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STOCHASTIC VOLTERRA INTEGRAL EQUATIONS WITH
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Abstract. The main goal of this paper is to develop an improved stochastic θ-scheme as a nu-

merical method for stochastic Volterra integral equations (SVIEs) with double weakly singular
kernels and demonstrate that the stability of the proposed scheme is affected by the kernel pa-
rameters. To overcome the low computational efficiency of the stochastic θ-scheme, we employed
the sum-of-exponentials (SOE) approximation. Then, the mean square stability of the proposed

scheme with respect to a convolution test equation is studied. Additionally, based on the stability
conditions and the explicit structure of the stability matrices, analytical and numerical stability
regions are plotted and compared with the split-step θ-method and the θ-Milstein method. The

results confirm that our approach aligns significantly with the expected physical interpretations.
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1. Introduction

It is well known that a stochastic Volterra integral equation (SVIE) may be
generalized from a stochastic differential equation (SDE) [28]-[33] or a standard
Volterra integral equation [4, 16, 17, 42]. Equations of these kinds are often used
in many scientific fields. For instance, they are often employed in the modelling
of biological systems [18], financial markets [9, 13], control science [3], engineering
[8] and health care [15]. Since a closed-form solution for SVIEs is generally not
available, stochastic numerical schemes offer reliable techniques for studying the
behavior of solutions [39, 45, 46, 50, 51]. Therefore, stochastic numerical analysis is
a special area of interest in the study of SVIEs [1]. Moreover, the stochastic integral
term in the equation commonly lacks a martingale property, leading to a non-
Markovian process for the equation’s solution. This non-Markovian behavior arises
due to the dependence of SVIE kernels on the variable t. As a result, SVIEs are more
demanding to analyze and solve in some ways than SDEs, and the accompanying
numerical analysis is likewise more challenging. SVIEs with smooth kernels are
now supported by the majority of numerical approximations. For example, Xiao
et al. [6] presented a collocation method with split-step for SVIEs. Liang et al.
[25] presented the Euler–Maruyama method for linear SVIEs of strong convergence
with order 1

2 . In [24], the authors presented the modified stochastic θ-methods for
the numerical integration of SVIEs.

However, fractional Brownian motion research and the discussion of specific prob-
lems in the area of stochastic partial differential equations (SPDEs) are two areas
where SVIEs with singular kernels can be identified [44]. The singularity of the ker-
nel at both limits of integral poses the biggest obstacle to implementing stochastic
numerical approximations. Zhang [48] peruse the convergence of Euler Maruyama
(EM) scheme with the property of large deviations for SVIEs with singular kernel.
Xiao [49] find out the convergence order for SVIEs under the EM method with

Received by the editors on May 2, 2024 and, accepted on February 25, 2025.
2000 Mathematics Subject Classification. 45D05, 45G05, 60H20, 65C30.

755



756 O. FARKHONDEH ROUZ, S. SHAHMORAD, AND F. ERDOGAN

the feature of Abel-type kernels. Wang [47] proved an existence and uniqueness
theorem under non-Lipschitz, linear growth condition, and a few integrable condi-
tions. In particular, Li et al. [19] offered two numerical schemes for solving weakly
singular SVIEs and extracted strong convergence rates for both of them.

Due to the singularity of the integrand, both integral limits present additional
challenges. Unfortunately, the essential Itô formula, a powerful tool in studying
SDEs, is not accessible in this research. Thus, we must embark on a search for
alternative methods. For instance, Li et al. [41] used the Gronwall inequality to
analyze the precise asymptotic separation rate of two alternative double singular
SVIE solutions, each with two different initial data. In order to solve the SVIEs
with double singular kernels, Li et al. [5] proposed the Galerkin approximation and
proved strong convergence rates. Dai and Xiao [38] take into account nonlinear
SVIEs with double weakly singular kernels. The d-dimensional SVIE with double
weakly singular kernels is taken into consideration in this study as:
(1)

y(t) = y0+

∫ t

0

(t−s)−γ1s−σ1F (y(s))ds+

∫ t

0

(t−s)−γ2s−σ2G(y(s))dW (s), t ∈ [0, T ],

where

• The functions F : Rd → Rd and G : Rd → Rd×r are nonlinear Borel mea-
surable, and the initial data y0 ∈ Rd satisfies E

(
|y0|2

)
< +∞.

• The r-dimensional Wiener process {W (t)}t∈[0,T ] is defined on a complete
filtered probability space.

• For i = 1, 2, the parameters γi and σi are non-negative, satisfying 0 <
γ1 + σ1 < 1, and 0 < γ2 + σ2 <

1
2 .

