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NUMERICAL ANALYSIS OF THE FINITE DIFFERENCE TIME

DOMAIN METHODS WITH HIGH ACCURACY IN TIME FOR

MAXWELL EQUATIONS

LIPING GAO, XIAOSONG ZHANG, AND RENGANG SHI∗

Abstract. In this paper, we give a rigorous analysis of the finite difference time domain (FDTD)

method with high accuracy in time (HAIT) (named HAIT-FDTD(M)) for the three dimensional
Maxwell equations, where the time discretization is based on the Taylor expansion of the form:

Un = C0
n + C1

n∆t + · · · + 1
M !

CM
n (∆t)M to approximate the fields in time. It is proven that

the solutions of the schemes and the vectors representing the coefficients are divergence free. By
using the energy method, the numerical energy identities of HAIT-FDTD(M) with 3 ≤ M ≤ 8 are

derived. It is then proved that these schemes are numerically and monotonically energy conserved
as the polynomial degree M becomes large. With the help of the energy identities, stability
conditions for the six schemes are derived, and how to select M and ∆t in practice is given. By
deriving error equations, we prove that the six schemes have convergence of the Mth order in time

and the second order in space. Numerical experiments are provided and confirm the analysis on
free divergence, approximate energy conservation, stability, and convergence.

Key words. Maxwell equations, finite difference time domain method, stability, energy conser-

vation, convergence, Taylor expansion.

1. Introduction

The finite difference time domain (FDTD) method is one of the methods for
numerical solutions of time dependent Maxwell equations, and causes many peo-
ple’s interests and much good research work. For example, the Yee scheme ([31]),
proposed by Yee in 1966, is a very popular and efficient method (see Taflove [26]).
Monk and Süli [15] proved that the Yee scheme over non-uniform grids is of super
convergence of second order in L2 norm. For the Yee scheme in metamaterials,
Li and Shields [12] proved that this scheme is also super convergent in L2 norm.
The stability and second order convergence of the Yee scheme under H1 norm were
proved in [7]. Recently, convergence analysis of the Yee schemes in linear dispersive
media was given by Sakkaplankul and Bokil in [20]. The other FDTD method-
s, including the alternating direction implicit FDTD (ADI-FDTD) methods, the
energy-conserved splitting FDTD methods, symplectic FDTD method, locally-one-
dimensional (LOD) FDTD method, etc. and their analysis are seen in [33, 17, 6],
[1, 2], [8, 10, 24, 25],[32], [9], [23], [3], [11], [4], [14, 29], [21], [30], [19, 27], [18] and
the references therein.

Time discretization is important for accuracy, efficiency, stability, and conver-
gence. There are many good time-stepping methods in numerical solutions of
Maxwell equations [26, 16, 13]. For example, leap-frog method in [31, 18], Runge-
Kutta method in [9, 21], ADI method in [33, 17], splitting methods in [11, 5], energy
splitting conserving methods in [1, 2, 14, 30], symplectic method in [10, 25, 24],
fourth order method based on the relation between time derivatives and spatial
derivatives [29, 32], time-domain moment method based on weighted Laguerre
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polynomials in [3], Newmark time-stepping method in [4], LOD method in [23],
Crank-Nicolson method in [28] and explicit-implicit hybrid time-stepping method
in [19, 27] and the others in the references.

Different from the above FDTD methods, a new explicit FDTD method with
high accuracy in time (HAIT)(called HAIT-FDTD(M)) was proposed in [22] by
using Taylor expansion of the form: Un = C0

n + C1
n∆t + · · · + 1

M !
CM

n (∆t)M to ap-
proximate the fields in time, which transforms the Maxwell equations into a system
of time-independent differential equations in the coefficients Ck

n(k = 0, 1, . . . ,M),
and using the central difference methods to approximate the spatial derivatives of
Ck

n. Numerical experiments demonstrate that HAIT-FDTD(M) has the following
features: easy implementation, divergence free, numerical energy conservation, and
good stability and convergence. However, the rigorous analysis of HAIT-FDTD(M)
on stability, error estimate, and convergence by the energy method is not available,
since the form of the scheme is very different from traditional ones, which makes
the usual analysis methods on stability and convergence (see [15, 1, 7], etc.) do not
work on HAIT-FDTD(M). In addition, how to select the polynomial degree M and
time step sizes is not clear. Therefore, it is significant to give a rigorous analysis of
HAIT-FDTD(M) on these issues.

In this paper, we analyze the HAIT-FDTD(M) schemes for the 3D Maxwell equa-
tions with perfectly electric conducting (PEC) boundary conditions. The research
methods and results are as follows:

(i) It is proved that the solutions of the HAIT-FDTD(M) schemes and the rep-
resenting coefficients retain the free divergence property.

(ii) By using the energy method, numerical energy identities of the HAIT-
FDTD(M) schemes with 3 ≤ M ≤ 8 are derived, and it is then proved that these
schemes are approximately energy conserved. With the help of the energy identi-
ties, the stability conditions of the six schemes (which are weaker than the CFL
(Courant-Friedrichs-Lewy) condition and can be used to select time step sizes and
degree M) are derived, and the stability in L2 norm is then proved.

(iii) It is proved that the HAIT-FDTD(M) schemes with 3 ≤ M ≤ 8 are of
convergence of M -th order in time and second order in space by using different
error analysis from the traditional ones.

(iv) Numerical experiments are carried out and confirm the theoretical analysis
of the schemes on free divergence, numerical energy conservation, good stability,
and convergence.

2. Maxwell equations and some properties.

2.1. Maxwell equations and properties of the solution. Consider the 3D
Maxwell equations in a domain of Ω× (0, T ]:

ε
∂Ex

∂t
=

∂Hz

∂y
− ∂Hy

∂z
, µ

∂Hx

∂t
=

∂Ey

∂z
− ∂Ez

∂y
,(1)

ε
∂Ey

∂t
=

∂Hx

∂z
− ∂Hz

∂x
, µ

∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z
,(2)

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
, µ

∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
,(3)

where Ω is filled with homogeneous and isotropic medium, so the electric permit-
tivity ε and the magnetic permeability µ are constants, and for p = (x, y, z) ∈ Ω,
u = x, y, z

Eu = Eu(p, t), Hu = Hu(p, t), (Ex, Ey, Ez) =: E, (Hx, Hy, Hz) =: H
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are respectively the electric and magnetic fields. Suppose that the solution is
subject to the PEC boundary conditions:

ν ×E(p, t) = 0, ν ·H(p, t) = 0, ∀ (p, t) ∈ ∂Ω× [0, T ],(4)

and the initial conditions:

E(p, 0) = (Ex0, Ey0, Ez0) =: E0, H(p, 0) = (Hx0, Hy0,Hz0) =: H0,(5)

where ν is the unit normal vector of the boundary of Ω. In this paper, we assume
that Ω = [0, 1]3 and that E0 and H0 are divergence free. It is easy to see that the Maxwell
system has the following energy conservation and free divergence.

Lemma 2.1. The solution of the problem (1)-(5) satisfies that

∥ε
1
2E(·, t)∥2 + ∥µ

1
2H(·, t)∥2 = ∥ε

1
2E0∥2 + ∥µ

1
2H0∥2,(6)

∇ · (εE)(p, t) = ∇ · (µH)(p, t) = 0,(7)

where p ∈ Ω, t ≥ 0, and for a vector-valued function F = (Fx, Fy, Fz), ∇ · F =
∂Fx/∂x+ ∂Fy/∂y + ∂Fz/∂z, and ∥F∥2 is square of the standard L2 norm.

Lemma 2.2. Let E = (Ex, Ey, Ez) and H = (Hx, Hy, Hz) be the solution of (1)-
(5) and have the continuous M -th derivatives and third derivatives with respect to time
and space respectively, i.e. E,H ∈ CM ([0, T ], C3(Ω)). Then, the following boundary
conditions hold.

∂m

∂tm
(
Hx, Ey, Ez,

∂Ex

∂x
,
∂Hy

∂x
,
∂Hz

∂x
,
∂2Hx

∂x2
,
∂2Ey

∂x2
,
∂2Ez

∂x2
,
∂3Hy

∂x3
,
∂3Hz

∂x3

)∣∣∣
x′

= 0,(8)

∂m

∂tm
(Ex,Hy, Ez,

∂Hx

∂y
,
∂Ey

∂y
,
∂Hz

∂y
,
∂2Ex

∂y2
,
∂2Hy

∂y2
,
∂2Ez

∂y2
,
∂3Hx

∂y3
,
∂3Hz

∂y3
)
∣∣∣
y′

= 0,(9)

∂m

∂tm
(Ex, Ey, Hz,

∂Hx

∂z
,
∂Hy

∂z
,
∂Ez

∂z
,
∂2Ex

∂z2
,
∂2Ey

∂z2
,
∂2Hz

∂z2
,
∂3Hx

∂z3
,
∂3Hy

∂z3
)
∣∣∣
z′

= 0,(10)

where x′, y′ and z′ are numbers in the set {0, 1}, and F |u′ denotes the value of F at the
boundary points, and 0 ≤ m ≤ M . For example, F |x′ = F (x′, y, z, t), x′ = 0 or 1, and
y ∈ [0, 1], z ∈ [0, 1], t ≥ 0.

