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A MULTIGRID-BASED FOURTH ORDER FINITE DIFFERENCE
METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH
VARIABLE COEFFICIENTS

YIMING REN AND SHAN ZHAO*

Abstract. The paper introduces a fourth-order augmented matched interface and boundary
(AMIB) method for solving elliptic interface problems with complex interfaces and piecewise
smooth coefficients in two and three dimensions. To resolve the challenge posed by non-constant
coefficients within the AMIB framework, the fast Fourier transform (FFT) Poisson solver of the
existing AMIB methods is replaced by a geometric multigrid method to efficiently invert the
Laplacian discretization matrix. In this work, a fourth order multigrid method will be employed in
the framework of the AMIB method for elliptic interface problems with variable coefficients in two
and three dimensions. Based on a Cartesian mesh, the standard fourth-order finite differences are
employed to approximate the first and second derivatives involved in the Laplacian with variable
coefficients. Near the interface, a fourth-order ray-casting matched interface and boundary (MIB)
scheme is generalized to variable coefficient problems to enforce interface jump conditions in the
corrected finite difference discretization. The augmented formulation of the AMIB allows us to
decouple the interface treatments from the inversion of the Laplacian discretization matrix, so
that one essentially solves an elliptic subproblem without interfaces. A fourth order geometric
multigrid method is introduced to solve this subproblem with a Dirichlet boundary condition,
where fourth order one-sided finite difference approximations are considered near the boundary in
all grid levels. The proposed multigrid method significantly enhances the computational efficiency
in solving variable coefficient problems, while achieving a fourth-order accuracy in accommodating
complex interfaces and discontinuous solutions.

Key words. Variable coefficient elliptic interface problem, high order finite difference schemes,
geometric multigrid, matched interface and boundary method (MIB), gradient recovery.

1. Introduction

This work focuses on solving multi-dimensional elliptic interface problems with
variable coefficients. We consider an elliptic partial difference equation (PDE) in a
domain

(1) V- (BVu) + ku = f(x), x€Q,

subject to Dirichlet boundary conditions on the boundary 9. The function u(x)
together with the corresponding source term f(x) depend on a vector variable
x = (x1,29, -+ ,xq4) for d = 2 or d = 3 on a rectangular or cubic domain (.
The interface I' defined by I' = QT N Q™ divides the computational domain € into
disjoint subdomains Q = QT UQ ™. An illustration of subdomains in two dimensions
is given in Fig. 1. The coefficients 5(x) and x(x) are smooth functions on each
disjoint subdomain, but may be discontinuous across the interface I, i.e., they are
piecewise smooth functions

B~(x) inQ~ a(x) = KT(x)  inQ
BT (x) inQt, ~|kT(x) inQF.

Bx) =
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Similarly, the source f(x) is also piecewisely smooth with notation f¥(x) and
/7 (x), respectively, in QT and Q7. It is assumed that §(x) is always positive.
Across the interface I', two jump conditions are known for the function and its flux
in the normal direction

(2) [u] :==ut —u™ = ¢(x), xel,
(3) [Bu,] :== BT (x)Vu™ -7 — B~ (x)Vu™ -7l = ¥(x), x €T,

where 7 is the outward normal direction of I" pointing from Q= to QT, and the
superscript stands for the limiting value from each side of the interface. Equations
(2) and (3) are called as the zeroth and first order jump conditions. Such an elliptic
interface problem with discontinuous coefficients has wide application in a variety of
fields such as fluid dynamics, modeling of underground waste disposal, solidification
processes, oil reservoir simulations, and many others.

When the coefficients 4(x) and x(x) are piecewise constants, the present problem
reduces to the usual elliptic interface problem, for which the finite element method
(FEM) is a commonly used approach. Classical FEM [3, 7, 12, 35] delivers sat-
isfactory accuracy, particularly when the interfaces align well with the underlying
meshes. However, practical scenarios often necessitate the construction of numer-
ical methods on non-fitted meshes. This requirement has driven the development
of the Immersed FEM (IFEM) [31], in which local basis functions are adapted to
ensure compliance with the prescribed jump conditions.

Finite difference methods on Cartesian grids have received extensive attention
in the context of elliptic interface problems. Peskin [44] laid the foundation for this
field by introducing a first-order accurate immersed boundary method in the 1970s.
LeVeque and Li [34] pioneered the first second-order finite difference approach,
the Immersed Interface Method (IIM), which employs Taylor series expansions to
determine stencil weights. Another popular technique is the Ghost Fluid Method
(GFM) [17], typically a first-order method [40], but it has been extended to second
order in [39]. The recovery of flux convergence in GFM has been investigated in
[16]. Chen et al. [11] developed a second-order compact finite difference method for
solving elliptic interface problems. In addition to finite element and finite difference
methods, other effective algorithms for solving elliptic interface problems include
virtual node method [4, 28], finite volume method [6], and coupling interface method
[13, 48]. We note that the aforementioned methods usually deliver first or second
order accuracy.

Addressing variable coefficients in elliptic interface problems is a challenging
endeavor. These variable coefficients could exhibit significant variations across the
interface, causing abrupt shifts in solutions. Managing such discontinuities presents
a huge difficulty in maintaining numerical stability and precision. Due to the inher-
ent complexity, only a limited number of studies have ventured into this domain.
A weak formulation has been developed in [30] for a grid that fits the geometry of
the problem, offering a solution to variable coefficient elliptic equations. Remark-
ably, it only requires Lipschitz continuity rather than smoothness for the interfaces.
Expanding upon the foundational principles of the IIM, novel techniques like the
Decomposed Immersed Interface Method (DIIM) [5] and Augmented Immersed In-
terface Method (AIIM) [37] have been proposed to address elliptic interface prob-
lems with variable coefficients. A second-order finite-volume method is presented in
[42] that operates on Cartesian grids for variable coefficient elliptic equations with
embedded interfaces. Ref. [41] describes a composite spectral scheme for solving
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variable coefficient elliptic boundary value problems with smooth coefficients. Re-
cently, boundary-optimized summation-by-parts (SBP) finite difference operators
for second derivatives with variable coefficients are presented in [49], which could
be used to solve the variable coefficient elliptic equation. The operators achieve
increased accuracy by utilizing non-equispaced grid points close to the boundaries
of the grid. The compact finite difference scheme introduced in [23] has been gen-
eralized in [24] to address elliptic interface problems featuring discontinuous and
highly contrasted variable coefficients.

One major focus of this study is on developing fast Poisson solvers for elliptic
interface problems. It is well known that for elliptic PDEs in the absence of in-
terfaces, algebraic computations can be significantly accelerated using fast Poisson
solvers, such as geometric multigrid with a complexity of O(N) and fast Fourier
transform (FFT) with a complexity of O(Nlog N), where N represents the spa-
tial degree of freedom. Consequently, there is a compelling motivation to integrate
Poisson solvers into interface algorithms to ensure that the algebraic computation
is not restricted by iterative solvers with a general complexity of O(N?).

For elliptic interface problems with piecewise constant coefficients, the utilization
of FFT Poisson solver has gained significant popularity for accelerating algebraic
computations [36, 50, 19, 21]. A remarkable breakthrough in this field is the ATIM
[36, 37], which incorporates auxiliary variables to establish an augmented system,
facilitating the approximation of the Laplacian operator through the standard fi-
nite difference stencil. This approximation results in a symmetric and diagonally
dominant matrix, which can be inverted by the FFT. The iterative solution of aux-
iliary variables is achieved through a Schur complement procedure. Due to the total
number of auxiliary variables being one dimension less than N, the augmented ap-
proach typically entails an algebraic complexity of O(N log N). AIIM’s origins can
be traced back to Li’s pioneering work in 1998 when it was initially applied to prob-
lems involving piecewise constant coefficients [36]. Since then, AIIM has witnessed
considerable success in a wide range of applications [43, 37, 53]. Recently, the Aug-
mented Matched Interface and Boundary (AMIB) method [19, 20, 21, 46] has been
introduced for solving elliptic interface problems and boundary value problems.
With a FFT acceleration, the AMIB method can deliver fourth order accuracy in
treating both interfaces [21] and boundaries [20]. Unlike AIIMs, AMIB does not
necessitate additional jump conditions in local coordinates. Instead, it relies on
only two low-order jump conditions as defined by (2) and (3).

However, the FFT is intractable for elliptic problems involving variable coef-
ficients, because the FFT solver is limited to linear, time-invariant systems with
constant coefficients. Therefore, the multigrid method [15, 10, 33, 32, 1, 37| is the
only effective fast Poisson solver that works for variable coefficient problems. In
multigrid solvers, the construction of interpolation, smoothing operators, and coarse
grid point selection for structured or unstructured meshes requires specialized ap-
proaches [9]. Algebraic multigrid (AMG) [47] is notable for its purely algebraic
selection of coarse grid points, eliminating the need for interface geometry and di-
mensionality constraints during construction. It utilizes discontinuous coefficients
and geometry in matrix-dependent interpolation, albeit requiring substantial stor-
age for the generated coarse grid operator matrices. AMG has been successfully
applied in the immersed finite element method, solving both stationary and moving
interface problems [18]. Geometric multigrid methods incorporate interface geom-
etry into PDE discretization, considering boundary and interface jump conditions,
and are usually much more efficient than AMG solvers. In the work by Adams
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and Li [1], a 2D IIM multigrid method was developed, preserving the maximum
principle. Black-box multigrid interpolation is applied away from the interface, and
interpolation weights are derived using Taylor expansion for grid points near the in-
terface. Subsequently, an improved IIM-based multigrid method [2] was introduced,
modifying interpolation and restriction operators to produce M-matrices for coarse
grids, maintaining the number of V-cycles as mesh refines. Coco extended the
multigrid approach [14] initially designed for continuous coefficient boundary value
problems to address discontinuous coefficient interface problems [15]. We note that
designing new multigrid approaches is always necessary when adopting new inter-
face algorithms, each requiring specialized treatments for interpolation, knowledge
of interface geometry, and definition of restriction and coarse grid operators.

