctα+l−3

n .

(22)
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From (3), it yields

∥J2∥ ≤ c
∥∥∥g(l−1)(0)

∥∥∥ ∫ ∞

π
τ sin θ

ertn cos θr−l−αdr

≤ cτ2
∥∥∥g(l−1)(0)

∥∥∥ ∫ ∞

π
τ sin θ

ertn cos θr2−l−αdr

≤ cτ2tα+l−3
n

∥∥∥g(l−1)(0)
∥∥∥ .

Here we using 1 ≤ ( sin θπ )2τ2r2 with r ≥ π
τ sin θ . The proof is completed. �

Lemma 3.7. Let V (tn) and V n be the solutions of (4) and (8), respectively. Let

v = 0, G(t) := t2

2 ∗ g′′(t) and
∫ t
0
(t− s)α−1∥g′′(s)∥ds <∞. Then

∥V (tn)− V n∥ ≤ cτ2
∫ tn

0

(tn − s)α−1 ∥g′′(s)∥ ds.

Proof. By (10), we obtain

V (tn) =
1

2πi

∫
Γθ,κ

eztn(zα −A)−1zĜ(z)dz = (E (t) ∗G(t))(tn)

=

(
E (t) ∗

(
t2

2
∗ g′′(t)

))
(tn) =

((
E (t) ∗ t

2

2

)
∗ g′′(t)

)
(tn)

(23)

with

(24) E (t) =
1

2πi

∫
Γθ,κ

ezt(zα −A)−1zdz.

From (13), it yields

Ṽ (ξ) = (δατ (ξ)−A)
−1
δτ (ξ)G̃(ξ) = Ẽτ (ξ)G̃(ξ) =

∞∑
n=0

E n
τ ξ

n
∞∑
j=0

Gjξj

=
∞∑
n=0

∞∑
j=0

E n
τ G

jξn+j =
∞∑
j=0

∞∑
n=j

E n−j
τ Gjξn =

∞∑
n=0

n∑
j=0

E n−j
τ Gjξn =

∞∑
n=0

V nξn

with

V n =
n∑
j=0

E n−j
τ Gj :=

n∑
j=0

E n−j
τ G(tj).

Here
∑∞
n=0 E n

τ ξ
n = Ẽτ (ξ) = (δατ (ξ)−A)

−1
δτ (ξ). From the Cauchy’s integral for-

mula and the change of variables ξ = e−zτ , we obtain the representation of the E n
τ

as following

E n
τ =

1

2πi

∫
|ξ|=ρ

ξ−n−1Ẽτ (ξ)dξ =
τ

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )dz,

where θ ∈ (π/2, π) is sufficiently close to π/2 and κ = t−1
n in (11).

According to (19), Lemma 3.1 and τt−1
n = 1

n ≤ 1, there exists
(25)

∥E n
τ ∥ ≤ cτ

(∫ π
τ sin θ

κ

ertn cos θr1−αdr +

∫ θ

−θ
eκtn cosψκ2−αdψ

)
≤ cτtα−2

n ≤ ctα−1
n .



MODIFIED BDF2 SCHEMES FOR SUBDIFFUSION 907

Let Eτ (t) =
∑∞
n=0 E n

τ δtn(t), with δtn being the Dirac delta function at tn. Then

(Eτ (t) ∗G(t))(tn) =

 ∞∑
j=0

E j
τ δtj (t) ∗G(t)

 (tn)

=

n∑
j=0

E j
τ G(tn − tj) =

n∑
j=0

E n−j
τ G(tj) = V n.

(26)

Moreover, using the above equation, there exist

˜(Eτ ∗ tl)(ξ) =
∞∑
n=0

n∑
j=0

E n−j
τ tljξ

n =
∞∑
j=0

∞∑
n=j

E n−j
τ tljξ

n =
∞∑
j=0

∞∑
n=0

E n
τ t

l
jξ
n+j

=

∞∑
n=0

E n
τ ξ

n
∞∑
j=0

tljξ
j = Ẽτ (ξ)τ

l
∞∑
j=0

jlξj = Ẽτ (ξ)τ
lγl(ξ), l = 1, 2.

In particular, we have

˜(Eτ ∗ 1)(ξ) = Ẽτ (ξ)
∞∑
j=0

ξj = Ẽτ (ξ)
1

1− ξ
, l = 0.

From (23), (26) and (21), we have the following estimate

(27)

∥∥∥∥((Eτ − E ) ∗ t
l

l!

)
(tn)

∥∥∥∥ ≤ cτ l+1tα−2
n + cτ2tα+l−3

n ≤ cτ ltα−1
n l = 0, 1, 2.

Next, we prove the following inequality (28) for t > 0

(28)

∥∥∥∥((Eτ − E ) ∗ t
2

2

)
(t)

∥∥∥∥ ≤ cτ2tα−1, ∀t ∈ (tn−1, tn).

By Taylor series expansion of E (t) at t = tn, we get(
E ∗ t

2

2

)
(t) =

(
E ∗ t

2

2

)
(tn) + (t− tn) (E ∗ t) (tn)

+
(t− tn)

2

2
(E ∗ 1) (tn) +

1

2

∫ t

tn

(t− s)2E (s)ds,

which also holds for
(
Eτ ∗ t2

)
(t). Therefore, using (27), it yields∥∥∥∥((Eτ − E ) ∗ t

l

l!

)
(tn)

∥∥∥∥ ≤ cτ l+1tα−2
n + cτ2tα+l−3

n ≤ cτ ltα−1
n ≤ cτ ltα−1.

According to (24), (3) and (22), one has

∥E (t)∥ ≤ c

(∫ ∞

κ

ert cos θr1−αdr +

∫ θ

−θ
eκt cosψκ2−αdψ

)
≤ ctα−2.

Moreover, we get∥∥∥∥∫ t

tn

(t− s)2E (s)ds

∥∥∥∥ ≤ c

∫ tn

t

(s− t)2sα−2ds ≤ c

∫ tn

t

(s− t)sα−1ds ≤ cτ2tα−1.

Using the definition of Eτ (t) =
∑∞
n=0 E n

τ δtn(t) in (26) and (25), we deduce∥∥∥∥∫ t

tn

(t− s)2Eτ (s)ds

∥∥∥∥ ≤ (tn − t)2∥E n
τ ∥ ≤ cτ3tα−2

n

≤ cτ2tα−1
n ≤ cτ2tα−1, ∀ t ∈ (tn−1, tn).
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By (27) and the above inequalities, it yields the inequality (28). The proof is
completed. �

Theorem 3.1 (ID1-BDF2). Let V (tn) and V n be the solutions of (4) and (8),

respectively. Let v ∈ L2(Ω), g ∈ C1([0, T ];L2(Ω)) and
∫ t
0
(t−s)α−1 ∥g′′(s)∥ ds <∞.

Then the following error estimate holds for any tn > 0:

∥V n − V (tn)∥

≤ cτ2
(
t−2
n ∥v∥+ tα−2

n ∥g(0)∥+ tα−1
n ∥g′(0)∥+

∫ tn

0

(tn − s)α−1 ∥g′′(s)∥ ds
)
.