Lemma 2.2 is proved by using the boundary conditions (4), Maxwell equations (1)-(3)
and the free-divergence property (7). Some of the proof is seen in [14].

2.2. Notations of grids, norms, inner products and operators. We use the Yee’s
staggered gridding technique (see [31]) to partition Ω as eight grids of points, Ωh

eu and

Ωh
hu

(u = x, y, z, 0):

Ωh
ex =

{
(xi+ 1

2
, yj , zk)

∣∣I−1,J−1,K−1

i=0, j=1,k=1

}
, Ωh

hx
=

{
(xi, yj+ 1

2
, zk+ 1

2
)
∣∣I−1,J−1,K−1

i=1, j=0,k=0

}
,

Ωh
e0 =

{
(xi, yj , zk)

∣∣I−1,J−1,K−1

i=1, j=1,k=1

}
, Ωh

h0
=

{
(xi+ 1

2
, yj+ 1

2
, zk+ 1

2
)
∣∣I−1,J−1,K−1

i=0, j=0,k=0

}
,

and the other grids: Ωh
ey = {(xi, yj+1/2, zk)}, Ωh

ez = {(xi, yj , zk+1/2)}, Ωh
hy

=
{
(xi+1/2,

yj , zk+1/2)} and Ωh
hz

= {(xi+1/2, yj+1/2, zk)} are similarly defined, where

xi = i∆x, xi+ 1
2
= xi +

1

2
∆x, yj = j∆y, yj+ 1

2
= yj +

1

2
∆y,

zk = k∆z, zk+ 1
2
= zk +

1

2
∆z, xI = 1, yJ = 1, zK = 1,

where ∆u(u = x, y, z) are the mesh sizes along the x, y and z directions, I, J and K are
positive integers. Time domain [0, T ] is divided into: 0 = t0 < t1 < · · · < tN = T , where
tn = n∆t.

For a function F(x, y, z, t), let Fm
α,β,γ denote the approximations to the correct value:

F(xα, yβ , zγ , t
m), where α = i or i+1/2, β = j or j+1/2, γ = k or k+1/2. The (discrete)
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L2 norms of Fm
α,β,γ over the different grids are defined as follows.

∥Fn∥2ex =
∑

Ex

(
Fn

i+ 1
2
,j,k

)2
∆v =:

I−1∑
i=0

J−1∑
j=1

K−1∑
k=1

(
Fn

i+ 1
2
,j,k

)2
∆v,

∥Fn∥2hx
=

∑
Hx

(
Fn

i,j+ 1
2
,k+ 1

2

)2
∆v =:

I−1∑
i=1

J−1∑
j=0

K−1∑
k=0

(
Fn

i,j+ 1
2
,k+ 1

2

)2
∆v,

∥Fn∥2e0 =
∑

E0

(
Fn

i,j,k

)2
∆v =:

I−1∑
i=1

J−1∑
j=1

K−1∑
k=1

(
Fn

i,j,k

)2
∆v,

where ∆v = ∆x∆y∆z. The other norms ∥Fm∥eu , ∥Fm∥hu and ∥Fn∥2h0
and the other

summation notations:
∑

Eu
,
∑

Hu
and

∑
H0

over the grids Ωh
eu , Ωh

hu
and Ωh

h0
with

u = y, z are similarly defined.
For any vector-valued functions Fn = (Fn

x ,F
n
y ,F

n
z ) and Gn = (Gn

x ,G
n
y ,G

n
z ) over

Ωh
ex×Ωh

ey×Ωh
ez and Ωh

hx
×Ωh

hy
×Ωh

hz
, define the inner-products (·, ·)eu , (·, ·)hu(u = x, y, z),

(·, ·)e, (·, ·)h, and the norms ∥Fn∥e, ∥Gn∥h as follows.

(Fn,Gn)e = (Fn
x ,G

n
x)ex + (Fn

y ,G
n
y )ey + (Fn

z ,G
n
z )ez

=
(∑

Ex

Fn
x
i+1

2
,j,k

·Gn
x
i+1

2
,j,k

+
∑

Ey

Fn
y
i,j+1

2
,k

·Gn
y
i,j+1

2
,k

+
∑

Ez

Fn
z
i,j,k+1

2

·Gn
z
i,j,k+1

2

)
∆v, ∥Fn∥2e = (Fn,Fn)e,

(Fn,Gn)h = (Fn
x ,G

n
x)hx + (Fn

y ,G
n
y )hy + (Fn

z ,G
n
z )hz

=
(∑

Hx

Fn
x
i,j+1

2
,k+1

2

·Gn
x
i,j+1

2
,k+1

2

+
∑

Hy

Fn
y
i+1

2
,j,k+1

2

·Gn
y
i+1

2
,j,k+1

2

+
∑

Hz

Fn
z
i+1

2
,j+1

2
,k

·Gn
z
i+1

2
,j+1

2
,k

)
∆v, ∥Gn∥2h = (Gn,Gn)h.

For a grid function Fn
α,β,γ with α = i or i+ 1/2 , β = j or j + 1/2, γ = k or k + 1/2,

denote the central difference operators by δx, δy and δz :

δxF
n
α,β,γ =

Fn
α+ 1

2
,β,γ

− Fn
α− 1

2
,β,γ

∆x
, δyF

n
α,β,γ =

Fn
α,β+ 1

2
,γ

− Fn
α,β− 1

2
,γ

∆y
,

δzF
n
α,β,γ is similarly defined by adjusting γ. Let ∇h = (δx, δy, δz) be the vector of

operators. Define the discrete divergence and curl of Fn = (Fn
x ,F

n
y ,F

n
z ) by

∇h · Fn = δxF
n
x + δyF

n
y + δzF

n
z ,

∇h × Fn = (δyF
n
z − δzF

n
y , δzF

n
x − δxF

n
z , δxF

n
y − δyF

n
x).

For simplicity in notation, let ī = i+ 1/2, j̄ = j + 1/2, k̄ = k + 1/2, and

Ocfl =
(∆t)2

µε

( 1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

)
, ∆xyz = (∆x)4 + (∆y)4 + (∆z)4.

3. HAIT-FDTD(M) and analysis on divergence and stability

In this section we analyze the HAIT-FDTD(M) schemes on divergence of the solution
fields and stability by the energy method.

3.1. The HAIT-FDTD(M) scheme and free divergence property. LetEn = (En
xī,j,k

,

En
yi,j̄,k

, En
zi,j,k̄

) and Hn = (Hn
xi,j̄,k̄

, Hn
yī,j,k̄

, Hn
zī,j̄,k

) be the approximations to the ex-

act values E(tn) =
(
Ex(xī, yj , zk, t

n), Ey(xi, yj̄ , zk, t
n), Ez(xi, yj , zk̄, t

n)
)
and H(tn) =(

Hx(xi, yj̄ , zk̄, t
n), Hy(xī, yj , zk̄, t

n), Hz(xī, yj̄ , zk, t
n)
)
, respectively. Then, the FDTD
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method or scheme with high accuracy in time (HAIT) (called HAIT-FDTD(M), see [22]),
is: Given En and Hn, find En+1 and Hn+1 (n = 0, 1, . . . , N − 1) such that for u = x, y, z,

En+1
uα,β,γ

=

M∑
m=0

(∆t)m

m!
Cm

uα,β,γ,n
, (α, β, γ) = (̄i, j, k), (i, j̄, k), or (i, j, k̄),(11)

Hn+1
uα,β,γ

=

M∑
m=0

(∆t)m

m!
Dm

uα,β,γ,n
, (α, β, γ) = (i, j̄, k̄), (̄i, j, k̄), or (̄i, j̄, k),(12)

where Cm
u and Dm

u (u = x, y, z) are determined by the following formulas:

ε Cm+1
x
i+1

2
,j,k,n

= δyD
m
z
i+1

2
,j,k,n

− δzD
m
y
i+1

2
,j,k,n

,(13)

ε Cm+1
y
i,j+1

2
,k,n

= δzD
m
x
i,j+1

2
,k,n

− δxD
m
z
i,j+1

2
,k,n

,(14)

ε Cm+1
z
i,j,k+1

2
,n

= δxD
m
y
i,j,k+1

2
,n

− δyD
m
x
i,j,k+1

2
,n
,(15)

