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OPTIMIZED FIRST-ORDER TAYLOR-LIKE FORMULAS

AND GAUSS QUADRATURE ERRORS

JOËL CHASKALOVIC AND FRANCK ASSOUS

Abstract. In this article, we derive an optimal first-order Taylor-like formula. In a seminal
paper [15], we introduced a new first-order Taylor-like formula that yields a reduced remainder

compared to the classical Taylor’s formula. In this work, we relax the assumption of equally
spaced points in our formula. Instead, we consider a sequence of unknown points and a sequence
of unknown weights. We then solve an optimization problem to determine the optimal distribution

of points and weights that minimizes the corresponding remainder. Numerical results are provided
to illustrate our findings.

Key words. Taylor’s theorem, Taylor-like formula, error estimate, interpolation error, approxi-
mation error, finite elements.

1. Introduction

Even today, improving the accuracy of approximations remains a challenging
problem in numerical analysis. In this context, Taylor’s formula plays a crucial
role in various domains, especially when one considers error estimates to assess the
accuracy of a numerical approximation method (for example, see [25], [2], [28] for
finite element methods). This challenge becomes even more crucial when comparing
the relative accuracy between two given numerical methods. All error estimates
share a common structure, whether applied to the finite elements method [6], [21],
numerical approximations of ordinary differential equations [16], or to quadrature
formulas used for approximating integrals [16].

Let us specify these ideas in this context of numerical integration. Consider, for
instance, a composite quadrature rule of order k. For a given interval [a, b], let f
be a function in Ck+1([a, b]). The corresponding error of the composite quadrature
rule can be expressed as (refer to, e.g., [4], [7] or [16]), for a non-zero integer N :

(1)

∣∣∣∣∣
∫ b

a

f(x)dx−
N∑
i=0

λif(xi)

∣∣∣∣∣ ≤ Ck h
k+1 .

In this formula, h denotes the size of the N + 1 equally spaced panels [xi, xi+1],
0 ≤ i ≤ N , that discretize the interval [a, b], and λi are N + 1 real numbers.
Moreover, Ck is an unknown constant, independent of h, but dependent on f and
k. The fact that Ck is unknown arises from the presence of an unknown point in
the remainder term of Taylor’s expansion, as an heritage of Rolle’s theorem. This
prevents the precise determination of the approximation error of a given numerical
method, leading to a kind of “uncertainty”. In this way, this constant is directly
linked to the uncertainty associated with the remainder of Taylor’s formula [3].

To better understand the importance of Taylor’s formula in assessing the accu-
racy of a numerical approximation method, we can also consider the case of the
finite element method. We refer the reader to [13], Section 4, for a detailed expla-
nation of how this formula is directly related to finite element error approximation.
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Indeed, in this context, with the help of Céa’s lemma [21], since the approxima-
tion error is bounded by the interpolation error, using the corrected interpolation
polynomial derived from the new Taylor-like formula enables us to obtain a tighter
upper bound for the interpolation error compared to the usual one.

Usually, to overcome the lack of information regarding the unknown value of the
left-hand side of (1) which lies within the interval [0, Ckh

k+1], only the asymptotic
convergence rate comparison is considered. This comparison allows us to assess the
relative accuracy between two numerical quadratures of order k1 and k2, (k1 < k2),
as h tends to zero. However, when comparing two composite quadrature rules for
a fixed value of h, as is common in many applications, the asymptotic convergence
rate is no longer a meaningful criterion (since h is fixed). Therefore, we focus on
minimizing the constants Ck by refining the estimation of the remainder in Taylor’s
formula. More precisely, assuming that the remainder lies within an interval [L,U ],
(L < U), our goal is to minimize it by reducing the width of the interval, i.e.,
minimizing U − L.

From another point of view, several approaches have been proposed to determine
a way to enhance the accuracy of approximation. For example, within the frame-
work of numerical integration, we refer the reader to [5], [8] or [20], and references
therein, where the authors propose an improved quadrature formula that refines the
trapezoid inequalities. To achieve this, they consider functions with varying levels
of regularity, and based on Grüss’s inequality, they derive the corresponding trape-
zoid quadrature errors. In contrast, our approach primarily focuses on minimizing
the remainder in Taylor’s expansion. Alternatively, due to the lack of information,
heuristic methods were considered, basically based on a probabilistic approach, see
for instance [1], [3], [22], [23] or [9], [10] and [11]. This allows to compare different
numerical methods, and more precisely finite element, for a given fixed mesh size,
[12].

In this context, we recently developed a first-order Taylor-like formula in [15] and
a second-order Taylor-like formula in [14]. The goal was to minimize, in the sense
defined above, the corresponding remainder by transferring part of the numerical
weight of this remainder to the polynomial involved in the Taylor expansion. In
both of these cases, we a priori introduced a linear combination of f ′ (and f ′′ in [14])
computed at equally spaced points in [a, b], and we determined the corresponding
weights in order to minimize the remainder. We proved that the associated upper
bound in the error estimate is 2n times smaller than the classical one for the first-
order Taylor’s theorem, and 3/16n2 times smaller than the corresponding one in
the classical second-order Taylors’s formula.

In this paper, we relax the assumption of equally spaced points and consider a
sequence of unknown points in the interval [a, b], where a given function f needs to
be evaluated. Simultaneously, we introduce a sequence of unknown weights to be
determined with the goal of minimizing the remainder. Then, we will prove that the
remainder of the corresponding first-order expansion is minimized when the points
between a and b are equally spaced, with two different configurations depending on
whether the endpoints a and b of the interval are included or excluded.