Another major focus of this paper is on the development of high-order (third-
order or higher) interface methods, which are essential for tackling real-world prob-
lems with intricate characteristics, such as those involving high-frequency waves. To
the best of the authors’ knowledge, no high-order interface method has ever been de-
veloped for solving variable coefficient problems with an O(N) or O(N log N) com-
plexity, whereas there exist successful developments for elliptic interface problems
with constant coefficients. The high order interface methods were first developed
without fast Poisson solvers. The matched interface and boundary (MIB) method,
which incorporates fictitious points and enforces zeroth and first-order jump con-
ditions iteratively, is able to achieve fourth or sixth order accuracy for smoothly
curved interfaces [56, 52]. Within the IIM framework, a fourth-order method was
introduced by discretizing high-order jump conditions and mixed derivatives [43].
Furthermore, a high-order IIM approach is readily applicable to practical two-phase
flow problems, by requiring only the physical jump conditions for zero and first
derivatives [54]. For usual elliptic interface problems, acceleration by the FFT fast
solver has been successfully accomplished in a few high order interface methods.
In [21], an augmented MIB (AMIB) method has been developed in two dimensions
(2D), which is able to not only achieve a fourth order of accuracy, but also main-
tain the FFT efficiency, in solving elliptic interface problems with any boundary
conditions. The AMIB has been further generalized to three-dimensions (3D) by
using a novel ray-casting MIB interface treatment [45]. A kernel-free boundary
integral (KFBI) method has been developed in [55] for solving elliptic PDEs in 2D
and 3D. The boundary and volume integrals involved in the iterative solution of
the integral systems are evaluated through equivalent interface problems, which are
solved by fourth order compact finite difference methods with the FFT accelera-
tion. Beyond these innovative interface schemes, the literature contains a wealth
of attractive high-order numerical methods for addressing elliptic boundary value
problems defined over irregular domains [38, 27, 25, 46].

In this paper, we will develop a novel AMIB method with a geometric multigrid
solver for elliptic interface problems with variable coefficients and Dirichlet bound-
aries. We note that all existing fourth order AMIB methods [20, 21, 46, 45] are
based on the FFT solver, which is not applicable to variable coefficient problems.
A standard multigrid solver has been integrated with the AMIB in [22] for solving
parabolic interface problems, which unfortunately can only deliver a second order
of accuracy. In the present study, the ray-casting MIB scheme [45] will be extended
to solve variable coefficient problems with curved interfaces and discontinuous solu-
tions. The ray-casting MIB method is considerably simpler and more robust than
the Cartesian MIB scheme [56, 52|, for which jump condition discretization in-
volves all Cartesian directions in multi-dimensions. The augmented formulation of
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the AMIB allows us to decouple the interface treatments from the inversion of the
Laplacian discretization matrix so that one essentially solves an elliptic subproblem
without interfaces. A new fourth order geometric multigrid method is introduced
to solve this subproblem with Dirichlet boundaries, where fourth order one-sided
finite difference approximations are considered near the boundary in all grid levels.
The proposed multigrid method enjoys benefits such as the avoidance of storage
for coarse grid matrices and a straightforward implementation because the inter-
polation and restriction processes are significantly simplified without considering
interfaces.

The rest of the paper is organized as follows. In Section 2, a new finite difference
scheme is proposed to solve interface problems in 2D. Then a uniform augmented
MIB system will be formulated. Section 3 is dedicated to the numerical results to
demonstrate the performance of the proposed algorithm in 2D and 3D. Lastly, a
summary is given in section 4.

2. Theory and algorithm

o)

O regular grid point

© boundary grid point

B fictitious point

X intersection point

FIGURE 1. An illustration of the different type of grid points used
in the AMIB method in 2D.

In this section, the formulation of the proposed AMIB method will be presented
primarily in 2D. Due to the tensor product nature of the AMIB method, its gener-
alization to 3D is straightforward.

In 2D, we assume uniform mesh spacings, denoted as h, in the z-direction and
hy in the y-direction, which divide the rectangular domain Q = [a,b] x [¢,d] into
equally spaced intervals. This assumption implies that h, equals (b — a)/n,, and
hy equals (d — ¢)/n,. The grid coordinates in 2D are defined as follows:

Ty =a+ihg, Yy =cH+jhy, i =0,--- ,ng, j=0,--- ,ny.

Before we proceed with the details of discretizations, different types of grid points
need to be defined. All types of grid points are illustrated in Fig. 1. The locations
where the interface I' intersects with the grid lines are called interface intersection
points. The boundary grid points at 92 are where the boundary conditions are
imposed. Furthermore, referring to Fig. 1, away from the interface I', the standard
fourth-order central difference approximation will be employed at all regular points.
However, for irregular points near the interface, the finite difference will need func-
tion values from the other side of the interface I'. A formulation for irregular points
in the fourth-order case will be discussed later. Define min and max functions at a
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node (z;,y;) as

min :
o = mln{gpi_gm ©Vi—1,55Pij> Pi+1,js Pi+2,55 Pi,j—25Pij—15 Pij+1, <Pi,j+2}a
splj maX{gDi_ij, Pi—1,55Pi,5, Pi+1,5, Pi+2,5, Pi,j—2, Pi,j—1, Pi,j+1, 901,]4-2};

where the interface I is assumed to be represented by the zero level set ¢(x,y) = 0.
When cpznjmcpzn‘” < 0, We call the grid node (z;,y;) a irregular point, otherwise
regular point.

To discretize the original PDE (1) by using central differences, it is transformed
to an equivalent form first

(Bur)r + (ﬂuy)y + KU = Bugy + Bols + Buyy + Byuy + Ku
(4) ~ f(x), xe (@ U\,

Here the subscripts denote derivatives, e.g., uz, = 8902 We assume that [ is a piece-
wise smooth function and its derivatives 3, and 3, can be analytically calculated in
each domain Q= or Q1. We will solve (4) subject to a Dirichlet boundary condition
and interface jump conditions (2) and (3), which actually gives the solution of the
original elliptic interface problem.

The fourth order finite difference discretization of the governing equation (4)
involves approximations to both w, and w,,. For regular points away from the
boundary, standard fourth-order central differences are employed. The finite dif-
ference discretization near the interface will be handled by the MIB scheme in an
augmented formulation, and will be discussed later. At the boundary nodes, the
Dirichlet boundary condition is simply imposed. However, the fourth-order central
differences need to be modified for nodes immediately adjacent to boundary nodes.
In order to facilitate the proposed fourth order multigrid method, fourth-order one-
sided finite difference approximations will be employed. In particular, the following
finite difference formulation will be studied, which maintains a truncation error of

O(hY).

(Bug)a () ~ %[_ 112“(9%72) + %“(%‘71) Zum) + g“(%“) 112u(m”2)]
+ f[%u(u’crz) - %u(%q) + ;U(mwl) % (@iy2)]
(5) =23 ,ng — 2,
(Bug)e(z1) ~ %[% (wo) — gu(m) + su(zz) + éu(m?)) - %“(m)]
(6) + %[—iu(ago) - %u(m) + gu<$2> - ;U(CUS) + %U(M)]
(Bug)s(2p, —1) ~ %[—%U(xnx%) + guln,—3)

+ %U(xnzf2) — gu(xnzfl) + 1; (xnw)]
o5 112 (@n - )+%u($"“3)

(7) — gu($n172) + gu(mnwfl) + iu(xnﬁ)]

Analogously, finite difference discretization could be obtained for y-partial deriva-
tives. Figure 2 provides a visual representation of the finite difference stencils and
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FIGURE 2. The finite difference weights used in the fourth-order
finite difference discretization for approximating the first-order de-
rivative (as indicated in the first row) and the second-order de-
rivative (as indicated in the second row) at the solid point. The
squares denote the standard central difference scheme applied at
x; where ¢ = 3,4,--- ,n, — 2, while the circles signify the one-sided
finite difference scheme at z; or x,, 1.

associated weights. In this paper, all finite difference weights are calculated accord-
ing to the Ref. [26].

2.1. A multigrid method for the fourth order finite difference method.
Without considering the interface, we propose a multigrid method for the fourth
order finite difference discretization of a one-dimensional (1D) elliptic equation with
variable coefficients,

(8)

subject to Dirichlet boundary conditions. Due to the tensor product nature of the
AMIB method, such a 1D multigrid method can be extended to high dimensions.
Denote B; = B(x;), Bi = Bu(xs), ki = w(x;), i =1,2,--- ,ny — 1. Taking advantage
of the discretization (5), (6), and (7) to (Suy)s, the 1D elliptic problem (8) could
be rewritten to a matrix-vector form:

9)

where A € R»tbhnatl 7 ¢ R+l and B € R* 1! Here the vectors U and B
contain function values of v and b, respectively, at grid nodes. The matrix A is
given by

(Bug)e + Kku = b,

AU = B,

M1 0 0 0 0 0 0 ]
w1l Wiz W13 W14 wis 0 0
Wo1 Wz W23 Way was 0 0
A 0 w3 w32 w33 w34 w3s 0
0 0
0 0 Wn,—2,1 Wp,—22 Wp,—23 Wp,—24 Wn,—25
0 0 - Wp,—11 Wpy-12 Wn,—13 Wp,—14 Wn,—15
0 0 0 0 0 e 0 1]
The central difference weights for interior nodes i = 2,3,--- ,n, — 2 are given as
1 1, 4 2 5
w1 = *@ﬁz + ﬁﬁﬂ Wi 2 = Wﬂl — %ﬂp w; 3 = *Wﬂz + Ki,
4 2 1 1,
Wit = gpElit gy wis = Tgal T gy
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The one-sided finite difference weights for the second and second last rows are given
as

1 1, I 5 ., 1 3 .,
Wiy = 12h251 4h61’ wip = 3h2ﬁ1 6h61 + K1, wiz= 2h261 + 2h51’
I P R
W= g Pt o P s = T LT o 1

_ 1 1, 1 L
Wn,—1,1 = ~ 573 Br.—1 12h6""3*1’ Wn,—1,2 = 3h25nr1 + Qhﬂnrp

1 3 N 5

Wp,—1,3 = thﬁnx—l 2h6”“_1’ Wy, —1,4 = 3h25nr—1 + GhB"““_l + Bng—1,

11 1
Wn,—1,5 = Wﬁnm—l + Eﬁnm—l'

In the pursuit of an efficient solver for the aforementioned equation system, we
turn our attention to the geometric multigrid approach. When coarsening the mesh
by doubling the grid spacing (from h; to hyy1), the coefficient matrix Ay, , and the
right-hand side vector Bjy; are constructed by appropriately sampling values from
the finer grid. Specifically, the 8 and x values in Ay, ,, and the corresponding entries
in By at interior nodes are directly sampled from the refined grid. Similarly, the
boundary values of B;y; are collected from the boundary nodes of the refined grid.
In fact, the coefficient matrix Ay, , on the coarser mesh naturally forms a submatrix
of Ap, on the finer mesh, ensuring that the discretization consistently captures the
variation in PDE coefficients 8 and k across all grid levels.

