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A CLASS OF RUNGE-KUTTA METHODS FOR BACKWARD

STOCHASTIC DIFFERENTIAL EQUATIONS

XIAO TANG1,∗ AND JIE XIONG2

Abstract. In this paper, we introduce a class of Runge-Kutta (RK) methods for backward
stochastic differential equations (BSDEs). The convergence rate is studied and the corresponding

order conditions are obtained. For the conditional expectations involved in the methods, we design
an approximation algorithm by combining the characteristics of the methods and replacing the
increments of Brownian motion with appropriate discrete random variables. An important feature

of our approximation algorithm is that interpolation operations can be avoided. The numerical
results of four examples are presented to show that our RK methods provide a good approach for
solving the BSDEs.
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1. Introduction

Consider the backward stochastic differential equation (BSDE) of the integral
form

(1) y(t) = φ(W (T )) +

∫ T

t

f(s, y(s), z(s)) ds−
∫ T

t

z(s) dW (s), t ∈ [0, T ],

where f : R × Rd × Rd×m −→ Rd is a Lipschitz-continuous function, W (t) =
(W 1(t),W 2(t), · · · ,Wm(t)) is an m-dimensional Wiener process supported by a
filtered probability space (Ω,F ,P, {F}0≤t≤T ), and the function φ : Rm −→ Rd has
continuous and bounded first derivatives.

The existence and uniqueness of the solution of (1) was first proved in [12].
Moreover, by [13] and [14], we know that the solution of (1) can be rewritten as

(2) y(t) = u(t,W (t)), z(t) = ∇u(t,W (t)), t ∈ [0, T ],

where ∇u is the gradient of u(t, x) with respect to the variable x, and u(t, x) is the
solution of the terminal value Cauchy problem

(3)


∂u

∂t
+

1

2

m∑
i=1

∂2u

∂x2
i

+ f(t, u,∇u) = 0, t ∈ [0, T ), x ∈ Rm,

u(T, x) = φ(x), x ∈ Rm.

The smoothness of the solution u depends on the smoothness of the functions f and

φ (see, e.g., [6, 24]). Specifically, if f ∈ Ck,2k,2k
b , φ ∈ C2k+ϵ

b , k ∈ Z+, ϵ ∈ (0, 1),

then we have u ∈ Ck,2k
b , where Ck,2k,2k

b denotes the set of continuously differentiable

functions ϕ(t, y, z) with uniformly bounded partial derivatives ∂l0
t ∂l1

y ∂l2
z ϕ for 2l0 +

l1 + l2 ≤ 2k, Ck,2k
b denotes the set of functions ϕ(t, x) with uniformly bounded

partial derivatives ∂l0
t ∂l1

x ϕ for 2l0 + l1 ≤ 2k, and C2k+ϵ
b denotes the set of functions

ϕ(x) such that ∂l
xϕ, l ≤ 2k are uniformly bounded and ∂2k

x ϕ is Hölder continuous
with index ϵ.
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As is well known, it is very difficult to find the analytic solution to most BSDEs.
Therefore, developing numerical methods for solving BSDEs is becoming highly
desired in practical applications. Up to now, many works on numerical methods of
the BSDEs or their extensions forward-backward stochastic differential equations
(FBSDEs) have been done. The methods in [5, 8, 9, 10, 11] are developed based
on the relation between the BSDEs and the corresponding Cauchy problem. The
methods in [3, 15, 16, 19, 20] are developed directly based on the BSDEs.

In recent years, there has been much interest in developing numerical methods
based directly on the BSDEs. In particular, the linear multistep methods for solving
ordinary differential equations (ODEs) have been successfully extended to solving
BSDEs (see, e.g., [1, 17, 18, 21, 23, 25]). However, Runge-Kutta (RK) methods,
as another type of important numerical methods for the ODEs, are rarely used to
solve the BSDEs. As far as we know, there are currently only two references that
have studied RK methods for the BSDEs [2, 4]. The authors of [4] studied a specific
second-order RK method. The authors of [2] introduced a class of RK methods and
provided rigorous convergence analysis results.

In the present paper, we will introduce a class of RK methods for the BSDEs (1).
The order conditions up to third order are obtained for our RK methods. Based
on the order conditions, we give two specific explicit RK methods. Combining the
characteristics of our RK methods and replacing the increments of Brownian mo-
tion with some appropriate discrete random variables, we design an approximation
algorithm for the conditional expectations involved in the RK methods. Our RK
methods is different from the RK methods proposed in [2]. The main difference lies
in the calculation of the internal stages about variable z (see method (7)), which is
more conducive to design the approximation algorithm for the conditional expecta-
tions (see Remark 1). In addition, no interpolation operations are required for our
approximation algorithm of the conditional expectations. What’s more, the ideal
of our approximate algorithm can be applied to many other methods for solving
the BSDEs (see below).

This paper is organized as follows. In section 2, we introduce our RK methods.
We study the convergence rate and obtain the corresponding order conditions in
section 3. In section 4, the approximation algorithm for the conditional expectations
is presented. Finally, we present some numerical results to verify our theoretical
results.

2. RK methods for the BSDEs

Under the uniform time stepsize h = T
N , tn = nh, n = 0, 1, 2, · · · , N (N is a

given positive integer), we have

(4)


y(tn) = y(tn+1) +

∫ tn+1

tn

f(s, y(s), z(s)) ds−
∫ tn+1

tn

z(s) dW (s), n < N,

y(tN ) = φ(W (T )).

Inspired by [19, 20], for equation (4), we can establish the following two ordinary
differential reference equations

(5) y(tn) = Etn

[
y(tn+1) +

∫ tn+1

tn

f(s, y(s), z(s)) ds
]
,
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(6)

0 = Etn

[
y(tn+1)∆Wtn(h)+

∫ tn+1

tn

f(s, y(s), z(s))∆Wtn(s− tn) ds−
∫ tn+1

tn

z(s) ds
]
,

where Et[·] = E[ · | Ft] and ∆Wt(θ) = W (t+ θ)−W (t), 0 ≤ θ ≤ T − t.
Learning from the idea of RK methods for the ODEs, we introduce our RK

methods for the BSDE (1), which take the form

(7)

yN = φ(W (T )), zN = ∇φ(W (T )),

yn = Etn

[
yn+1 + h

q+1∑
i=1

bif(tn,i, Yn,i, Zn,i)
]
, n = 0, 1, · · · , N − 1,

zn = Etn

[
yn+1Hn,q+1,1 + h

q∑
i=1

βif(tn,i, Yn,i, Zn,i)Hn,q+1,i

]
,

Yn,1 = yn+1, Zn,1 = zn+1, Yn,q+1 = yn, Zn,q+1 = zn,

Yn,i = Etn,i

[
yn+1 + h

i∑
j=1

aijf(tn,j , Yn,j , Zn,j)
]
, 2 ≤ i ≤ q,

Zn,i = Etn,i

[
zn+1 + h

i−1∑
j=1

αijf(tn,j , Yn,j , Zn,j)Hn,i,j

]
,

where q is a given positive integer, and tn,i = tn+1 − cih with 0 = c1 < c2 ≤ · · · ≤
cq+1 = 1. The coefficients bi, βi, aij , αij ∈ R and satisfy

βi = 0, if ci = 1,

αij = 0, if ci ≤ cj ,

i∑
j=1

aij =

i−1∑
j=1

αij = ci, 2 ≤ i ≤ q.

The random variable Hn,i,j satisfies

Hn,i,j =


1

(ci − cj)h
(W (tn,j)−W (tn,i)), if ci > cj ,

0, else.

3. Convergence analysis of the RK methods for the BSDEs

Although RK method (7) appears to be more complex than the classical RK
methods for solving ODE, we can still draw on the analytical approach of the
classical RK methods when exploring the convergence of RK method (7). Similar
to the classical RK methods, we study the convergence of RK method (7) for the
BSDEs by analyzing (mean-square) zero stability and consistency.