µ Dm+1
x
i,j+1

2
,k+1

2
,n

= δzC
m
y
i,j+1

2
,k+1

2
,n

− δyC
m
z
i,j+1

2
,k+1

2
,n
,(16)

µ Dm+1
y
i+1

2
,j,k+1

2
,n

= δxC
m
z
i+1

2
,j,k+1

2
,n

− δzC
m
x
i+1

2
,j,k+1

2
,n
,(17)

µ Dm+1
z
i+1

2
,j+1

2
,k,n

= δyC
m
x
i+1

2
,j+1

2
,k,n

− δxC
m
y
i+1

2
,j+1

2
,k,n

,(18)

where m = 0, 1, . . ., M − 1. The starting values for (13)-(18) are:

C0
xī,j,k,n

= En
xī,j,k

, C0
yi,j̄,k,n

= En
yi,j̄,k

, C0
zi,j,k̄,n

= En
zi,j,k̄

,(19)

D0
xi,j̄,k̄,n

= Hn
xi,j̄,k̄

, D0
yī,j,k̄,n

= Hn
yī,j,k̄

, D0
zī,j̄,k,n

= Hn
zī,j̄,k

.(20)

The boundary conditions of Cm
u and Dm

u (u = x, y, z) used in (13)-(18) are:

Cm
xī,j′,k,n

= Cm
xī,j,k′,n

= Cm
yi′,j̄,k,n

= Cm
yi,j̄,k′,n

= Cm
zi′,j,k̄,n

= 0,(21)

Cm
zi,j′,k̄,n

= Dm
xi′,j̄,k̄,n

= Dm
yī,j′,k̄,n

= Dm
zī,j̄,j′,n

= 0, 0 ≤ m ≤ M,(22)

where and in what follows i′ = 0 or I, j′ = 0 or J , k′ = 0 or K denote the indices of
the points on the boundary.

The vector form of HAIT-FDTD(M) is: To find En+1 and Hn+1 such that

En+1 = C0
n + ∆t

1!
C1

n + (∆t)2

2!
C2

n + · · ·+ (∆t)M

M !
CM

n ,

Hn+1 = D0
n + ∆t

1!
D1

n + (∆t)2

2!
D2

n + · · ·+ (∆t)M

M !
DM

n ,
(23)

where Cm
n = (Cm

xī,j,k,n
, Cm

yi,j̄,k,n
, Cm

zi,j,k̄,n
) and Dm

n = (Dm
xi,j̄,k̄,n

, Dm
yī,j,k̄,n

, Dm
zī,j̄,k,n

) are

the vectors of coefficients defined by

εCm+1
n = ∇h ×Dm

n , µDm+1
n = −∇h ×Cm

n , m = 0, 1, . . . ,M − 1.(24)

The boundary conditions and starting values for (24) are:

ν ×Cm
n = 0, ν ·Dm

n = 0, and C0
n = En, D0

n = Hn.(25)

By the discrete divergence of the fields in (11)-(18), it is easy to prove that

Theorem 3.1(free divergence). Let En and Hn be the solutions of HAIT-FDTD(M)(M ≥
3), and Cm

n and Dm
n be the vectors of coefficients. Then,

∇h · εEn+1 = ∇h · εEn = ∇h · εCm
n = 0, ∀ 0 ≤ m ≤ M,(26)

∇h · µHn+1 = ∇h · µHn = ∇h · µDm
n = 0, ∀ 0 ≤ n ≤ N − 1.(27)
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3.2. The L2 norms and the inner-product of vector coefficients.
Lemma 3.2. For m = 0, 1, . . ., M(M ≥ 1) , let Cm

n = (Cm
xī,j,k,n

, Cm
yi,j̄,k,n

, Cm
zi,j,k̄,n

)

and Dm
n = (Dm

xi,j̄,k̄,n
, Dm

yī,j,k̄,n
, Dm

zī,j̄,k,n
) be the vectors of coefficients for En+1 and Hn+1

defined in (13)-(18). Then for any m ≥ 0 and n ≥ 1, it holds that

∥ε
1
2Cm+1

n ∥2e = ∥ε−
1
2 δxD

m
x ∥2h0

+ ∥ε−
1
2 δyD

m
x ∥2ez + ∥ε−

1
2 δzD

m
x ∥2ey

+ ∥ε−
1
2 δxD

m
y ∥2ez + ∥ε−

1
2 δyD

m
y ∥2h0

+ ∥ε−
1
2 δzD

m
y ∥2ex

+ ∥ε−
1
2 δxD

m
z ∥2ey + ∥ε−

1
2 δyD

m
z ∥2ex + ∥ε−

1
2 δzD

m
z ∥2h0

≤ 4

µε

( 1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

)
∥µ

1
2Dm

n ∥2h,(28)

∥µ
1
2Dm+1

n ∥2h = ∥µ− 1
2 δxC

m
x ∥2e0 + ∥µ− 1

2 δyC
m
x ∥2hz

+ ∥µ− 1
2 δzC

m
x ∥2hy

+ ∥µ− 1
2 δxC

m
y ∥2hz

+ ∥µ− 1
2 δyC

m
y ∥2e0 + ∥µ− 1

2 δzC
m
y ∥2hx

+ ∥µ− 1
2 δxC

m
z ∥2hy

+ ∥µ− 1
2 δyC

m
z ∥2hx

+ ∥µ− 1
2 δzC

m
z ∥2e0

≤ 4

µε

( 1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

)
∥ε

1
2Cm

n ∥2e.(29)

Proof. First we prove (28). By the expressions of Cm+1
u (u = x, y, z), we have

∥ε
1
2Cm+1

n ∥2e = ∥ε−
1
2 δyD

m
z ∥2ex + ∥ε−

1
2 δzD

m
y ∥2ex + ∥ε−

1
2 δzD

m
x ∥2ey

+ ∥ε−
1
2 δxD

m
z ∥2ey + ∥ε−

1
2 δxD

m
y ∥2ez + ∥ε−

1
2 δyD

m
x ∥2ez +Td,(30)

where the last term Td is

Td = −2
(∑

Ex

ε−1δyD
m
z δzD

m
y +

∑
Ey

ε−1δzD
m
x δxD

m
z +

∑
Ez

ε−1δxD
m
y δyD

m
x

)
∆v.

By using summation by parts and the boundary conditions: (21)-(22), we get

Td = −2
∑

H0

ε−1
(
δzD

m
z δyD

m
y + δxD

m
x δzD

m
z + δxD

m
x δyD

m
y

)
∆v

= ∥ε−
1
2 δxD

m
x ∥2h0

+ ∥ε−
1
2 δyD

m
y ∥2h0

+ ∥ε−
1
2 δzD

m
z ∥2h0

,(31)

where the following free-divergence (see Theorem 3.1) is used:

∥∇h ·Dm
n ∥2h0

= ∥δxDm
x + δyD

m
y + δzD

m
z ∥2h0

= 0.

Combining of (30) with (31) gives the equality in (28). Similarly, we obtain the equality
in (29). Next we prove the inequality in (28). By using the inequality 2fg ≤ f2 + g2 and
the boundary conditions: (22), we see that

∥ε−
1
2 δxD

m
x ∥2h0

≤ 4

(∆x)2
∥ε−

1
2Dm

x ∥2hx
, ∥ε−

1
2 δyD

m
x ∥2ez ≤ 4

(∆y)2
∥ε−

1
2Dm

x ∥2hx
,(32)

∥ε−
1
2 δzD

m
x ∥2ey ≤ 4

(∆z)2
∥ε−

1
2Dm

x ∥2hx
, ∥ε−

1
2 δxD

m
y ∥2ez ≤ 4

(∆x)2
∥ε−

1
2Dm

y ∥2hy
,(33)

Similar to (32)-(33), the estimates of δuD
m
y and δuD

m
z (u = x, y, z) are obtained. Sub-

stituting (32)-(33), etc., into the equality in (28), we obtain the inequality in (28). Sym-
metrically, the inequality in (29) is proved. �

Lemma 3.3. Let Cm
n and Dm

n be the vectors of coefficients for En+1 and Hn+1 in the
HAIT-FDTD(M) schemes with M ≥ 3. Then, if M = 3, it holds that

(εC0
n,C

1
n)e + (µD0

n,D
1
n)h = 0, (εC0

n,C
3
n)e + (µD0

n,D
3
n)h = 0,(34)

(εC1
n,C

2
n)e + (µD1

n,D
2
n)h = 0, (εC2

n,C
3
n)e + (µD2

n,D
3
n)h = 0,(35)

(εC0
n,C

2
n)e + (µD0

n,D
2
n)h = −∥ε

1
2C1

n∥2e − ∥µ
1
2D1

n∥2h,(36)

(εC1
n,C

3
n)e + (µD1

n,D
3
n)h = −∥ε

1
2C2

n∥2e − ∥µ
1
2D2

n∥2h.(37)
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In general, if M ≥ 4 and p, q ∈ {0, 1, . . . ,M} with p < q, then the inner products of the
vectors of coefficients in HAIT-FDTD(M) with M ≥ 4 are:

(Cp
n,∇h ×Dq

n)e = (∇h ×Cp
n,D

q
n)h,(38)

(εCp
n,C

q
n)e + (µDp

n,D
q
n)h =

{
0, if p+ q is odd,

(−1)
q−p
2

(
∥ε

1
2C

p+q
2

n ∥2e + ∥µ
1
2D

p+q
2

n ∥h
)
, others.