The idea behind the multigrid method [8] is to reduce the high-frequency com-
ponents of the solution error on the fine mesh, while addressing the low-frequency
errors on coarser grids. Since low-frequency error components cannot be effectively
reduced on fine grids, we restrict the residual to coarser grids, where error cor-
rection can be efficiently solved. These determined error correction solutions are
subsequently interpolated back onto the fine grids, providing corrections to the al-
ready obtained fine mesh solution. Therefore, considerable computational time is
saved by doing major computational work on the coarse grids. Throughout this
iterative process, relaxation is applied on the fine mesh to enhance solution accu-
racy, while the restriction operator is used to transfer the residuals from the fine
grid to the coarser grid and the interpolation operator interpolates the corrections
from coarse grids to fine grids using the nearest coarse grid neighbors from coarse
mesh to fine mesh. This process continues iteratively until the solution meets the
desired accuracy.

In the implementation of the multigrid V-cycle scheme, as illustrated in Algo-
rithm 1, we solve linear systems such as (9) using the Gauss-Seidel smoother as
the relaxation method. The number of grid levels L in the multigrid algorithm is
chosen such that the coarsest grid contains sufficient grid points to maintain the
5-point stencil required for fourth-order accuracy. To achieve the desired accuracy
in the multigrid scheme, it is essential to ensure that the combined orders of the
prolongation and restriction operators are at least equal to the order of the dif-
ferential equation being solved, as established in [29]. Consequently, we employ
bilinear prolongation (second-order) and full weighting restriction (second-order)
to transfer information between grid levels.

The prolongation operator [ ;LI’H maps data from the coarser grid [ + 1 to the
finer grid [ using bilinear interpolation in two dimensions. This process is defined
as follows:
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ht  _ prhigqa
U2i721 - Ui,j ’

h; o 1 hig1 hiya
Usivioj =5 \Uij +Usq;),
2
hy _ 1 hit1 hiy1
Usigjr1 = 5 \Uij" +Uijk)s
2

hy o 1 hit1 hit1 hiy1 hiy1
Uait,2j41 = 3 (Um‘ T U1 T Ui T Ui ) -

The restriction operator RZ;“ transfers data from the finer grid [ to the coarser
grid [ + 1. Using full weighting, the restriction in two dimensions is defined as:

hipr 1L h h h h h
Uit = 16 <4U2il,2j + 2(U2i171,2j +Usit105 tUsinjq + U2il,2j+1>

h; hy hy hy
+ (U2i71,2j71 +Uoit12j01 Y Uiy 0501 + U2i1,2j+1>)'

Algorithm 1 Multigrid V-cycle Scheme [8]

1: Set the initial guess for Uy, as 0, where hy represents the finest grid level.

2: Compute the initial residual on the finest grid: ry, = Bp, — Ap, Us,.

3: while Ly error of the residual r, > tolerance do

4: Pre-smooth the equation Ap,Up, = By, using vy smoothing steps on the
finest grid.

5: for each grid level [ =1,2,...,L —1 do

6 Compute the residual on the current level: ry, = By, — Ap, Uy,

T Restrict the residual to the next coarser grid: rp,,, = RZi“rhl, where
RZ;“ is the restriction operator, and h;1 1 = 2h;.

8: Initialize Up,,, on the coarser grid as 0.

9: end for

10: Solve the equation Ay, U, = rp, exactly on the coarsest grid (L).

11: for each grid level =L —1,L—2,....1do

12: Interpolate the correction to the finer grid: ep, = I}ZLHU;”H, where I,’ZZ’H
is the prolongation operator.

13: Apply the correction to the finer grid:Uy, := Uy, + ey,

14: Post-smooth the equation Ap,Uy, = Bp, using ve smoothing steps on
gI‘id hl.

15: end for

16: Update the residual on the finest grid: ry, = By, — An,Uh,-
17: end while

For the practical implementation of our multigrid algorithm, we set both v; and
ve equal to 2. The exact solution on the coarsest grid is obtained using the Gauss-
Seidel iterative solver. The iteration stops when the error tolerance reaches 1072
or when it reaches a maximum of 5000 iterations. Besides, the multigrid stopping
criteria is the residual Lo error less than 10712
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2.2. Corrected fourth order finite differences. We now switch our attention
to the interface treatment. The finite difference formulation presented above, as
given by equations (5), (6), and (7), is valid for regular points. However, when
dealing with irregular points, a special MIB treatment is required because the func-
tion’s regularity breaks down across the interface. In the AMIB method, corrected
differences will be employed, which enable us to maintain the desired order of ac-
curacy.

In our prior study, we addressed the correction of central difference approxima-
tions for second-order derivatives, as detailed in [20]. In this work, the correction
for V - (BVu) involves treatments for both first and second-order derivatives. It is
worth noting that the one-sided finite difference scheme requires no correction since
the irregular points are located near the interface, rather than close to the bound-
ary. We will present the correction for (Bu,), only, and the y-direction correction
can be conducted similarly.

For simplicity, denote d,.,, and J,, as the central difference operators for the second
derivative and first derivative, respectively,

1 4
Oz (23) = — Wu(xz?Z) + %u(ﬂcH)

5 4 1
(10) - W“(xi) + WU(%H) — Wu(ﬂﬁwz),

1 2 2 1
(11) Oz () = ﬁu(%ﬂ) - 371“(331‘71) + 371“(33#1) - ﬁu(fﬁiJrz)-

For the present study, it is natural to assume u as a piecewise smooth function of
x, with a discontinuity at x = «, where the interface I' intersects the x grid line.
Let z; < a < xj41,h~ = x; — a, and h™ = x;,1 — «. If the Cartesian jumps are
known, we have the corrected Taylor expansions at two irregular points z;1;, and
x;—;, as below [50]:

[(i2 + il)h]ku(k)

] >

W(Titiy) = il (i-i,)
k=0 ’
K .
(12) +Z [(12 - 1)]:+h+]k[u(k)]a +O(hK+1),
k=0 ’
and
5 [(iy + i2)h]F
utwig) =3 L 0 )
k=0
K ;. _
(13) -y BT iy, o)
k=0 ’

where [u(®)], = lirn+ u® (z)— lim u®(z). The indices i, > 1 and 4; > 0 represent

index increments, with ¢ denoting the index location. Based on the jump-corrected
Taylor expansions (12) and (13), the fourth-order finite difference scheme can be
corrected according to the following theorem.

Theorem 1. Corrected fourth order finite differences. Suppose u € C%[x; —
2h, a) (CY(av, w11 +2h], with derivative extending continuously up to the interface
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a. Then the following approximations hold to O(h*) when K =5 :

K (p+)k
(Buta)a(i1) = (Ba + Buba) (i) + (g B+ ) wi1) 3 YL,

o op 2T
4 K (h+)k
(Bua)a ) % (B2 + Baba) (@) = (5278 + 5-B2) 1) > O,
1 1 S (AERDE g
+ (12]126 + mﬁﬂﬁ)(xl) kZ:O T[u F las
4 2 () (k)
(Bug)e(xiv1) = (B0pe + Bude)(Tiv1) + (Wﬁ — %Bm)(xiﬂ) Z o [u™],
k=0
1 1 K (b= — h)k
- (@5 - ﬁﬁw)(xﬂrl) 1;) %[U(M]m
~ 1 1 - (h)*
(Buw)w(xz+2) ~ (Béxac + Bx(sw)(xz-l—Q) - (12h2ﬂ - mﬁx)(xz+2) ;) %l [’U, ]om

To achieve fourth-order accuracy in our computations, it is necessary to consider
jump quantities up to the fifth-order derivative, thereby achieving a truncation
error of O(h*). However, for practical purposes and expedited calculations, we find
that setting K = 4 in the fourth-order corrected differences introduces a manageable
third-order local truncation error of O(h?®) when dealing with irregular points. This
compromise allows us to maintain a desirable global fourth-order convergence rate
while simplifying the computational complexity.

(0% (0%)]
L2205 1Ty iNLTit22i43 L

(c¢) Type 3. (d) Type 4.

FI1GURE 3. All possible corner scenarios in correcting the fourth
order central difference. Red squares represent the irregular points,
while blue crosses stand for interface intersection points.

The application of corrected fourth-order finite differences assumes a grid with
sufficient resolution to accurately represent a smoothly curved interface. In practical
scenarios, a Cartesian grid line may intersect the interface twice within a relatively
short distance, resulting in two adjacent intersection points, denoted as a; and asq
(as shown in Fig. 3). When there are at least four grid points available between
oy and s, as shown in Figure 3 (a), Theorem 1 can be safely applied to correct
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the finite differences of (Su, ), separately for both interface intersection points, and
this situation is referred to as Type 1. However, in cases where there are only
three or two grid points between a; and as (as depicted in Fig. 3 (b) and (c)), we
classify these scenarios as Type 2 and 3, respectively. In these cases, we can utilize
jump-corrected Taylor expansions, as expressed in (12) and (13), to derive finite
difference corrections for (Bu,), at these irregular points. During the derivation of
corrected finite differences at irregular points between «; and as, some grid points
involved in the stencil of (12) and (13) might be positioned on different sides of
either a; or as from irregular points. As a result, the corrected finite differences
at irregular points in between «; and ay will incorporate the Cartesian derivative
jumps occurring at both intersection points of the interface. The corrections of
fourth-order central difference in the case of Type 2 and 3 are presented in Theorem
2 and 3 in Appendix A.

Moreover, in the scenario illustrated in Figure 3 (d), where only one grid point
is situated between «; and «s, we categorize this as Type 4. Similar to Type 2
and 3, the corrected finite differences at irregular points in between «; and as
will involve the Cartesian derivative jumps occurring at both intersection points
of the interface. For some other irregular points in this corner case, where the
central differences stencil intersects with the interface twice, a new correction is
required to achieve fourth-order finite differences. For example, for the corrected
finite differences at x;_1, even though both z; and z;; are located on the right
side of a1, the jump-corrected Taylor expansion in Equation (12) is applied at x;,
while a classical Taylor expansion is employed at z;y;. This is because x;y; falls
on the same side of the interface as x;_1, obviating the need for a correction term.
In Appendix A, Theorem 4 presents the corrected finite differences in Type 4 case.