3.1. Stability. We first analyze the stability of the method (7). For convenience
of description, we rewrite the method (7) as the form

(8)
yn = Etn

[
yn+1 + hΦ(tn+1, yn+1, zn+1, h,H)

]
, n = 0, 1, · · · , N − 1,

zn = Etn

[
yn+1Hn,q+1,1 + hΨ(tn+1, yn+1, zn+1, h,H)

]
,
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where H can be seen as a vector containing all the random variables Hn,i,j , 1 ≤
j ≤ i ≤ q + 1, and the functions Φ, Ψ satisfy

(9)

Φ(tn+1, yn+1, zn+1, h,H) =

q+1∑
i=1

bif(tn,i, Yn,i, Zn,i),

Ψ(tn+1, yn+1, zn+1, h,H) =

q∑
i=1

βif(tn,i, Yn,i, Zn,i)Hn,q+1,i,

Yn,1 = yn+1, Zn,1 = zn+1, Yn,q+1 = yn, Zn,q+1 = zn,

Yn,i = Etn,i

[
yn+1 + h

i∑
j=1

aijf(tn,j , Yn,j , Zn,j)
]
, 2 ≤ i ≤ q,

Zn,i = Etn,i

[
zn+1 + h

i−1∑
j=1

αijf(tn,j , Yn,j , Zn,j)Hn,i,j

]
.

To investigate the stability, we introduce a perturbed method

(10)
ỹn = Etn

[
ỹn+1 + hΦ(tn+1, ỹn+1, z̃n+1, h,H)

]
+ ξYn , n = 0, 1, · · · , N − 1,

z̃n = Etn

[
ỹn+1Hn,q+1,1 + hΨ(tn+1, ỹn+1, z̃n+1, h,H)

]
+ ξZn ,

where the terminal values ỹN , z̃N belong to L2(FT ) and the perturbation variables
ξYn , ξZn belong to L2(Ftn) (L2(Ft) denotes the set of all the Ft-measurable and
square integrable random variables). Next, we will prove the following result of
stability.

Theorem 3.1. Let δyn = yn − ỹn, δzn = zn − z̃n. If the function f is Lipschitz-
continuous and h is small enough, then we have

(11)

max
0≤n≤N−1

E
[
| δyn |2

]
+ h

N−1∑
n=0

E
[
| δzn |2

]
≤ C

(
E
[
| δyN |2

]
+ hE

[
| δzN |2

]
+

N−1∑
n=0

E
[ 1

h
| ξYn |2 +h | ξZn |2

])
,

where | · | is the Euclidean norm, and C is a positive constant that does not depend
on h.

Proof. The proof approach of this theorem is similar to the proof of zero stability for
the classical RK methods. But the specific proof process will be more complicated
in the mean square sense.

We first prove that

(12)

∣∣∣Etn

[
Φ(tn+1, yn+1, zn+1, h,H)− Φ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣∣2
≤ C1

( 1

h
Bn + Etn

[
| δyn+1 |2 + | δzn+1 |2

]
+ | ξYn |2 + | ξZn |2

)
,

(13)

∣∣∣Etn

[
Ψ(tn+1, yn+1, zn+1, h,H)−Ψ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣∣2
≤ C2

h

( 1

h
Bn + Etn

[
| δyn+1 |2 + | δzn+1 |2

]
+ | ξYn |2 + | ξZn |2

)
when h is small enough, where Bn = Etn

[
| δyn+1 |2

]
− | Etn

[
δyn+1

]
|2 and C1, C2

are positive constants that do not depend on h.
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Based on the definition ofHn,i,j , the Lipshcitz condition and (9), it is not difficult
to show that

(14) Etn

[
| Hn,i,j |2

]
≤ K

h
, K = max

ci>cj

1

ci − cj
, 1 ≤ j ≤ i ≤ q + 1,

(15)

∣∣∣Etn

[
Φ(tn+1, yn+1, zn+1, h,H)− Φ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣∣2
≤ (q + 1)

q+1∑
i=1

| bi |2 Etn

[
| f(tn,i, Yn,i, Zn,i)− f(tn,i, Ỹn,i, Z̃n,i) |2

]
≤ 2(q + 1)L2

q+1∑
i=1

| bi |2 Etn

[
| δYn,i |2 + | δZn,i |2

]
,

(16)∣∣∣Etn

[
Ψ(tn+1, yn+1, zn+1, h,H)−Ψ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣∣2
≤ q

q∑
i=1

| βi |2
∣∣∣Etn

[(
f(tn,i, Yn,i, Zn,i)− f(tn,i, Ỹn,i, Z̃n,i)

)
Hn,q+1,i

]∣∣∣2
≤ q

q∑
i=1

| βi |2 Etn

[
| f(tn,i, Yn,i, Zn,i)− f(tn,i, Ỹn,i, Z̃n,i) |2

]
Etn

[
| Hn,q+1,i |2

]
≤ 2qKL2

h

q∑
i=1

| βi |2 Etn

[
| δYn,i |2 + | δZn,i |2

]
,

where Ỹn,i, Z̃n,i are defined as Yn,i, Zn,i by replacing yn+1, zn+1 with ỹn+1, z̃n+1,

δYn,i = Yn,i − Ỹn,i, δZn,i = Zn,i − Z̃n,i, and L is the Lipshcitz constant. Note that

Etn

[
| δYn,1 |2

]
= Etn

[
| δyn+1 |2

]
,

Etn

[
| δZn,1 |2

]
= Etn

[
| δzn+1 |2

]
,

and

Etn

[
| δYn,q+1 |2

]
= | δyn |2

≤3
(
Etn

[
| δyn+1 |2

]
+ h2

∣∣Etn

[
Φ(tn+1, yn+1, zn+1, h,H)− Φ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣2
+ | ξYn |2

)
≤3

(
Etn

[
| δyn+1 |2

]
+ 2(q + 1)L2h2

q+1∑
i=1

| bi |2 Etn

[
| δYn,i |2 + | δZn,i |2

]
+ | ξYn |2

)
,
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and

Etn

[
| δZn,q+1 |2

]
= | δzn |2

≤3
(
| Etn

[
δyn+1Hn,q+1,1

]
|2

+ h2
∣∣Etn

[
Ψ(tn+1, yn+1, zn+1, h,H)−Ψ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣2
+ | ξZn |2

)
=3

(
| Etn

[(
δyn+1 − Etn

[
δyn+1

])
Hn,q+1,1

]
|2

+ h2
∣∣Etn

[
Ψ(tn+1, yn+1, zn+1, h,H)−Ψ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣2
+ | ξZn |2

)
≤3

(K
h
Bn + 2qKL2h

q∑
i=1

| βi |2 Etn

[
| δYn,i |2 + | δZn,i |2

]
+ | ξZn |2

)
,

and

Etn

[
| δYn,i |2

]
≤2

(
Etn

[
| δyn+1 |2

]
+ 2iL2h2

i∑
j=1

| aij |2 Etn

[
| δYn,j |2 + | δZn,j |2

])
,

Etn

[
| δZn,i |2

]
≤2

(
Etn

[
| δzn+1 |2

]
+ 2(i− 1)KL2h

i−1∑
j=1

| αij |2 Etn

[
| δYn,j |2 + | δZn,j |2

])
for 2 ≤ i ≤ q. Take

M = max
i,j

{| bi |, | βi |, | aij |, | αij |},

then it is not difficult to show that
(17)

q+1∑
i=1

Etn

[
| δYn,i |2 + | δZn,i |2

]
≤ 3K

h
Bn + (2q + 2)Etn

[
| δyn+1 |2 + | δzn+1 |2

]
+ 3

(
| ξYn |2 + | ξZn |2

)
+
(
2q(q + 2)K + (2q2 + 8q + 2)h

)
M2L2h

q+1∑
i=1

Etn

[
| δYn,i |2 + | δZn,i |2

]
.