The paper is organized as follows. In Section 2, we present a new first-order
Taylor-like formula built on a sequence of given points xk, (k = 0, . . . , n), in [a, b],
and given weights ωk, (k = 0, . . . , n). In Section 3 we derive the two main results of
this paper, focusing on the optimal choice of points xk and weights ωk that allow
us to minimize the remainder of the first-order Taylor-like formula. Section 4 aims
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to numerically evaluate the results of these theorems and proposes numerical sim-
ulations that illustrate the optimality of the derived formula. Concluding remarks
follow.

2. First-order Taylor-like expansion

Let us begin by recalling the well-known first-order Taylor formula [26]. For two
real numbers a and b, where a < b, consider a function f ∈ C2([a, b]). Then, there
exist (m2,M2) ∈ R2 such that, for all x ∈ [a, b],

m2 6 f ′′(x) 6 M2,

and we have

(2) f(b) = f(a) + (b− a)f ′(a) + (b− a)ϵa,1(b),

with
lim
b→a

ϵa,1(b) = 0,

and
(b− a)

2
m2 6 ϵa,1(b) 6

(b− a)

2
M2.

In a previous paper [15], we derived a first-order Taylor-like formula aimed at
minimizing its remainder ϵa,n+1(b), in the sense that, if L ≤ ϵa,n+1(b) ≤ U then
U − L is minimum.

More precisely, to minimize the difference between the upper and lower bounds
U −L, we first express these bounds as functions of tk and ωk, which represent the
points locations and the weights used in the Taylor-like formula, (see Formula (6)),
which leads to a parameterized interval [L,U ]. Finally, the width of this interval is
minimized over the parameter set.

Hence, we proved the following result:

Theorem 2.1. Let f be a real mapping defined on [a, b] which belongs to C2([a, b]),
such that: ∀x ∈ [a, b],−∞ < m2 6 f ′′(x) 6 M2 < +∞.

Then, for a given non-zero integer n, we have the following first-order expansion:
(3)

f(b) = f(a)+(b−a)

(
f ′(a) + f ′(b)

2n
+

1

n

n−1∑
k=1

f ′
(
a+ k

(b− a)

n

))
+(b−a)ϵa,n+1(b),

where

|ϵa,n+1(b)| 6
(b− a)

8n
(M2 −m2).

Moreover, for an a priori choice of regularly spaced points a + k
(b− a)

n
, ϵa,n+1(b)

is minimum.

In the sequel of the paper, our goal is to relax the assumption of a priori equidis-
tant points in order to determine the optimal set of points {xk}k=0,n ∈ [a, b], along
with the associated weights {ωk}k=0,n. This determination will enable us to mini-
mize the quantity ϵa,n+1(b) in (3), in the sense defined above.

To derive the main result below, we first introduce the function ϕ defined by

ϕ : [0, 1] −→ R

t 7−→ f ′(a+ t(b− a)) ,(4)
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that satisfies ϕ(0) = f ′(a) and ϕ(1) = f ′(b). Moreover, we proved in [15] that
ϵa,1(b) introduced in (2) satisfies the following result:

Proposition 2.2. The quantity ϵa,1(b) in formula (2) can be expressed as

(5) ϵa,1(b) =

∫ 1

0

(1− t)ϕ′(t)dt .

For a given integer n ∈ N∗, we consider a set of points {xk}k=0,n in the interval
[a, b], and a set of real weights {ωk}k=0,n.

Next, we define the quantity ϵ∗n(a, b) by the formula

(6) f(b) = f(a) + (b− a)

(
n∑

k=0

ωkf
′(xk)

)
+ (b− a)ϵ∗n(a, b),

where the two sequences {xk}k=0,n and {ωk}k=0,n are to be determined in order to
minimize the quantity ϵ∗n(a, b).

For the upcoming result, we need to introduce some notations. Let tk, (k =
0, . . . , n), be a sequence of real numbers in [0, 1] that allows us to represent the
points xk in [a, b] as a barycentric combination of a and b, that is:

(7) xk = a+ tk(b− a), (0 ≤ tk ≤ 1).

For each integer k in [[0, n]], we introduce the quantity Sk defined as the partial sum
of the weights ωj , (∀j ∈ [[0, k]]), defined by:

(8) Sk =
k∑

j=0

ωj .

Consequently, Sn represents the sum of all the n + 1 weights ωk from k = 0 to n.
Therefore, we can prove the following result:

Theorem 2.3. Let f be a real mapping defined on [a, b] which belongs to C2([a, b])
and assume that Sn = 1. Then, the quantity ϵ∗n(a, b) defined by (6) is bounded as
follows:

ϵ∗n(a, b) ≥ (b− a)

2

[ n−1∑
k=0

(
m2(Sk − tk)

2 −M2(Sk − tk+1)
2

)
+m2(1− tn)

2 −M2t
2
0

]
,(9)

ϵ∗n(a, b) ≤ (b− a)

2

[ n−1∑
k=0

(
M2(Sk − tk)

2 −m2(Sk − tk+1)
2

)
+M2(1− tn)

2 −m2t
2
0

]
.(10)