The corrected differences discussed above focus on x-direction derivatives. Anal-
ogously, corrected differences for y-direction derivatives can be established. More-
over, these corrected differences simplify to (5) when no interface is encountered.
The key to such corrected differences is the Cartesian derivative jumps at various
interface points. The analytical values of such jumps are not available. We have to
resort to numerical approximations to apply these corrections effectively at irreg-
ular points. In the subsequent subsection, we present a systematic procedure for
reconstructing the Cartesian derivative jumps by using the AMIB method.

2.3. Cartesian derivative jumps reconstruction. The Cartesian derivative
jump at x = « involved in the aforementioned corrected differences is defined as:

OFuy . Ok . OFu
lim lim —

14 A nllr=a = a5 3
( ) [830’““ z—at Oxk z—a- OTF

where k takes values from 0 to 4. It is important to note that the one-sided
limits considered here are the right-hand side limit + — ot and the left-hand
side limit x — a~. These superscripts are distinct from those used within the
inside subdomain Q~ and outside subdomain Q7.

The zeroth derivative in Eq. (14) represents the jump in the function across the
interface. It the present problem, it can be analytically determined using Eq. (2).
For cases where k& > 0, the Cartesian derivative jumps usually cannot be obtained
from the given PDE problem at the interface intersection points between I' and grid
lines. Subsequently, they have to be reconstructed numerically. This reconstruc-
tion involves two components. First, by assuming some necessary fictitious values,
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Cartesian derivative jumps are calculated by using finite differences. Second, the
needed fictitious values will be generated by the ray-casting MIB scheme.

2.3.1. Approximation to Cartesian derivative jumps. We first consider how
to numerically approximate Cartesian derivative jumps at «;, i.e., [g%‘]a(k =1,2,3,4)
with the aid of MIB fictitious values. To approximate the one-sided limits in Eq.
(14), we construct Lagrange polynomials of degree 4, as illustrated in Fig. 4. As
demonstrated in Fig. 1, two layers of fictitious nodes are assumed on both sides
of the interface. For each side limit, Lagrange polynomials are derived using three
real values on one side and two fictitious values on the other side of the interface.
By taking derivatives of these one-sided polynomials, we can compute the various
order derivatives needed.

Uiy,
Uit i+3,5

Wit1,5

Ti—2 Ti-1 T Ti+1  Tit2  Tit3 T

/Q/Q{”/Jrz.y

/./o/u: Uit
. ;

T=a

FIGURE 4. An illustration of the fourth order numerical approxi-
mation to Cartesian derivative jumps by two polynomials near the
interface x = «. The black dots stand for the real values, while
the circles denote the fictitious values.

In the scenario depicted in Fig. 4, where the fictitious values are denoted with
a hat notation, we approximate the Cartesian derivative jumps using the following
expression
0*u P k- 2 k
[w”r:a ~ (wi_q i1, +wi ;0 5 + Zwi+l,jui+l,j)
1=1

3
k ks E -
(15) - (Z Wi g4y jWi-3+1j + Wiy Uit + Wio jUita ),
1=1
where w,’; o represents the finite difference (FD) weights approximating at = = «,

and (p, ¢) stands for the grid location (zp,y,). As a result, we can calculate each
Cartesian derivative jump using fictitious values surrounding the intersection points
on the interface. Similarly, the approximation for the derivative jump in the y-
direction can be established in a similar manner.

As previously discussed in the last subsection, it is essential to monitor grid
resolution concerning interface changes when applying corrected differences. The
same consideration applies to approximating derivative jumps. In [45], all potential
corner cases related to reconstructing derivative jumps for elliptic interface problems
have been thoroughly examined. Interested readers are directed to Subsection 2.3.3
of Ref. [45] for a detailed description of corner treatments to approximate Cartesian
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derivative jumps. To implement the Cartesian derivative jump approximation for
all cases, it is necessary to construct fictitious values at all irregular points. In the
following subsection, we will utilize the ray-casting MIB method to generate the
required fictitious values.

2.3.2. Fictitious values formulation and ray-casting MIB method. To ad-
dress the high-order central difference approximation at irregular points, the MIB
scheme employs four layers of fictitious values in the vicinity of the interface, as
described in [56, 52]. Achieving high-order accuracy does not necessitate high-
order jump conditions. Instead, we consistently apply zeroth and first-order jump
conditions, as provided in Eqns. (2) and (3), to compute all the fictitious values.
These fictitious values can be viewed as smooth extensions of the solution across
the interface T'.

Q.
s
My,
i
M
ML 40)
B 2y
T,
My \
H’,
0_ /Mzs
S

FIGURE 5. In the ray-casting MIB scheme, the desired fictitious
value at M;" = (z;,y;)(red filled squares) is generated along the
normal line passing Ml+ (dashed line), involving 8 auxiliary points
M, and M;" for | = 1,2,3,4 (empty squares). Filled circles stand
for the chosen Cartesian grid points to interpolate or extrapolate
each auxiliary point except for Mf' .

In this study, we will apply the ray-casting MIB scheme [45] to determine fic-
titious values around the curved interface I'. In the ray-casting MIB method, fic-
titious values will be computed in a 1D manner by imposing the interface condi-
tions along the normal line at the corresponding interface intersection point. This
approach differs from the Cartesian MIB method outlined in [21], where the jump
conditions Eqns. (2) and (3) are recast into Cartesian directions, and approximated
along grid lines.

We first illustrate how to calculate a fictitious value by using the ray-casting
MIB treatment. Referring to the fictitious node M; (x;,y;) in Fig.5, we begin by
identifying a normal line of I' that passes through M;" = (z;,y;), by a procedure
similar to IIM [43]. We assume that this normal line is perpendicular to the interface
I" at an interface intersection point P. Denote the angle between the normal line
and the positive x direction to be 6. As we move along the inward normal direction,
this normal line, or auxiliary line, first intersects an x-grid line at an intersection
point M, , as shown in Fig. 5. Extending this auxiliary line in both directions, it
intersects other x-grid lines, giving us three auxiliary nodes MlJr for I =2,3,4, all
located on the same side of I, i.e., QT. Similarly, four auxiliary nodes M, on four
x-grid lines y = y;4; for [ =1,2,3,4 are situated on the other side of I', i.e., 7.
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We proceed by discretizing the zeroth and first-order jump conditions (2) and (3)
at the point P using eight auxiliary points: My , My , My , M, M, M5, M- MF.
We denote the function values at M;" and M, as Uyt and uy, - for 1 =1,2,--- 4.
This discretization enables us to determine two unknowns: i,,+ = 1; ; and @ My
The fictitious value 1; ; is the value required for the fourth-order finite difference
approximation at a nearby irregular point, such as (z;,y;-1). Although the addi-
tional fictitious value M is not employed in this study, it holds potential value
for future investigation involving more intricate geometries.

On the auxiliary line, we approximate each limiting value in the interface condi-
tions (2) and (3) by utilizing four function values from the same side of I" and one
fictitious value from the opposite side of I'. It is noted that the [ values are known
at the point P for both sides of the interface. With each limiting value properly
approximated and without considering truncation errors at the level of O(h?), this
results in two algebraic equations:

4 4
(16) leﬁM; + Z:w(;r,lH“Ml+ — (wo 1G5k + Zwo_,lHUM;) = ¢(P),
=1 =1
(17)
4 4
BHP) g + 3 0 atgs) — (P g+ 3wy ) = 6(P),
=1 =1

41 for m = 0,1 and I = 0,1,---,4 represent the finite
difference weights. Here the subscript m stands for zeroth (m = 0) or first order
derivative (m = 1) approximation at the interface point P. The superscripts — and
+ in w signify the Q= and Q% domain separated by the interface I". Consequently,
by solving the two algebraic equations (16) and (17), one can derive two fictitious
values, namely 4; ; and 4 M These values are obtained as linear combinations of

+
where W 141 and w

Upgt and Upg for 1 =1,2,--- ,4, and two jump values ¢(P) and ¢ (P).

Furthermore, to ensure a complete Cartesian grid approach, we aim to determine
fictitious values using function values from the grid nodes. To clarify, for each of
the seven auxiliary points, M, for I = 1,2, 3,4 and Mﬁ for [ = 2,3,4, we employ
the values of the five nearest grid nodes to interpolate or extrapolate the auxiliary
point along each x-axis, as illustrated in Fig. 5. Consequently, each function value
at an auxiliary point can be expressed in terms of grid node values.

Once we have accurately approximated the seven auxiliary function values, the
formulation of the fictitious value 1; ; can be expressed in a general form as follows:

(18) U5 = Z Wi gur,y + Wod(P) + Wi (P),

(z1,97)€S:,5

This representation of fictitious values guarantees an accuracy on the order of O(h*).
Wr,y represent the weight associated with each point in the set S; ;. This set
comprises 5 grid nodes for each of the seven auxiliary points, along with M;" =
(xi,y;), which are involved in the ray-casting MIB scheme. Consequently, the
fictitious value 1; ; is a linear combination of 36 function values on 36 Cartesian
nodes and two known jump values ¢(P) and ¢ (P). Similarly, we can generate all
the necessary fictitious values around I'; including two layers inside and two layers
outside.
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The ray-casting MIB scheme introduces several notable advantages when com-
pared to the classical Cartesian MIB scheme [56, 51|. Firstly, the ray-casting MIB
scheme takes advantage of the normal direction to access a broader range of grid
points both inside and outside the interface. This enhanced coverage makes the ray-
casting MIB scheme more robust when dealing with complex geometric interface
shapes. Moreover, in the ray-casting MIB approach, jump conditions are applied
along the normal direction, simplifying the overall implementation. This differs
from the traditional MIB scheme, which requires the decomposition of jump con-
ditions into x, y, and z directions for finite difference approximations. Another
benefit is the mitigation of corner problems. In the classical fourth-order MIB
scheme, generating four fictitious values along one Cartesian direction can lead to
corner problems, However, with sufficiently high grid resolution, the ray-casting
MIB scheme avoids such corner problems, making it more reliable. In summary,
the ray-casting MIB scheme offers a simpler and more robust solution for addressing
problems involving PDEs with interfaces.