For SVIEs (1) no results have been found regarding the stability of the analyti-
cal solution. Therefore, we conclude that by utilizing the SOE approximation, we
analyze the mean square stability of the suggested scheme. However, numerical
approximations for SVIEs with double singular kernels require the storage and u-
tilization of the entire solution history throughout the calculation process. This
significantly increases the computational and memory costs. For instance, the EM
method has an average storage requirement of O(N) and an overall calculation cost
of O(N2). Therefore, it is crucial to find ways to reduce the computational costs.
The aim behind the SOE approximation, which is used to approximate the kernel
functions, is to reduce the computational complexity and memory cost of the nu-
merical schemes [7, 10]. Hairer et al. [35] used fast Fourier transform techniques and
the convolution structure to quickly solve nonlinear Volterra convolution equations.
In order to overcome the poor computing efficiency, the SOE approximation was
used by Dai and Xiao [38] to offer a fast EM method for double singular kernels in
Levy-driven SVIEs. Wang et al. [20] proved the stability and convergence analysis
of fast θ-Maruyama scheme for SVIEs of convolution type. Additionally, stability
analysis of numerical methods for SVIEs, including the split-step θ-method [4], the
θ-method [23] and the improved stochastic θ-method [24] has been thoroughly s-
tudied. Furthermore, the convergence analysis is the primary focus of the research
on numerical approaches for SVIEs. We are aware of very little information regard-
ing the analytical and numerical stability characteristics of SVIEs with singular
kernels. To duplicate the mean square stability of the analytical solution, Doan et
al. [40] developed an exponential EM method. Tuan [26] investigated the asymp-
totic mean square stability of solutions to SVIEs driven by a multiplicative white
noise. As a result, by utilizing the SOE approximation, the scheme outlined in
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this paper is able to significantly decrease computational expenses and storage de-
mands to O(N logN) and O(logN) when T ≫ 1, respectively. Furthermore, when
T ≈ 1, the computational cost and storage requirements are further diminished to
O(N log2N) and O(log2N), respectively.

The structure of the remaining parts is as follows: Section 2 presents the nec-
essary notations. The main objective of Section 3 is to establish the stochastic
θ-scheme, employing the SOE approximation, with the primary goal of reducing
computational costs and storage requirements efficiently. The mean square sta-
bility characteristics of the proposed scheme are derived in Section 4. Section 5
offers two numerical experiments demonstrating full agreement with the theoreti-
cal findings presented in Section 4. The summary of this work is provided in Section
6.

2. Preliminaries

In this paper, we refer to | · | as the Euclidean norm |y| =
( d∑
i=0

y2i
) 1

2 for y ∈ Rd

and ∥ · ∥ denotes the trace norm of a matrix ∥A∥ =
√
trace(ATA) for A ∈ Rd×r.

Consider (Ω,F ,P) as a complete probability space with a filtration {Ft}t≥0 that
satisfies common assumptions.

Assumption 2.1. The functions F and G satisfy the following conditions:

• (Global Lipschitz condition) there exists a constant L > 0 such that:

(2) |F (y1)− F (y2)|2 ∨ ∥G(y1)−G(y2)∥2 ≤ L|y1 − y2|2, ∀y1, y2 ∈ Rd.

• (Linear growth condition) there exists a constant K > 0 such that:

(3) |F (y)|2 ∨ ∥G(y)∥2 ≤ K(1 + |y|2), ∀y ∈ Rd.

Assumption 2.2. Define the recurrence relation:

(4) Cm+1 = Cm

Γ
(
m(1− γ − σ) + 1− σ

)
Γ
(
m(1− γ − σ) + 2− γ − σ

) , m = 0, 1, 2, · · · ,

with C0 = 1, where Γ(u) =

∫ ∞

0

zu−1 exp(−z)dz, u > 0 denotes the Gamma func-

tion. Define:

(5) E1−γ,1−σ(s) =
∞∑

m=0

Cms
m(1−γ−σ),

which is closely related to the Mittag-Leffler function [36].

Remark 2.1. We shall use the following asymptotic property of the function E1−γ,1−σ

for similar property of the Mittag-Leffler function [37]:

(6) E1−γ,1−σ(s) = O
(
s

1
2

(
1−γ−σ
1−γ −1+σ

)
exp

( 1− γ

1− γ − σ
s

1−γ−σ
1−γ

))
, as s→ ∞.

Definition 2.1. [14] Let λ ̸= 0, −1 < γ < 1 and σ be a real number. There exist

positive constants M(γ, σ) and M̂(γ) depending on γ and σ such that for any t ≥ 0,
it holds that if σ ̸= γ, then:

(7) |Eγ+1,σ+1

(
λtγ+1

)
| ≤ M(γ, σ)

|λ|max{1, tγ+1}
.
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Moreover, if σ = γ, then we can obtain:

(8) |Eγ+1,γ+1

(
λtγ+1

)
| ≤ M̂(γ)

λ2 max{1, t2(γ+1)}
.

The SOE approximation is an important technique for approximating kernel
functions using a linear combination of exponential functions. Now, we can derive
the following lemma based on the explanation of the SOE approximation [7].

Lemma 2.1. For every γ ∈ (0, 1), there exist positive quadrature nodes τl and
weights ωl, l = 1, 2, . . . ,Mexp, along with an absolute tolerance error ϵ≪ 1 and a
cut-off time point δ, such that:

(9) |t−γ −
Mexp∑
l=1

ωle
−τlt| ≤ ϵ, ∀t ∈ [δ, T ],

where the number of exponential terms Mexp needed is of the order:

(10) Mexp = O
(
log

1

ϵ

(
log log

1

ϵ
+ log

T

δ

)
+ log

1

δ

(
log log

1

ϵ
+ log

1

δ

))
.

In other words, if we use the cut-off time δ = h for a fixed precision ϵ, then we
obtain:

Mexp =

{
O(logN), if T ≫ 1,

O(log2N), if T ≈ 1,

where h = T
N (see [[21], pp. 652]).