Proof : Rewriting formula (2) and (6) using the function ϕ defined in (4), we

derive the quantity f(b)−f(a)
b−a and obtain:

f(b)− f(a)

b− a
= ϕ(0) + ϵa,1(b) =

n∑
k=0

ωkϕ(tk) + ϵ∗n(a, b),
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which can be re-written as:

ϵ∗n(a, b) = ϕ(0) + ϵa,1(b)−
n∑

k=0

ωkϕ(tk),

= ϕ(0) +

∫ 1

0

(1− t)ϕ′(t)dt−
n∑

k=0

ωkϕ(tk),

= ϕ(1)−
∫ 1

0

tϕ′(t)dt−
n∑

k=0

ωkϕ(tk),

= ϕ(1)−
∫ 1

0

tϕ′(t)dt+

n∑
k=0

ωk (ϕ(1)− ϕ(tk))−
n∑

k=0

ωkϕ(1),

=

(
1−

n∑
k=0

ωk

)
ϕ(1)−

∫ 1

0

tϕ′(t)dt+
n∑

k=0

ωk (ϕ(1)− ϕ(tk)) .(11)

Using the definition (8) of Sn introduced above, equation (11) can be expressed as

ϵ∗n(a, b)− (1− Sn)ϕ(1)

= −
∫ 1

0

tϕ′(t)dt+
n∑

k=0

ωk (ϕ(1)− ϕ(tk)) ,

= −
∫ 1

0

tϕ′(t)dt+
n∑

k=0

ωk

∫ 1

tk

ϕ′(t)dt,

= −
∫ t0

0

tϕ′(t)dt−
∫ 1

tn

tϕ′(t)dt−
n−1∑
k=0

∫ tk+1

tk

tϕ′(t)dt+
n∑

k=0

ωk

∫ 1

tk

ϕ′(t)dt.(12)

Considering the last term of (12), it can be transformed as follows:
n∑

k=0

ωk

∫ 1

tk

ϕ′(t)dt

=

∫ 1

t0

ω0ϕ
′(t)dt+

∫ 1

t1

ω1ϕ
′(t)dt+ · · ·+

∫ 1

tn

ωnϕ
′(t)dt,

=

∫ t1

t0

ω0ϕ
′(t)dt+

∫ t2

t1

(ω0 + ω1)ϕ
′(t)dt+ · · ·+

∫ 1

tn

(ω0 + · · ·+ ωn)ϕ
′(t)dt.

=
n−1∑
k=0

∫ tk+1

tk

Sk ϕ
′(t)dt+

∫ 1

tn

Sn ϕ
′(t)dt,(13)

where Sk is defined by (8).

Then, using (13) in (12) enables to write ϵ∗n(a, b) as
(14)

ϵ∗n(a, b) = (1−Sn)ϕ(1)+
n−1∑
k=0

∫ tk+1

tk

(Sk − t)ϕ′(t)dt−
∫ t0

0

tϕ′(t)dt+

∫ 1

tn

(Sn − t)ϕ′(t)dt.

Moreover, to ensure that (b − a)ϵ∗n(a, b) = o(b − a), (where o(b − a) denotes the
classical Landau notation), we impose the condition (1−Sn)ϕ(1)=0, which implies
that Sn = 1.
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Then, (14) leads to

(15) ϵ∗n(a, b) =

n−1∑
k=0

∫ tk+1

tk

(Sk − t)ϕ′(t)dt−
∫ t0

0

tϕ′(t)dt+

∫ 1

tn

(1− t)ϕ′(t)dt.

In the estimations below, we will use that

∀ t ∈ [0, 1], ϕ′(t) = (b− a)f ′′(a+ t(b− a)), and ∀x ∈ [a, b],m2 6 f ′′(x) 6 M2.

Then, the second and third term of (15) are bounded as follows:

(b− a)

2

[
m2(1− tn)

2 −M2t
2
0

]
≤ −

∫ t0

0

tϕ′(t)dt+

∫ 1

tn

(1− t)ϕ′(t)dt

≤ (b− a)

2

[
M2(1− tn)

2 −m2t
2
0

]
.(16)

Next, to derive a double inequality of the first term of (15), we consider the three
following cases, depending on the location of Sk related to the interval [tk, tk+1].

(1) If tk ≤ Sk ≤ tk+1, the first integral in (15) can be decomposed as follows:

(17)

∫ tk+1

tk

(Sk − t)ϕ′(t)dt =

∫ Sk

tk

(Sk − t)ϕ′(t)dt+

∫ tk+1

Sk

(Sk − t)ϕ′(t)dt.

Now, using that (Sk − t) is positive on [tk, Sk], and negative on [Sk, tk+1],
we can write

(b− a)m2

∫ Sk

tk

(Sk − t)dt ≤
∫ Sk

tk

(Sk − t)ϕ′(t)dt

≤ (b− a)M2

∫ Sk

tk

(Sk − t)dt,

(b− a)M2

∫ tk+1

Sk

(Sk − t)dt ≤
∫ tk+1

Sk

(Sk − t)ϕ′(t)dt

≤ (b− a)m2

∫ tk+1

Sk

(Sk − t)dt.