Proof. Subtracting (10) from (14), we obtain

V n − V (tn) = I1 − I2 + I3

with

I1 =
1

2πi

∫
Γτ
θ,κ

eztn
[(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )γ1(e

−zτ )τ2 − (zα −A)−1z−1
]
Avdz,

I2 =
1

2πi

∫
Γθ,κ\Γτ

θ,κ

eztn(zα −A)−1z−1Avdz,

I3 =
τ

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )G̃(e−zτ )dz

− 1

2πi

∫
Γθ,κ

eztn(zα −A)−1zĜ(z)dz.

According to the Lemma 3.5, we estimate the first term I1 as following

∥I1∥ ≤ cτ2 ∥v∥
∫
Γτ
θ,κ

∣∣eztn ∣∣ |z||dz|
≤ cτ2 ∥v∥

(∫ π
τ sin θ

κ

ertn cos θrdr +

∫ θ

−θ
eκtn cosψκ2dψ

)
≤ cτ2t−2

n ∥v∥ .
(29)

Using the resolvent estimate (3), we estimate the second term I2 as following

(30) ∥I2∥ ≤ c

∫
Γθ,κ\Γτ

θ,κ

∣∣eztn∣∣ |z|−1 ∥v∥L2(Ω)|dz| ≤ cτ2t−2
n ∥v∥L2(Ω) ,

since
(31)∫

Γθ,κ\Γτ
θ,κ

∣∣eztn ∣∣ |z|−1|dz| =
∫ ∞

π
τ sin θ

ertn cos θr−1dr ≤ cτ2
∫ ∞

π
τ sin θ

ertn cos θrdr ≤ cτ2t−2
n

with 1 ≤ ( sin θπ )2τ2r2, rτ ≥ π
sin θ .

From Lemmas 3.6 and 3.7 with G(t) = tg(0) + t2

2 g
′(0) + t2

2 ∗ g′′(t), there exist

∥I3∥ ≤ cτ2tα−2
n ∥g(0)∥+ cτ2tα−1

n ∥g′(0)∥+ cτ2
∫ tn

0

(tn − s)α−1 ∥g′′(s)∥ ds.

The proof is completed. �

Theorem 3.2 (ID2-BDF2). Let V (tn) and V n be the solutions of (5) and (9),

respectively. Let v ∈ L2(Ω), g ∈ C1([0, T ];L2(Ω)) and
∫ t
0
(t−s)α−1 ∥g′′(s)∥ ds <∞.
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Then the following error estimate holds for any tn > 0:

∥V n − V (tn)∥

≤ cτ2
(
t−2
n ∥v∥+ tα−2

n ∥g(0)∥+ tα−1
n ∥g′(0)∥

∫ tn

0

(tn − s)α−1 ∥g′′(s)∥ ds
)
.

Proof. Similar arguments can be performed as Theorem 3.1, we omit it here. �

4. Convergence analysis: Singular source function tµq(x), µ > −α

From Theorem 3.1 and Theorem 3.2, it seems that there are no difference between
ID1-BDF2 and ID2-BDF2 for general source function. However, both of them are
very different for the singular source function with the form tµq(x).

4.1. Low regularity source term. In the section, we first consider low regularity
source term g(x, t) = tµq(x) with µ > 0 for subdiffusion (4). We introduce the
polylogarithm function or Bose-Einstein integral

(32) Lip(ξ) =

∞∑
j=1

ξj

jp
, p /∈ N.

Lemma 4.1. [9, 37] Let |zτ | ≤ π
sin θ and θ > π/2 be close to π/2, and p ̸= 1, 2, . . ..

The series

(33) Lip(e
−zτ ) = Γ(1− p)(zτ)p−1 +

∞∑
j=0

(−1)jζ(p− j)
(zτ)j

j!

converges absolutely. Here ζ denotes the Riemann zeta function, namely, ζ(p) =
Lip(1).

Let G(t) = J1g(t) = tµ+1

µ+1 q. Using Ĝ(z) =
Γ(µ+1)
zµ+2 q and (10), we have

V (t) =
1

2πi

∫
Γθ,κ

ezt(zα −A)−1

(
z−1Av +

Γ(µ+ 1)

zµ+1
q

)
dz.(34)

From (14), the discrete solution for the subdiffusion (8) is

(35) V n =
1

2πi

∫
Γτ
θ,κ

eztn(δατ (e
−zτ )−A)−1δτ (e

−zτ )τ
(
γ1(e

−zτ )τAv + G̃(e−zτ )
)
dz

with γ1(e
−zτ ) = e−zτ

(1−e−zτ )2
and Γτθ,κ = {z ∈ Γθ,κ : |ℑz| ≤ π/τ}. Here

G̃(ξ) =
∞∑
n=1

Gnξn = q
τµ+1

µ+ 1

∞∑
n=1

ξn

n−µ−1
= q

τµ+1

µ+ 1
Li−µ−1(ξ) with 0 < µ < 1.

Lemma 4.2. Let δατ (ξ) is given by (7) and γl(ξ) =
∑∞
n=1 n

lξn =
(
ξ ddξ

)l
1

1−ξ with

l = 1, 2 are given by Lemma 3.3. Then there exist a positive constants c such that∥∥∥(δατ (e−zτ )−A
)−1

δlτ (e
−zτ )− (zα −A)−1zl

∥∥∥ ≤ cτ2|z|l+2−α,∥∥∥∥(δατ (e−zτ )−A
)−1

δlτ (e
−zτ )

γl(e
−zτ )

l!
τ l+1 − (zα −A)−1z−1

∥∥∥∥
≤ cτ2|z|1−α ∀z ∈ Γτθ,κ,

where θ ∈ (π/2, π) is sufficiently close to π/2.
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Proof. First we consider(
δατ (e

−zτ )−A
)−1

δlτ (e
−zτ )− (zα −A)−1zl = I + II

with

I =
(
δατ (e

−zτ )−A
)−1 (

δlτ (e
−zτ )− zl

)
,

II =
((
δατ (e

−zτ )−A
)−1 − (zα −A)−1

)
zl.

According to (19) and Lemma 3.1, we obtain

∥I∥ ≤ cτ2|z|l+2−α.

Using the Lemma 3.1, (19), (3) and the identity(
δατ (e

−zτ )−A
)−1 − (zα −A)−1 =

(
zα − δατ (e

−zτ )
) (
δατ (e

−zτ )−A
)−1

(zα −A)−1,

we estimate II as following

∥II∥ ≤ cτ2|z|2+αc|z|−αc|z|−α|z|l ≤ cτ2|z|l+2−α.

According to the triangle inequality, the desired result is obtained.
Next we consider(

δατ (e
−zτ )−A

)−1
δlτ (e

−zτ )
γl(e

−zτ )

l!
τ l+1 − (zα −A)−1z−1 = J1 + J2

with

J1 =
(
δατ (e

−zτ )−A
)−1

δlτ (e
−zτ )

[
γl(e

−zτ )

l!
τ l+1 − z−l−1

]
,

J2 =
[(
δατ (e

−zτ )−A
)−1

δlτ (e
−zτ )− (zα −A)−1zl

]
z−l−1.