Remark 2.1. The choice between two scenarios for auziliary line intersections with
x ory grid lines depends on the relationship between the mesh angle, arctan (hy /h,),
and the angle 0. Specifically, when h, = h, and 0 falls within 7 < 6 < %" or
%’r <0< %r (as illustrated in Fig. 5), the auxiliary line meets the x grid lines
first. In this case, the intersection of the auzxiliary line with four x grid lines yields
eight auziliary nodes. Otherwise, when 0 falls outside these ranges, the eight auz-
iliary points are chosen as the intersection points of the auxiliary lines with the y
grid lines. This provides the necessary grid points for formulating fictitious values
similarly.

Remark 2.2. In our computation, we adaptively generate auziliary nodes based
on the local interface geometry. This adaptivity is necessary because certain x ory
grid lines may need to be skipped due to the unavailability of grid nodes within 2~
or QF for interpolating specific auziliary nodes. In such cases, the new auziliary
node is determined as the intersection of the auxiliary line with the next available
x ory grid line. This essentially involves a downward shift of all relevant nodes
along a particular grid line. This situation typically arises during the calculation of
the second layer of fictitious values. For example, in Fig. 5, if a fictitious point like
(@i, yj41) ts within QF, the closest auxiliary point generated in the inward normal
direction might still be within Q. In this case, we retain this auziliary point and
only need two additional auziliary points in Q1 above (x;,yj41). However, when
dealing with auxiliary points in Q™ , we employ an adaptive downward shift process
to locate the four necessary auxiliary regions within QQ~. We repeat this downward
shift process at most twice until we have enough grid nodes available on each grid
line for interpolating the auziliary nodes. Going beyond two shifts would place the
chosen grid nodes far from the intended fictitious point, leading to a loss of accuracy
to some extent.

2.4. Augmented system. In the AMIB method, we treat derivative jumps as
auxiliary variables that are solved simultaneously with the unknown function values,
thereby creating a unified augmented system. In solving the augmented system,
we can decouple the solutions of auxiliary variables and unknown function values
in different stages. This essentially allows us solve an elliptic subproblem without
interfaces, and the proposed fourth order multigrid algorithm can be applied to
efficiently invert the Laplacian discretization matrix. To construct this augmented
system, we denote N; as the total number of grids across the entire rectangular
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domain €2, and Ny represents the total number of interface intersection points in
both the z and y directions.

In the previous subsection, we reconstructed derivative jumps by incorporating
fictitious values at each interface intersection point. By introducing these derivative
jumps as auxiliary variables and substituting the fictitious value representation Eq.
(18) into Eq. (15), we arrive at a generic linear equation:

oFu
(19) Z | ‘CI,JUI,J + [W] = Co¢ + 1,
(z1,y.7)€Se,j

Here, C7, 5 represents the weights of the function value vy ; in the approximation
of the jump quantity [%], while ¢ and i are the known interface data. Similar
formulas to Eq. (19) can be obtained for all interface intersection points in the x
and y directions.

Furthermore, we define a 1D column vector ) with dimensions 5N x 1, repre-

senting the auxiliary variables introduced as [g%]i and [g%]j fork=0,1,---,4 at
interface intersection points i = 1,2,--- and j = 1,2,---, totaling N points. The

unknown function values within the domain €, totaling N; grids, are arranged in
another 1D column vector U with dimensions Ny x 1. Generalizing Eq.(19) from a
single interface point to all interface points yields the matrix form of Eq.(19):

(20) CU+IQ =0,

In this equation, C represents a sparse matrix of dimensions 5Ny x Ny, I is the
identity matrix of dimensions 5Ns x 5Ny, and & is a column vector of dimensions
5Ny x 1 composed of known interface quantities.

For the elliptic problem described in Eq. (1), where U; ; denotes the discrete
solution at (z;,y;), we discretize the PDE as follows:

(21) LyUij+Cij=fij, 1<i<ng—1, 1<j<n,—1

Here, C; ; represents the correction term, and LjU;; represents the standard
fourth-order central difference Eq. (5) or one-sided finite difference approximation
Eq.(6) or Eq.(7) to V(8Vu), depending on the positions of interior nodes. This
equation can be expressed in matrix form as:

(22) AU + BQ = F,

In this equation, B is a sparse matrix with dimensions N; by 5N, containing coef-
ficients from correction terms, and F' is a vector with dimensions N7 X 1 consisting
of entries f; ;. The Dirichlet boundary condition is incorporated into vector F' by
modifying some rows of matrix A, such that these rows are composed of the vector
where only the diagonal element is one while all other entries are zero.

Coupling (22) and (20) yields an augmented system,

(23) KW =R,

(2 =) wmo=(5)

We compute BQ using the Schur complement, effectively eliminating U from Eq.
(23) to create a linear system for Q:

(24) (I-CA™'B)Q=¢—-CA™'F,

where
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It is noted that the linear system (24) for @ has a much smaller degree of freedom
compared to U, with a total of Na. To efficiently solve for @ from Eq. (24), we
propose an effective iterative solver that utilizes the proposed multigrid solver to
handle A~!. The implementation details for the Schur complement system (24)
with a GMRES method are as follows:

(1) For the right-hand side (RHS), we determine ® — CA~!F by applying the
multigrid solver on A~'F and performing some necessary arithmetic oper-
ations.

(2) For the left-hand side (LHS), we consider an iterative approach using the
GMRES method. In this approach, we compute the matrix-vector product
of (I-CA~1B)Q in several steps. Because it is equivalent to IQ—C A~ BQ,
we first apply a multigrid solver to the product BQ, i.e., A~1(BQ). This
is followed by additional arithmetic operations on 1Q — CA~1(BQ).

(3) We initialize the GMRES iteration with an initial guess of @ = (0,0,---,0)%.
The GMRES iteration terminates either when it reaches the maximum it-
eration limit of 5000 or when the error tolerance reaches 10~°. The GM-
RES solver employs a truncation parameter 100, meaning that the last 100
Krylov basis vectors are retained. The termination criteria are flexible and
can be adjusted as needed for specific computational requirements.

After determining @), the geometric multigrid algorithm is employed to solve the
following equation and compute the solution U:

(25) AU =F - BQ,

2.5. Three dimensional extension. The proposed two-dimensional AMIB algo-
rithm for elliptic interface problems with variable coefficients can be easily extended
to 3D. The proposed fourth-order finite differences and their corrections, as well as
Cartesian derivative jump reconstruction, are all formulated in a 1D manner. In the
augmented formulation, the multigrid method formulated for 1D elliptic system (8)
can be simply applied to the matrix A in (23) for both 2D and 3D. Computation-
ally, the only non-trivial extension is the ray-casting MIB for generating fictitious
values. Fortunately, the 3D ray-casting MIB scheme has been developed in [45] for
constant coefficient elliptic interface problems, which can be applied to the present
study. The interface condition continues to be imposed along an auxiliary normal
line in the 3D ray-casting MIB method. Compared with the 2D case, the difference
is that each auxiliary node will be interpolated in a 2D plane, not along one grid
line.

3. Numerical experiments

In this section, we will examine the accuracy and efficiency of the proposed AMIB
method when applied to the solution of two or three dimensional elliptic equations
characterized by variable coefficients. The performance of the proposed fourth
order AMIB method will be compared with several MIB methods. For simplicity,
the domain 2 will be assumed to be a square domain with equally spaced nodes
n="mng ="ny=n,.

The numerical accuracy and convergence of the numerical solutions in 2D prob-
lems are tested by calculating errors under the maximum norm and L norm defined
as

Loo(u) = (wfg?))(eﬂ ‘u(xivyj) - uh(xiayj”a
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1
LQ(U) = p) E |u(m27yj) - uh(xivyj)|2a
(n+1)
(:Ei,yj)eﬂ

where u(z;,y;) and wup(z;,y;) are respectively analytical and numerical solutions
inside the given computational domain 2. The error norms in 3D can be similarly
defined.

We will also investigate the accuracy of gradient approximations in 2D. Based
on the calculated numerical solution up(x;,y;), the fourth-order central differences,
such as d,(x;) defined in Eq. (11), will be employed in both z and y directions for
i=2,3,...,n,—2and j =2,3,...,ny—2. Wheni=1,n,—1orj=1,n,—1,the
one-sided fourth-order finite differences will be applied, which are essentially the
first-derivative parts in Egs. (6) and (7). When these fourth-order central difference
stencils intersect the interface, the corresponding fictitious values will be supplied,
just as in the original MIB scheme [56]. Then, the errors of gradient approximation
can be measured in the maximum norm and Lo norm

B ou Oouy, ou ouy,
Leo(Vu) = oy BX o+ maX{|%(%yj)— 5, LYl Ia—y(mi7yj)—a—y(mi7yj)\}7
1
Ly(Vu) = | ———5 > [Vu(s, y;) — Vun (i, ;)13

2
(n + 1) (zi,y5)€Q-UQT
here Vu(z;,y;) and Vuy(z;,y;) are respectively analytical and numerical gradient.
The error norms of gradient approximation in 3D can be similarly estimated.

The convergence rate of the scheme will be examined by the formula

log (|| E1]/]I£2]])
order = ———+—~="~
log(hl/hz)

where || F;|| is the numerical error on mesh of spacing h; for ¢ = 1,2, using the above
defined norms on n + 1 by n + 1 mesh for the computational domain 2. For both
the AMIB and MIB computations, the iteration numbers in the GMRES algorithm
are reported in the discussion below.

All the experiments are carried out by using a single core on a Dell PowerEdge
R7525 in The University of Alabama High-Performance Computer (UAHPC) (https:
//oit.ua.edu/services/research/) with AMD EPYC 7543 32-core CPUs oper-
ating at 2.8GHz clock speed.