Summing up these two relations, we obtain first that∫ tk+1

tk

(Sk − t)ϕ′(t)dt

≤ (b− a)M2

∫ Sk

tk

(Sk − t)dt+ (b− a)m2

∫ tk+1

Sk

(Sk − t)dt,

and also ∫ tk+1

tk

(Sk − t)ϕ′(t)dt

≥ (b− a)m2

∫ Sk

tk

(Sk − t)dt+ (b− a)M2

∫ tk+1

Sk

(Sk − t)dt .
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By simply computing the integrals involved in these inequalities, we obtain,
in that case, the following estimate

(b− a)

2

(
m2(Sk − tk)

2 −M2(Sk − tk+1)
2

)
≤

∫ tk+1

tk

(Sk − t)ϕ′(t)dt

≤ (b− a)

2

(
M2(Sk − tk)

2 −m2(Sk − tk+1)
2

)
.(18)

(2) If Sk ≥ tk+1 then Sk − t ≥ 0 for all t ∈ [tk, tk+1], and we have:

(b− a)m2

∫ tk+1

tk

(Sk − t)dt ≤
∫ tk+1

tk

(Sk − t)ϕ′(t)dt

≤ (b− a)M2

∫ tk+1

tk

(Sk − t)dt .

This yields

(b− a)m2

2

(
(Sk − tk)

2 − (Sk − tk+1)
2

)
≤

∫ tk+1

tk

(Sk − t)ϕ′(t)dt

≤ (b− a)M2

2

(
(Sk − tk)

2 − (Sk − tk+1)
2

)
,

which also leads to (18), by simply using that m2 ≤ M2.

(3) If Sk ≤ tk then Sk − t ≤ 0 for all t ∈ [tk, tk+1], and in the same way as
above, we get

(b− a)M2

2

(
(Sk − tk)

2 − (Sk − tk+1)
2

)
≤

∫ tk+1

tk

(Sk − t)ϕ′(t)dt

≤ (b− a)m2

2

(
(Sk − tk)

2 − (Sk − tk+1)
2

)
,

that also gives estimates (18).

Hence, in all cases, we arrive at the same estimate (18). Finally, by summing (18)
over all values of k from 0 to n − 1, and by the help of (16), we get inequalities
(9)-(10) for ϵ∗n(a, b).

With the aim of minimizing ϵ∗n(a, b), we introduce the function χ defined by
(19)

χ =
(b− a)(M2 −m2)

2

{ n−1∑
k=0

[( k∑
j=0

ωj − tk

)2
+

( k∑
j=0

ωj − tk+1

)2 ]
+ t20+(1− tn)

2

}
,

which represents the difference between the upper bound (10) and the lower bound
(9) of ϵ∗n(a, b).

As a consequence, in the next section, we will minimize the function χ which
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depends on 2n + 2 variables, namely (t0, . . . , tn, ω0, . . . , ωn), under the constraint
Sn = 1.

3. Optimal first order Taylor-like formulas

In this section we will prove the two main theorems of this paper. In the first
theorem, we will fix x0 = a and xn = b a priori, while the points {xk}k=1,n−1 can
be arbitrarily distributed in [a, b]. In the second theorem, we will consider the case
where the points {xk}k=0,n can be arbitrarily distributed in the interval [a, b].

Theorem 3.1. For a given integer n ∈ N∗, let f be a real function defined on
[a, b] that belongs to C2([a, b]). We set x0 = a and xn = b. Then, the optimal
unknown weights {ωk}k=0,n together with the optimal set of points {xk}k=1,n−1,
that minimize the quantity ϵ∗n(a, b) defined by (6), are given by:

(20) ω0 = ωn =
1

2n
and ωk =

1

n
, ∀k = 1, . . . , n− 1,

(21) xk = a+ k
(b− a)

n
, ∀k = 1, . . . , n− 1.

As a result, the corresponding optimal first-order Taylor-like formula is given by
the following expression:

(22) f(b) = f(a) + (b− a)

(
f ′(a) + f ′(b)

2n
+

1

n

n−1∑
k=1

f ′ (xk)

)
+ (b− a)ϵ∗n(a, b),

with

(23) |ϵ∗n(a, b)| 6
(b− a)

8n
(M2 −m2).

Theorem 3.2. For a given integer n ∈ N, let f be a real function defined on [a, b]
that belongs to C2([a, b]). Then, the optimal unknown weights {ωk}k=0,n together
with the optimal set of points {xk}k=0,n, that minimize the quantity ϵ∗n(a, b) defined
by (6), are given by:

(24) ωk =
1

n+ 1
, ∀k = 0, . . . , n,

(25) xk = a+

(
k +

1

2

)
b− a

n+ 1
, ∀k = 0, . . . , n.

As a result, the corresponding optimal first-order Taylor-like formula is given by
the following expression:

(26) f(b) = f(a) + (b− a)
1

n+ 1

n∑
k=0

f ′(xk) + (b− a)ϵ∗n(a, b),

with

(27) |ϵ∗n(a, b)| 6
(b− a)

8(n+ 1)
(M2 −m2).

We remark that the points xk in (26) are the midpoints of the intervals involved
in Theorem 3.1.

In the following, we will present the proof of Theorem 3.1. Since the proof of
Theorem 3.2 is similar, afterwards, we will only highlight the differences.

Proof : Recalling that in Theorem 3.1, we assume that x0 = a and xn = b, that
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corresponds to assume that t0 = 0 and tn = 1. In these conditions, function χ
defined in (19) is expressed as:

(28) χ =
(b− a)(M2 −m2)

2

n−1∑
k=0

[( k∑
j=0

ωj − tk

)2
+

( k∑
j=0

ωj − tk+1

)2 ]
.