The estimates (12) and (13) follow from the estimates (15)-(17) if h is small enough.
Note that

(18) (a+ b)2 ≤ (1 + λ1h)a
2 + (1 +

1

λ1h
)b2,
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where λ1 could be any given positive constant. Then, by using the estimates (12)
and (13), we have
(19)

| δyn |2≤ (1 + λ1h)
∣∣Etn

[
δyn+1

]∣∣2
+(1 +

1

λ1h
)
(
h
∣∣Etn

[
Φ(tn+1, yn+1, zn+1, h,H)− Φ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣
+ | ξYn |

)2

≤ (1 + λ1h)
∣∣Etn

[
δyn+1

]∣∣2
+2C1h

2(1 +
1

λ1h
)
( 1

h
Bn + Etn

[
| δyn+1 |2 + | δzn+1 |2

]
+(1 +

1

C1h2
) | ξYn |2 + | ξZn |2

)
,

(20)

| δzn |2≤ 3
(
| Etn

[
δyn+1Hn,q+1,1

]
|2

+h2
∣∣Etn

[
Ψ(tn+1, yn+1, zn+1, h,H)−Ψ(tn+1, ỹn+1, z̃n+1, h,H)

]∣∣2+ | ξZn |2
)

≤ 3C2h
(
(
1

h
+

K

C2h2
)Bn + Etn

[
| δyn+1 |2 + | δzn+1 |2

]
+ | ξYn |2 +(1 +

1

C2h
) | ξZn |2

)
.

Combining (19), (20) and the definition of Bn leads to

(21)

| δyn |2 +λ2h | δzn |2

≤
(
(1 + λ1h)− 2C1(

1
λ1

+ h)− 3λ2(K + C2h)
)∣∣Etn

[
δyn+1

]∣∣2
+
(
2C1(

1
λ1

+ 1
λ1
h+ h+ h2) + 3λ2(K + C2h+ C2h

2)
)
Etn

[
| δyn+1 |2

]
+
(
2C1(

1
λ1
h+ h2) + 3λ2C2h

2
)
Etn

[
| δzn+1 |2

]
+
(
2( 1

λ1h
+ 1)(1 + C1h

2) + 3λ2C2h
2
)
| ξYn |2

+
(
2C1h(

1
λ1

+ h) + 3λ2h(1 + C2h)
)
| ξZn |2,

where λ2 could be any given positive constant. Let λ1 = 4C1(
1

2
+ 3K) and λ2 =

1
1
2 + 3K

, then there is a positive constant C3 such that

(22)

E
[
| δyn |2 +

λ2

2
h | δzn |2

]
+

λ2

2
hE

[
| δzn |2

]
≤ (1 + C3h)

∣∣E[ | δyn+1 |2 +
λ2

2
h | δzn+1 |2

]
+ C3E

[ 1
h
| ξYn |2 +h | ξZn |2

]
when h is small enough.



784 X. TANG AND J. XIONG

On the one hand, the Gronwall inequality leads to

(23)

max
0≤n≤N−1

E
[
| δyn |2

]
≤ max

0≤n≤N−1
E
[
| δyn |2 +λ2

2 h | δzn |2
]

≤ C4

(
E
[
| δyN |2 +λ2

2 h | δzN |2
]
+

N−1∑
n=0

E
[

1
h | ξYn |2 +h | ξZn |2

])
,

where C4 > 0 and independent of the stepsize h.
On the other hand, summing the inequality (22) over n, we have

(24)

h

N−1∑
n=0

E
[
| δzn |2

]
≤ 2

λ2

(
E
[
| δyN |2 +

λ2

2
h | δzN |2

]
+C3T max

0≤n≤N−1
E
[
| δyn+1 |2 +

λ2

2
h | δzn+1 |2

]
+C3

N−1∑
n=0

E
[ 1

h
| ξYn |2 +h | ξZn |2

])
.

The conclusion (11) follows from (23) and (24). �

3.2. Order conditions. Consistency analysis is actually analyzing local errors.
The most commonly used technique for analyzing local errors is Taylor expansion.
Therefore, for a clearer description, we first introduce some notations about sto-
chastic Taylor expansions (For details, please refer to the Chapter 5 of [7]).

Let
(25)

M =
{
(j1, j2, · · · , jl)

∣∣∣ ji ∈ {0, 1, · · · ,m}, i ∈ {1, 2, · · · , l}, l = 1, 2, 3, · · ·
}∪{

∅
}

be the set of all multi-indices. The number of components of γ ∈ M is denoted
by l(γ), in particular, l(∅) := 0. The number of zero in γ is denoted by n(γ). The
multi-index (j1, j2, · · · , jl) can abbreviate to (j)l when j1 = j2 = · · · = jl = j. For
γ = (j1, j2, · · · , jl), η = (k1, k2, · · · , kp) ∈ M, we define

(26)
γ ∗ η = (j1, j2, · · · , jl, k1, k2, · · · , kp),

Lγ = L(j1)L(j2) · · ·L(jl),

where the differential operators L(j), j = 0, 1, · · · ,m satisfy

(27) L(j) =


∂

∂t
+

1

2

m∑
i=1

∂2

∂x2
i

, j = 0,

∂

∂xj
, j = 1, 2, · · · ,m.

For a given positive integer p, take

(28) Ap =
{
γ ∈ M

∣∣ l(γ) + n(γ) ≤ 2p+ 1
}
.

If the function ϕ(t, x) ∈ C1+p,2+2p
b , the multi-indices γ, η belong to Ap and differ

only in the order of the indices, then it is not difficult to show that

(29) Lγϕ = Lηϕ.

Now, we introduce the following result.
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Proposition 3.2. Let ut = u(t,W (t)), uγ
t = Lγu(t,W (t)), if the function u ∈

C1+p,2+2p
b , then for a given positive integer p, we have

(30)

Et

[
u(t+ h,W (t+ h))

]
= ut + hu

(0)
t +

h2

2
u
(0)2
t + · · ·+ hp

p!
u
(0)p
t +Ot(h

p+1),

(31)
1

h
Et

[
u(t+ h,W (t+ h))∆W k

t (h)
]
= u

(k)
t + hu

(k,0)
t + · · ·+ hp

p!
u
(k)∗(0)p
t +Ot(h

p+1),

where ∆W k
t (h) = W k(t + h) − W k(t), k ∈ {1, 2, · · · ,m}, Ot(h

p+1) ∈ Ft and E
[
|

Ot(h
p+1) |

]
= O(hp+1).

Proposition 3.2 can be seen as the special situation of Propositions 2.2 and 2.3
in [2] with X(t) = W (t). Therefore the readers can refer to [2] for its proof.

Before giving the result of order conditions, we first give the definition about the
convergence order of the RK method (7).

Definition 3.3. If the estimate

(32) max
0≤n≤N−1

E
[
| y(tn)− yn |2

]
+ h

N−1∑
n=0

E
[
| z(tn)− zn |2

]
≤ Ch2p

is fulfilled when h is small enough, then we call the RK method (7) is of order p.

By using Theorem 3.1 and Proposition 3.2, we can obtain a main result, which
presents the order conditions of the RK method (7) up to third order.

Theorem 3.4. Assume f ∈ C4,8,8
b and φ ∈ C8+ϵ

b , then the solution u of (3) belong

to C4,8
b . If the condition

(33)

q+1∑
i=1

bi = 1

is fulfilled, then the RK method (7) is of order 1. If (33) and the addition conditions

(34)

q∑
i=1

βi = 1,

q∑
i=2

bici + bq+1 =
1

2

are fulfilled, then the RK method (7) is of order 2. If (33), (34) and the addition
conditions

(35)

q∑
i=2

βici =
1

2
,

q∑
i=2

bic
2
i + bq+1 =

1

3
,

q∑
i=2

i∑
j=2

biaijcj +
1

2
bq+1 =

1

6
,

q∑
i=3

i−1∑
j=2

biαijcj +
1

2
bq+1 =

1

6

are fulfilled, then the RK method (7) is of order 3.