According to (19) and Lemmas 3.1, 3.2 with l = 1, 2, we obtain

∥J1∥ ≤ cτ l+1|z|l−α ≤ cτ2|z|1−α.
From I and II, we have

∥J2∥ ≤ cτ2|z|l+2−α|z|−l−1 = cτ2|z|1−α.
According to the triangle inequality, the desired result is obtained. �

Lemma 4.3. Let Ĝ(z) = 1
µ+1

Γ(µ+2)
zµ+2 q and G̃(e−zτ ) = q τ

µ+1

µ+1 Li−µ−1(e
−zτ ). Then∥∥∥τG̃(e−zτ )− Ĝ(z)

∥∥∥ ≤ cτµ+2 ∥q∥ , µ /∈ N.

Proof. Using the definitions of Ĝ(z) and G̃(e−zτ ) and Lemma 4.1 with p = −µ− 1,
we have∥∥∥τG̃(e−zτ )− Ĝ(z)

∥∥∥ =

∥∥∥∥ τµ+2

(µ+ 1)

(
Li−µ−1(e

−zτ )− Γ(µ+ 2)

(zτ)µ+2

)
q

∥∥∥∥
≤ τµ+2

(µ+ 1)

∣∣∣∣∣∣
∞∑
j=0

(−1)jζ(−µ− 1− j)
(zτ)j

j!

∣∣∣∣∣∣ ∥q∥ ≤ cτµ+2 ∥q∥ .

The proof is completed. �

Theorem 4.1 (ID1-BDF2). Let V (tn) and V n be the solutions of (4) and (8),
respectively. Let v ∈ L2(Ω) and g(x, t) = tµq(x), µ > 0, q(x) ∈ L2(Ω). Then

∥V n − V (tn)∥ ≤ cτ2t−2
n ∥v∥+ cτµ+2tα−2

n ∥q∥+ cτ2tα+µ−2
n ∥q∥ .
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Proof. From Theorem 3.1, the desired results is obtained with µ ∈ N. We next
prove the case µ /∈ N. Subtracting (34) from (35), we obtain

V n − V (tn) = I1 − I2 + I3 − I4

with

I1 =
1

2πi

∫
Γτ
θ,κ

eztn
[(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )γ1(e

−zτ )τ2 − (zα −A)−1z−1
]
Avdz,

I2 =
1

2πi

∫
Γθ,κ\Γτ

θ,κ

eztn(zα −A)−1z−1Avdz,

I3 =
1

2πi

∫
Γτ
θ,κ

eztn
[(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )τG̃(e−zτ )− (zα −A)−1zĜ(z)

]
dz,

I4 =
1

2πi

∫
Γθ,κ\Γτ

θ,κ

eztn(zα −A)−1zĜ(z)dz.

According to (29) and (30), we estimate I1 and I2 as following

∥I1∥ ≤ cτ2t−2
n ∥v∥ and ∥I2∥ ≤ cτ2t−2

n ∥v∥ .
From (31), we estimate that I4 is similar to I2 as following

∥I4∥ ≤ c

∫
Γθ,κ\Γτ

θ,κ

∣∣eztn∣∣ |z|−α ∥∥∥zĜ(z)∥∥∥|dz|
≤ c

∫
Γθ,κ\Γτ

θ,κ

∣∣eztn∣∣ |z|−α|z|−µ−1 ∥q∥ |dz| ≤ cτ2tα+µ−2
n ∥q∥ .

Finally we consider I3 = I31 + I32 with

I31 =
1

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )

(
τG̃(e−zτ )− Ĝ(z)

)
dz,

I32 =
1

2πi

∫
Γτ
θ,κ

eztn
((
δατ (e

−zτ )−A
)−1

δτ (e
−zτ )− (zα −A)−1z

)
Ĝ(z)dz.

According to (19) and Lemmas 3.1 and 4.3, there exists

∥I31∥ ≤ cτµ+2 ∥q∥
∫
Γτ
θ,κ

∣∣eztn∣∣ |z|1−α|dz| ≤ cτµ+2tα−2
n ∥q∥ .

From Lemma 4.2 and Ĝ(z) = 1
µ+1

Γ(µ+2)
zµ+2 q, we estimate I32 as following

∥I32∥ ≤cτ2 ∥q∥
∫
Γτ
θ,κ

∣∣eztn∣∣ |z|3−α|z|−µ−2|dz| ≤ cτ2tα+µ−2
n ∥q∥ .

By the triangle inequality, the desired result is obtained. �

4.2. Singular source term. In this subsection, we consider the singular source
term g(x, t) = tµq(x) with µ > −α for subdiffusion (5).

Let G(t) = J2g(t) = tµ+2

(µ+1)(µ+2)q. Using Ĝ(z) = Γ(µ+1)
zµ+3 q and (12), we have

V (t) =
1

2πi

∫
Γθ,κ

ezt(zα −A)−1

(
z−1Av +

Γ(µ+ 1)

zµ+1
q

)
dz.(36)

From (16), it yields

V n =
τ

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δ2τ (e
−zτ )

(
γ2(e

−zτ )

2
τ2Av + G̃(e−zτ )

)
dz
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with γ2(e
−zτ )
2 = e−zτ+e−2zτ

2(1−e−zτ )3 and Γτθ,κ = {z ∈ Γθ,κ : |ℑz| ≤ π/τ}. Here

G̃(ξ) =
∞∑
n=1

Gnξn = q
τµ+2

(µ+ 2)(µ+ 1)

∞∑
n=1

ξn

n−µ−2
= q

τµ+2

(µ+ 2)(µ+ 1)
Li−µ−2(ξ).

Lemma 4.4. Let Ĝ(z) = q Γ(µ+1)
zµ+3 and G̃(e−zτ ) = q τµ+2

(µ+2)(µ+1)Li−µ−2(e
−zτ ). Then∥∥∥τ G̃(e−zτ )− Ĝ(z)

∥∥∥ ≤ cτµ+3 ∥q∥ , µ /∈ N.

Proof. From Lemma 4.1, we have∥∥∥τ G̃(e−zτ )− Ĝ(z)
∥∥∥ =

∥∥∥∥ τµ+3

(µ+ 2)(µ+ 1)

(
Li−µ−2(e

−zτ )− Γ(µ+ 3)

(zτ)µ+3

)
q

∥∥∥∥
≤ τµ+3

(µ+ 2)(µ+ 1)

∣∣∣∣∣∣
∞∑
j=0

(−1)jζ(−µ− 2− j)
(zτ)j

j!

∣∣∣∣∣∣ ∥q∥
≤cτµ+3 ∥q∥ .

The proof is completed. �

Theorem 4.2 (ID2-BDF2). Let V (tn) and V n be the solutions of (5) and (9),
respectively. Let v ∈ L2(Ω) and g(x, t) = tµq(x), µ > −α, q(x) ∈ L2(Ω). Then

∥V n − V (tn)∥ ≤ cτ2t−2
n ∥v∥+ cτµ+3tα−3

n ∥q∥+ cτ2tα+µ−2
n ∥q∥ .