We then begin by deriving a lemma that provides a necessary condition for function
χ to have an extremum at the point (t1, . . . , tn−1, ω0, . . . , ωn−1).

Lemma 3.3. Let (t1, . . . , tn−1, ω0, . . . , ωn−1) be an extremum of function χ.

Then, we have:

(29)

(30)


Sk =

1

2
(tk + tk+1), (k = 0, . . . , n− 1),

tk = Sk−1 +
ωk

2
, (k = 1, . . . , n− 1).

Proof : The necessary conditions that guarantee that (t1, . . . , tn−1, ω0, . . . , ωn−1)
is an extremum is written as (see for instance [24])

∀k = 0, . . . , n− 1 :
∂χ

∂ωk
= 0 and ∀k = 1, . . . , n− 1 :

∂χ

∂tk
= 0.

Regarding first the dependence of the function χ on the variables ωk, (k = 0, . . . , n−

1), the conditions
∂χ

∂ωk
= 0 are expressed as

n−1∑
m=k

[
2Sm − tm − tm+1

]
= 0 ,

or equivalently

(31)
n−1∑
m=k

Sm =
1

2

n−1∑
m=k

(tm + tm+1) .

Since this system of equations is triangular, it can be easily solved. Writing two
consecutive equations for a given k ∈ {0, . . . , n− 2} leads to

Sk + Sk+1 + · · ·+ Sn−1 =
1

2

[
(tk + tk+1) + (tk+1 + tk+2) + · · ·+ (tn−1 + tn)

]
,

Sk+1 + · · ·+ Sn−1 =
1

2

[
(tk+1 + tk+2) + · · ·+ (tn−1 + tn)

]
,

which readily gives, by difference,

Sk =
1

2
(tk + tk+1) ,

and the case k = n−1 corresponds directly to the last equation of the system (31).
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Now, to study the dependence of the function χ on the variables tk, ∀k = 1, . . . , n−1,
we expand formula (28), using that t0 = 0 and tn = 1. We obtain that

2

(b− a)(M2 −m2)
χ =

n−1∑
k=0

[(
ω0 + · · ·+ ωk − tk

)2
+

(
ω0 + · · ·+ ωk − tk+1

)2 ]
= (ω0 − 0)2 + (ω0 − t1)

2

+(ω0 + ω1 − t1)
2 + (ω0 + ω1 − t2)

2

+ . . .

+(ω0 + · · ·+ ωk − tk)
2 + (ω0 + · · ·+ ωk − tk+1)

2

+ . . .

+(ω0 + · · ·+ ωn−1 − tn−1)
2 + (ω0 + · · ·+ ωn−1 − 1)2 .

So, by taking the derivative of the function χ with respect to tk, we obtain, for each
k = 1, . . . , n− 1:

∂χ

∂tk
= 0 ⇔ 2(ω0 + · · ·+ ωk−1 − tk) + 2(ω0 + · · ·+ ωk − tk) = 0 .

This can be expressed as

Sk−1 + Sk − 2tk = 0,

that is, using the definition (8) of Sk

2tk = 2Sk−1 + ωk ,

which corresponds to (30).

From Lemma 3.3, we can now prove Theorem 3.1 as follows:

• We begin by proving that ωk is constant for all values of k belonging to
{1, . . . , n− 1}.

From (29) and (30), we have

2Sk = tk + tk+1 = Sk−1 +
ωk

2
+ Sk +

ωk+1

2
, ∀k = 1, . . . , n− 2,

that yields, using again (8),

Sk − Sk−1 := ωk =
ωk + ωk+1

2
.

Then,

(32) ωk+1 = ωk, ∀k = 1, . . . , n− 2,

that corresponds to

ω1 = · · · = ωn−1.

• We will now establish the relation between ω0 and ωk, for k = 1, . . . , n− 1.

Firstly, let us write (29) for k = 0 and (30) for k = 1. Using that t0 = 0,
we obtain that

2S0 = t0 + t1 = t1,

t1 = S0 +
ω1

2
= ω0 +

ω1

2
,
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from which we get

ω1 = 2ω0 .

This allows us to conclude, using (32), that

(33) ω1 = ω2 = · · · = ωn−1 = 2ω0.

• Let us compute now the value of ω0.

To this end, we write (29) and (30) for k = n − 1. Given that tn = 1 and
using (33), this yields

2Sn−1 = tn−1 + tn = tn−1 + 1,

= Sn−2 +
ωn−1

2
+ 1.

Then, substituting the expressions of Sn−1 and Sn−2, we get with (33) that

2ω0 + 4(n− 1)ω0 = ω0 + 2(n− 2)ω0 +
ωn−1

2
+ 1,

that leads to

2(2n+ 1)ω0 − 2 = ωn−1 = 2ω0

that is

(34) ω0 =
1

2n
.

• It remains now to compute the value of ωn. Using (33) and (34) gives
directly that

(35) ω1 = ω2 = · · · = ωn−1 =
1

n
.

Finally, the value of ωn is obtained from relation (8), that is

ωn = 1− ω0 −
n−1∑
k=1

ωk = 1− 1

2n
− n− 1

n
=

1

2n
.

• Let us now consider the values of the tk, for k = 1 . . . , n− 1.