Proof. The proof of this theorem mainly relies on the repeated use of Taylor or
stochastic Taylor expansion techniques. There is no essential difference between
one-dimensional and multi-dimensional BSDEs in the proof process. Therefore, we
prove only the case of d = m = 1 for simplicity of description.

Based on (2), (3) and (27), we know the fact that

(36) y(t) = ut, z(t) = u
(1)
t , f(t, y(t), z(t)) = −u

(0)
t .
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Take yn+1 = y(tn+1), zn+1 = z(tn+1) in (7), then Yn,1 = utn+1 , Zn,1 = u
(1)
tn+1

. By

using Proposition 3.2, the equation (29) and the fact that α21 = c2, we can show
that
(37)

Zn,2 = Etn,2

[
zn+1 + hα21f(tn+1, yn+1, zn+1)Hn,2,1

]
= u

(1)
tn,2

+ c2hu
(1,0)
tn,2

+
c22
2
h2u

(1,0,0)
tn,2

− α21hu
(1,0)
tn,2

− α21c2h
2u

(1,0,0)
tn,2

+Otn,2(h
3)

= u
(1)
tn,2

− c22
2
h2u

(1,0,0)
tn,2

+Otn,2(h
3).

For Yn,2, it is not difficult to show that
(38)

Yn,2 = Etn,2

[
yn+1 + ha21f(tn+1, yn+1, zn+1)

]
+ ha22f(tn,2, Yn,2, Zn,2)

= Etn,2

[
yn+1 + ha21f(tn+1, yn+1, zn+1)

]
+ ha22f(tn,2, utn,2 , u

(1)
tn,2

)

+ha22(δf1 + δf2)

= utn,2 + c2hu
(0)
tn,2

+
c22
2
h2u

(0,0)
tn,2

− a21hu
(0)
tn,2

− a21c2h
2u

(0,0)
tn,2

− a22hu
(0)
tn,2

+ha22(δf1 + δf2) +Otn,2(h
3)

= utn,2 − (
c22
2

− a22c2)h
2u

(0,0)
tn,2

+ ha22(δf1 + δf2) +Otn,2(h
3),

where we use the equation a21 + a22 = c2 and

δf1 = f(tn,2, Yn,2, Zn,2)− f(tn,2, Yn,2, u
(1)
tn,2

),

δf2 = f(tn,2, Yn,2, u
(1)
tn,2

)− f(tn,2, utn,2 , u
(1)
tn,2

).

Combining (37), (38) and the Lipshcitz condition can lead to

| δf1 |= Otn,2(h
2), | δf2 |= Otn,2(h

2).

Then

(39) Yn,2 = utn,2 − (
c22
2

− a22c2)h
2u

(0,0)
tn,2

+Otn,2(h
3).

Let fy
t and fz

t denote the partial derivatives of f(t, y(t), z(t)) with respect to y
and z, respectively. By a first order Taylor expansion, it is easy to obtain

(40)
f(tn,2, Yn,2, Zn,2) = −u

(0)
tn,2

− (
c22
2 − a22c2)h

2u
(0,0)
tn,2

fy
tn,2

− c22
2 h

2u
(1,0,0)
tn,2

fz
tn,2

+Otn,2(h
3).

Through similar and cumbersome calculations, we can obtain
(41)

f(tn,i, Yn,i, Zn,i) = −u
(0)
tn,i

−
(c2i
2

−
i∑

j=2

aijcj

)
h2u

(0,0)
tn,i

fy
tn,i

−
(c2i
2

−
i−1∑
j=2

αijcj

)
h2u

(1,0,0)
tn,i

fz
tn,i

+Otn,i(h
3), i = 3, 4, · · · , q.
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Then we have
(42)

zn = Etn

[
yn+1Hn,q+1,1 + h

q∑
i=1

βif(tn,i, Yn,i, Zn,i)Hn,q+1,i

]
= u

(1)
tn + hu

(1,0)
tn +

1

2
h2u

(1,0,0)
tn − β1hu

(1,0)
tn − β1c2h

2u
(1,0,0)
tn − β2hu

(1,0)
tn

−β2(1− c2)h
2u

(1,0,0)
tn − · · · − βqhu

(1,0)
tn − βq(1− cq)h

2u
(1,0,0)
tn +Otn(h

3)

= u
(1)
tn +

(
1−

q∑
i=1

βi

)
hu

(1,0)
tn +

(1
2
− β1 −

q∑
i=2

βi(1− ci)
)
h2u

(1,0,0)
tn +Otn(h

3)

and
(43)

yn = Etn

[
yn+1 + h

q∑
i=1

bif(tn,i, Yn,i, Zn,i)
]
+ hbq+1f(tn, yn, zn)

= Etn

[
yn+1 + h

q∑
i=1

bif(tn,i, Yn,i, Zn,i)
]

+hbq+1f(tn, utn , u
(1)
tn ) + hbq+1(δf3 + δf4)

= utn + hu
(0)
tn +

1

2
h2u

(0,0)
tn +

1

6
h3u

(0,0,0)
tn − b1hu

(0)
tn − b1h

2u
(0,0)
tn − b1

2
h3u

(0,0,0)
tn

−b2hu
(0)
tn − b2(1− c2)h

2u
(0,0)
tn − b2(1− c2)

2

2
h3u

(0,0,0)
tn

− · · · − bqhu
(0)
tn − bq(1− cq)h

2u
(0,0)
tn − bq(1− cq)

2

2
h3u

(0,0,0)
tn − bq+1hu

(0)
tn

−b2(
c22
2

− a22c2)h
3u

(0,0)
tn fy

tn − b2
c22
2
h3u

(1,0,0)
tn fz

tn

− · · · − bq

(c2q
2

−
q∑

j=2

aijcj

)
h3u

(0,0)
tn fy

tn − bq

(c2q
2

−
q−1∑
j=2

αijcj

)
h3u

(1,0,0)
tn fz

tn

+bq+1h(δf3 + δf4) +Otn(h
4)

= utn +
(
1−

q+1∑
i=1

bi

)
hu

(0)
tn +

(1
2
− b1 −

q∑
i=2

bi(1− ci)
)
h2u

(0,0)
tn

+
(1
6
− b1

2
−

q∑
i=2

bi(1− ci)
2

2

)
h3u

(0,0,0)
tn −

q∑
i=2

bi

(c2i
2

−
i∑

j=2

aijcj

)
h3u

(0,0)
tn fy

tn

−
(
b2
c22
2

+

q∑
i=3

bi
(c2i
2

−
i−1∑
j=2

αijcj
))

h3u
(1,0,0)
tn fz

tn + bq+1h(δf3 + δf4) +Otn(h
4),

where

δf3 = f(tn, yn, zn)− f(tn, yn, u
(1)
tn ), δf4 = f(tn, yn, u

(1)
tn )− f(tn, utn , u

(1)
tn ).

If the condition (33) is fulfilled, the equations (42) and (43) mean that
(44)

y(tn) = Etn

[
y(tn+1) + hΦ(tn+1, y(tn+1), z(tn+1), h,H)

]
+Otn(h

2),

z(tn) = Etn

[
y(tn+1)Hn,q+1,1 + hΨ(tn+1, y(tn+1), z(tn+1), h,H)

]
+Otn(h).

The first conclusion follows from Theorem 3.1 and (44). By some simple calcula-
tions, we can easily verify that the second and third conclusions are also correct.
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The proof is complete. �

Many specific RK methods can be proposed by using Theorem 3.4. We list two
specific RK methods here.