(39)

Proof. We only derive (38) and the first equation in (34) since all the other equations
in (34)-(37) and (39) can be proved similarly by using (38) and the definitions of Cp

n and
Dq

n in (24) or (13)-(18). By summation by parts, we have

(Cp
n,∇h ×Dq

n)e =
∑

Hx

Dq
x(δyC

p
z − δzC

p
y )∆v +

∑
Hy

Dq
y(δzC

p
x − δxC

p
z )∆v

+
∑

Hz

Dq
z(δxC

p
y − δyC

p
x))∆v = (∇h ×Cp

n,D
q
n)h,

where the boundary conditions in (25) are used.
Next we consider the first relation in (34). By using (38), we see that

(εC0
n,C

1
n)e + (µD0

n,D
1
n)h = (C0

n,∇h ×D0
n)e + (D0

n,−∇h ×C0
n)h

= (∇h ×C0
n,D

0
n)h − (D0

n,∇h ×C0
n)h = 0.

Similarly, the other relations in (34)-(39) are derived, where the sign ”-” is changed
into ”+” if the number of summation by parts used is even; otherwise, the sign is negative.
This proves Lemma 3.3. �

3.3. Numerical energy identities and stability analysis. By the virtue of Lemmas
3.2 and 3.3, we obtain the following theorem.

Theorem 3.4. Let En+1 and Hn+1 be the solution of HAIT-FDTD(M) (M ≥ 3), and
let Cm

n and Dm
n be the vectors of coefficients. Then the energy of the fields satisfies that

∥ε
1
2En+1∥2e + ∥µ

1
2Hn+1∥2h = ∥ε

1
2En∥2e + ∥µ

1
2Hn∥2h + PTM ,(40)

where PTM (3 ≤ M ≤ 8) are the perturbation terms, defined by

PT3 = − (∆t)4

12

(
∥ε

1
2C2

n∥2e + ∥µ
1
2D2

n∥2h
)
+

(∆t)6

36

(
∥ε

1
2C3

n∥2e + ∥µ
1
2D3

n∥2h
)
;

PT4 = − (∆t)6

72

(
∥ε

1
2C3

n∥2e + ∥µ
1
2D3

n∥2h
)
+

(∆t)8

(4!)2

(
∥ε

1
2C4

n∥2e + ∥µ
1
2D4

n∥2h
)
;

PT5 =
(∆t)6

360

(
∥ε

1
2C3

n∥2e + ∥µ
1
2D3

n∥2h
)

− (∆t)8

960

(
∥ε

1
2C4

n∥2e + ∥µ
1
2D4

n∥2h
)
+

(∆t)10

(5!)2

(
∥ε

1
2C5

n∥2e + ∥µ
1
2D5

n∥2h
)
;

PT6 =
(∆t)8

2880

(
∥ε

1
2C4

n∥2e + ∥µ
1
2D4

n∥2h
)

− (∆t)10

21600

(
∥ε

1
2C5

n∥2e + ∥µ
1
2D5

n∥2h
)
+

(∆t)12

(6!)2

(
∥ε

1
2C6

n∥2e + ∥µ
1
2D6

n∥2h
)
;

PT7 =
−(∆t)8

20160

(
∥ε

1
2C4

n∥2e + ∥µ
1
2D4

n∥2h
)
+

(∆t)10

50400

(
∥ε

1
2C5

n∥2e + ∥µ
1
2D5

n∥2h
)

− (∆t)12

725760

(
∥ε

1
2C6

n∥2e + ∥µ
1
2D6

n∥2h
)
+

(∆t)14

(7!)2

(
∥ε

1
2C7

n∥2e + ∥µ
1
2D7

n∥2h
)
;

PT8 =
−(∆t)10

201600

(
∥ε

1
2C5

n∥2e + ∥µ
1
2D5

n∥2h
)
+

(∆t)12

1451520

(
∥ε

1
2C6

n∥2e + ∥µ
1
2D6

n∥2h
)

− (∆t)14

33868800

(
∥ε

1
2C7

n∥2e + ∥µ
1
2D7

n∥2h
)
+

(∆t)16

(8!)2

(
∥ε

1
2C8

n∥2e + ∥µ
1
2D8

n∥2h
)
.
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Proof. We only derive (40) withM = 3, since the other identities are similarly obtained.
By the definitions of ∥ ∗ ∥e, ∥ ∗ ∥h, En+1 and Hn+1, we have

∥ε
1
2En+1∥2e + ∥µ

1
2Hn+1∥2h =

3∑
l=0

(
∥ε

1
2
(∆t)l

l!
Cl

x∥2ex+∥ε
1
2
(∆t)l

l!
Cl

y∥2ey
)

+

3∑
l=0

(
∥ε

1
2
(∆t)l

l!
Cl

z∥2ez+∥µ
1
2
(∆t)l

l!
Dl

x∥2hx
+∥µ

1
2
(∆t)l

l!
Dl

y∥2hy
+∥µ

1
2
(∆t)l

l!
Dl

z∥2hz

)
+ 2

(∆t

1!
T01+

(∆t)2

2!
T02+

(∆t)3

3!
T03+

(∆t)3

2!
T12+

(∆t)4

3!
T13+

(∆t)5

2!3!
T23

)
,(41)

where the terms Tlm(l,m = 0, 1, 2, 3, l < m) are

T01 = (εC0
n,C

1
n)e + (µD0

n,D
1
n)h, T02 = (εC0

n,C
2
n)e + (µD0

n,D
2
n)h,

T03 = (εC0
n,C

3
n)e + (µD0

n,D
3
n)h, T12 = (εC1

n,C
2
n)e + (µD1

n,D
2
n)h,

T13 = (εC1
n,C

3
n)e + (µD1

n,D
3
n)h, T23 = (εC2

n,C
3
n)e + (µD2

n,D
3
n)h.

By using Lemma 3.3 and simplifying the expressions in (41), we get (40) with M = 3.
This completes the proof of Theorem 3.4. �

Remark 3.5. From Theorem 3.4 we see that HAIT-FDTD(M) is numerically energy
conserved when M is so large that the perturbation terms are less than the machine error.

Theorem 3.6. The solutions of HAIT-FDTD(M) with 3 ≤ M ≤ 8 are bounded by

∥ε
1
2En+1∥2e + ∥µ

1
2Hn+1∥2h ≤ OM

(
∥ε

1
2E0∥2e + ∥µ

1
2H0∥2h

)
,(42)

where O3 = O4 = O7 = O8 = 1 and O5 = O6 = exp(rT ) (r is a small positive number),
if the step sizes ∆t and ∆u(u = x, y, z) satisfy that

Ocfl =: (c∆t)2
( 1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

)
≤ rM ,(43)

where rM with 3 ≤ M ≤ 8 are constants, defined by

r3 =
3

4
, r4 = 2, r5 = min

{15
4
,

3

√
45

8
r∆t

}
r6 = min

{
6,

4

√
45

4
r∆t

}
, r7 =

5

8
, r8 =

9

5
.

Proof. First we prove (42) with M = 3. By using Lemma 3.2, we obtain

(∆t)2
(
∥ε

1
2Cm+1

n ∥2e + ∥µ
1
2Dm+1

n ∥2h
)
≤ 4Ocfl

(
∥µ

1
2Dm

n ∥2h + ∥ε
1
2Cm

n ∥2e
)
.(44)

Combining (44) with m = 2 and the identity (40) with M = 3, we have

∥ε
1
2En+1∥2e + ∥µ

1
2Hn+1∥2h ≤ ∥ε

1
2En∥2e + ∥µ

1
2Hn∥2h

− (∆t)4

12

(
∥ε

1
2C2

n∥2e + ∥µ
1
2D2

n∥2h
)(

1− 4

3
Ocfl

)
.(45)

From (45) we see that if (43) holds, then the inequality (42) is obtained by using (45)
repeatedly. Similarly, (42) and (43) with M = 4, 7, 8 are proved.