3. Improved stochastic θ-scheme

In this section, we offer a modified version of the Euler-Maruyama approximation
that eliminates the requirement to model extra stochastic integrals in the actual
numerical implementation. Let Ih =: {tn := nh : n = 0, 1, . . . , N} be a partition
of I = [0, T ], then we can approximate Eq. (1) as follows:

y(tn) = y0 +

∫ tn

0

(tn − s)−γ1s−σ1F (y(s))ds+

∫ tn

0

(tn − s)−γ2s−σ2G(y(s))dW (s)

= y0 + θ

∫ tn

0

(tn − s)−γ1s−σ1F (y(s))ds

+ (1− θ)

∫ tn

0

(tn − s)−γ1s−σ1F (y(s))ds+

∫ tn

0

(tn − s)−γ2s−σ2G(y(s))dW (s)

≈ y0 + θ
n−1∑
k=0

(tn − tk)
−γ1t−σ1

k+1F (y(tk+1))h

+ (1− θ)
n−1∑
k=0

(tn − tk)
−γ1t−σ1

k+1F (y(tk))h+
n−1∑
k=0

(tn − tk)
−γ2t−σ2

k+1G(y(tk))∆Wk,

(11)

where θ ∈ [0, 1], n = 1, 2, . . . , N and ∆Wk :=Wtk+1
−Wtk is the increment of Wiener

process. The stochastic θ-scheme for double singular SVIEs (1) can be adjusted to
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avoid discarding singular points of kernel functions as:

Yn = y0 + θ
n−1∑
k=0

(tn − tk)
−γ1t−σ1

k+1F (Yk+1)h+ (1− θ)
n−1∑
k=0

(tn − tk)
−γ1t−σ1

k+1F (Yk)h

+
n−1∑
k=0

(tn − tk)
−γ2t−σ2

k+1G(Yk)∆Wk.

(12)

Note that Yn := y(tn). Now, by utilizing the SOE approximation (9) to achieve the
primary stability analysis, the proposed scheme (12) can be restructured as follows:

Yn = y0 + θ
n−1∑
k=0

Mexp,1∑
l=1

wl,1e
−τl,1(tn−tk)t−σ1

k+1F (Yk+1)h

+ (1− θ)
n−1∑
k=0

Mexp,1∑
l=1

wl,1e
−τl,1(tn−tk)t−σ1

k+1F (Yk)h

+
n−1∑
k=0

Mexp,2∑
l=1

wl,2e
−τl,2(tn−tk)t−σ2

k+1G(Yk)∆Wk,(13)

where (tn − tk)
−γ1 and (tn − tk)

−γ2 are replaced by

Mexp,j∑
l=1

wl,je
−τl,j(tn−tk), j = 1, 2,

respectively. In addition, Eq. (13) can be rewritten as:

(14) Yn = y0+ θ

Mexp,1∑
l=1

wl,1P1,l(tn)+ (1− θ)
Mexp,1∑
l=1

wl,1P2,l(tn)+

Mexp,2∑
l=1

wl,2P3,l(tn),

where

P1,l(tn) = h
n−1∑
k=0

e−τl,1(tn−tk)t−σ1

k+1F (Yk+1),

P2,l(tn) = h
n−1∑
k=0

e−τl,1(tn−tk)t−σ1

k+1F (Yk),

P3,l(tn) =
n−1∑
k=0

e−τl,2(tn−tk)t−σ2

k+1G(Yk)∆Wk.(15)

This suggests that the cost of calculation drops from O(N2) to O
(
NMexp

)
={

O(N logN), if T ≫ 1,

O(N log2N), if T ≈ 1.

Remark 3.1. The combination of Lemma 2.1 and the stochastic θ-scheme (12)
demonstrates that the computational cost and storage requirements for a single sam-
ple are reduced from O(N2) and O(N) to O(N logN) and O(logN), respectively
when T ≫ 1. For T ≈ 1, the reductions are to O(N log2N) and O(log2N), respec-
tively. For more information, we refer the interested reader to [7].
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4. Mean square stability analysis

In this section, we will primarily concentrate on time discretization of linear
SVIEs with double singular kernels. Subsequently, we will analyze the mean square
stability of the proposed scheme to ensure its effectiveness. Let us consider the test
equation as follows:
(16)

y(t) = y0 + λ

∫ t

0

(t− s)−γ1s−σ1y(s)ds+ µ

∫ t

0

(t− s)−γ2s−σ2y(s)dW (s), t ≥ 0,

where 0 < γ1 + σ1 < 1, 0 < γ2 + σ2 <
1
2 and λ, µ ∈ R. Based on the variation of

constant formula the test Eq. (16) can be rewritten as follows [22]:

y(t) = E1−γ1,1−σ1

(
λΓ(2− γ1 − σ1)t

1−γ1−σ1
)
y0

+ µΓ(2− γ2 − σ2)

∫ t

0

(t− s)−γ2s−σ2E1−γ2,1−σ2

·
(
λΓ(2− γ1 − σ1)(t− s)−γ1s−σ1

)
y(s)dW (s),(17)

where Γ is the Gamma function and the function E1−γ,1−σ is defined by relation
(5).