The first one is a second order explicit RK method with q = 2, which takes the
form

(45)

yn = Etn

[
yn+1 + h

(1
2
f(tn+1, Yn,1, Zn,1)

)]
+
1

2
hf(tn, Yn,2, Zn,2),

zn = Etn

[
yn+1Hn,1 + hf(tn+1, Yn,1, Zn,1)Hn,1

]
,

Yn,1 = yn+1, Zn,1 = zn+1,

Yn,2 = Etn

[
yn+1 + hf(tn+1, Yn,1, Zn,1)

]
,

Zn,2 = Etn

[
zn+1 + hf(tn+1, Yn,1, Zn,1)Hn,1

]
,

where Hn,1 = 1
h

(
W (tn+1)−W (tn)

)
.

The second one is a third order explicit RK method with q = 3, which takes the
form
(46)

yn = Etn

[
yn+1 + h

(1
6
f(tn+1, Yn,1, Zn,1) +

2

3
f(tn+ 1

2
, Yn,2, Zn,2)

)]
+
1

6
hf(tn, Yn,3, Zn,3),

zn = Etn

[
yn+1Hn,1 + hf(tn+ 1

2
, Yn,2, Zn,2)Hn,2

]
,

Yn,1 = yn+1, Zn,1 = zn+1,

Yn,2 = Et
n+1

2

[
yn+1 +

1

2
hf(tn+1, Yn,1, Zn,1)

]
,

Zn,2 = Et
n+1

2

[
zn+1 +

1

2
hf(tn+1, Yn,1, Zn,1)Hn,3

]
,

Yn,3 = Etn

[
yn+1 − hf(tn+1, Yn,1, Zn,1) + 2hf(tn+ 1

2
, Yn,2, Zn,2)

]
,

Zn,3 = Etn

[
zn+1 − hf(tn+1, Yn,1, Zn,1)Hn,1 + 2hf(tn+ 1

2
, Yn,2, Zn,2)Hn,2

]
,

where Hn,1 = 1
h

(
W (tn+1) − W (tn)

)
, Hn,2 = 2

h

(
W (tn+ 1

2
) − W (tn)

)
and Hn,3 =

2
h

(
W (tn+1)−W (tn+ 1

2
)
)
.

4. Approximation of conditional expectation

To implement the method (7), we first need to compute the conditional expecta-
tions involved. In this section, we will introduce our algorithm to approximate the
needed conditional expectations. In our approximate algorithm, the increments of
Brownian motion will be replaced by some appropriate discrete distributed random
variables. An important advantage of our algorithm is that it can avoid the inter-
polation operations. High-order interpolation polynomials are not only prone to
instability, but also costly for high-dimensional problems. Therefore, it is meaning-
ful to avoid interpolation. In addition, the ideal of our approximate algorithm can
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be applied to many other methods for solving the BSDEs,such as the θ-methods
(see, e.g., [20, 22]) and the multistep methods (see, e.g., [17, 18, 21]).

We first introduce the following useful result.

Theorem 4.1. Assume the function u ∈ C1+p,2+2p
b . If ξ1, ξ2, · · · , ξm are the inde-

pendent and identically distributed random variables and satisfy

(47) E
[
(
√
hξi)

q
]
=


0, q = 1, 3, · · · , 2p+ 1,

(q − 1)!! h
q
2 , q = 2, 4, · · · , 2p,

O(h
q
2 ), q ≥ (2p+ 2),

i = 1, 2, · · · ,m

for a positive integer p. Then, for the given t ∈ R, x ∈ Rm, we have

(48)
E
[
u
(
t+ h, x+∆Wt(h)

)]
= E

[
u(t+ h, x+

√
hξ)

]
+O(hp+1),

E
[
u
(
t+ h, x+∆Wt(h)

)
∆Wt(h)

]
= E

[
u(t+ h, x+

√
hξ)

√
hξ

]
+O(hp+1),

where ξ = (ξ1, ξ2, · · · , ξm).

Proof. Take

(49) X(t+ h) = x+∆Wt(h) = x+

∫ t+h

t

◦ dW (s),

where the stochastic integral is the Stratonovich stochastic integral. Define

(50) L̂(j) =


∂

∂t
, j = 0,

∂

∂xj
, j = 1, 2, · · · ,m,

and let

(51)

L̂γ = L̂(j1)L̂(j2) · · · L̂(jl), γ = (j1, j2, · · · , jl) ∈ M,

Jγ,t,t+h =

∫ t+h

t

∫ sl

t

· · ·
∫ s2

t

◦ dW j1(s1) ◦ dW j2(s2) · · · ◦ dW jl(sl),

where ◦ dW 0(s) = ds. The multiple integral Jγ,t,t+h will be abbreviated as Jγ
hereinafter.

Using Stratonovich-Taylor expansion formula [7], we have

(52) u(t+ h,X(t+ h)) =
∑
γ∈Ap

ûγ
t Jγ +Rp,

where ûγ
t = L̂γu(t, x), E[Rp] = O(hp+1) and Ap is defined by (28).

Let Λj1j2···jl , j1, j2, · · · , jl ∈ {0, 1, · · · ,m} denote the set generated by all the
permutations of the indices j1, j2, · · · , jl. For example,
(53)

Λj1 = {(j1)},

Λj1j2 = {(j1, j2), (j2, j1)},

Λj1j2j3 = {(j1, j2, j3), (j1, j3, j2), (j2, j1, j3), (j2, j3, j1), (j3, j1, j2), (j3, j2, j1)}.

From [7], we know that
(54)

J(j1,j2,··· ,jl)J(jl+1) = J(jl+1,j1,j2,··· ,jl) + J(j1,jl+1,j2,··· ,jl) + · · ·+ J(j1,j2,··· ,jl,jl+1),
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where j1, j2, · · · , jl+1 ∈ {0, 1, 2, · · · ,m}. Repeatedly applying the formula (54), we
have
(55) ∑

γ∈Λj1j2···jl

Jγ = J(j1)

∑
γ∈Λj2j3···jl

Jγ = J(j1)J(j2)

∑
γ∈Λj3j4···jl

Jγ = · · · = J(j1)J(j2) · · · J(jl).

Similar to (29), we can easily verify that

(56) ûγ
t = ûη

t , γ, η ∈ Ap

when γ, η differ only in the order of the indices.
Based on (55) and (56), Stratonovich-Taylor expansion (52) can be rewritten as

(57) u(t+ h,X(t+ h)) =
∑
γ∈Ap

ûγ
t Ĵγ +Rp,

where

Ĵγ = Ĵ(j1,j2,··· ,jl) =
1

l!
J(j1)J(j2) · · · J(jl).

Using Taylor expansion of the multivariate function, we have

(58) u(t+ h, x+
√
hξ) =

∑
γ∈Ap

ûγ
t J̃γ + R̃p,

with E[R̃p] = O(hp+1) and

J̃γ = J̃(j1,j2,··· ,jl) =
h

l(γ)+n(γ)
2

l!
ξj1ξj2 · · · ξjl ,

where ξj = 1 if j = 0.
If the condition (47) is fulfilled, then it is not difficult to show that

(59)

E
[
Ĵγ

]
= E

[
J̃γ

]
, γ ∈ Ap,

E
[
Ĵγ

(
W (t+ h)−W (t)

)]
=

 E
[√

hJ̃γξ
]
, l(γ) + n(γ) ≤ 2p,

E
[√

hJ̃γξ
]
+O(hp+1), l(γ) + n(γ) = 2p+ 1.