Proof. From Theorem 3.1, the desired results is obtained with µ ∈ N. We next
prove the case µ /∈ N. Subtracting (12) from (16), we obtain

V n − V (tn) = I1 − I2 + I3 − I4

with

I1 =
1

2πi

∫
Γτ
θ,κ

eztn
[ (
δατ (e

−zτ )−A
)−1

δ2τ (e
−zτ )

e−zτ + e−2zτ

2(1− e−zτ )3
τ3

− (zα −A)−1z−1
]
Avdz,

I2 =
1

2πi

∫
Γθ,κ\Γτ

θ,κ

eztn(zα −A)−1z−1Avdz,

I3 =
1

2πi

∫
Γτ
θ,κ

eztn
[(
δατ (e

−zτ )−A
)−1

δ2τ (e
−zτ )τ G̃(e−zτ )− (zα −A)−1z2Ĝ(z)

]
dz,

I4 =
1

2πi

∫
Γθ,κ\Γτ

θ,κ

eztn(zα −A)−1z2Ĝ(z)dz.

Using (29), (30) and Lemma 4.2, we estimate I1 and I2 as following

∥I1∥ ≤ cτ2t−2
n ∥v∥ and ∥I2∥ ≤ cτ2t−2

n ∥v∥ .

By (31), we estimate that I4 is similar to I2 as following

∥I4∥ ≤ c

∫
Γθ,κ\Γτ

θ,κ

∣∣eztn∣∣ |z|−α ∥∥∥z2Ĝ(z)∥∥∥|dz|
≤ c ∥q∥

∫
Γθ,κ\Γτ

θ,κ

∣∣eztn ∣∣ |z|−α|z|−µ−1|dz| ≤ cτ2tα+µ−2
n ∥q∥ .
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Finally we consider I3 = I31 + I32 with

I31 =
1

2πi

∫
Γτ
θ,κ

eztn
(
δατ (e

−zτ )−A
)−1

δ2τ (e
−zτ )

(
τ G̃(e−zτ )− Ĝ(z)

)
dz,

I32 =
1

2πi

∫
Γτ
θ,κ

eztn
((
δατ (e

−zτ )−A
)−1

δ2τ (e
−zτ )− (zα −A)−1z2

)
Ĝ(z)dz.

According to (19) and Lemmas 3.1 and 4.4, there exists

∥I31∥ ≤ cτµ+3 ∥q∥
∫
Γτ
θ,κ

∣∣eztn∣∣ |z|2−α|dz| ≤ cτµ+3tα−3
n ∥q∥ .

From Lemma 4.2, we estimate I32 as following

∥I32∥ ≤ cτ2 ∥q∥
∫
Γτ
θ,κ

∣∣eztn ∣∣ |z|4−α|z|−µ−3|dz|

≤ cτ2 ∥q∥
∫
Γτ
θ,κ

∣∣eztn ∣∣ |z|1−α−µ|dz| ≤ cτ2tα+µ−2
n ∥q∥ .

By the triangle inequality, the desired result is obtained. �
5. Convergence analysis: Source function tµ ◦ f(x, t) with µ > −1

Based on the discussion of Section 3 and 4, we now analyse the error estimates
for subdiffusion (1) with the singular source term tµ ◦ f(x, t).

5.1. Convergence analysis: Convolution source function tµ ∗ f(t), µ > −1.
Let f(t) = f(0) + tf ′(0) + t ∗ f ′′(t). Then we obtain

g(t) = tµ ∗ f(t) = tµ+1f(0)

µ+ 1
+

tµ+2f ′(0)

(µ+ 1)(µ+ 2)
+ tµ ∗ t ∗ f ′′(t).

Let G(t) = J1g(t) = 1
µ+1 t

µ+1 ∗ f(t) with G(0) = 0. It yields

G(t) =
tµ+2f(0)

(µ+ 1)(µ+ 2)
+

tµ+3f ′(0)

(µ+ 1)(µ+ 2)(µ+ 3)
+

1

µ+ 1
tµ+1 ∗ t ∗ f ′′(t)

=
tµ+2f(0)

(µ+ 1)(µ+ 2)
+

tµ+3f ′(0)

(µ+ 1)(µ+ 2)(µ+ 3)
+
t2

2
∗ (tµ ∗ f ′′(t)) ,

where we use

tµ+1 ∗ t =
∫ t

0

(t− s)µ+1sds =
µ+ 1

2

∫ t

0

(t− s)µs2ds =
µ+ 1

2
t2 ∗ tµ.

Lemma 5.1. Let V (tn) and V n be the solutions of (4) and (8), respectively. Let

v = 0, G(t) := t2

2 ∗ (tµ ∗ f ′′(t)) with µ > −1 and
∫ t
0
(t− s)α−1sµ ∗ ∥f ′′(s)∥ ds <∞.

Then

∥V (tn)− V n∥ ≤ cτ2
∫ tn

0

(tn−s)α−1sµ∗∥f ′′(s)∥ ds ≤ cτ2
∫ tn

0

(tn−s)α+µ ∥f ′′(s)∥ ds.

Proof. By Lemma 3.7 with g′′(t) = tµ ∗ f ′′(t), we obtain

∥V (tn)− V n∥ ≤ cτ2
∫ tn

0

(tn − s)α−1 ∥sµ ∗ f ′′(s)∥ ds

≤ cτ2
∫ tn

0

(tn − s)α−1sµ ∗ ∥f ′′(s)∥ ds

= cτ2
(
tα−1 ∗ tµ

)
∗ ∥f ′′(t)∥t=tn ≤ cτ2

∫ tn

0

(tn − s)α+µ ∥f ′′(s)∥ ds.
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The proof is completed. �

Theorem 5.1 (ID1-BDF2). Let V (tn) and V n be the solutions of (4) and (8),
respectively. Let v ∈ L2(Ω), g(t) = tµ ∗f(t) with µ > −1 and f ∈ C1([0, T ];L2(Ω)),∫ t
0
(t− s)α−1sµ ∗ ∥f ′′(s)∥ ds <∞. Then

∥V n − V (tn)∥

≤ cτ2
(
t−2
n ∥v∥+ tα+µ−1

n ∥f(0)∥+ tα+µn ∥f ′(0)∥+
∫ tn

0

(tn − s)α−1sµ ∗ ∥f ′′(s)∥ ds
)

≤ cτ2
(
t−2
n ∥v∥+ tα+µ−1

n ∥f(0)∥+ tα+µn ∥f ′(0)∥+
∫ tn

0

(tn − s)α+µ ∥f ′′(s)∥ ds
)
.