3.1. Numerical examples in 2D. Ezample 1. We first consider a simple 2D
Poisson’s equation

(26) (Buz)z + (Buy)y = f(z,9),

over a square [— %, 2] x [~ %, Z] with a circular interface I' defined by 2 := 22 +y? =

0.52. The exact solution to this problem is prescribed as

w(,y) = { sin(kz)sin(ky) in QT

(27) 671’270.51/2 in Q,’

which is discontinuous across the interface I'. Here the parameter k is chosen to be
3. The source term f(z,y) is related to the above designated solution,

—2k? 3% sin(kx) sin(ky) + k(B; cos(kz) sin(ky)
flz,y) = +8,f sin(kx) cos(ky)) in QF
e~ 05 (4a? 4+ y? — 3)B~ — 228, —yBy)  in Q.


https://oit.ua.edu/services/research/
https://oit.ua.edu/services/research/
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By setting 3t = 10? and 8~ = 1, Eq.(26) becomes a piecewise constant coef-

ficient elliptic equation with a high-ratio jump. For such a problem, one usually

divides both sides by 8. This yields a simple Poisson equation wzy + tyy = %

As the solution u™ = sin(kz)sin(ky) automatically satisfies the anti-symmetric
property across the boundary of the given domain [-%, Z] x [~F, §], which pro-

vides a foundation for FFT inversion. This allows us to compare the AMIB method
with FFT (AMIB-FFT) [45] with the proposed AMIB method with Multigrid ac-
celeration (AMIB-Multigrid). The numerical results of two methods are reported
in Table 1. For both methods, the mesh size is taken to be (n+1) x (n+1), and dif-
ferent mesh refinements with corresponding [n,n] values are reported. In Table 1,
both methods exhibit fourth-order convergence, but AMIB-FFT is computationally
more efficient than AMIB-Multigrid. However, when the anti-symmetric property is
not satisfied across the boundary, AMIB-FFT requires additional techniques, such
as introducing zero solutions outside the boundary [20], while AMIB-Multigrid does
not. Furthermore, AMIB-Multigrid is capable of handling elliptic PDEs with vari-
able coefficients, while AMIB-FFT faces challenges in such scenarios.

Next, we would like to investigate the performance of AMIB method with Multi-
grid acceleration for solving variable coefficient elliptic PDE. For this purpose, we
redefine the diffusion coefficient 5 by

ety in QF
p={ S o
To demonstrate the efficiency of the AMIB-Multigrid, we will compare it with the
fourth order MIB method, in which the calculated fictitious values by the ray-
casting MIB scheme will be directly applied to the fourth-order finite difference
approximations (5), (6), and (7), without using the corrected finite differences and
the augmented system. The results of both MIB and AMIB methods are presented
in Table 2. Both methods consistently achieve an average fourth-order convergence
rate. In Table 2, the gradient approximation by the AMIB scheme is also reported.
Based on the numerical solutions, the gradient can be simply estimated, and the
corresponding average numerical order is also four. Additionally, we report the
iteration numbers for both methods in the GMRES algorithm. It is evident that
the AMIB exhibits slower growth in iteration numbers and is less dependent on
the mesh size compared to the MIB. When the mesh size is doubled three times,
the iteration number of the AMIB increases minimally, while that of the MIB
becomes more than 14 times larger. Correspondingly, the CPU cost of the AMIB
is significantly smaller than that of the MIB. In particular, on a mesh 256 by 256,
the AMIB is about 22 times faster than the MIB.

FEzample 2. Besides the ray-casting method in the present AMIB method, the
fictitious values can also be generated by using the classical Cartesian MIB scheme
[21], which can then be further combined with the present augment formulation
and multigrid solver, giving rise to a Cartesian AMIB scheme. It is interesting to
compare such a Cartesian AMIB approach with the proposed ray-casting AMIB
method. To this end, we consider again the 2D Poisson’s equation (26). In this
context, we define an interface I', which is constructed using a parametric function
p(0) = 0.5+ bsin(k#). Here, the parameter b (where b > 0) governs the magnitude
and curvature of the interface, while &k (a positive integer) specifies the number of
"heads" in the curve. The angle 6 varies within the range [0, 27]. We choose the pa-
rameter values (b, k) = (0.13,5), resulting in a five-headed interface. Additionally,
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TABLE 1. Example la — Fourth order numerical error analysis of
AMIB-FFT vs AMIB-Multigrid with tol = 10715 for Eq. (26) with
Bt =102and B~ =1.

[, 2y AMIB-FFT
Loy Lo iter no. CPU time (s)
Error Order Error Order
[32,32] | 3.24E-05 - 1.50E-04 - 28 6.68E-03
[64, 64] 3.57E-06 3.182 1.42E-05 3.401 42 2.39E-02
[128,128] | 1.92E-07 4.2167 7.66E-07 4.2124 58 9.48E-02
[256,256] | 2.10E-08 3.1926 1.37TE-07 2.4832 92 0.5105
[N, Ny AMIB-Multigrid
Loy Lo iter no. CPU time (s)
Error Order Error Order
(32, 32] 3.74E-05 — 1.58E-04 - 43 6.29E-02
[64, 64] 3.68E-06 3.3453 1.45E-05 3.4458 40 0.210527
[128,128] | 1.90E-07 4.2800 7.34E-07 4.3041 76 1.5397
[256,256] | 2.11E-08 3.1707 1.36E-07 2.4322 102 7.9109

TABLE 2. Example 1b — Fourth order numerical error analysis

of AMIB vs MIB with tol = 107'% for Eq.

coefficient (.

(26) with variable

AMIB Solution

[,y
Loy Lo iter no. CPU time (s)
Error Order Error Order
[32,32] |2.80B-04 -  127E-03 - 27 5.95E-02
[64, 64] 4.43E-06 5.9820 2.42E-05 5.7317 31 0.2655
[128,128] | 1.98E-07 4.4837 8.20E-07 4.8832 33 1.077
[256,256] | 6.93E-09 4.8365 4.78E-08 4.1005 43 5.6079
[N, Ty ] AMIB Gradient
Lo Lo
Error Order Error Order
[32,32] | LI0E03 -  S.16E-03 -
[64,64] | 2.20E-05 5.6439 1.85E-04 5.4630
[128,128] | 9.30E-07 4.5641 1.67E-05 3.4696
[256,256] | 5.12E-08 4.1830 2.17E-06 2.9441
[N, Ty MIB Solution
Loy Lo iter no. CPU time (s)
Error Order Error Order
(32, 32] 1.14E-04 - 5.94E-04 — 597 0.1288
[64, 64] 2.22E-06 5.6823 1.20E-05 5.6294 1509 1.2392
[128,128] | 1.26E-07 4.1391 8.10E-07 3.8890 4559 15.8649
[256,256] | 8.91E-09 3.8219 4.30E-08 4.2355 8737 123.7003

we define a diffusion coefficient 3 as follows

(28)

cos(x+y)+2 inQ .

5_{ sin(zx+y)+3 inQF
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and source term
—183™" sin(3z) sin(3y)
_ +3(8; cos(3x) sin(3y) + B, sin(3z) cos(3y)) in QF
(29) flwy) = —183 sin(3x) cos(3y) !
+3(B, cos(3z) cos(3y) — B, sin(3z)sin(3y)) in Q7.

On the boundary of the domain [—3%, %] x [~3%, §%], a Dirichlet boundary con-

dition is assumed with the boundary data derived by the analytical solution
[ sin(3z)sin(3y) in QF
(30) ul@y) = { sin(3z) cos(3y) in .

TABLE 3. Example 2— Fourth order numerical error analysis of the
Ray-casting AMIB vs Cartesian AMIB with tol = 1071°.

[N, Ty Ray-casting AMIB
Ly Lo iter no. CPU time (s)
Error  Order  Error  Order
[32,32] | 3.14E-05 1.60E-04 - 26 9.32E-02
[64,64] | 8.92E-07 5.1376 5.70E-06 4.8110 30 0.2354
[128,128] | 3.48E-08 4.6799 2.77E-07 4.3630 57 0.9984
[256,256] | 3.22E-09 3.4340 1.93E-08 3.8432 35 4.1216
[Ny Ty Cartesian AMIB
Lo Lo iter no. CPU time (s)
Error  Order  Error  Order
(32, 32] - - - - -
(64,64] | 3.73E07 -  1.73B-06 - 32 0.2444
[128,128] | 3.30E-08 3.4986 1.46E-07 3.5667 57 0.9351
[256,256] | 6.53E-09 2.3373 3.84E-08 1.9268 64 4.2247

x10"
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FIGURE 6. The numerical solution (left) and error (right) of
Example 2 on a mesh with n = 256.

[

The numerical results of the ray-casting and Cartesian AMIB schemes are pro-
vided in Table 3. In terms of accuracy, the Cartesian AMIB scheme performs
slightly better on coarser grids but exhibits reduced accuracy on finer meshes.
Moreover, when the mesh size is set to [n, n] = [32, 32], the Cartesian AMIB scheme
encounters a specific corner issue, which results in its failure. This corner issue arises
when a Cartesian grid line intersects the interface within a segment of length 2h.



882 Y. REN AND S. ZHAO

Unfortunately, for complex interfaces like the one in our current case, this corner
issue could potentially arise at various mesh resolutions, particularly with coarser
grids. In this particular instance, the failure becomes evident at n = 32, whereas
the Cartesian AMIB scheme functions effectively for other values of n. By imple-
menting the proposed corner treatments, the ray-casting AMIB scheme maintains
fourth-order accuracy for both solution and gradient even when [n,n] = [32,32]. In
terms of efficiency, the ray-casting AMIB scheme is more efficient than the Carte-
sian AMIB scheme. The numerical solution and error for the ray-casting AMIB
method are illustrated in Fig. 6 using n = 256. It is noted that the maximal errors
are concentrated around the five-headed interface.

Ezample 3. we next examine an arch-shaped domain Q~, which is situated
within a computational domain [—-%, Z] x [~F, ]. The interface I' is composed of
two half-circles: T'1 = {(x,y),y = v0.32 — 22} and T's = {(,y),y = v0.8%2 — 22}.
The remaining portions of I' are formed by the sides of two base columns, which
take the shape of rectangles: [—0.8, —0.3] x [-0.8, 0] and [0.3,0.8] x [—0.8,0]. Please
refer to Fig. 7 for a visual representation. We study the elliptic PDE (4) with the
same diffusion coefficient S given in (28), and we define the parameter x as

[ sinz+y)+1 nQF
(31) K@, y) = { cos(z+y)+1 inQ.
The exact solution to this problem is

[ cos(kz)e? in QF
(32) u(@,y) = { sin(kz) cos(ky) in Q.

and the parameter k is selected to be 3. The source term f(z,y) is related to the
above designated solution,

(1= E2)BT + kT + Bf) cos(kx)e
7 —kB;F sin(kx)e¥ in QF
f(z,y) = (—2k2B~ + k™) sin(kz) cos(ky)
+h(B; cos(kx) cos(ky) — B sin(kz)sin(ky)) i Q.

TABLE 4. Example 3— Fourth order numerical error analysis of
AMIB with tol = 10715.