Next, we prove (42) and (43) with M = 5, 6. By (40) with M = 5, we see that

∥ε
1
2En+1∥2e + ∥µ

1
2Hn+1∥2h ≤ ∥ε

1
2En∥2e + ∥µ

1
2Hn∥2h +

(∆t)6

360
∥ε

1
2C3

n∥2e

+
(∆t)6

360
∥µ

1
2D3

n∥2h − (∆t)8

960
(1− 4

15
Ocfl)(∥ε

1
2C4

n∥2e + ∥µ
1
2D4

n∥2h).(46)
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Then, if Ocfl ≤ 15/4, applying (44) with m = 2, 1, 0 into (46) repeatedly leads

∥ε
1
2En+1∥2e + ∥µ

1
2Hn+1∥2h ≤

(
1 +

8(Ocfl)
3

45

)
(∥
√
εEn∥2e + ∥√µHn∥2h).(47)

Thus, if 8(Ocfl)
3/45 ≤ r∆t, or Ocfl ≤ 3

√
5.625r∆t (where r is a positive number such

that exp(rT ) is not large), then (47) becomes

∥ε
1
2En+1∥2e + ∥µ

1
2Hn+1∥2h ≤

(
1 + r∆t

)
(∥ε

1
2En∥2e + ∥µ

1
2Hn∥2h)

≤ erT (∥ε
1
2E0∥2e + ∥µ

1
2H0∥2h),(48)

which is (42) for M = 5. Similarly, (42) and (43) with M = 6 are derived. This completes
the proof. �

Remark 3.7. (1) The stability conditions shown in Theorem 3.6 are sufficient but
not necessary, and the stability conditions of the four schemes with M = 3, 4, 7 and 8 are
weaker than the CFL stability condition: Ocfl ≤ 1/3.

(2) The HAIT-FDTD(M) schemes with M = 3, 4, 7, 8 are energy decreased, while
HAIT-FDTD(M=5, 6) are energy-increased. For example, by applying Lemma 3.2 to
the negative term of PTM in (40) with M = 5, we see that

∥ε
1
2En+1∥2e + ∥µ

1
2Hn+1∥2h ≥ ∥ε

1
2En∥2e + ∥µ

1
2Hn∥2h

+
(∆t)6

360

(
1− 3

2
Ocfl

)(
∥ε

1
2C3

n∥2e + ∥µ
1
2D3

n∥2h
)
.

Therefore, if Ocfl ≤ r∗5 = min{2/3, 3
√

45 r∆t/8}, HAIT-FDTD(M=5) is then energy-

increased and stable. Similarly, it is proved that if Ocfl ≤ r∗6 = min{45/24, 4
√

45 r∆t/4},
HAIT-FDTD(M=6) is also energy-increased and stable.

4. Error estimate and convergence analysis.

In this section we investigate the error of HAIT-FDTD(M) and estimate the magnitude
of the error of the solutions to the schemes.

4.1. Derivation of error equations and truncation errors. For the solution of the
problem (1) − (5), Eu(p, t) and Hu(p, t) (u = x, y, z), the m-th(0 ≤ m ≤ M) derivatives

of Eu(p, t) and Hu(p, t) with respect to time at (p, tn) are denoted by C̃m
u (p, tn) and

D̃m
u (p, tn), respectively. For u = x, y, z, by using the Taylor Theorem, we see that

Eu(p, t
n+1) = C̃0

u(p, t
n) +

M∑
m=1

(∆t)m

m!
C̃m

u (p, tn) + (∆t)M+1Sn
eu ,

Hu(p, t
n+1) = D̃0

u(p, t
n) +

M∑
m=1

(∆t)m

m!
D̃m

u (p, tn) + (∆t)M+1Sn
hu

,

(49)

where Sn
e =:(Sn

ex , S
n
ey , S

n
ez ) and Sn

h=:(Sn
hx

, Sn
hy

, Sn
hz
) are the remainders, defined by

Sn
eu =

1

(M + 1)!

∂M+1Eu

∂tM+1
(p, tn1u), Sn

hu
=

1

(M + 1)!

∂M+1Hu

∂tM+1
(p, tn2u),(50)

in which tn1u and tn2u (u = x, y, z) are the numbers between tn and tn+1.
Differentiating both sides of (1)-(3) m-times with respect to time, we obtain the rela-

tions between {C̃m+1
u , D̃m+1

u } and {C̃m
u , D̃m

u }(u = x, y, z, 0 ≤ m ≤ M − 1):

ε C̃m+1
x =

∂D̃m
z

∂y
−

∂D̃m
y

∂z

∣∣∣
(p,tn)

, ε C̃m+1
y =

∂D̃m
x

∂z
− ∂D̃m

z

∂x

∣∣∣
(p,tn)

,(51)

ε C̃m+1
z =

∂D̃m
y

∂x
− ∂D̃m

x

∂y

∣∣∣
(p,tn)

, µ D̃m+1
x =

∂C̃m
y

∂z
− ∂C̃m

z

∂y

∣∣∣
(p,tn)

,(52)

µ D̃m+1
y =

∂C̃m
z

∂x
− ∂C̃m

x

∂z

∣∣∣
(p,tn)

, µ D̃m+1
z =

∂C̃m
x

∂y
−

∂C̃m
y

∂x

∣∣∣
(p,tn)

.(53)
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Let En = (En
x , En

y , En
z ) andHn = (Hn

x ,Hn
y ,Hn

z ) be the error fields, let Cm
n = (Cm

x , Cm
y , Cm

z )
and Dm

n = (Dm
x ,Dm

y ,Dm
z ) be the coefficient vectors for the error fields. For example,

En
x
i+1

2
,j,k

= Ex(xi+ 1
2
, yj , zk, t

n)− En
x
i+1

2
,j,k

,

Cm
x
i+1

2
,j,k,n

= C̃m
x (xi+ 1

2
, yj , zk, t

n)−Cm
x
i+1

2
,j,k,n

.

Subtracting the equations in (11)-(12) from the equations in (49) over Ωh
eu and Ωh

hu
(u =

x, y, z), respectively, we obtain

En+1
uα,β,γ

=

M∑
m=0

(∆t)m

m!
Cm
uα,β,γ,n

+ (∆t)M+1Sn
eu |α,β,γ , u = x, y, z,(54)

where (α, β, γ) = (̄i, j, k), (i, j̄, k) and (i, j, k̄) respectively, and

Hn+1
uα,β,γ

=

M∑
m=0

(∆t)m

m!
Dm

uα,β,γ,n
+ (∆t)M+1Sn

hu
|α,β,γ , u = x, y, z,(55)

where (α, β, γ)=(i, j̄, k̄), (̄i, j, k̄) and (̄i, j̄, k) respectively.
Similarly, subtracting the equations in (13)-(18) from the discretized equations in (51)-

(53) over Ωh
eu and Ωh

hu
(u = x, y, z), respectively, we obtain

ε Cm+1
x
i+1

2
,j,k,n

= δyDm
z
i+1

2
,j,k,n

− δzDm
y
i+1

2
,j,k,n

+Rm
cxi+1

2
,j,k,n

,(56)

ε Cm+1
y
i,j+1

2
,k,n

= δzDm
x
i,j+1

2
,k,n

− δxDm
z
i,j+1

2
,k,n

+Rm
cyi,j+1

2
,k,n

,(57)

ε Cm+1
z
i,j,k+1

2
,n

= δxDm
y
i,j,k+1

2
,n

− δyDm
x
i,j,k+1

2
,n

+Rm
czi,j,k+1

2
,n
,(58)

µDm+1
x
i,j+1

2
,k+1

2
,n

= δzCm
y
i,j+1

2
,k+1

2
,n

− δyCm
z
i,j+1

2
,k+1

2
,n

+Rm
dxi,j+1

2
,k+1

2
,n
,(59)

µDm+1
y
i+1

2
,j,k+1

2
,n

= δxCm
z
i+1

2
,j,k+1

2
,n

− δzCm
x
i+1

2
,j,k+1

2
,n

+Rm
dyi+1

2
,j,k+1

2
,n
,(60)

µDm+1
z
i+1

2
,j+1

2
,k,n

= δyCm
x
i+1

2
,j+1

2
,k,n

− δxCm
y
i+1

2
,j+1

2
,k,n

+Rm
dzi+1

2
,j+1

2
,k,n

,(61)

where 0 ≤ m ≤ M − 1, Rm
cu and Rm

du (u = x, y, z) are the remainders:

Rm
cxi+1

2
,j,k,n

= (∆y)2

24

∂3D̃m
z

∂y3 (pi+ 1
2
,j1,k

, tn)− (∆z)2

24

∂3D̃m
y

∂z3
(pi+ 1

2
,j,k1

, tn),

Rm
cyi,j+1

2
,k,n

= (∆z)2

24

∂3D̃m
x

∂z3
(pi,j+ 1

2
,k2

, tn)− (∆x)2

24

∂3D̃m
z

∂x3 (pi1,j+ 1
2
,k, t

n),

Rm
czi,j,k+1

2
,n

= (∆x)2

24

∂3D̃m
y

∂x3 (pi2,j,k+ 1
2
, tn)− (∆y)2

24

∂3D̃m
x

∂y3 (pi,j2,k+ 1
2
, tn),

(62)

Rm
dxi,j+1

2
,k+1

2
,n

= (∆z)2

24

∂3C̃m
y

∂z3
(pi,j+ 1

2
,k3

, tn)− (∆y)2

24

∂3C̃m
z

∂y3 (pi,j3,k+ 1
2
, tn),

Rm
dyi+1

2
,j,k+1

2
,n

= (∆x)2

24

∂3C̃m
z

∂x3 (pi3,j,k+ 1
2
, tn)− (∆z)2

24

∂3C̃m
x

∂z3
(pi+ 1

2
,j,k4

, tn),

Rm
dzi+1

2
,j+1

2
,k,n

= (∆y)2

24

∂3C̃m
x

∂y3 (pi+ 1
2
,j4,k

, tn)− (∆x)2

24

∂3C̃m
y

∂x3 (pi4,j+ 1
2
,k, t

n),

(63)

where pα,β,γ = (xα, yβ , zγ), and for 1 ≤ l ≤ 4, xil ∈ (xi−1/2, xi+1/2), yjl ∈ (yj−1/2, yj+1/2)
and zkl ∈ (zk−1/2, zk+1/2) are all constants.

The starting values for Cm
u and Dm

u (u = x, y, z) in (56)-(61) are:

C0
xī,j,k,n

= En
xī,j,k

, C0
yi,j̄,k,n

= En
yi,j̄,k

, C0
zi,j,k̄,n

= En
zi,j,k̄

,(64)

D0
xi,j̄,k̄,n

= Hn
xi,j̄,k̄

, D0
yī,j,k̄,n

= Hn
yī,j,k̄

, D0
zī,j̄,k,n

= Hn
zī,j̄,k

.(65)

And the boundary conditions for Cm
u and Dm

u (u = x, y, z, 0 ≤ m ≤ M) are:

Cm
xī,j′,k,n

= Cm
xī,j,k′,n

= Cm
yi′,j̄,k,n

= Cm
yi,j̄,k′,n

= Cm
zi′,j,k̄,n

= 0,(66)

Cm
zi,j′,k̄,n

= Dm
xi′,j̄,k̄,n

= Dm
yī,j′,k̄,n

= Dm
zī,j̄,k′,n

= 0,(67)

where i′ = 0 or I, j′ = 0 or J , k′ = 0 or K, denoting the indices on the boundary.
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Let Cm
n = (Cm

x , Cm
y , Cm

z ), Dm
n = (Dm

x ,Dm
y ,Dm

z ), Rm
c = (Rm

cx , R
m
cy , R

m
cz ) and Rm

d =

(Rm
dx , R

m
dy , R

m
dz ). Then, the vector form of (54)-(61) is:

En+1=
M∑

m=0

(∆t)m

m!
Cm

n + (∆t)M+1Sn
e , Hn+1=

M∑
m=0

(∆t)m

m!
Dm

n + (∆t)M+1Sn
h ,

εCm+1
n = ∇h ×Dm

n +Rm
c , µDm+1

n = −∇h × Cm
n +Rm

d .(68)

4.2. Estimate of the remainders and the coefficients of error fields. From the
remainders (62), (63) and (50) and Lemma 2.2, it can be proved that

Lemma 4.1. For 0 ≤ n ≤ N and 0 ≤ m ≤ M , let Sn
e , Sn

h, Rm
c and Rm

d be the
remainders defined in (50), (62) and (63) respectively. Then,

ν × Sm
e = 0, ν ×Rm

c = 0, ν · Sm
h = 0, ν ·Rm

d = 0,(69)

∥ε−
1
2Rm

c ∥2e + ∥µ− 1
2Rm

d ∥2h ≤ O1eh

(
(∆x)4 + (∆y)4 + (∆z)4

)
,(70)

∥ε−
1
2∇h×Rm

c ∥2h + ∥µ− 1
2∇h×Rm

d ∥2h ≤ O2eh

(
(∆x)4+(∆y)4+(∆z)4

)
,(71)

∥ε
1
2Sn

e ∥2e+∥µ
1
2Sn

h∥2h ≤ O3eh, ∥µ− 1
2∇h×Sn

e ∥2h+∥ε−
1
2∇h×Sn

h∥2e ≤ O4eh,(72)

where O1eh, O2eh, O3eh and O4eh are constants, dependent of the norms of the derivatives
of the exact solution (Ex, Ey, Ez) and (Hx, Hy, Hz).

Lemma 4.2. Let Cm
n and Dm

n with 0 ≤ m ≤ M be the vectors of coefficients defined
in (56)-(67). Then, for any m = 0, 1, . . . ,M − 1, and n ≥ 1, it holds that

∥ε
1
2Cm+1

n ∥2e + ∥µ
1
2Dm+1

n ∥2h ≤ (O1eh +O2eh)
(
(∆x)4 + (∆y)4 + (∆z)4

)
+

4

µε

(1
4
+

1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

)(
∥ε

1
2Cm

n ∥2e + ∥µ
1
2Dm

n ∥2h
)
.(73)

By the method of proving Lemma 3.2, (73) is derived.

Lemma 4.3. Let Cm
n and Dm

n be the vectors of coefficients of the error fields En+1

and Hn+1 for HAIT-FDTD(M) with M = 3. Then,

(εC0
n,C1

n)e+(µD0
n,D1

n)h = (C0
n,R

0
c)e + (D0

n,R
0
d)h;(74)

(εC0
n,C2

n)e + (µD0
n,D2

n)h = (C0
n,R

1
c)e + (D0

n,R
1
d)h + (C1

n,R
0
c)e

+ (D1
n,R

0
d)h − (εC1

n,C1
n)e − (µD1

n,D1
n)h;(75)

(εC0
n,C3

n)e + (µD0
n,D3

n)h = (C0
n,R

2
c)e + (D0

n,R
2
d)h − (C1

n,R
1
c)e

− (D1
n,R

1
d)h + (C2

n,R
0
c)e + (D2

n,R
0
d)h;(76)

(εC1
n,C2

n)e + (µD1
n,D2

n)h = (C1
n,R

1
c)e + (D1

n,R
1
d)h;(77)

(εC1
n,C3

n)e + (µD1
n,D3

n)h = (C1
n,R

2
c)e + (D1

n,R
2
d)h + (C2

n,R
1
c)e

+ (D2
n,R

1
d)h − (εC2

n,C2
n)e − (µD2

n,D2
n)h;(78)

(εC2
n,C3

n)e + (µD2
n,D3

n)h = (C2
n,R

2
c)e + (D2

n,R
2
d)h.(79)

The proof of Lemma 4.3 is similar to that of Lemma 3.3, here omitted for shortness. The
inner products of the vectors of coefficients for the other HAIT-FDTD(M) schemes with
M ≥ 4 are similarly derived.

4.3. Convergence analysis of HAIT-FDTD(M)

Theorem 4.4. Let En+1 and Hn+1 be the error fields for HAIT-FDTD(M) with
3 ≤ M ≤ 8. Then, it holds that

∥ε
1
2 En+1∥2e + ∥µ

1
2Hn+1∥2h ≤ Oeh

(
(∆t)2M + (∆x)4 + (∆y)4 + (∆z)4

)
,(80)
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where Oeh is a constant dependent of Oleh(l = 1, 2, 3, 4), if the following convergence con-
ditions for HAIT-FDTD(M)(3 ≤ M ≤ 8), denoted by CCM=∗, are respectively satisfied.

CCM=3 : Ocfl ≤
3

4
− (∆t)2

4µε
, CCM=4 : Ocfl ≤ 2− (∆t)2

4µε
,

CCM=5 : Ocfl ≤ min
{15

4
− (∆t)2

4µε
,

3

√
45r∆t

8
− (∆t)2

4µε

}
,

CCM=6 : Ocfl ≤ min
{
6− (∆t)2

4µε
,

4

√
45

4
r∆t− (∆t)2

4µε

}
,

CCM=7 : Ocfl ≤
5

8
− (∆t)2

4µε
, CCM=8 : Ocfl ≤

9

5
− (∆t)2

4µε
,

where r > 0 is small number.