Lemma 4.1. [43] Suppose that λ ̸= 0 and γ + σ ∈ (0, 1). There exists positive
constant M(γ, σ) depending on γ and σ such that for any t ≥ 0, it holds that if
γ ̸= σ, then:

(18) |E1−γ,1−σ

(
λt1−γ−σ

)
| ≤ M(γ, σ)

|λ|max{1, t1−γ−σ}
.

Also, let 1− 2γ + 2σ > 0 and α ∈ (0,−γ + σ + 1
2 ) be arbitrary, then we have:

lim
t→∞

sup
(
µΓ(2− γ − σ)

)2
∫ t

0

(t− s)−2γs−2σ

·
(
E1−γ,1−σ

(
λΓ(2− γ − σ)(t− s)−γs−σ

))2 max{1, t2α}
max{1, s2α}

ds < 1.(19)

The stability result of Eq. (17) is given in the following theorem.

Theorem 4.1. Suppose that the conditions

λ < 0 and

(
µΓ(2− γ2 − σ2)

)2
∫ ∞

0

s−2(γ2+σ2)
(
E1−γ2,1−σ2

(
λΓ(2− γ1 − σ1)s

−(γ1+σ1)
))2

ds < 1,

(20)

hold, then for 1− 2(γ1 + σ1) + 2(γ2 + σ2) > 0 and α ∈
(
0,−(γ1 + σ1) + (γ2 + σ2) +

1
2

)
when γ1 + σ1 ̸= γ2 + σ2, the solution y(t) of Eq. (16) satisfies the property:

(21) lim
t→∞

tαE|y(t)|2 = 0,

which implies the mean square asymptotical stability property of Eq. (16), i.e.,
E|y(t)|2 → 0 when t→ ∞.

Proof. Let us consider the case of γ1+σ1 ̸= γ2+σ2. By choosing α̂ ∈
(
α,−(γ1+σ1)

+(γ2 + σ2) +
1
2

)
, it is sufficient to show that:

(22) lim
t→∞

sup t2α̂
E|y(t)|2

E|y0|2
<∞.



MEAN SQUARE STABILITY OF NUMERICAL METHOD FOR SVIES 761

We are now proving the inequality (22) by contradiction. Then, there exists an
increasing sequence {tn} tending to ∞ such that:

(23) ψn := max{1, t2α̂n }E|y(t)|
2

E|y0|2
,

satisfies

(24) ψn = max
{
max{1, t2α̂n }E|y(t)|

2

E|y0|2
: t ∈ [0, tn]

}
,

and limn→∞ ψn = ∞. Replacing t = tn in Eq. (17) and by virtue of Lemma 4.1,
we arrive at:

E|y(tn)|2

E|y0|2
≤ M(γ2, σ2)

|λ|max{1, t2−γ2+σ2
n }

+
(
µΓ(2− γ2 − σ2)

)2

·
∫ tn

0

(tn − s)−2(γ2+σ2)
(
E1−γ2,1−σ2

(
λΓ(2− γ1 − σ1)(tn − s)−(γ1+σ1)

))2E|y(s)|2

E|y0|2
ds,

(25)

which implies that:

ψn ≤ M(γ2, σ2)max{1, t2α̂n }
|λ|max{1, t2−γ2+σ2

n }
+ ψn

(
µΓ(2− γ2 − σ2)

)2
∫ tn

0

(tn − s)−2(γ2+σ2)

·
(
E1−γ2,1−σ2

(
λΓ(2− γ1 − σ1)(tn − s)−(γ1+σ1)

))2 max{1, t2α̂n }
max{1, s2α̂}

ds.(26)

Therefore, we can obtain:

ψn

(
1−

(
µΓ(2− γ2 − σ2)

)2 ∫ tn

0

(tn − s)−2(γ2+σ2)

·
(
E1−γ2,1−σ2

(
λΓ(2− γ1 − σ1)(tn − s)−(γ1+σ1)

))2 max{1, t2α̂n }
max{1, s2α̂}

ds
)

≤ M(γ2, σ2)max{1, t2α̂n }
|λ|max{1, t2−γ2+σ2

n }
.(27)

Since 2α̂ < 1− 2(γ2 + σ2) + 2(γ1 + σ1) < 2(γ1 + σ1 + 1), it follows that:

(28) lim
t→∞

sup
M(γ2, σ2)max{1, t2α̂n }
|λ|max{1, t2−γ2+σ2

n }
= 0,

which contradicts to the definition of limn→∞ ψn = ∞ and Lemma 4.1. The proof
is complete. �

Now, based on Eq. (12), the stochastic θ-scheme for the test Eq. (16) with
0 < γ1 + σ1 < 1 and 0 < γ2 + σ2 <

1
2 can be expressed as:

Yn = y0 + θλh
n−1∑
k=0

(tn − tk)
−γ1t−σ1

k+1Yk+1 + (1− θ)λh
n−1∑
k=0

(tn − tk)
−γ1t−σ1

k+1Yk

+ µ
√
h

n−1∑
k=0

(tn − tk)
−γ2t−σ2

k+1Ykηk,(29)

where we have replaced the Wiener increments W (tk + h)−W (tk) by the scaled

random variables
√
hηk and ηk represents a standard Gaussian random variable,

indicating that every ηk follows a N(0, 1)-distribution. However, due to the sin-
gularity of (tn − tk)

−γt−σ
k+1 the same approach cannot be directly applied to the

proposed scheme for the test Eq. (16). In order to address this issue, the SOE
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approximation (9) is incorporated into Eq. (29), enabling the desired outcome to
be achieved.