The conclusion (48) follows from (57)-(59).
The proof is complete. �

Remark 1. If the function u ∈ C1+p,3+2p
b , based on Theorem 4.1, we have

(60)

E
[
u(1)

(
t+ h, x+∆Wt(h)

)]
= E

[
u(1)(t+ h, x+

√
hξ)

]
+O(hp+1),

1

h
E
[
u
(
t+ h, x+∆Wt(h)

)
∆Wt(h)

]
=

1

h
E
[
u(t+ h, x+

√
hξ)

√
hξ

]
+O(hp).

Note that

(61) y(t) = u(t,W (t)), z(t) = u(1)(t,W (t)),

then combining (60) and (61), it can be seen that the accuracy of the approximation
of Etn

[
zn+1

]
is higher than that of 1

hEtn

[
yn+1∆Wt(h)

]
when ∆Wt(h) is replaced

by ξ. This is why our RK method (7) uses Etn

[
zn+1

]
instead of Etn

[
yn+1Hn,i,1

]
when calculating the internal stages Zn,i, 2 ≤ i ≤ q.

Based on the condition (47), we list some discrete random variables in Table 1. It
is not difficult to show that the random variable η̂3 satisfies the condition (47) with
p = 1, η3, η5 satisfy the condition (47) with p = 2 and η7 satisfies the condition (47)
with p = 3. For a given positive integer p, the discrete random variable satisfying
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Table 1. Some discrete random variables.

three-point

P(η̂3 = ±
√

3

2
) =

1

3
, P(η̂3 = 0) =

1

3

P(η3 = ±
√
3) =

1

6
, P(η3 = 0) =

2

3

five-point P(η5 = ±
√
2) =

5

24
, P(η5 = ±2

√
2) =

1

96
, P(η5 = 0) =

9

16

seven-point

P(η7 = ±
√

3

2
) =

25

108
, P(η7 = ±2

√
3

2
) =

13

540
,

P(η7 = ±3

√
3

2
) =

1

1620
, P(η7 = 0) =

79

162

condition (47) is not unique. The purpose of selecting η̂3, η3, η5 and η7 is to avoid
interpolation operations when calculating the conditional expectations (see below).

According to Theorem 3.1, we know that if the method (8) is of order p then the
method

(62)
yn = Êtn

[
yn+1 + hΦ(tn+1, yn+1, zn+1, h,H)

]
, n = 0, 1, · · · , N − 1,

zn = Êtn

[
yn+1Hn,q+1,1 + hΨ(tn+1, yn+1, zn+1, h,H)

]
is also of order p when the conditions
(63)

Etn

[
yn+1

]
= Êtn

[
yn+1

]
+O(hp+1),

Etn

[
Φ(tn+1, yn+1, zn+1, h,H)

]
= Êtn

[
Φ(tn+1, yn+1, zn+1, h,H)

]
+O(hp),

Etn

[
yn+1Hn,q+1,1

]
= Êtn

[
yn+1Hn,q+1,1

]
+O(hp),

Etn

[
Ψ(tn+1, yn+1, zn+1, h,H)

]
= Êtn

[
Ψ(tn+1, yn+1, zn+1, h,H)

]
+O(hp−1)

are fulfilled, where Êtn

[
·
]
is a approximation of Etn

[
·
]
. We can observe form (63)

that different parts have different requirements for the approximation accuracy of
the conditional expectations. It is these differences that make us more flexible in
choosing the random variables to approximate the Brownian motion increments.

To remove the conditional expectations, we need spatial discretization. For ease
of description, we assume m = 1 and let

(64) Dn =
{
xi

∣∣ xi = i
√
3h, i = 0,±1, · · · ,±n

}
, n = 0, 1, · · · , N

be a partition of spatial variable x at t = tn. Based on Theorem 4.1 and Table 1,
for xi ∈ Dn, we have

(65)

E
[
u
(
tn+1, xi +∆Wtn(h)

)]
= E

[
u(tn+1, xi +

√
hη3)

]
+O(h3),

=
1

6
u(tn+1, xi−1) +

2

3
u(tn+1, xi)

+
1

6
u(tn+1, xi+1) +O(h3),
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(66)

E
[
u
(
tn+1, xi +∆Wtn(h)

)
∆Wtn(h)

]
= E

[
u(tn+1, xi +

√
hη3)

√
hη3

]
+O(h3)

= −
√
3h

6
u(tn+1, xi−1) +

√
3h

6
u(tn+1, xi+1)

+O(h3).

Take yjN = φ(xj), zjN = ∇φ(xj), and let yjn+1, zjn+1, f(tn+1, yjn+1, zjn+1) de-

note the approximations of u(tn+1, xj), u
(1)(tn+1, xj), −u(0)(tn+1, xj), respectively.

Combining formulas (63) and (65), we can remove the conditional expectations in
the RK method (45) and obtain the following second order explicit method
(67)

Y i
n,2 =

2∑
j=0

(
yi−1+j
n+1 + hf(tn+1, yi−1+j

n+1 , zi−1+j
n+1 )

)
Pj , n = 0, 1, · · · , N − 1,

Zi
n,2 =

2∑
j=0

(
zi−1+j
n+1 + f(tn+1, yi−1+j

n+1 , zi−1+j
n+1 )wj

)
Pj , i ∈ {0,±1, · · · ,±n},

yin =

2∑
j=0

(
yi−1+j
n+1 +

1

2
hf(tn+1, yi−1+j

n+1 , zi−1+j
n+1 )

)
Pj +

1

2
hf(tn, Y i

n,2, Zi
n,2),

zin =
1

h

2∑
j=0

(
yi−1+j
n+1 + hf(tn+1, yi−1+j

n+1 , zi−1+j
n+1 )

)
wjPj ,

where

(68) P0 = P2 =
1

6
, P1 =

2

3
, w0 = −

√
3h, w1 = 0, w2 =

√
3h.

Similarly, for the third order RK method (46), we can replace W (tn+1)−W (tn)

with
√
hη7, and replace W (tn+ 1

2
)−W (tn), W (tn+1)−W (tn+ 1

2
) with

√
h
2 η3. Let

(69)
D̂n =

{
xi

∣∣ xi = i

√
3

2
h, i = 0,±1, · · · ,±3n

}
, n = 0, 1, · · · , N,

D̂n+ 1
2
= D̂n

∪{
± (3n+ 1)

√
3

2
h
}
, n = 0, 1, · · · , N − 1

be the partitions of spatial variable x at t = tn and t = tn + h
2 , respectively. Then

we can remove the conditional expectations in the RK method (46) and obtain the
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method
(70)

Y k
n,2 =

2∑
j=0

(
yk−1+j
n+1 +

1

2
hf(tn+1, yk−1+j

n+1 , zk−1+j
n+1 )

)
Pj , n = 0, 1, · · · , N − 1,

Zk
n,2 =

2∑
j=0

(
zk−1+j
n+1 + f(tn+1, yk−1+j

n+1 , zk−1+j
n+1 )ŵj+2

)
Pj , k ∈ {0,±1, · · · ,±(3n+ 1)},

Y i
n,3 =

6∑
j=0

(
yi−3+j
n+1 − hf(tn+1, yi−3+j

n+1 , zi−3+j
n+1 )

)
P̂j

+2h
2∑

j=0

f(tn+ 1
2
, Y i−1+j

n,2 , Zi−1+j
n,2 )Pj ,

Zi
n,3 =

6∑
j=0

(
zi−3+j
n+1 − f(tn+1, yi−3+j

n+1 , zi−3+j
n+1 )ŵj

)
P̂j

+4
2∑

j=0

f(tn+ 1
2
, Y i−1+j

n,2 , Zi−1+j
n,2 )ŵj+2Pj ,

yin =
6∑

j=0

(
yi−3+j
n+1 +

1

6
hf(tn+1, yi−3+j

n+1 , zi−3+j
n+1 )

)
P̂j

+
2

3
h

2∑
j=0

f(tn+ 1
2
, Y i−1+j

n,2 , Zi−1+j
n,2 )Pj

+
1

6
hf(tn, Y i

n,3, Zi
n,3),

zin =
1

h

6∑
j=0

yi−3+j
n+1 ŵjP̂j

+2

2∑
j=0

f(tn+ 1
2
, Y i−1+j

n,2 , Zi−1+j
n,2 )ŵj+2Pj , i ∈ {0,±1, · · · ,±3n},

where

(71)

P̂0 = P̂6 =
1

1620
, P̂1 = P̂5 =

13

540
, P̂2 = P̂4 =

25

108
, P̂3 =

79

162
,

ŵi = (i− 3)

√
3

2
h, i ∈ {0, 1, 2, . . . , 6}.