Proof. First we consider the case: M = 3. By the expressions of En+1
u and Hn+1

u (u =
x, y, z) in (54)-(55), we see that

∥ε
1
2 En+1∥2e + ∥µ

1
2Hn+1∥2h =

3∑
m=0

(
∥ε

1
2
(∆t)m

m!
Cm

n ∥2e + ∥µ
1
2
(∆t)m

m!
Dm

n ∥2h
)

+ 2
(∆t

1!
Γ01 +

(∆t)2

2!
Γ02 +

(∆t)3

3!
Γ03 +

(∆t)3

2!
Γ12 +

(∆t)4

3!
Γ13 +

(∆t)5

2!3!
Γ23

)
+ 2(∆t)4

((
ε

3∑
m=0

(∆t)m

m!
Cm

n ,Sn
e

)
e
+

(
µ

3∑
m=0

(∆t)m

m!
Dm

n ,Sn
h

)
h

)
+ (∆t)8

(
∥ε

1
2Sn

e ∥2e + ∥µ
1
2Sn

h∥2h
)
,(81)

where the terms Γpq(p < q, p, q ∈ {0, 1, 2, 3}) are

Γ01 = (εC0
n,C1

n)e + (µD0
n,D1

n)h, Γ02 = (εC0
n,C2

n)e + (µD0
n,D2

n)h,

Γ03 = (εC0
n,C3

n)e + (µD0
n,D3

n)h, Γ12 = (εC1
n,C2

n)e + (µD1
n,D2

n)h,

Γ13 = (εC1
n,C3

n)e + (µD1
n,D3

n)h, Γ23 = (εC2
n,C3

n)e + (µD2
n,D3

n)h.

By using Lemma 4.3 and simplifying the right hand side of (81), we have

∥ε
1
2 En+1∥2e + ∥µ

1
2Hn+1∥2h = ∥ε

1
2C0

n∥2e + ∥µ
1
2D0

n∥2h

− (∆t)4

12

(
∥ε

1
2C2

n∥2e + ∥µ
1
2D2

n∥2h
)
+

(∆t)6

36

(
∥ε

1
2C3

n∥2e + ∥µ
1
2D3

n∥2h
)

+ Ψ1 +Ψ2 +Ψ3 +Ψ4 + (∆t)8
(
∥ε

1
2Sn

e ∥2e + ∥µ
1
2Sn

h∥2h
)
,(82)

where the terms Ψk(k = 1, 2, 3, 4) are:

Ψ1 = 2∆t
(
(C0

n,Ψ1a)e + (D0
n,Ψ1b)h

)
,

Ψ2 = (∆t)2
(
(C1

n,Ψ2a)e + (D1
n,Ψ2b)h

)
,

Ψ3 =
(∆t)3

3

(
(C2

n,Ψ3a)e + (D2
n,Ψ3b)h

)
,

Ψ4 =
(∆t)7

3

(
(εC3

n,S
n
e )e + (µD3

n,S
n
h)h

)
,

Ψ1a = R0
c +

∆t

2
R1

c +
(∆t)2

6
R2

c + (∆t)3εSn
e ,

Ψ1b = R0
d +

∆t

2
R1

d +
(∆t)2

6
R2

d + (∆t)3µSn
h,
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Ψ2a = R0
c +

2∆t

3
R1

c +
(∆t)2

3
R2

c + 2(∆t)3εSn
e ,

Ψ2b = R0
d +

2∆t

3
R1

d +
(∆t)2

3
R2

d + 2(∆t)3µSn
h,

Ψ3a = R0
c +∆tR1

c +
(∆t)2

2
R2

c + 3(∆t)3εSn
e ,

Ψ3b = R0
d +∆tR1

d +
(∆t)2

2
R2

d + 3(∆t)3µSn
h.

By Lemmas 4.1 and 4.2, and summation by parts, we have

Ψ1 ≤ ∆t
(
∥ε

1
2C0

n∥2e + ∥µ
1
2D0

n∥2h +Oeh(∆xyz + (∆t)6)
)
,(83)

Ψ2 ≤ (∆t)2

2

(
∥ε

1
2C0

n∥2e + ∥µ
1
2D0

n∥2h +Oeh(∆xyz + (∆t)6)
)
,(84)

Ψ3 ≤ ∆tOeh

(
∆xyz + (∆t)6

)
+

( (∆t)5

4µε
+ (∆t)3Ocfl

)(
∥ε

1
2C0

n∥2e + ∥µ
1
2D0

n∥2h
)
,(85)

Ψ4 ≤ (∆t)3

6

( (∆t)2

µε
+ 4Ocfl

)2(
∥ε

1
2C0

n∥2e + ∥µ
1
2D0

n∥2h
)

+ ∆tOeh

(
∆xyz + (∆t)6

)
,(86)

where Oeh be a generic constant which is dependent of Oleh with l = 1, . . . , 4 and different
from each other in different places. Next, we consider the terms with (∆t)4 and (∆t)6 in
(82). By Lemma 4.2, we have

− ∆t4

12

(
∥ε

1
2C2

n∥2e + ∥µ
1
2D2

n∥2h
)
+
∆t6

36

(
∥ε

1
2C3

n∥2e + ∥µ
1
2D3

n∥2h
)
≤ (∆t)6Oeh∆xyz

− ∆t4

12

(
1− 4

3

( (∆t)2

4µε
+Ocfl

))(
∥ε

1
2C2

n∥2e+∥µ
1
2D2

n∥2h
)
.(87)

If Ocfl ≤ 3/4− (∆t)2/(4µε), substituting (83), (84), (85), (86) and (87) into (82), and
using (72), we have

∥ε
1
2 En+1∥2e + ∥µ

1
2Hn+1∥2h ≤ (1 + β1∆t)(∥ε

1
2 En∥2e + ∥µ

1
2Hn∥2h)

+ Oeh∆t
(
(∆x)4 + (∆y)4 + (∆z)4 + (∆t)6

)
,(88)

where β1 is a constant defined by

β1 = 1 +
∆t

2
+

(∆t)2

6

( (∆t)2

µε
+ 4Ocfl

)2

+ (∆t)2Ocfl +
(∆t)4

4µε
.

By using (88) repeatedly, we obtain

∥ε
1
2 En+1∥2e + ∥µ

1
2Hn+1∥2h ≤ eTβ1

(
∥ε

1
2 E0∥2e + ∥µ

1
2H0∥2h

)
+ Oeh

(
(∆t)6 + (∆x)4 + (∆y)4 + (∆z)4

)
.

Thus, the error estimate (80) with M = 3 is obtained. Similarly, the other estimates (80)
with 4 ≤ m ≤ 8 are proved. This completes the proof of Theorem 4.4. �

5. Numerical experiments

In this section free-divergence property, stability, approximate energy conservation and
error estimate of the solutions to the HAIT-FDTD schemes are tested by using a model
problem with a known exact solution.
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5.1. The model problem. We consider to solve the problem (1)-(5) with ε=µ=1 and
Ω = [0, 1]3, the exact solution: E(t) = (Ex, Ey, Ez) and H(t) = (Hx, Hy,Hz) as follows:

Ex = u0(t) cos(πx) sin(πy) sin(πz), Ey = −2u0(t) sin(πx) cos(πy) sin(πz),

Ez = u0(t) sin(πx) sin(πy) cos(πz), Hx = −
√
3 v0(t) sin(πx) cos(πy) cos(πz),

Hy = 0, Hz =
√
3 v0(t) cos(πx) cos(πy) sin(πz), u0 = cos(

√
3πt), v0 = sin(

√
3πt),

and the initial conditions are obtained by setting t = 0 in the solution expressions.
It is easy to check that the L2 norm of the exact solution, denoted by EnL2, is a

constant, EnL2(t) =
(
∥ε1/2E(t)∥2 + ∥µ1/2H(t)∥2

)1/2
=

√
3/2, ∀ t ≥ 0.

5.2. Test on free divergence. We compute error of divergence of fields by using the
formulas:

DivEn =: max{ε(δxEn
x + δyE

n
y + δzE

n
z )i,j,k|I−1

i=1 |
J−1
j=1 |

K−1
k=1 },

DivHn =: max{µ(δxHn
x + δyH

n
y + δzH

n
z )ī,j̄,k̄|

I−1
i=1 |

J−1
j=1 |

K−1
k=1 }.

Table 1 gives the maximum values of |∇h · εEn| and |∇h · µHn| computed by the
HAIT-FDTD(M) schemes with 3 ≤ M ≤ 14 and ∆x = ∆y = ∆z = ∆t = 0.02, n∆t = 1
for the model problem. From the data in the table we see that the errors of the

Table 1. Maximum of |∇h·εEn| and |∇h·µHn| over the grid points
with n∆t = 1 for HAIT-FDTD(M): 3 ≤ M ≤ 14.