Using the expressions (30) of the tk, together with the expressions (34) and
(35) of the weights ωk, we obtain that

tk = ω0 +
k−1∑
j=1

ωj +
ωk

2
, (k = 1, . . . , n− 1),

=
1

2n
+

k − 1

n
+

1

2n
=

k

n
,

that yields with (7), the following expressions of the optimal points xk:

(36) xk = a+
k

n
(b− a), (k = 1, . . . , n− 1).

• We conclude the proof of this theorem by determining the optimal lower and
upper bounds of ϵ∗n(a, b) given in (9)-(10). We first evaluate the quantity
n−1∑
k=0

(Sk − tk)
2:
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Using the expression (20) of the ωj , we obtain that

Sk =
k∑

j=0

ωj = ω0 +
k∑

j=1

ωj =
1

2n
+

k

n
=

2k + 1

2n
, (k = 0, . . . , n− 1) ,

so that, together with the expression (21) of the tk, we have

(37)
n−1∑
k=0

(Sk − tk)
2 =

n−1∑
k=0

(
2k + 1

2n
− k

n

)2

=
1

4n
.

Similarly, we evaluate the quantity

n−1∑
k=0

(Sk − tk+1)
2. The same arguments

yield

n−1∑
k=0

(Sk − tk+1)
2 =

n−2∑
k=0

(Sk − tk+1)
2 + (Sn−1 − tn)

2

=
n−2∑
k=0

(
2k + 1

2n
− k + 1

n

)2

+

(
2n− 1

2n
− 1

)2

=

n−2∑
k=0

(
−1

2n

)2

+
1

4n2
=

1

4n
.(38)

Therefore, combining (37) and (38), we obtain optimal lower bound and
upper bounds in (9)-(10) for the quantity ϵ∗n(a, b) as follows:

(b− a)

8n
(m2 −M2) ≤ ϵ∗n(a, b) ≤

(b− a)

8n
(M2 −m2) .

This exactly corresponds to the result we derived in [15], where we mini-
mized ϵ∗n(a, b) by only deriving the values of the weights ωk, (k ∈ [[0, n]]),
having fixed a priori the points xk, (k ∈ [[1, n− 1]]), as equidistant.

Let us now detail the main differences which have to be taken into account in the
proof of Theorem 3.2:

Proof : The proof follows the same principle of the proof of Theorem 3.1. The only
difference being in the additional term in the function χ introduced in (19), which
depends on t0 and tn, i.e., t

2
0 + (1− tn)

2.

• For this reason, when sketching the proof of Theorem 3.1, from the condi-

tion
∂χ

∂ωk
= 0, we find again that

(39) Sk =
1

2
(tk + tk+1).

Similarly, for k = 1, . . . , n− 1, the relation
∂χ

∂tk
= 0 also gives:

(40) tk = Sk−1 +
ωk

2
.

The only two additional equations we need to solve are
∂χ

∂t0
= 0 and

∂χ

∂tn
= 0.
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• For the first one, we find that:

(41) t0 =
ω0

2
,

while the second leads to, using that Sn = 1,

2tn + ωn = 2 .

Now, using the relations (39) and (40), we get:

ω0 = ω1 = · · · = ωn−1 and ω0 + ω1 + · · ·+ ωn = 1 .

• It remains to address the case k = n− 1.

From (39) and (40), after some algebra, we obtain that

ω0 =
1

n+ 1
, and consequently, ωn =

1

n+ 1
,

that proves (24).

Finally, for the tk’s, using relation (41), we readily get that

t0 =
1

2n+ 1
and tn =

2n+ 1

2(n+ 1)
,

yielding relation (25), for all k = 0, . . . , n.

4. Application to Gaussian quadrature error estimates

To evaluate the results of Theorems 3.1 and 3.2, we propose numerical simulations
that illustrates formula (6) in different cases. To establish the optimality of the
formula, we consider several sequences of points {xk}k=0,n and weights {ωk}k=0,n,
comparing them with those obtained in the two previous theorems.

4.1. Comparison with random points and weights. In the sequel of this sec-
tion, we will focus our analysis on comparing the accuracy of the estimation of
a given exact value of a function f at a point x0 using statistical tools. Specifi-
cally, we will compare the results obtained from formula (3), which corresponds to
equidistant points and the associated optimal weights, with those obtained from
other distributions of points and weights. To this end, let us consider the particular
case of the function f defined by f(x) = ln(1+ x), and set a = 0 and b = 1 that is,
[a, b] = [0, 1]. Using formula (6), an approximation of ln(2) is given by:

(42) ln(2) ≃
n∑

k=0

ωk

1 + xk
.

Next, for different values of n, we generated several sets of random points {xk}k=1,n−1

and weights {ωk}k=0,n, implementing Excel’s random function.

We then considered 3, 6, 12, and 26 points, respectively, to approximate ln(2) using
formula (42). In each case, we computed samples of different sizes, consisting of
100, 200 and 500 individuals, each individual being defined by a set of random
points and weights used to approximate ln(2). For each number of points, the
random points and weights were computed along with the approximation of ln(2)
using formula (42).
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Remark 1. The number of points was chosen as 3, 6, 12, or 26, as an example.
Similarly, we could have selected 4, 8, 16, or 32 points. The main idea is to consider
a small, medium, and large number of points to test the method. Additional tests
were conducted with similar but slightly different numbers of points (such as 4, 8,
16, or 32) and demonstrated statistically stable behavior.