Proof. According to Theorem 4.1, Lemma 5.1, and similar treatment of the initial
data v in Theorem 3.1, the desired result is obtained. �

5.2. Convergence analysis: product source function tµf(t), µ > 0. Let
G(t) = J1g(t) and f(t) = f(0) + tf ′(0) + t ∗ f ′′(t). Then we have

G(t) = 1 ∗ (tµf(t)) = tµ+1f(0)

µ+ 1
+
tµ+2f ′(0)

µ+ 2
+ 1 ∗ [tµ (t ∗ f ′′(t))] .

Let h(t) = tµ (t ∗ f ′′(t)) with h(0) = 0. It leads to

h′(t) = µtµ−1 (t ∗ f ′′(t)) + tµ (1 ∗ f ′′(t))
with h′(0) = 0, since

|h′(t)| ≤
∣∣∣∣µtµ−1

∫ t

0

(t− s)f ′′(s)ds

∣∣∣∣+ ∣∣∣∣tµ ∫ t

0

f ′′(s)ds

∣∣∣∣
≤ (µ+ 1)tµ

∫ t

0

|f ′′(s)| ds, µ > 0.

Moreover, there exists

(37) h′′(t) = µ (µ− 1) tµ−2 (t ∗ f ′′(t)) + 2µtµ−1 (1 ∗ f ′′(t)) + tµf ′′(t).

Thus one has

(38) 1 ∗ h(t) = th(0) +
t2

2
h′(0) +

t2

2
∗ h′′(t) = t2

2
∗ h′′(t).

Lemma 5.2. Let V (tn) and V n be the solutions of (4) and (8), respectively.
Let v = 0, G(t) = 1 ∗ [tµ (t ∗ f ′′(t))] with µ > 0 and f ∈ C1([0, T ];L2(Ω)),∫ t
0
∥f ′′(s)∥ ds <∞,

∫ t
0
(t− s)α−1sµ ∥f ′′(s)∥ ds <∞. Then

∥V (tn)− V n∥ ≤ cτ2
(
tα+µ−1
n

∫ tn

0

∥f ′′(s)∥ ds+
∫ tn

0

(tn − s)α−1sµ ∥f ′′(s)∥ ds
)
.

Proof. Let h(t) = tµ (t ∗ f ′′(t)). From (38), we have G(t) = 1 ∗ h(t) = t2

2 ∗ h′′(t).
According to Lemma 3.7 and (37), it yields

∥V (tn)− V n∥ ≤ cτ2
∫ tn

0

(tn − s)α−1 ∥h′′(s)∥ ds ≤ cτ2 (I1 + I2 + I3)

with

I1 =

∫ tn

0

(tn − s)α−1
∥∥sµ−2 (s ∗ f ′′(s))

∥∥ ds,
I2 =

∫ tn

0

(tn − s)α−1
∥∥sµ−1 (1 ∗ f ′′(s))

∥∥ ds and I3 =

∫ tn

0

(tn − s)α−1 ∥sµf ′′(s)∥ ds.
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We estimate I1 as following

I1 =

∫ tn

0

(tn − s)α−1sµ−1

∥∥∥∥∫ s

0

s− w

s
f ′′(w)dw

∥∥∥∥ ds
≤
∫ tn

0

(tn − s)α−1sµ−1

∫ tn

0

∥f ′′(w)∥ dwds = B(α, µ)tα+µ−1
n

∫ tn

0

∥f ′′(w)∥ dw,

since ∫ tn

0

(tn − s)α−1sµ−1ds = tα+µ−1
n

∫ 1

0

(1− s)α−1sµ−1ds = B(α, µ)tα+µ−1
n .

Similarly, we estimate I2 as following

I2 ≤
∫ tn

0

(tn − s)α−1sµ−1

∫ tn

0

∥f ′′(w)∥ dwds = B(α, µ)tα+µ−1
n

∫ tn

0

∥f ′′(w)∥ dw.

By the triangle inequality, we obtain

∥V (tn)− V n∥ ≤ cτ2
(
tα+µ−1
n

∫ tn

0

∥f ′′(s)∥ ds+
∫ tn

0

(tn − s)α−1sµ ∥f ′′(s)∥ ds
)
.

The proof is completed. �

Theorem 5.2 (ID1-BDF2). Let V (tn) and V n be the solutions of (4) and (8),
respectively. Let v ∈ L2(Ω), g(t) = tµf(t) with µ > 0 and f ∈ C1([0, T ];L2(Ω)),∫ t
0
∥f ′′(s)∥ ds <∞,

∫ t
0
(t− s)α−1sµ ∥f ′′(s)∥ ds <∞. Then

∥V n − V (tn)∥ ≤ cτ2
(
t−2
n ∥v∥+ tα+µ−2

n ∥f(0)∥+ tα+µ−1
n ∥f ′(0)∥

)
+ cτ2

(
tα+µ−1
n

∫ tn

0

∥f ′′(s)∥ ds+
∫ tn

0

(tn − s)α−1sµ ∥f ′′(s)∥ ds
)
.

Proof. According to Theorem 4.1, Lemma 5.2, and similar treatment of the initial
data v in Theorem 3.1, the desired result is obtained. �

5.3. Convergence analysis: product source function tµf(t), −α < µ < 0.
Let G(t) = J2g(t) and f(t) = f(0) + tf ′(0) + t ∗ f ′′(t). Then we have

G(t) = t ∗ (tµf(t)) = tµ+2f(0)

(µ+ 1)(µ+ 2)
+

tµ+3f ′(0)

(µ+ 2)(µ+ 3)
+ t ∗ [tµ (t ∗ f ′′(t))] .

Let h(t) = tµ (t ∗ f ′′(t)) with h(0) = 0. It leads to

h′(t) = µtµ−1 (t ∗ f ′′(t)) + tµ (1 ∗ f ′′(t)) ,

which implies

|h′(0)| ≤ (µ+ 1)

∫ t

0

sµ |f ′′(s)| ds,

since

|h′(t)| ≤ (µ+ 1)tµ
∫ t

0

|f ′′(s)| ds ≤ (µ+ 1)

∫ t

0

sµ |f ′′(s)| ds with − 1 < µ < 0.

Thus we get

(39) t ∗ h(t) = t2

2
h(0) +

t3

6
h′(0) +

t3

6
∗ h′′(t) = t3

6
h′(0) +

t3

6
∗ h′′(t).
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Lemma 5.3. Let V (tn) and V n be the solutions of (5) and (9), respectively. Let
v = 0, G(t) = t ∗ [tµ (t ∗ f ′′(t))] with −α < µ < 0 and f ∈ C1([0, T ];L2(Ω)),∫ t
0
s

µ−1
2 ∥f ′′(s)∥ ds <∞,

∫ t
0
(t− s)α−1sµ ∥f ′′(s)∥ ds <∞. Then

∥V (tn)− V n∥

≤ cτ2
(
t
α+µ−1

2
n

∫ tn

0

s
µ−1
2 ∥f ′′(s)∥ ds+

∫ tn

0

(tn − s)α−1sµ ∥f ′′(s)∥ ds
)
.

Proof. Let h(t) = tµ (t ∗ f ′′(t)). From (39), we have

G(t) = t ∗ h(t) = t3

6
h′(0) +

t3

6
∗ h′′(t).