To illustrate that the ideal of our approximate algorithm can be applied to other
methods of solving the BSDEs, we will take the two-step and three-step explicit
Adams methods as examples.

For the BSDE (1), the two-step second order explicit Adams method can be
written as

(72)
yn = Etn

[
yn+1 + h

(3
2
f(tn+1, yn+1, zn+1)−

1

2
f(tn+2, yn+2, zn+2)

)]
,

zn =
1

h
Etn

[
yn+1∆Wtn(h) + hf(tn+1, yn+1, zn+1)∆Wtn(h)

]
.
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If the conditions

(73)

Etn [ yn+1] = Êtn [ yn+1] +O(h3),

Etn [ yn+1∆Wtn(h)] = Êtn [ yn+1∆Wtn(h)] +O(h3),

Etn [ f(tn+i, yn+i, zn+i)] = Êtn [ f(tn+i, yn+i, zn+i)] +O(h2), i = 1, 2,

Etn [ f(tn+1, yn+1, zn+1)∆Wtn(h)]

= Êtn [ f(tn+1, yn+1, zn+1)∆Wtn(h)] +O(h2),

are fulfilled, then the method

(74)
yn = Êtn

[
yn+1 + h

(3
2
f(tn+1, yn+1, zn+1)−

1

2
f(tn+2, yn+2, zn+2)

)]
,

zn =
1

h
Êtn

[
yn+1∆Wtn(h) + hf(tn+1, yn+1, zn+1)∆Wtn(h)

]
.

is also second order. Based on Theorem 4.1 and Table 1, it is not difficult to
verify that the conditions in (73) are fulfilled when ∆Wtn(h) is replaced by

√
hη3,

∆Wtn(2h) is replaced by
√
2hη̂3. Assume that the values of yjN−k, z

j
N−k, xj ∈

DN−k, k = 0, 1 are given (We can use the second order RK method above to obtain
these values). Then we can remove the conditional expectations in the method (72)
and obtain the method
(75)

yin =
2∑

j=0

(
yi−1+j
n+1 +

3

2
hf(tn+1, yi−1+j

n+1 , zi−1+j
n+1 )

)
Pj

−1

2
h

2∑
j=0

f(tn+2, yi−1+j
n+2 , zi−1+j

n+2 )P̄j ,

zin =
1

h

2∑
j=0

(
yi−1+j
n+1 + hf(tn+1, yi−1+j

n+1 , zi−1+j
n+1 )

)
wjPj , n = 0, 1, · · · , N − 2,

where

(76) P̄0 = P̄1 = P̄2 =
1

3
.

Similarly, for the three-step third order explicit Adams method

(77)

yn = Etn

[
yn+1 + h

(23
12

f(tn+1, yn+1, zn+1)−
4

3
f(tn+2, yn+2, zn+2)

+
5

12
f(tn+3, yn+3, zn+3)

)]
,

zn =
1

h
Etn

[
yn+1∆Wtn(h) + h

(3
2
f(tn+1, yn+1, zn+1)∆Wtn(h)

−1

4
f(tn+2, yn+2, zn+2)∆Wtn(2h)

) ]
,

we can replace ∆Wtn(h),∆Wtn(2h),∆Wtn(3h) with
√
hη7,

√
2hη3,

√
3hη5, respec-

tively.
Assume that the values of yjN−k, z

j
N−k, xj ∈ D̂N−k, k = 0, 1, 2 are given (We

can use the third order RK method above to obtain these values). Then we can
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Figure 1. RT vs. erry (left), and RT vs. errz (right) for Exam-
ple 5.1.

remove the conditional expectations in the method (77) and obtain the method

(78)

yin =
6∑

j=0

(
yi−3+j
n+1 +

23

12
hf(tn+1, yi−3+j

n+1 , zi−3+j
n+1 )

)
P̂j

−4

3
h

2∑
j=0

f(tn+2, yi−2+2j
n+2 , zi−2+2j

n+2 )Pj

+
5

12
h

4∑
j=0

f(tn+3, yi−4+2j
n+3 , zi−4+2j

n+3 )P̃j ,

zin =
1

h

6∑
j=0

(
yi−3+j
n+1 +

3

2
hf(tn+1, yi−3+j

n+1 , zi−3+j
n+1 )

)
ŵjP̂j

−1

4

2∑
j=0

f(tn+2, yi−2+2j
n+2 , zi−2+2j

n+2 )ŵ2j+1Pj , n = 0, 1, · · · , N − 3,

where

(79) P̃0 = P̃4 =
1

96
, P̃1 = P̃3 =

5

24
, P̃2 =

9

16
.

5. Numerical results

In this section, four numerical examples will be presented to illustrate our theo-
retical results. For ease of description, we denote the methods (67), (70) (75) and
(78) by BSDERK2, BSDERK3, BSDEAdams2 and BSDEAdams3, respectively.

Example 5.1. Inspired by [20], we consider the BSDE with d = m = 1:
(80)

y(t) = sin
(
2W (T )+T

)
+cos

(
2W (T )+T

)
+

∫ T

t

4y(s)− z(s)

y2(s) + 1
4z

2(s)
ds−

∫ T

t

z(s) dW (s),

whose analytic solution is given by
(81)

y(t) = sin
(
2W (t)+t

)
+cos

(
2W (t)+t

)
, z(t) = 2

(
cos

(
2W (t)+t

)
−sin

(
2W (t)+t

))
.

We take T = 1 for all the examples in this section. We observe the error at time
t = 0 and let erry =| y(0) − y0 |, errz =| z(0) − z0 |. Take h = 2−4, 2−5, · · · , 2−8

in turn, then we can obtain Table 2, where RT denotes the running time and p
denotes the numerical convergence order obtained by using the least square fitting.
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Table 2. The results of Example 5.1.

h = 2−4 h = 2−5 h = 2−6 h = 2−7 h = 2−8 p

BSDEAdams2

erry 2.89(−2) 7.59(−3) 1.93(−3) 4.87(−4) 1.22(−4) 1.97

errz 6.07(−2) 1.56(−2) 3.91(−3) 9.80(−4) 2.46(−4) 1.99

RT 0.01 0.02 0.05 0.14 0.43

BSDERK2

erry 1.91(−2) 5.01(−3) 1.30(−3) 3.29(−4) 8.29(−5) 1.96

errz 4.21(−2) 1.09(−2) 2.80(−3) 6.95(−4) 1.75(−4) 1.98

RT 0.01 0.02 0.05 0.15 0.45

BSDEAdams3

erry 1.90(−3) 2.95(−4) 4.09(−5) 5.38(−6) 6.91(−7) 2.86

errz 5.70(−3) 8.20(−4) 1.10(−4) 1.44(−5) 1.83(−6) 2.90

RT 0.04 0.07 0.17 0.49 1.65

BSDERK3

erry 5.52(−4) 7.10(−5) 9.03(−6) 1.14(−6) 1.43(−7) 2.98

errz 1.30(−3) 1.74(−4) 2.23(−5) 2.82(−6) 3.54(−7) 2.96

RT 0.03 0.08 0.22 0.71 2.45

We can observe from Table 2 that the methods BSDEAdams2, BSDERK2 can
achieve second order and the methods BSDEAdams3, BSDERK3 can achieve third
order. This confirms our theoretical results. Using the data in Table 2, we can
obtain Figure 1, which can make it easier to compare the computational efficiency
of each method.