Finally, once the sample of approximations was constructed, we performed several
statistical analysis, including a Student’s test applied to the corresponding one-
sample, to assess how the random points and weights produced accurate estimates
of ln(2). The results are presented in Table 1, which shows the average of the rela-
tive error between each approximation and ln(2), for each number of points used in
Taylor-formula (6), and for each sample. As one can see, this average lies between

Table 1. Average relative error of ln(2) approximation for ran-
dom points and weights.

Number
of points

Sample
size

100 200 500

3 10.7% 10.9% 11.4%
6 8.7% 7.9% 8.2%
12 5.9% 6.3% 5.8%
26 4.1% 4.4% 3.6%

3.6% and 11.4%. As expected, the fewer the number of points, the greater the
average relative error, and this trend remains consistent regardless of the sample
size.

We also compared the average relative errors of the approximations of ln(2) with
the relative error obtained by Taylor-like formula (3), using equidistant points and
optimal weights. The results are summarized in Table 2. Once again, the more

Table 2. Approximations of ln(2) using the Taylor-like formula
(3) with equidistant points and optimal weights.

Number of equidistant points 3 6 12 26
Approximation of ln(2) 0.7083 0.6956 0.6937 0.6932

Relative error 2.2% 0.4% 0.1% 0.01%

points considered in the Taylor-like formula, the more accurate the approximation
of ln(2) becomes. However, as clearly shown in Table 2, the order of magnitude
of the relative error is significantly smaller than those presented in Table 1. This
illustrates that equidistant points and their associated weights lead to a much more
accurate approximation than the random ones used in this study.

To further this analysis, we now examine stronger statistical characteristics of the
results provided by random points and weights in approximating the value of ln(2),
specifically using Student’s test. The goal is to determine whether the random ap-
proximations exhibit a significant systematic bias in estimating ln(2). The results
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are summarized in Table 3.

Table 3. Student’s test p−value for different numbers of points
in Taylor-like formula (3), computed in several samples.

Number
of points

Sample
size

100 200 500

3 1,49.10−7 1,09.10−9 4,17.10−16

6 1,94.10−3 2,58.10−7 3,63.10−13

12 9,33.10−6 5,86.10−10 7,77.10−7

26 2,11.10−3 5,53.10−9 6,05.10−17

According to Student’s test theory [27], a low p−value in this test indicates strong
evidence against the null hypothesis - which assumes that the sample mean value
is equal to a known target value - suggesting a significant difference between the
sample mean and the target value. Conversely, a high p− value indicates that the
results are consistent with the null hypothesis. To determine whether the p−value
is low or high, it is compared to a predefined threshold called the significance level,
which is typically set at 0.05.

In our case, the very small p-value indicates strong evidence against the null hy-
pothesis, which assumes that our sample mean is equal to ln(2). As a result, we
reject the null hypothesis. This suggests that the sample data does not provide a
reliable approximation for ln(2) and the observed differences are statistically signif-
icant. In other words, the very low p-value indicates that the approximated values
(corresponding to a given sample of 100, 200, or 500 individuals) are highly unlikely
to match the exact value of ln(2). This provides strong evidence against the null
hypothesis, suggesting that ln(2) is unlikely to be the true population mean. There-
fore, we conclude that there is a significant difference between the approximations
computed for each random sample, across all sets of points and weights considered,
and the exact value of ln(2).

In summary, using the random function available in Excel to generate random sam-
ples, we conclude that no random set of points and associated random weights can
approximate ln(2) with satisfactory accuracy. By contrast, the approximations de-
rived from equidistant points and their corresponding optimal weights are highly
accurate.

4.2. Taylor-like expansion and Gauss quadratures. In the previous subsec-
tion, we considered random points and weights to compare the accuracy of corre-
sponding ln(2) approximation with those obtained by equidistant points and the
associated optimal weights we derived in Theorem 3.2.

In the following, we adopt another perspective, interpreting the general Taylor-like
formula (6) as a Gauss quadrature formula applied to the integration of a function
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f ′ belonging to C1([a, b]), as follows:

(43)

∫ b

a

f ′(x) dx =

(
n∑

k=0

Ωkf
′(xk)

)
+ (b− a)ϵ∗n(a, b),

where {xk}k=0,n are now considered as the nodes of a Gauss quadrature, and
Ωk, (k = 0, . . . , n), are the corresponding quadrature weights defined by: Ωk :=
(b − a)ωk. Consequently, the main part of the expansion of formula (26), (respec-
tively (22)) corresponds to the composite midpoint quadrature formula, (respec-
tively, the composite trapezoidal quadrature formula).

From this perspective, Theorems 3.1 and 3.2 demonstrate that, within the family of
Gauss quadratures (43), when the function to be integrated belongs to C1([a, b]), the
minimal interval for the quadrature error - represented by the term (b−a)ϵ∗n(a, b) in
Taylor-like formulas - is achieved either by the trapezoidal formula or the midpoint
formula. This result complements the work of S.S. Dragomir [19] and X.L. Cheng
[17], who considered different classes of functions, included those in C1. In their
studies, they demonstrated that the sharp constant appearing on the right-hand
side of the quadrature error cannot be smaller than 1/8, both for the trapezoidal
and midpoint formulas.

On the another hand, the estimates (27) and (23) from Theorems 3.1 and 3.2 can
also be compared with well-known results found in [18], which address more regular
functions. There, it is shown that the Gauss-Legendre formula minimizes the asso-
ciated quadrature error when f ′ belongs to C2n+2 on the interval of integration.