According to Theorems 4.2, 3.2 and (37), it yields

∥V (tn)− V n∥ ≤ cτ2
(
tα−1
n ∥h′(0)∥+

∫ tn

0

(tn − s)α−1 ∥h′′(s)∥ ds
)

≤ cτ2 (I1 + I2 + I3 + I4)

with

I1 = tα−1
n ∥h′(0)∥ , I2 =

∫ tn

0

(tn − s)α−1
∥∥sµ−2 (s ∗ f ′′(s))

∥∥ ds,
I3 =

∫ tn

0

(tn − s)α−1
∥∥sµ−1 (1 ∗ f ′′(s))

∥∥ ds and I4 =

∫ tn

0

(tn − s)α−1 ∥sµf ′′(s)∥ ds.

Since

I1 = tα−1
n ∥h′(0)∥ ≤ ctα−1

n

∫ tn

0

sµ ∥f ′′(s)∥ ds ≤ c

∫ tn

0

(tn − s)α−1sµ ∥f ′′(s)∥ ds,

and

I2 =

∫ tn

0

(tn − s)α−1s
µ−1
2

∥∥∥∥∫ s

0

s− w

s
s

µ−1
2 f ′′(w)dw

∥∥∥∥ ds
≤
∫ tn

0

(tn − s)α−1s
µ−1
2

∫ tn

0

w
µ−1
2 ∥f ′′(w)∥ dwds

≤ ct
α+µ−1

2
n

∫ tn

0

w
µ−1
2 ∥f ′′(w)∥ dw,

where we use∫ tn

0

(tn − s)α−1s
µ−1
2 ds = t

α+µ−1
2

n

∫ 1

0

(1− s)α−1s
µ−1
2 ds = B

(
α,
µ+ 1

2

)
t
α+µ−1

2
n .

Similarly, we estimate I3 as following

I3 ≤
∫ tn

0

(tn − s)α−1sµ−1

∫ tn

0

∥f ′′(w)∥ dwds ≤ ct
α+µ−1

2
n

∫ tn

0

w
µ−1
2 ∥f ′′(w)∥ dw.

By the triangle inequality, we obtain

∥V (tn)− V n∥

≤ cτ2
(
t
α+µ−1

2
n

∫ tn

0

s
µ−1
2 ∥f ′′(s)∥ ds+

∫ tn

0

(tn − s)α−1sµ ∥f ′′(s)∥ ds
)
.

The proof is completed. �
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Theorem 5.3 (ID2-BDF2). Let V (tn) and V
n be the solutions of (5) and (9), re-

spectively. Let v ∈ L2(Ω), g(t) = tµf(t) with −α < µ < 0 and f ∈ C1([0, T ];L2(Ω)),∫ t
0
s

µ−1
2 ∥f ′′(s)∥ ds <∞,

∫ t
0
(t− s)α−1sµ ∥f ′′(s)∥ ds <∞. Then

∥V n − V (tn)∥ ≤ cτ2
(
t−2
n ∥v∥+ tα+µ−2

n ∥f(0)∥+ tα+µ−1
n ∥f ′(0)∥

)
+ cτ2

(
t
α+µ−1

2
n

∫ tn

0

s
µ−1
2 ∥f ′′(s)∥ ds+

∫ tn

0

(tn − s)α−1sµ ∥f ′′(s)∥ ds
)
.

Proof. According to Theorem 4.2, Lemma 5.3, and similar treatment of the initial
data v in Theorem 3.1, the desired result is obtained. �

Remark 5.1. Theorems 4.2 and 5.3 are naturally extended to µ > −1. However,
it is crucial to emphasize that when µ ∈ (−1,−α),

∥u(t)∥L2(Ω) ∼ ctµ+α → ∞ as t→ 0+,

and consequently, the initial condition cannot be satisfied in the conventional sense.
As a result, the weak solution to the initial value problem (1) needs to be redefined
in a weaker sense to fulfill the initial condition. In order to avoid redundant dis-
cussions of the model, we have decided to present our argument for the source term
tµ ◦ f(x, t), where µ > −1 if ◦ denotes convolution, while µ > −α if ◦ denotes
product.

6. Numerical results

We numerically verify the above theoretical results and the discrete L2-norm
is used to measure the numerical errors. In the space direction, it is discretized
with the spectral collocation method with the Chebyshev-Gauss-Lobatto points
[30]. Here we mainly focus on the time direction convergence order, since the
convergence rate of the spatial discretization is well understood. Since the analytic
solutions are unknown, the order of the convergence of the numerical results is
computed by the following formula

Convergence Rate =
ln
(
∥uN/2 − uN∥/∥uN − u2N∥

)
ln 2

with uN = V N + v in (8).

6.1. Subdiffusion model with Dirichlet and Neumann boundary condi-
tions. In the experiment, several algorithms including the correction BDF2 meth-
ods [11], FBDF22 Method [39] are carried out and compared with IDm-method:

(40) BDF2 Method : ∂ατ V
n −AV n = Av + gn.

(41) Corr− BDF2 Method : ∂ατ V
n −AV n =

3

2
Av +

1

2
g0 + gn.

(42) FBDF22 Method :

 ∂ατ U
n −AUn = ∂τ

[
J2

(
g(t) +

t−αv

Γ(1− α)

) ∣∣∣
t=tn

]
,

un = ∂τU
n, un = V n + v.

Example 6.1 (Dirichlet boundary conditions). Let T = 1 and Ω = (−1, 1). Con-
sider subdiffusion (1) with

v(x) = sin(x)
√
1− x2 and g(x, t) = (1 + tµ + tαµ) ◦ (1− t)βex(1 + χ(0,1)(x)).
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Here Jmg(x, t) = tm−1 ∗ g(x, t), m = 1, 2 is calculated by JacobiGL Algorithm
[2, 7], which generates the nodes and weights of Gauss-Labatto integral with the
weighting function of the form (1− t)µ or (1 + t)µ.

Table 1. The discrete L2-norm ∥uN −u2N∥ and convergent order
of schemes (40), (41) and (8), (9) with β = 0, α = 0.7. Here ◦
denotes the dot product.

Scheme µ N = 50 N = 100 N = 200 N = 400 N = 800

BDF2

0.8 2.4743e-03 1.1981e-03 5.8732e-04 2.9005e-04 1.4390e-04
1.0462 1.0286 1.0178 1.0113

-0.8 1.5948e-01 1.3256e-01 1.1109e-01 9.3707e-02 7.9450e-02
0.26679 0.25489 0.24549 0.23811

Corr-BDF2
0.8 9.4381e-05 3.6107e-05 1.3189e-05 4.6888e-06 1.6386e-06

1.3862 1.4529 1.4921 1.5168
-0.8 NaN NaN NaN NaN NaN

FBDF22

0.8 8.4501e-05 2.0876e-05 5.1883e-06 1.2933e-06 3.2283e-07
2.0171 2.0085 2.0042 2.0022

-0.8 5.8209e-04 1.4211e-04 3.5057e-05 8.6949e-06 2.1627e-06
2.0343 2.0192 2.0114 2.0073

ID1-BDF2

0.8 1.6660e-04 4.1216e-05 1.0249e-05 2.5553e-06 6.3792e-07
2.0151 2.0077 2.0040 2.0021

-0.8 6.7744e-03 3.0380e-03 1.3367e-03 5.8281e-04 2.5299e-04
1.1570 1.1844 1.1976 1.2039

ID2-BDF2

0.8 3.2389e-04 7.9995e-05 1.9879e-05 4.9539e-06 1.2374e-06
2.0175 2.0087 2.0046 2.0013

-0.8 2.1611e-03 5.2769e-04 1.3018e-04 3.2292e-05 8.0280e-06
2.0340 2.0192 2.0112 2.0081

Table 2. The discrete L2-norm ∥uN −u2N∥ and convergent order
of schemes (8) and (9) with β = 1.9, respectively. Here ◦ denotes
the dot product.