M = 3 M = 4 M = 5 M = 6 M = 7 M = 8
DivEn 1.85e+8 6.64e-4 2.26e-13 2.54e-13 2.40e-13 2.48e-13
DivHn 1.34e+8 7.32e-4 2.34e-13 2.71e-13 2.91e-13 2.89e-13

M = 9 M = 10 M = 11 M = 12 M = 13 M = 14
DivEn 3.18e-13 2.90e-13 3.18e-13 3.07e-13 3.37e-13 2.81e-13
DivHn 3.33e-13 3.48e-13 4.10e-13 3.39e-13 3.32e-13 3.44e-13

divergences for HAIT-FDTD(M ≥ 5) are very close to zero, showing the consistence with
Theorem 3.1. However, the values for the two cases: M = 3 and M = 4 are far away from
zero. This inconsistence is caused by that the CFL number in the experiment, denoted
by Ccfl: (Ccfl)

2 = Ocfl = 3, breaking the stability conditions for HAIT-FDTD(M) with
M = 3(r3 = 3/4) and M = 4(r4 = 2) (see Theorem 3.6).

If we select ∆t = h/2 = 0.01, n1∆t = 1 for HAIT-FDTD(M=3), and ∆t = 0.8h =
0.016, n2∆t = 1 for HAIT-FDTD(M=4) (Ocfl = 3/4, both satisfy the stability conditions
in Theorem 3.6), then, we have

HAIT-FDTD(3) : DivEn1 = 2.66e− 13, DivHn1 = 2.83e− 13,

HAIT-FDTD(4) : DivEn2 = 2.24e− 13, DivHn2 = 2.72e− 13,

which is in accordance with free-divergence in Theorem 3.1.
In order to see the variation of divergence error in long time computation, we compute

DivEn and DivHn by selecting tn=n∆t =T=4, 8, 10 and 12. Table 2 shows us
the divergence error for HAIT-FDTD(M=8,10) with ∆t=∆x=∆y=∆z=0.02. From these
values we see that the HAIT-FDTD(M) schemes are numerically divergence free in long
time computation. The experimental results for the other schemes are similar. However,
the degree M for long time computation should be chosen relatively large.

5.3. Test on stability and approximate energy conservation. We use the schemes
HAIT-FDTD(M) with 3 ≤ M ≤ 14 and ∆x = ∆y = ∆z = ∆t = h = 0.02 to solve the
model problem, and then work out the energy at t = 0 and t = tn by using the formulas:
Enn = (∥

√
εEn∥2e + ∥√µHn∥2h)1/2. The values Enn at tn = n∆t = 1 and the difference

DEnn = Enn − En0 for these schemes are shown in Table 3.
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Table 2. Divergence error DivEn and DivHnat tn = n∆t = T
with T = 4, 8, 10, 12 for HAIT-FDTD(M)(M = 8, 10).

HAIT-FDTD(M=8) T = 4 T = 8 T = 10 T = 12
DivEn 6.10e-13 8.03e-13 9.24e-13 9.59e-13
DivHn 6.09e-13 8.71e-13 9.41e-13 9.68e-13

HAIT-FDTD(M=10) T = 4 T = 8 T = 10 T = 12
DivEn 5.92e-13 9.04e-13 1.02e-12 1.12e-12
DivHn 6.59e-13 9.12e-13 1.10e-12 1.17e-12

Table 3. Energy values Enn at tn = n∆t = 1 and their difference
from En0=0.8660254 for HAIT-FDTD(M)(3 ≤ M ≤ 14).

M = 3 M = 4 M = 5 M = 6 M = 7 M = 8
Enn 1.21e+21 3.44e+9 0.86603 0.86603 0.86603 0.86603
DEnn 1.21e+21 3.44e+9 9.94e-8 1.48e-10 -2.10e-11 -2.68e-14

M = 9 M = 10 M = 11 M = 12 M = 13 M = 14
Enn 0.86603 0.86603 0.86603 0.86603 0.86603 0.86603
DEnn -6.66e-15 7.99e-15 -7.88e-15 -7.88e-15 -8.11e-15 -7.99e-15

From Table 3 we see that the energy differences become smaller and smaller as M
becomes larger; this is consistent with Theorem 3.4. The CFL number for these schemes is√
3, showing that the stability conditions overcome the CFL stability condition (Ccfl ≤ 1).

However, the values for the cases M = 3 and M = 4 are very large. This contradiction to
Theorem 3.4 is caused by that Ocfl = 3 for the two schemes doesn’t satisfy the stability
conditions: Ocfl ≤ 3/4(M = 3) and Ocfl ≤ 2(M = 4).

If taking ∆t1 = h/2 = 0.01, tn1 = 1 and ∆t2 =0.8h = 0.016, tn2 = 1 for HAIT-
FDTD(M) with M=3 and 4 respectively, then the energy differences are DEnn1=-3.158e-
5, DEnn2=-1.621e-7. This agrees with the result in Theorem 3.4 that the squared energy
differences are O(∆t1)

6 = O(10−6) and O(∆t2)
6 = O(10−8). In addition, the signs of

DEnn1 , DEnn2 , and those appeared in Table 3 with M ≥ 5 confirm Remark 3.6 that
HAIT-FDTD(M)(M = 3, 4, 7, 8) are energy-decreasing, while the schemes with M = 5,
6 are energy-increasing.

The behavior of energy conservation in long time computation is checked by computing
the energy difference DEnn with tn=n∆t=T=4, 8, 10 and 12. Table 4 gives us the

Table 4. Energy values Enn at tn = 4, 8, 10, 12 and their differ-
ence from En0=0.8660254 for HAIT-FDTD(M)(M = 8, 10).

HAIT-FDTD(M=8) T = 4 T = 8 T = 10 T = 12
DEnn -1.903e-13 -2.359e-13 -2.184e-13 -3.286e-13

HAIT-FDTD(M=10) T = 4 T = 8 T = 10 T = 12
DEnn -1.403e-13 -2.454e-14 -3.086e-14 -1.843e-14

energy difference for the schemes HAIT-FDTD(M=8,10) with ∆t=∆x=∆y=∆z=0.02.
The results for the other cases are similar to those in Table 4. From these data we see
that HAIT-FDTD(M) also preserves approximately the energy in long time computation.

5.4. Test on error estimates and convergence rates. Denote the relative error under
the discrete L2 norm by RErr, that is

RErr = RErr(h) = (∥
√
εEn∥2 + ∥√µHn∥2)

1
2 /EnL2(t

n).

The convergence order is computed by Order = log2
(
RErr(h)/RErr(h/2)

)
.
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Table 5. Relative errors and convergence orders of HAIT-
FDTD(M): 3 ≤ M ≤ 8.

h M=3 M=4 M=5
RErr Order RErr Order RErr Order

0.04 3.5656e-3 3.5859e-3 3.5795e-3
0.02 8.9417e-4 1.9954 8.9543e-4 2.0017 8.9503e-4 1.9998
0.01 2.2371e-4 1.9989 2.2379e-4 2.0004 2.2377e-4 1.9999

M=6 M=7 M=8
RErr Order RErr Order RErr Order

0.04 3.5796e-3 3.5796e-3 3.5796e-3
0.02 8.9503e-4 1.9998 8.9503e-4 1.9998 8.9503e-4 1.9998
0.01 2.2376e-4 1.9999 2.2377e-4 1.9999 2.2377e-4 1.9999

We use HAIT-FDTD(M) with 3 ≤ M ≤ 8 and ∆x = ∆y = ∆z = ∆t = h to solve
the model problem, and compute the relative errors and the convergence orders of the
solutions En and Hn at tn = n∆t = 1, which are displayed in Table 5. From the numbers
in this table, we see that the convergence orders are close to 2 and have more and more
significant digits as h decreases, and that the relative errors at each row change very
little as M increases. This confirms Theorem 4.4 that the error bound of the solutions,
O
(
(∆t)M + h2

)
, is dominated by h when M is larger than 3.

6. Conclusions and remarks

In this paper, we established a rigorous analysis of the HAIT-FDTD(M) schemes on free
divergence, energy conservation, stability, and convergence. This enhances the reliability
of these schemes and tells us how to choose the time step size ∆t when the polynomial
degree M is less than 8. The error estimate in time O((∆t)M ) also tells us that the value of
M can also be selected by making (∆t)M less than the machine error. Selection of a large
M does not bring much increase in workload and CPU time (see [22]) since the scheme is
explicit and not involved in solutions of systems of equations. The rigorous analysis here
can be extended to analyze the HAIT-FDTD(M) schemes in the other media and the new
high order HAIT-FDTD(M) schemes by combining higher order space discretization with
the Taylor expansion in time. This will be considered in future.
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