Yn = y0 + θλh
n−1∑
k=0

Mexp,1∑
l=1

wl,1e
−τl,1(tn−tk)t−σ1

k+1Yk+1

+ (1− θ)λh
n−1∑
k=0

Mexp,1∑
l=1

wl,1e
−τl,1(tn−tk)t−σ1

k+1Yk

+ µ
√
h

n−1∑
k=0

Mexp,2∑
l=1

wl,2e
−τl,2(tn−tk)t−σ2

k+1Ykηk.(30)

Let:

(31) P̃1,l(tn) :=
n−1∑
k=0

e−τl,1(tn−tk)t−σ1

k+1Yk+1,

(32) P̃2,l(tn) :=
n−1∑
k=0

e−τl,1(tn−tk)t−σ1

k+1Yk,

(33) P̃3,l(tn) :=

n−1∑
k=0

e−τl,2(tn−tk)t−σ2

k+1Yk.

Now, by substituting (31)-(33) into (30), we derive:

Yn = y0 + θλh

Mexp,1∑
l=1

wl,1P̃1,l(tn)

+ (1− θ)λh

Mexp,1∑
l=1

wl,1P̃2,l(tn) + µ
√
h

Mexp,2∑
l=1

wl,2P̃3,l(tn)ηn,(34)

which is the improved stochastic θ-scheme for Eq. (16) with double singular kernels.

Note that P̃1,l, P̃2,l, and P̃3,l denote the characteristic properties of exponential
functions, defined by:

(35) P̃1,l(tn) = e−τl,1hP̃1,l(tn−1) + e−τl,1ht−σ1
n Yn,

(36) P̃2,l(tn) = e−τl,1hP̃2,l(tn−1) + e−τl,1ht−σ1
n Yn−1,

(37) P̃3,l(tn) = e−τl,2hP̃3,l(tn−1) + e−τl,2ht−σ2
n Yn−1.

Theorem 4.2. Assuming x = λh and y = µ2h, the improved stochastic θ-scheme
(34) can be expressed as follows:

Yn+1 =
(
A+Bµ

√
hηn

)
Yn + θ

Mexp,1∑
l=1

ClP̃1,l(tn)

+ (1− θ)

Mexp,1∑
l=1

ClP̃2,l(tn) + µ
√
h

Mexp,2∑
l=1

DlP̃3,l(tn)ηn,(38)
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with Y1 =
(
A+Bµ

√
hη0

)
Y0 and

A =

1 + (1− θ)x

Mexp,1∑
l=1

wl,1e
−τl,1ht−σ1

n+1

1− θx

Mexp,1∑
l=1

wl,1e
−τl,1ht−σ1

n+1

, B =

Mexp,2∑
l=1

wl,2e
−τl,2ht−σ2

n+1

1− θx

Mexp,1∑
l=1

wl,1e
−τl,1ht−σ1

n+1

,

(39)

Cl =
xwl,1(e

−τl,1h − 1)

1− θx

Mexp,1∑
l=1

wl,1e
−τl,1ht−σ1

n+1

, Dl =
wl,2(e

−τl,2h − 1)

1− θx

Mexp,1∑
l=1

wl,1e
−τl,1ht−σ1

n+1

,(40)

where θ ∈ [0, 1] and n = 1, 2, . . . , N − 1.

Proof. The improved stochastic θ-scheme (34) referred to the point t = tn+1 yields:

Yn+1 = y0 + θλh

Mexp,1∑
l=1

wl,1P̃1,l(tn+1)

+ (1− θ)λh

Mexp,1∑
l=1

wl,1P̃2,l(tn+1) + µ
√
h

Mexp,2∑
l=1

wl,2P̃3,l(tn+1)ηn.(41)

Subtracting Eq. (34) and using the recurrence relations (35)-(37), we obtain:

Yn+1 − Yn = θλh

Mexp,1∑
l=1

wl,1

(
P̃1,l(tn+1)− P̃1,l(tn)

)
+ (1− θ)λh

Mexp,1∑
l=1

wl,1

(
P̃2,l(tn+1)− P̃2,l(tn)

)
+ µ

√
h

Mexp,2∑
l=1

wl,2

(
P̃3,l(tn+1)− P̃3,l(tn)

)
ηn

= θλh

Mexp,1∑
l=1

wl,1

(
e−τl,1ht−σ1

n+1Yn+1 + e−τl,1hP̃1,l(tn)− P̃1,l(tn)
)

+ (1− θ)λh

Mexp,1∑
l=1

wl,1

(
e−τl,1ht−σ1

n+1Yn + e−τl,1hP̃2,l(tn)− P̃2,l(tn)
)

+ µ
√
h

Mexp,2∑
l=1

wl,2

(
e−τl,2ht−σ2

n+1Yn + e−τl,2hP̃3,l(tn)− P̃3,l(tn)
)
ηn.(42)

This completes the proof of Theorem 4.2. �
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Corollary 4.1. Let C =
(
C1, C2, . . . , CMexp,1

)
, D =

(
D1, D2, . . . , DMexp,2

)
, τ∗ =(

τ1,1, τ2,1, . . . , τMexp,1

)
and τ∗∗ =

(
τ1,2, τ2,2, . . . , τMexp,2

)
. Then we have: Yn+1

P̃1,l(tn+1)