[N, Ty ] AMIB Solution
Loy Lo iter no. CPU time (s)
Error Order Error Order
[32,32] | 2.31E-05 - 1.48E-04 - 24 5.62E-02
[64,64] | 2.89E-06 2.9988 1.91E-05 2.9540 32 0.2482
[128,128] | 2.79E-07 3.3727 1.41E-06 3.7598 33 0.9970
[256,256] | 5.78E-09 5.5931 2.87TE-08 5.6185 34 4.0895
[Nz, Ny AMIB Gradient
Lo Lo
Error Order Error Order
[32,32] | 2.73E-04 - 3.06E-03 -
[64, 64] 2.51E-05 3.4431 2.89E-04 3.4044
[128,128] | 1.72E-06 3.8672 1.75E-05 4.0456
[256,256] | 5.49E-08 4.9695 9.47E-07 4.2078
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FIGURE 7. The numerical solution (left) and error (right) of
Example 3 on a mesh with n = 256.

Table 4 demonstrates that the AMIB method remains effective in solving the
elliptic equation (4), even when the reaction term contains variable coefficients.
The results reaffirm an average fourth-order convergence for both solution and
gradient. The efficiency of the AMIB is further validated. It is found in Fig. 7 that
large errors usually occur on or near the interface.

Ezample 4. Reusing the analytical solution (30) and source term (29), we con-
sider a complex domain Q~ formed by the union of two distinct disks in [-F, F] x
[~%,%]. Notably, the embedded interface I' comprises two distinct components:
I ={(z,9),z <0,(x+0.2)2+y> = 0.5} and I'y = {(z,y),z > 0, (z—0.2)> +y> =
0.52}. The diffusion coefficient is defined as

5= 2—cos(2z+y) inQF
T 2-sin(z+y) in Q.
and the coefficient in the reaction term

1—cos(z+y) inQF
K= . o
l+sin(z+y) inQ.

x108

- . i.
-1 0.5 0 05 1
X

FIGURE 8. The numerical solution (left) and error (right) of
Example 4 on a mesh with n = 256.

oo

=

~
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By taking the above coefficients x and 3, the numerical results are presented
in Table 5. The fourth order convergence is attained for both solution and gradi-
ent. The numerical solution and error of the AMIB method for this example are
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TABLE 5. Example 4- Fourth order numerical error analysis of
AMIB with tol = 10715.

[N, Ty ] AMIB Solution
Loy Lo iter no. CPU time (s)
Error Order Error Order
[32,32] | 8.03E-05 - 2.77E-04 - 26 5.30E-02
[64, 64] 2.92E-06 4.7814 1.41E-05 4.2961 34 0.2513
[128,128] | 1.57E-07 4.2171 1.21E-06 3.5426 58 1.6763
[256,256] | 1.08E-08 3.8617 9.13E-08 3.7282 38 4.7435
[N, 1y AMIB Gradient
Lo Lo
Error Order Error Order
[32,32] | 4.82E-04 -  3.35E.03 -

[64,64] | 1.84E-05 4.7113 1.83E-04 4.1942
[128,128] | 1.15E-06 4.0000 1.83E-05 3.3219
[256,256] | 7.52E-08 3.9348 1.87E-06 3.2907

[Ny Ny MIB Solution
Lo Lo
Error Order Error Order
[32, 32] 5.00E-05 - 1.76E-04 — 315 6.72E-02
[64,64] | 2.18E-06 4.5195 1.08E-05 4.0265 772 0.6273
[128,128] | 1.34E-07 4.0240 1.06E-06 3.3489 1760 6.0594
[256,256] | 7.98E-09 4.0697 6.15E-08 4.1073 4004 56.5940

presented in Fig. 8. Notably, the interface I' exhibits non-smoothness at the two
junction points of the two circles. It is worth mentioning that the AMIB scheme
is specifically designed for C' continuous interfaces. Fortunately, in this particular
example, the non-smoothness at these two cusps is not overly severe, and the AMIB
method still delivers the desired order of accuracy. It is important to note that if
the distance between the centers of the two disks were larger, the geometric singu-
larity at these two cusps would become more pronounced. In such cases, achieving
fourth-order convergence with the AMIB method or any other known methods
would be unattainable. However, even in such challenging scenarios, the original
MIB method could still maintain a second order of accuracy, as demonstrated in
[51].

3.2. Numerical examples in 3D. Ezample 5. Consider a 3D Poisson’s equation

(33) (Buz)s + (Buy)y + (Buz): = f(2,y,2)

Ever a cubic domain [~%, Z] x [-F, Z] x [~F, T] with a spherical interface defined
Yy

I:a? 492+ 22 =042
The analytical solution to this problem is constructed to be

_ [ sin(kz)sin(ky)sin(kz), in QF,

(34) u(®,y,2) = { sin(z +y + 2), in Q°,
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with & = 3. The source term f(z,y, z) is related to the above designated solution,
f(x,y,2)
+ B + . . . .
_ ) (=3K*BT + k(taf{kx) + tntry T taf(zkz))sm(kx) sin(ky)sin(kz), in QF,
=387 sin(x +y +2) + (B, + B, +B7)cos(z +y + 2), in Q.

On the boundary of the cubic domain, a Dirichlet boundary condition is assumed
with the boundary data derived by the analytical solution. The diffusion coefficient

is defined as
5 { ertuts  in OF

e~ (@tytz)  in Q.

TABLE 6. Example 5— Fourth order numerical error analysis of
AMIB with tol = 10715,

[N, Ny, 112 AMIB Solution
Loy Lo iter no. CPU time (s)
Error Order Error Order
(32,32, 32] 1.59E-05 — 2.65E-04 - 48 3.7126
[64, 64, 64] 5.51E-07 4.8508 1.23E-05 4.4293 54 33.4883
[128,128,128] | 3.25E-08 4.0835 6.32E-07 4.2826 65 357.5614
(256,256, 256] | 2.27E-09 3.8397 5.18E-08 3.6089 94 4467.8754
(Mg, Ty, M AMIB Gradient
Lo Lo
Error Order Error Order
[32,32,32] | 2.46E-04 —  5.67E-03 -

[64, 64, 64] 8.56E-06 4.8449 2.83E-04 4.3245
[128,128,128] | 4.55E-07 4.2337 6.35E-05 2.156
(256,256, 256] | 2.44E-08 4.2209 3.77E-06 4.0741

[N, My, M) MIB Solution
Lo Lo
Error Order Error Order
(32,32, 32] 1.45E-05 — 1.95E-04 - 1481 14.252783

64,64,64] | 5.67E-07 4.6766 1.31E-05 3.8958 3893  262.948881
[128,128,128] | 3.33E-08 4.0898 8.26E-07 3.9873 8477  4517.941342
[256, 256, 256] : ; ; _ . ;

The analytical solutions, u™ (z,y,2) and u*(z,y,z), are depicted in Fig. 9.
The graphs are generated by mapping the solutions onto the spherical surface I"
from inside and outside, respectively, for v~ (z,y,2) and u™(z,y,z). While the
two solutions are smooth within their respective subdomains, the overall solution
u(zx,y, z) exhibits a clear discontinuity across I'.

The numerical results of both the MIB and AMIB schemes are reported in Table
6. In both schemes, the same mesh size is employed, i.e., (n+1) x (n+1) x (n+1).
The number of corner points is reported for each tested value of n. It is evident
that the AMIB scheme achieves fourth-order accuracy, while the MIB scheme fails
for n = 256. Similar to Example 1 in 2D, the AMIB method exhibits robust
convergence and is less dependent on the mesh size n, resulting in significantly faster
computations than the MIB method. The iteration count increases significantly for
the MIB scheme, and on a 256 x 256 x 256 mesh, the computation was terminated
due to excessively long runtime. In Table 6, the gradient approximation by the
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FIGURE 9. The plots of exact solutions and numerical error of the
ray-casting AMIB scheme by mapping onto the spherical surface
I', based on a mesh with n = 128.

AMIB scheme is also reported. Based on the numerical solutions, the gradient can
be estimated with a corresponding numerical order of four. The numerical error of
the AMIB scheme at n = 128 is depicted in Fig. 9 (c¢), showing that large errors
occur in regions where the solutions have large magnitudes.

Ezxample 6. In this example, we focus on a molecular interface. Since the MIB
scheme is not suitable for 3D computations due to its slow performance, we will
exclusively consider the ray-casting AMIB scheme going forward. We study the 3D
Poisson’s equation (33) with a smooth molecular surface defined by two atoms as

follows:
53

32
5 T3V T~

With the parameter k = 3, the exact solutions are constructed to be

T2+ + 22+

[ sin(kz)sin(ky)sin(kz), in QF,
(35) u(@,y,2) = { cos(kx) sin(k?/) cos(kz), in Q7

and the corresponding source terms are

By Bt
( 3k2ﬂ+ + k(tan(kr) + tan(ky) + tan(kz))

F@y,2) = -sin(kx) sin(ky) sin(kz), ) in QF,
T (=328~ + k(—f; tan(kz) + ot — f7 tan(kz))
-cos(kz) sin(ky) cos(kz), in 7,

Here, the diffusion coeflicient is defined as:

5_{ cos(z+y+2z2)+2 inQF

(36) sinfx+y+2)+2 inQ .
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The plots of solutions ©~ and u™ mapped onto the molecular surface are given in
Fig. 10.

x10®
0.2 15
0
-0.1 5
0.2
(a) v (z,y,2 ) ut(z,vy, 2); (c¢) Error
FIGURE 10. The plots of exact solutions and numerical error of the
ray-casting AMIB scheme by mapping onto the molecular surface
I', based on a mesh with n = 128.
TABLE 7. Example 6 — Molecular interface of two atoms. The
number of corner points is 8, 8, 0 and 8, respectively, for n =32,
64, 128, and 256.
[Ny, Ny, 1] AMIB Solution
Loy Lo iter no. CPU time (s)
Error Order Error Order
(32,32, 32] 2.33E-03 — 1.99E-02 - 46 3.5693
[64, 64, 64] 4.04E-05 5.8498 4.45E-04 5.4828 49 31.4859
[128,128,128] | 2.46E-06 4.0376 5.64E-05 2.9800 84 448.9337
[256, 256, 256] | 9.06E-08 4.7630 1.35E-06 5.3847 101 4413.5281
[Ny My y 102 ] AMIB Gradient
Lo Leo
Error Order Error Order
(32,32, 32] 7.73E-03 - 1.12E-01 -
[64, 64, 64] 1.96E-04 5.3015 6.54E-03 4.0986
[128,128,128] | 1.18E-05 4.0540 1.06E-03 2.6252
[256, 256, 256] | 4.42E-07 4.7386 5.12E-05 4.3718

The numerical results are summarized in Table 7. As before, a straightforward
Dirichlet boundary condition is applied, and the average fourth-order convergences
in the solution and gradient are once more confirmed. Furthermore, the efficiency
of the AMIB scheme is thoroughly validated. The error plot in Fig. 10 shows
that the maximum errors are concentrated in regions where the most significant
discontinuities occur across the interface.