Scheme α µ N = 50 N = 100 N = 200 N = 400 N = 800

ID1-BDF2

0.3

0.5 1.5025e-03 3.9778e-04 1.0433e-04 2.7198e-05 7.0660e-06
1.9174 1.9307 1.9396 1.9445

-0.9 4.9903e-03 2.7664e-03 1.4020e-03 6.8259e-04 3.2574e-04
0.85109 0.98050 1.0384 1.0673

0.7

0.5 6.8462e-04 1.8033e-04 4.6484e-05 1.1840e-05 2.9948e-06
1.9247 1.9558 1.9731 1.9831

-0.9 2.0722e-02 1.0219e-02 4.8849e-03 2.3017e-03 1.0770e-03
1.0199 1.0648 1.0856 1.0956

ID2-BDF2

0.3

0.5 3.1810e-03 8.4340e-04 2.2164e-04 5.7938e-05 1.5180e-05
1.9152 1.9280 1.9356 1.9323

-0.9 4.6179e-03 1.1806e-03 3.0298e-04 7.7857e-05 2.0182e-05
1.9677 1.9622 1.9603 1.9478

0.7

0.5 1.9266e-03 5.0536e-04 1.3015e-04 3.3167e-05 8.4027e-06
1.9307 1.9571 1.9724 1.9808

-0.9 7.2846e-03 1.8010e-03 4.4808e-04 1.1179e-04 2.7922e-05
2.0161 2.0070 2.0030 2.0013
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Table 3. The discrete L2-norm ∥uN −u2N∥ and convergent order
of schemes (40) and (8) with β = 1.9, respectively. Here ◦ denotes
the Laplace convolution.

Scheme α µ N = 50 N = 100 N = 200 N = 400 N = 800

ID1-BDF2

0.3

-0.2 6.4420e-05 1.2431e-05 2.6710e-06 6.1586e-07 1.4766e-07
2.3735 2.2185 2.1167 2.0603

-0.8 1.6132e-03 4.2435e-04 1.0992e-04 2.8213e-05 7.2033e-06
1.9266 1.9487 1.9621 1.9696

0.7

-0.2 2.8145e-04 6.7873e-05 1.6649e-05 4.1218e-06 1.0253e-06
2.0520 2.0274 2.0141 2.0072

-0.8 6.3566e-04 1.7068e-04 4.4407e-05 1.1358e-05 2.8782e-06
1.8969 1.9425 1.9671 1.9805

Example 6.2 (Neumann boundary conditions). Let T = 1 and Ω = (−1, 1).
Consider subdiffusion with the Neumann boundary conditions

CD
α

t u(x, t)−Au(x, t) = g(x, t), x ∈ Ω, t ∈ (0, T ],

u(x, 0) =
√
1− x2/2, x ∈ Ω,

ux(0, t) = e−t, u(1, t) = 1, x ∈ ∂Ω, t ∈ [0, T ],

where g(x, t) = (1 + tµ + tαµ)ex(1 + χ(0,1)(x)).

Table 4. The discrete L2-norm ∥uN −u2N∥ and convergent order
for Example 6.2 with α = 0.7.

Scheme µ N = 50 N = 100 N = 200 N = 400 N = 800

ID1-BDF2

0.8 1.5408e-02 3.9107e-03 9.8528e-04 2.4730e-04 6.1950e-05
1.9782 1.9888 1.9943 1.9971

-0.8 2.7374e-01 1.2905e-01 5.8398e-02 2.5866e-02 1.1329e-02
1.0848 1.1440 1.1749 1.1911

ID2-BDF2

0.8 6.9166e-03 1.7704e-03 4.4795e-04 1.1266e-04 2.8253e-05
1.9660 1.9827 1.9913 1.9955

-0.8 4.8497e-02 1.2342e-02 3.1180e-03 7.8456e-04 1.9699e-04
1.9743 1.9849 1.9907 1.9938

Example 6.3 (Two-dimensional subdiffusion model). Let T = 1 and Ω = (−1, 1)×
(−1, 1). Consider the two-dimensional subdiffusion model with the inhomogeneous
Dirichlet boundary conditions

(43)


CD

α

t u(x, y, t)−Au(x, y, t) = g(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ],

u(x, y, 0) =
√
(1− x2/2) (1− y2/2), (x, y) ∈ Ω,

u(x, y, t) =
√

(1− x2/2) (1− y2/2)e−t, (x, y) ∈ ∂Ω, t ∈ [0, T ],

where g(x, y, t) = (1 + tµ + tαµ)e(x+y)(1 + χ(0,1)(x)).

For subdiffusion PDEs model (1), it is natural to appear the low regularity or
singular term such as

tµf(x, t) or tµ ∗ f(x, t), µ > −1.

In this case, many popular time stepping schemes, including the correction of
high-order BDF methods may lose their high-order accuracy, see [11, Section 4.1]
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Table 5. The discrete L2-norm ∥uN −u2N∥ and convergent order
for Example 6.3 with α = 0.7.

Scheme µ N = 50 N = 100 N = 200 N = 400 N = 800

ID1-BDF2

0.8 8.4127e-02 2.1353e-02 5.3801e-03 1.3504e-03 3.3829e-04
1.9781 1.9887 1.9942 1.9971

-0.8 1.6331e+00 7.6864e-01 3.4752e-01 1.5385e-01 6.7365e-02
1.0872 1.1452 1.1755 1.1915

ID2-BDF2

0.8 3.0394e-02 7.7886e-03 1.9718e-03 4.9605e-04 1.2442e-04
1.9643 1.9819 1.9909 1.9953

-0.8 2.4180e-01 6.1541e-02 1.5548e-02 3.9124e-03 9.8238e-04
1.9742 1.9848 1.9906 1.9937

and Lemma 3.2 in [35], also see Table 1. The correction BDF2 methods recov-
er superlinear convergence order O(τ1+αµ), provided that the source term be-
haves like tαµ, which is invalid for µ < 0, since it is required the source function
g ∈ C([0, T ];L2(Ω)).