To simplify our presentation without loss of generality, we now consider the case
where [a, b] = [−1,+1]. The corresponding quadrature error E(f ′) defined as:

(44) E(f ′) =

∫ 1

−1

f ′(x) dx−

(
n∑

k=0

Ωkf
′(xk)

)
,

satisfies the following relation [18]:

(45) ∃ ξ ∈ ]− 1,+1[, E(f ′) =
f (2n+3)(ξ)

(2n+ 2)!

∫ 1

−1

π2
n+1(x) dx =

f (2n+3)(ξ)

(2n+ 2)!

2

2n+ 3
,

where πn+1 denotes the Legendre polynomial of degree less than or equal to n+1.
As a result, the corresponding standard estimate for the quadrature is given by:

(46) |E(f ′)| ≤ 2

(2n+ 3)!
.∥f (2n+3)∥∞,

where ∥.∥∞ denotes the standard L∞−norm on the interval of interest.

Our study, however, deals with functions f that are only C2, while the Gauss-
Legendre error estimate (46) applies only if the function belongs at least to C3([−1,+1]),
which corresponds to n = 0. In this case, the quadrature error E(f ′) given by (46)
leads to the following estimate:

(47) |E(f ′)| ≤ ∥f ′′′∥∞
3

.

Therefore, it is clear that the first-order Taylor-like formulas of (26) and (22) provide
a more accurate result, with the accuracy increasing with the number of points
considered within the interval [a, b]. More precisely, this is true for any number of
points n chosen in the estimate (23) from Theorem 3.1, since for all n ≥ 1, the
constant 1

4n is always less than the constant 1
3 involved in (47). This means that as
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soon as n ≥ 1 - which corresponds to having at least 2 points in the interval [−1, 1]
- the Taylor-like formula (22) produces a remainder that is upper-bounded by a
quantity smaller than that considered in the case of Gauss-Legendre quadrature
applied to C3 functions.

5. Conclusion

In this paper, we derived a new first-order Taylor-like formula constructed as a
linear combination of the first derivative of a given function, evaluated at specified
points xk, (k = 0, . . . , n), and weighted by real numbers ωk, (k = 0, . . . , n). Unlike
the approach in [15], the positions of these points and their corresponding weights
were not fixed a priori, relaxing the assumption of equally spaced points.

Our aim was to determine the optimal positions of these points and the associated
weights for obtaining the “best formula”, in the sense that the corresponding re-
mainder is as small as possible. To achieve this, we established an initial result that
provides upper and lower bounds for the remainder.

We then proved the existence of an optimal set of points and weights that minimize
the remainder in the first-order Taylor-like formula. In a first case, we fixed x0 = a
and xn = b a priori, while the other points are free in [a, b]. The result we obtained
corresponds to the formula we derived in [15], where we explicitly set a priori the
values of the points xk, (k = 1, . . . , n − 1), to be uniformly distributed within the
interval [a, b]. In a second case, the points are arbitrarily distributed in the interval
[a, b], leading to a result that involves the midpoints of each interval, all assigned
with the same weight.

Consequently, the findings in [15], primarily related to applications in error approx-
imations, can be considered optimal: this includes P1-interpolation error estimates,
the corrected trapezoidal quadrature formula, and finite element error approxima-
tions. For instance, using the corrected trapezoidal quadrature formula, we ob-
tained an upper bound that is half the size of the errors produced by the classical
trapezoidal quadrature formula. This highlights the significance and impact of the
new Taylor-like formula (22)-(23) in assessing the accuracy of a given numerical
approximation method.

In the last section, we evaluated the results of Theorems 3.1 and 3.2 and propose
numerical simulations that illustrate the optimality of the formula we derived. We
also interpret the general Taylor-like formula as a Gauss quadrature formula applied
to the integration of a function f ′ belonging (only) to C1([a, b]). In this context,
Theorems 3.1 and 3.2 proved that, within the family of Gauss quadratures, for
functions to be integrated belonging to C1([a, b]), the minimal interval where the
quadrature error lies corresponds to the cases of the trapezoidal formula or the
midpoint formula.

This research can be extended to cases of dimension strictly greater than one. This
extension will require a Taylor-like formula that we have already derived in [13].
Additionally, we could expand this work to a second-order Taylor-like formula, as
proposed in [14]. Both extensions will be explored to assess their impact on error
estimates in the context of numerical analysis applications.

Homages: The authors warmly dedicate this research to pay homage to the mem-
ory of Professors André Avez and Gérard Tronel, who largely promote the passion
for research and teaching in mathematics of their students.
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partielles, Masson (1982).
[26] B. Taylor, Methodus incrementorum directa and inversa, Innys: London, UK, Prop.VII,

Th.III, (1717), 21..
[27] D.D. Wackerly, W. Mendenhall, R. L. Scheaffer, Mathematical Statistics with Applications,

7th ed. Boston: Cengage Learning, (2014).



842 J. CHASKALOVIC AND F. ASSOUS

[28] O. C. Zienkiewicz, R. L. Taylor, S. Govindjee, The Finite Element Method: Its Basis and
Fundamentals, 8th edition, Elsevier (2024).

D’Alembert, Sorbonne University, Paris, France

E-mail : jch1826@gmail.com

Department of Mathematics, Ariel University, Ariel, Israel
E-mail : assous@ariel.ac.il