Ezample 7. Reusing the diffusion coefficient (36), the last example is considered
to tackle a 3D Helmholtz-type problem described by the equation:

(37) (Bug)e + (Buy)y + (Buz): + ku = f(z,y, 2)

with the analytical solution

[ sin(3z)evtE, in QF,
(38) u(®,y, 2) = { cos(zx+y+2), inQ,
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and source term

f(@,y,2)
(=T8T 4 B + BF + KT)sin(3z)eVTF + 36} cos(3x)er in QF,
L (BT HwT)cos(z +y +2) = (B + By +B7)sin(z +y +2), Q.

Here, the coefficient « is defined as:

[ 1—cos(z+y+z2) inQf
(39) H_{ l+sin(z+y+2) inQ.
The computational domain spans [—%, ] x [=5, 5] x [=F, Z], and it features a

non-smooth flower-like interface [51] defined as follows

I':p(f) =0.6+0.12sin50, —0.3 < z < 0.3,

TaBLE 8. Example 7 — Flower interface. The number of corner
points is 27, 57, 37, 73, respectively, for n =32, 64, 128, and 256.

[N, My, 112 ] AMIB Solution
Lo L iter no. CPU time (s)
Error Order Error Order
[32,32,32] | 1.21E05 -  9.60E-05 - 70 5.2840
[64, 64, 64] 5.44E-07 4.4753 4.04E-06 4.5706 7 48.26074
[128,128,128] | 3.05E-08 4.1567 1.67E-07 4.5964 101 522.1567
(256,256, 256] | 1.89E-09 4.0124 1.18E-08 3.8230 104 4557.9268
[N, Ty, M AMIB Gradient
L2 Loo
Error Order Error Order
[32,32,32] | 1.79E-04 -  L.73E03 -
[64, 64, 64] 1.04E-05 4.1053 1.20E-04 3.8497
[128,128,128] | 6.68E-07 3.9606 7.81E-06 3.9416
(256, 256, 256] | 4.29E-08 3.9608 5.22E-07 3.9032

(a) v (z,y,2) (b) ut(z,v, 2); (c¢) Error

FIGURE 11. The plots of exact solutions and numerical error of
the ray-casting AMIB scheme by mapping onto the flower surface
I', based on a mesh with n = 128.

The numerical results for this example are provided in Table 8. It is worth
noting that the horizontal cross-section of the 3D shape resembles the 2D five-leaf
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interface studied in Example 2. As a result, many fictitious values can be generated
by employing ray-casting lines that are entirely contained within certain xy planes,
essentially treating them in a 2D manner. In the case of the 3D flower-like interface,
the AMIB scheme exhibits fourth-order convergence, as indicated in Table 8. The
flower-like interface is visually represented in Fig. 11, which includes surface maps
of both the exact solutions and numerical errors. Notably, significant numerical
errors are observed in regions characterized by substantial curvatures.

3.3. Computational efficiency. In this subsection, we delve into the compu-
tational efficiency of the AMIB method when applied to 2D variable coefficient
elliptic interface problems. To further assess their performance, we analyze the
computational time of the AMIB and MIB methods as presented in Table 1 and
Table 5, enabling us to quantify the numerical complexity of both methods. To
visualize this comparison, Fig. 12 illustrates the computational efficiency of AMIB
and MIB in 2D by plotting CPU time against n in a log-log manner. Here, we
simplify the analysis by considering n as the degree of freedom in each direction.
We employ a least squares fitting technique to represent the CPU time in the form
of n". Fig. 12 indicates that the computational complexity of MIB is, at minimum,
of the order O(n?®). In contrast, for the AMIB scheme, the value of exponent r is
slightly above 2. Based on these findings, we can conclude that the computational
cost of the AMIB method in 2D exhibits a roughly quadratic order of complexity,
approximately O(n?). Similarly, Fig.13 (a) compares the computational efficiency
of AMIB and MIB for 3D elliptic interface problems. The r value is slightly above
3 for AMIB scheme and 4 for MIB scheme. Based on the computational time of the
AMIB method reported in Table 7, it can be observed in Fig.13 (b) that the flop
order r for the proposed AMIB method is slightly above 3. One can conclude that
the computational cost of the proposed AMIB method is roughly O(n?) where d is
the dimension number.

FLOPS ORDER 2 FLOPS ORDER
102 D 10 T T
= - -G MIB order=3.24
MIB order=3.34 -& AMIB order=2.21
- AMIB order=2.16 P .
101 = 107 E|
—~ n — h
v w
T T
E £ oot
5 10 St
a o
) )
1@ 1
10 ) 10
102 : : 102 ‘ ‘
32 64 128 256 32 64 128 256
n n
(a) Example 1. (b) Example 4.

FIGURE 12. Flops order in CPU time is examined for several 2D
examples. The numerical flop order r is slightly larger than 2.

4. Conclusion

In this study, we have introduced an efficient and fourth-order accurate finite
difference method designed to address variable coefficient elliptic interface prob-
lems. For interior regular points, fourth-order central differences are employed
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(a) Example 5. (b) Example 7.

FiGURE 13. Flops order in CPU time is examined for several 3D
examples. The numerical flop order r is slightly larger than 3.

to discretize the first and second order derivatives involved in the Laplacian with
piecewise smooth coefficients, while one-sided finite differences are used near the
boundary. The central differences are corrected near the interface, by using the
fictitious value representation generated by the ray-casting MIB scheme. In the
augmented formulation, Cartesian derivative jumps at interface points are treated
as auxiliary variables, so that the finite difference matrix does not sense the inter-
face. A fourth order accurate multigrid method is proposed to invert this finite
difference matrix, in each iterative step of the Schur complement procedure for
the augmented system. The iteration number of the Schur complement process
only weakly depends on the mesh size n. Thus, the proposed ray-casting AMIB
method not only achieves a fourth order of accuracy for complex interfaces, but
also delivers an overall complexity of O(n?®) on a n x n x n mesh. Moreover, with a
little additional computation, the AMIB method can produce fourth order accurate
approximation of solution gradients.

The proposed AMIB method is believed to be the first interface algorithm de-
veloped in the literature for solving variable coefficient elliptic interface problems,
that not only achieves a fourth-order convergence, but also delivers a multigrid or
FFT efficiency. A comparison between the existing AMIB-FFT [21, 45] and the
proposed AMIB-Multigrid method is in order.

e The AMIB-Multigrid can attack variable coefficient elliptic interface prob-
lems governed by Eq. (1), while the AMIB-FFT is limited to elliptic PDEs
with piecewise constant coefficients. In particular, when the AMIB-FFT
is applied to Eq. (1), 8 is required to be a piecewise constant and k can
only be a multiply of 8. This is because the FFT algorithm cannot handle
a finite difference matrix with non-constant diagonal coefficients. Thus,
when « is a piecewise constant that is independent of 3, the AMIB-FFT
algorithm is still not applicable. Similarly, the AMIB-FFT algorithm can
not handle parabolic interface problems, which motivates the development
of a second order AMIB-Multigrid method in [22]. The generalization of
the proposed AMIB-Multigrid method to parabolic interface problems will
be reported in the future.

e Both multigrid and FFT algorithms provide a fast Poisson solver for in-
verting the matrix obtained from a finite difference discretization of the
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Laplacian. Their flops orders are similar, e.g. O(n®logn) and O(n?), re-
spectively, for AMIB-FFT and AMIB-Multigrid in 3D. However, as demon-
strated in the present study, when the AMIB-FFT method is applicable, it
is always faster than the AMIB-Multigrid. This is because the multigrid
solution of the finite difference matrix involves an iterative solution, while
the FF'T inversion can be regarded as a direct algorithm.

e The fourth order boundary treatments of the AMIB-FFT and AMIB-Multigrid
are different. A zero-padding treatment was introduced in the AMIB-FFT
algorithm [20] to handle all commonly used boundary conditions, including
Dirichlet, Neumann, and Robin conditions. With this treatment, the anti-
symmetric property holds over the boundary of the extended domain, so
that the FF'T inversion can be applied to the fourth-order central difference.
However, this practice cannot be applied to the present multigrid method,
because the underlying function still does not satisfy the anti-symmetric
property. In particular, this property is no longer valid for coarser mesh
levels involved in the multigrid procedure. To bypass this issue, one-sided fi-
nite differences are used near the boundary in the proposed AMIB-Multigrid
method in treating the Dirichlet boundary condition. The accommodation
of other boundary conditions in the AMIB-Multigrid solution will be ex-
plored in the future.
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Appendix
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Theorem 2. Corrected fourth order FD for Type 2 case in Fig. 3. Let x;_o <
<zisy < <wip s < @iyo,hi =xiio—on, b =z — i, hy =241 —

ag, and h = x;19 —as. Suppose u € C%[x;, —2h, a1) (C%(ay, a2) N CO(az, Ti1a+

2h]

, with derivative extending continuously up to the interface. Then the following

approximations hold to O(h*) when K =5 :
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Theorem 8. Corrected fourth order FD for Type 8 case in Fig. 3. Let x;_1 <
a1 <z < a1 < e < @iyo, by =1 — a1, b =2, —a1,hy = xi41 — ag, and
h;‘ = Tj12 — ag. Suppose u € COlx;, — 2h,a1) (N C% (a1, as) N C%(aa, xit2 + 2h],
with derivative extending continuously up to the interface. Then the following
approximations hold to O(h*) when K =5 :
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Theorem 4. Corrected fourth order FD for Type 4 case in Fig. 3. Let x;—1 <
o <a; <o <wpqr,hi =mim1 —ah =2 — a1, hy =2 — ag, hf =41 — as.
Suppose u € CS[z;, — 2h,a1) (C%(ar, 0) N CO (a2, xi11 + 2h], with derivative
extending continuously up to the interface. Then the following approximations
hold to O(h*) when K =5 :
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