P̃2,l(tn+1)

P̃3,l(tn+1)


=


A+Bµ

√
hηn θCl (1−θ)Cl µ

√
hηnDl

(A+Bµ
√

hηn)(e
−τl,1h

)T t
−σ1
n+1 θ(e

−τl,1h
)T t

−σ1
n+1Cl+E1 (1−θ)(e

−τl,1h
)T t

−σ1
n+1Cl µ

√
hηnt

−σ1
n+1Dl

(e
−τl,1h

)T t
−σ1
n+1 0 E1 0

(e
−τl,2h

)T t
−σ2
n+1 0 0 E2


×

 Yn

P̃1,l(tn)

P̃2,l(tn)

P̃3,l(tn)


:= H

[
Yn, P̃1,l(tn), P̃2,l(tn), P̃3,l(tn)

]T
,

(43)

where P̃i,l(tn) =
[
P̃i,1(tn), P̃i,2(tn), . . . , P̃i,Mexp(tn)

]T
(i = 1, 2, 3) is anMexp × 1 col-

umn vector. Additionally, E1 and E2 are diagonal matrices as follows:

E1 = exp(−τ∗h)IMexp,1 =

 e−τ1,1h

e−τ2,1h

...
e
−τMexp,1

h

,(44)

E2 = exp(−τ∗∗h)IMexp,2 =

 e−τ1,2h

e−τ2,2h

...
e
−τMexp,2

h

,(45)

where IMexp,1 and IMexp,2 are both identity matrices.

By Corollary 4.1, one can readily present the following recurrence relations.
These relations emphasize a useful attribute for deriving the stability matrix of the
improved θ-scheme (34).

Lemma 4.2. For the improved θ-scheme (34), we have:

E
((
A+B

√
yηn

)
YnYn+1

)
=

(
A2 +B2y

)
E
(
Y 2
n

)
+Aθ

Mexp,1∑
l=1

ClE
(
YnP̃1,l(tn)

)
+A(1− θ)

Mexp,1∑
l=1

ClE
(
YnP̃2,l(tn)

)
+By

Mexp,2∑
l=1

DlE
(
YnP̃3,l(tn)

)
,(46)

and

E
(
P̃i,j(tn)Yn+1

)
= AE

(
P̃i,j(tn)Yn

)
+ θ

Mexp,1∑
l=1

ClE
(
P̃i,j(tn)P̃1,l(tn)

)

+ (1− θ)

Mexp,1∑
l=1

ClE
(
P̃i,j(tn)P̃2,l(tn)

)
, i = 1, 2, 3, j = 1, 2, · · · ,Mexp,1.(47)
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Proof. Multiplying Eq. (38) by
(
A+B

√
yηn

)
Yn and P̃i,j(tn), we deduce:

(
A+B

√
yηn

)
YnYn+1 =

(
A+B

√
yηn

)2
Y 2
n +

(
A+B

√
yηn

)
θ

Mexp,1∑
l=1

ClP̃1,l(tn)Yn

+
(
A+B

√
yηn

)
(1− θ)

Mexp,1∑
l=1

ClP̃2,l(tn)Yn

+
(
A+B

√
yηn

)√
yηn

Mexp,2∑
l=1

DlP̃3,l(tn)Yn,(48)

and

P̃i,j(tn)Yn+1 =
(
A+B

√
yηn

)
P̃i,j(tn)Yn + θ

Mexp,1∑
l=1

ClP̃i,j(tn)P̃1,l(tn)

+ (1− θ)

Mexp,1∑
l=1

ClP̃i,j(tn)P̃2,l(tn) +
√
yηn

Mexp,2∑
l=1

DlP̃i,j(tn)P̃3,l(tn).(49)

Therefore, by employing the expectations on both sides, we obtain the relationships
expressed in (46) and (47). �

We now turn to scheme (34) obtained by applying the stochastic θ-scheme to test
Eq. (16). We rewrite each of these stochastic difference equations into an explicit
one-step recurrence equation involving a sequence {Hn}n≥1 of independent random
matrices:

(50) Yn+1 = HnYn, n = 1, . . . , N − 1.

The entries of the matrix Hn depend on entries of the drift and diffusion matrices
of test Eq. (16) as well as on the parameter θ of the scheme and the applied step
size h. For each n ∈ N0 the matrix Hn also depends on the random variables ηn. To
obtain the second moments of the discrete approximation process Yn, we multiply
each side of Eq. (50) by Y T

n+1 and (HnYn)
T , respectively, and take expectations.

Then applying the vectorisation operation to both sides yields:

(51) E(Zn+1) = E(Hn ⊗Hn)E(Zn),

where the d2-dimensional discrete process Zn is given by Zn = vec(YnY
T
n ). We set:

(52) S = E(H ⊗H),

and refer to S as the mean square stability matrix of the numerical scheme. The
following result is originally due to Bellman [34], but can also be found in [2, 27].

Lemma 4.3. The zero solution of the system (50) is asymptotically stable in mean
square if and only if:

(53) ρ(S) < 1.

Remark 4.1. We have omitted the index of the matrices H in (52), as the sequence
{Hn} is i.i.d. This notation is consistent with the one used in [34].