Example 5.2. We consider the BSDE with d = 1, m = 2:

(82)

y(t) =
eW

1(T )+ 1
4W

2(T )+T(
eW

1(T )+ 1
4W

2(T )+T + 1
) +

∫ T

t

(
z1(s) + z2(s)

)(17
20

y(s)− 49

40

)
ds

−
∫ T

t

z1(s) dW
1(s)−

∫ T

t

z2(s) dW
2(s),

whose analytic solution is given by

(83)

y(t) =
eW

1(t)+ 1
4W

2(t)+t(
eW

1(t)+ 1
4W

2(t)+t + 1
) , z1(t) =

eW
1(t)+ 1

4W
2(t)+t(

eW
1(t)+ 1

4W
2(t)+t + 1

)2 ,
z2(t) =

1

4

eW
1(t)+ 1

4W
2(t)+t(

eW
1(t)+ 1

4W
2(t)+t + 1

)2 .
The corresponding numerical results are presented in Table 3 and Figure 2.

Example 5.3. We consider the BSDE with d = 1, m = 3:

(84)

y(t) =
1

2
sin

(1
2
W 1(T ) +W 2(T ) +W 3(T ) + T

)
+

∫ T

t

9
32y(s)−

1
10

(
z1(s) + z2(s) + z3(s)

)
y2(s) + 4z21(s)

ds

−
∫ T

t

z1(s) dW
1(s)−

∫ T

t

z2(s) dW
2(s)−

∫ T

t

z3(s) dW
3(s),
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Table 3. The results of Example 5.2.

h = 2−4 h = 2−5 h = 2−6 h = 2−7 h = 2−8 p

BSDEAdams2

erry 9.75(−5) 3.19(−5) 8.90(−6) 2.34(−6) 6.00(−7) 1.85

errz 6.32(−4) 1.74(−4) 4.55(−5) 1.16(−5) 2.94(−6) 1.94

RT 0.13 0.52 3.87 30.96 259.74

BSDERK2

erry 1.29(−4) 3.71(−5) 9.95(−6) 2.57(−6) 6.53(−7) 1.91

errz 4.31(−4) 1.17(−4) 3.03(−5) 7.72(−6) 1.95(−6) 1.95

RT 0.14 0.58 4.36 34.89 292.99

BSDEAdams3

erry 1.42(−5) 1.98(−6) 2.62(−7) 3.38(−8) 4.29(−9) 2.93

errz 5.19(−5) 7.29(−6) 9.72(−7) 1.26(−7) 1.60(−8) 2.92

RT 1.08 7.33 57.12 486.65 4394.01

BSDERK3

erry 6.73(−6) 9.03(−7) 1.17(−7) 1.49(−8) 1.87(−9) 2.95

errz 1.43(−5) 1.87(−6) 2.38(−7) 3.00(−8) 3.77(−9) 2.97

RT 1.34 10.56 92.97 836.14 7083.41
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Figure 2. RT vs. erry (left), and RT vs. errz (right) for Exam-
ple 5.2.

whose analytic solution is given by

(85)

y(t) =
1

2
sin

(1
2
W 1(t) +W 2(t) +W 3(t) + t

)
,

z1(t) =
1

4
cos

(1
2
W 1(t) +W 2(t) +W 3(t) + t

)
,

z2(t) = z3(t) =
1

2
cos

(1
2
W 1(t) +W 2(t) +W 3(t) + t

)
.

The corresponding numerical results are presented in Table 4 and Figure 3.
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Table 4. The results of Example 5.3.

h = 1
8

h = 1
16

h = 1
24

h = 1
32

h = 1
40

p

BSDEAdams2

erry 1.44(−2) 3.99(−3) 1.82(−3) 1.04(−3) 6.70(−4) 1.91

errz 2.75(−3) 1.12(−3) 5.50(−4) 3.23(−4) 2.12(−4) 1.60

RT 0.18 2.11 10.59 33.70 84.89

BSDERK2

erry 7.71(−3) 2.20(−3) 1.01(−3) 5.93(−4) 3.85(−4) 1.86

errz 1.92(−3) 6.23(−4) 2.92(−4) 1.68(−4) 1.09(−4) 1.78

RT 0.20 2.45 12.40 39.77 101.02

BSDEAdams3

erry 1.52(−3) 2.20(−4) 6.93(−5) 3.01(−5) 1.57(−5) 2.84

errz 1.43(−3) 2.07(−4) 6.46(−5) 2.80(−5) 1.46(−5) 2.85

RT 8.66 137.57 696.52 2267.53 5633.73

BSDERK3

erry 5.37(−4) 7.05(−5) 2.13(−5) 9.07(−6) 4.67(−6) 2.95

errz 2.49(−4) 3.12(−5) 9.29(−6) 3.93(−6) 2.02(−6) 2.99

RT 9.75 173.01 917.29 3022.01 7713.01
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Figure 3. RT vs. erry (left), and RT vs. errz (right) for Exam-
ple 5.3.

Example 5.4. Finally, we consider the BSDE with d = 2, m = 1:

(86)

y(t) =

sin
(
7
5W (T ) + T

)
cos

(
7
5W (T ) + T

)


+

∫ T

t

(25
49

z21(t) +
25

49
z22(t)

) 49
50 −1

1 49
50

y1(t)

y2(t)

 ds

−
∫ T

t

z1(t)

z2(t)

 dW (s),

whose analytic solution is given by

(87) y(t) =

sin
(
7
5W (t) + t

)
cos

(
7
5W (t) + t

)
 z(t) =

 7
5cos

(
7
5W (t) + t

)
− 7

5sin
(
7
5W (t) + t

)
 .

The corresponding numerical results are presented in Table 5 and Figure 4.
Compared with the Adams multistep methods of the same order, the running

time RT of our RK methods will be a little more for the same stepsize h. But when
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Table 5. The results of Example 5.4.

h = 2−4 h = 2−5 h = 2−6 h = 2−7 h = 2−8 p

BSDEAdams2

erry 8.16(−3) 2.71(−3) 7.71(−4) 2.05− 4) 5.28(−5) 1.83

errz 9.99(−3) 3.23(−3) 9.25(−4) 2.47(−4) 6.38(−5) 1.83

RT 0.02 0.03 0.06 0.21 0.75

BSDERK2

erry 4.12(−3) 7.75(−4) 1.58(−4) 3.54(−5) 8.43(−6) 2.23

errz 1.09(−2) 2.41(−3) 5.52(−4) 1.31(−4) 3.19(−5) 2.10

RT 0.02 0.03 0.06 0.22 0.77

BSDEAdams3

erry 2.18(−3) 3.36(−4) 4.66(−5) 6.14(−6) 7.87(−7) 2.86

errz 3.25(−3) 4.98(−4) 6.88(−5) 9.04(−6) 1.16(−6) 2.87

RT 0.03 0.08 0.23 0.79 3.06

BSDERK3

erry 7.89(−4) 1.16(−4) 1.57(−5) 2.05(−6) 2.61(−7) 2.89

errz 1.08(−3) 1.61(−4) 2.19(−5) 2.85(−6) 3.64(−7) 2.89

RT 0.04 0.09 0.35 1.24 4.79
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Figure 4. RT vs. erry (left), and RT vs. errz (right) for Exam-
ple 5.4.

we consider both calculation time and accuracy comprehensively, we can observe
from Figures 1-4 that our RK methods (especially method BSDERK3) usually have
better precision than the Adams multistep methods of the same order under the
same running time. This means that our RK method performs better than the
Adams multistep methods in the four examples above.
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