To fill in this gap, the desired second-order convergence rate can be achieved by
ID1-BDF2 with µ > 0 but it is still likely to exhibit an order reduction with µ < 0.
Furthermore, ID2-BDF2 method has filled a gap with −1 < µ < 0, see Tables 1
and 2. Table 3 shows that ID1-BDF2 recovers second order convergence and this
is in agreement with the order of convergence for tµ ∗ f(x, t), µ > −1.

The proposed methods can be extended to inhomogeneous Dirichlet and Neu-
mann boundary conditions including two-dimensional case, see Examples 6.2 and
6.3.

Remark 6.1. For Hadamard’s finite-part integral [6, p. 233]∫ t

0

sµds =
1

1 + µ
t1+µ, µ < −1,

of course the limit does not exist, and so Hadamard suggested simply to ignore the
unbounded contribution. In this case, we can similar provide

ID3− BDF2 Method : ∂ατ V
n −AV n = ∂3τ

(
t3n
6
Av +Gn

)
, G = J3g(x, t),

which also recovers the high-order accuracy even for the hypersingul source term,
see Table 6.

Table 6. The discrete L2-norm ∥uN −u2N∥ and convergent order
with β = 0, α = 0.7. Here ◦ denotes the dot product.

Scheme µ N = 50 N = 100 N = 200 N = 400 N = 800

ID2-BDF2 -1.8 1.7275e-02 8.1527e-03 3.6909e-03 1.6393e-03 7.2110e-04
1.0834 1.1433 1.1709 1.1848

ID3-BDF2 -1.8 7.7995e-03 1.8929e-03 4.6855e-04 9.5882e-05 2.2325e-05
2.0428 2.0143 2.2889 2.1026

Remark 6.2. It is easy to extend the higher order schemes, e.g., ID2-BDF3, ID3-
BDF4, see Table 7.
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Table 7. The discrete maximum-norm ∥uN − u2N∥ and conver-
gent order of ID2-BDF3 and ID3-BDF4 scheme for Example 6.1
with g(x, t) = 0.

Scheme α N = 40 N = 80 N = 160 N = 320 N = 640

ID2-BDF3

0.3 2.2976e-07 2.7210e-08 3.3127e-09 4.0871e-10 5.0758e-11
3.0779 3.0380 3.0188 3.0093

0.7 7.0505e-07 8.2623e-08 1.0008e-08 1.2317e-09 1.5278e-10
3.0930 3.0453 3.0224 3.0111

ID3-BDF4

0.3 2.5000e-08 1.4195e-09 8.4663e-11 5.1885e-12 3.9823e-13
4.1384 4.0675 4.0283 3.7036

0.7 8.5711e-08 4.8005e-09 2.8439e-10 1.7327e-11 1.14674e-12
4.1582 4.0772 4.0367 3.9174

6.2. Stochastic subdiffusion model. In this subsection, we are interested in
the ID2-BDF2 method for solving stochastic fractional subdiffusion model

(44)

CDα
t u(t)−∆u = ∂−γt

dW (t)

dt
in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

with the initial condition u(0) = u0.

Example 6.4. Let T = 1 and Ω = (0, 1). Consider stochastic fractional subdiffu-

sion equation (44) with u0(x) = sin (x)
√
x(1− x).

First, an approximation of trace class noise dW (t)
dt in (44) is defined by

Ẇℓ(t) =
dWℓ(t)

dt
=

ℓ∑
j=1

γ
1/2
j β̇j(t)φj with γ

1/2
j = j−2

where βj(t) and φj (j = 1, 2, . . .) are the independently identically distributed
Brownian motions and the eigenfunctions of the operator A, respectively. In par-
ticular, in the one-dimensional case, we have φj(x) =

√
2 sin (jπx), j = 1, 2, . . ..

Let V (t) = u(t) − u0 with V (0) = 0. Substituting dWℓ(t)
dt for dW (t)

dt in (44), we
obtain, with Vℓ(0) = 0,

(45) ∂αt Vℓ(t)−AVℓ(t) = ∂t (tAu0) + ∂2−γt

(
t ∗ dWℓ(t)

dt

)
.

Next, we design the ID2-BDF2 time discretization scheme of (45) as following

(46) ∂ατ V
n
ℓ −AV nℓ = ∂τ (tnAu0) + ∂2−γτ

(
tn ∗ dWℓ(tn)

dt

)
, n = 1, 2, . . . , N.

Using BDF2 integrals convolution quadrature formula [1, 18], it yields

tn ∗ dWℓ(tn)

dt
= ∂−2

t

dWℓ (tn)

dt
= ∂−1

t Wℓ (tn) ≈ τ

n∑
k=1

w
(−1)
n−k

ℓ∑
j=1

j−2βj
(
tk
)
φj

with ℓ = 100. Here Brownian motions {βj}ℓj=1 can be generated by MATLAB code,

see [28, p. 395]. The time step size τ = 2−20 and tn = nτ = n 1
N = nNN τ = n τ = tn

with n = nN/N and N = 220. All the expected values are computed with 1000
trajectories.

Table 8 shows that the ID2-BDF2 method is able to achieve superlinear conver-
gence rate O(τα+γ−1/2) for 1/2 < α + γ < 2 in solving the stochastic fractional
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Table 8. The discrete L2-norm ∥uN −u2N∥ and convergent order
of ID2-BDF2 schemes (46) with γ = 0.9.

α N = 64 N = 128 N = 256 N = 512

0.1
9.7379e-03 7.4798e-03 5.6008e-03 4.1725e-03

0.3806 0.4173 0.4247

0.5
3.5940e-03 2.1200e-03 1.2159e-03 6.9409e-04

0.7615 0.8020 0.8087

0.9
3.1885e-04 1.1245e-04 4.1985e-05 1.6693e-05

1.5035 1.4213 1.3306

subdiffusion models, which breaks the first-order barrier in [14]. The convergence
theory of stochastic differential equations is being research.

7. Conclusions

Fractional PDEs model naturally imply a less smooth or low regularity source
function tµ ◦f(x, t) in the right-hand side, which is likely to result in a severe order
reduction in most existing time-stepping schemes. To fill in this gap, we provide a
new idea to obtain the second-order time-stepping schemes for subdiffusion, where
the source term is regularized by using an m-fold integral-derivative and the equa-
tion is discretized by using a modified BDF2 convolution quadrature. The detailed
theoretical analysis and numerical verifications are presented. In the future studies,
we will try to adapt the idea to higher order schemes [11], the nonlinear fractional
models [16], and the stochastic fractional evolution model [12].

Acknowledgments

This work was supported by the National Natural Science Foundation of China
under Grant No.12471381 and Science Fund for Distinguished Young Scholars of
Gansu Province under Grant No. 23JRRA1020. The work of Z. Zhou is partly
supported by Hong Kong Research Grants Council (15303122) and an internal grant
of Hong Kong Polytechnic University (Project ID: P0031041, Work Programme:
ZZKS).

References

[1] M.H. Chen and W.H. Deng, Discretized fractional substantial calculus, ESAIM: Math. Mod.
Numer. Anal., 49 (2015), pp. 373–394.

[2] M.H. Chen and W.H. Deng, High order algorithms for the fractional substantial diffusion
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