Theorem 4.3. The improved θ-scheme (34) for evaluating the test Eq. (16)
with double singular kernels exhibits mean square stability if the spectral radius
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ρ
(
E(H ⊗H)

)
< 1, where

E
(
H ⊗H

)

=


U θ(Cl⊗V ) (1−θ)(Cl⊗V ) (ByDl)⊗V

t
−σ1
n+1 (e

−τl,1h
)T⊗U (θ(e

−τl,1h
)T t

−σ1
n+1Cl+E1⊗V ((1−θ)(e

−τl,1h
)T t

−σ1
n+1Cl)⊗V (Byt

−β1
n+1Dl)⊗V

((e
−τl,1h

)T t
−σ1σ
n+1 )⊗V 0 E1⊗V 0

((e
−τl,2h

)T t
−σ2
n+1 )⊗V 0 0 E2⊗V

.
(54)

Here, the symbol ⊗ represents the Kronecker product and

U =


A2+B2y AθCl A(1−θ)Cl ByDl

(A2+B2y)(e
−τl,1h

)T t
−σ1
n+1 Aθ(e

−τl,1h
)T t

−σ1
n+1Cl+AE1 A(1−θ)(e

−τl,1h
)T t

−σ1
n+1Cl Byt

−σ1
n+1Dl

A(e
−τl,1h

)T t
−σ1
n+1 0 AE1 0

A(e
−τl,2h

)T t
−σ2
n+1 0 0 AE2

,
(55)

V =


A θCl (1−θ)Cl 0

A(e−τl,1h)T t
−σ1
n+1 θ(e−τl,1h)T t

−σ1
n+1Cl+E1 (1−θ)(e−τl,1h)T t

−σ1
n+1Cl 0

(e−τl,1h)T t
−σ1
n+1 0 E1 0

(e−τl,2h)T t
−σ2
n+1 0 0 E2

.(56)

Proof. By Lemma 4.2, we get the following result:

E
(
Yn+1Yn+1

)
=

(
A2 +B2y

)
E
(
Y 2
n

)
+Aθ

Mexp,1∑
l=1

ClE
(
YnP̃1,l(tn)

)
+A(1− θ)

Mexp,1∑
l=1

ClE
(
YnP̃2,l(tn)

)
+By

Mexp,2∑
l=1

DlE
(
YnP̃3,l(tn)

)
+ θ

Mexp,1∑
l=1

Cl

(
AE

(
YnP̃1,l(tn)

)
+ θ

Mexp,1∑
i=1

CiE
(
P̃1,l(tn)P̃1,i(tn)

)
+ (1− θ)

Mexp,1∑
i=1

CiE
(
P̃1,l(tn)P̃2,i(tn)

))
+ (1− θ)

Mexp,1∑
l=1

Cl

(
AE

(
YnP̃2,l(tn)

)
+ θ

Mexp,1∑
i=1

CiE
(
P̃2,l(tn)P̃1,i(tn)

)
+ (1− θ)

Mexp,1∑
i=1

CiE
(
P̃2,l(tn)P̃2,i(tn)

))

+

Mexp,2∑
l=1

Dl

(
ByE

(
YnP̃3,l(tn)

)
+ y

Mexp,2∑
i=1

DiE
(
P̃3,l(tn)P̃3,i(tn)

))
.(57)

Following a similar approach yields:

E
(
P̃1,j(tn+1)P̃2,m(tn+1)

)
=Ae−(τj,1+τm,1)ht−2σ1

n+1 E
(
Y 2
n

)
+Ae−(τj,1+τm,1)ht−σ1

n+1E
(
YnP̃2,m(tn)

)
+ θe−(τj,1+τm,1)h

Mexp,1∑
i=1

Ci

(
t−2σ1
n+1 E

(
YnP̃1,i(tn)

)
+ t−σ1

n+1E
(
P̃2,m(tn)P̃1,i(tn)

))

+ (1− θ)e−(τj,1+τm,1)h

Mexp,1∑
i=1

Ci

(
t−2σ1
n+1 E

(
YnP̃2,i(tn)

)
+ t−σ1

n+1E
(
P̃2,j(tn)P̃2,i(tn)

))

+ e−(τj,1+τm,1)h
(
t−σ1
n+1E

(
YnP̃1,j(tn)

)
+ E

(
P̃2,m(tn)P̃1,i(tn)

))
,

(58)
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E
(
P̃1,j(tn+1)P̃3,r(tn+1)

)
=Ae−(τj,1+τr,2)ht

−(σ1+σ2)
n+1 E

(
Y 2
n

)
+Ae−(τj,1+τr,2)ht−σ1

n+1E
(
YnP̃3,r(tn)

)
+ θe−(τj,1+τr,2)h

Mexp,1∑
i=1

Ci

(
t
−(σ1+σ2)
n+1 E

(
YnP̃1,i(tn)

)
+ t−σ1

n+1E
(
P̃3,r(tn)P̃1,i(tn)

))

+ (1− θ)e−(τj,1+τr,2)h

Mexp,1∑
i=1

Ci

(
t
−(σ1+σ2)
n+1 E

(
YnP̃2,i(tn)

)
+ t−σ1

n+1E
(
P̃3,r(tn)P̃2,i(tn)

))

+ e−(τj,1+τr,2)h
(
t−σ2
n+1E

(
YnP̃1,j(tn)

)
+ E

(
P̃3,r(tn)P̃1,j(tn)

))
,

(59)

and

E
(
P̃2,m(tn+1)P̃3,r(tn+1)

)
=e−(τm,1+τr,2)ht

−(σ1+σ2)
n+1 E

(
Y 2
n

)
+ e−(τm,1+τr,2)ht−σ1

n+1E
(
YnP̃3,r(tn)

)
+ e−(τm,1+τr,2)ht−σ2

n+1E
(
YnP̃2,m(tn)

)
+ e−(τm,1+τr,2)hE

(
P̃2,m(tn)P̃3,r(tn)

)
,(60)

where j,m, r = 1, 2, · · · ,Mexp,1. Now we set:

Zn+1 :=
[
Y 2
n+1, Yn+1P̃1,l(tn+1), Yn+1P̃2,l(tn+1), Yn+1P̃3,l(tn+1), P̃1,l(tn+1)Yn+1,

P̃ 2
1,l(tn+1), P̃1,l(tn+1)P̃2,l(tn+1), P̃1,l(tn+1)P̃3,l(tn+1), P̃2,l(tn+1)Yn+1,

P̃2,l(tn+1)P̃1,l(tn+1), P̃
2
2,l(tn+1), P̃2,l(tn+1)P̃3,l(tn+1), P̃3,l(tn+1)Yn+1,

P̃3,l(tn+1)P̃1,l(tn+1), P̃3,l(tn+1)P̃2,l(tn+1), P̃
2
3,l(tn+1)

]T
.(61)

Then, based on Eq.s (57)-(60), we have:

(62) E
(
Zn+1

)
= E

(
H ⊗H

)
E
(
Zn

)
.

When the spectral radius ρ
(
E(H ⊗H)

)
< 1, the proposed scheme is mean square

stable. �

5. Numerical experiments

The objective of this section is to present two examples to illustrate our numerical
stability results of proposed scheme through a comparison with the split-step θ-
method [4] and the θ-Milstein method [12], using the SOE approximation.

Example 5.1. Let us consider the following double singular test equation:
(63)

y(t) = y0 + λ

∫ t

0

(t− s)−γ1s−σ1y(s)ds+ µ

∫ t

0

(t− s)−γ2s−σ2y(s)dW (s), t ∈ [0, T ],

where γ1 + σ1 ∈ (0, 1) and γ2 + σ2 ∈ (0, 12 ). To report our stability regions for
different values of θ, we use the following three cases:

• Case I: γ1 = 0.2, σ1 = 0.1, γ2 = 0.2, σ2 = 0.1 and h = 2−6,
• Case II: γ1 = 0.2, σ1 = 0.1, γ2 = 0.2, σ2 = 0.1 and h = 2−10,
• Case III: γ1 = 0.4, σ1 = 0.3, γ2 = 0.2, σ2 = 0.1 and h = 2−10.

Following [11] regarding the scaling of the parameters in the plots, we now set:

x := λh, y := µ2h, and T = 25.
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Figure 1. Boundaries of the mean square stability regions in the
(x, y)-plane for the proposed scheme (cyan area), the split-step θ-
method (grey area) and the θ-Milstein method (yellow area) with
h = 2−6 for case I.

Figure 2. Boundaries of the mean square stability regions in the
(x, y)-plane for the proposed scheme (cyan area), the split-step θ-
method (grey area) and the θ-Milstein method (yellow area) with
h = 2−10 for case II.

The stability results of the three cases with different kernel parameters are shown
in Figs. 1-3. When the values of θ increase, Figs. 1 and 2 illustrate that the
stability regions of the proposed scheme is expanded significantly. In particular, in
Fig. 3, we can see that as the kernel parameters increase and other quantities are
unchanged, the stability regions of the proposed scheme will become large.

Firstly, we test for different values of θ and step sizes h = 2−6 and h = 2−10,
respectively, and their stability regions in the (x, y)-plane are given in Figs. 1 and
2. For the given test Eq. (63) with the kernel parameters introduced in case I,
we select λ = −3, µ = 2, and five different step sizes h = 1, 2−1, 2−2, 2−4 and 2−6.
Using these values, we generate 104 numerical sample paths over the interval [0, 25]
and plot the mean square of the numerical solution in Fig. 4, which indicates that
the numerical scheme tends to be stable as the step size decreases. Further, we test
the proposed scheme with step size h = 2−6 for the test Eq. (63) with λ = −85,
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Figure 3. Boundaries of the mean square stability regions in the
(x, y)-plane for the proposed scheme (cyan area), the split-step θ-
method (grey area) and the θ-Milstein method (yellow area) with
h = 2−10 for case III.

Figure 4. Mean square of the numerical solution of the proposed
scheme for the test Eq. (63) with λ = −3, µ = 2 and θ = 0.3.

Figure 5. Mean square of the numerical solution of the proposed
scheme for the test Eq. (63) with λ = −85, µ = 2 and h = 2−6.

µ = 2, and different values of θ so that the point (x, y) = (−1.3281, 0.0625) lies
inside the stability region. The mean square of the numerical solution is plotted in
Fig. 5, demonstrating stability for all values of θ. Next, we make a comparison
between the stability of the proposed scheme and that of the split-step θ-method and
θ-Milstein method. We take θ = 0.5 and consider the test Eq. (63) with λ = −8 and
µ = 4. For h = 2−1, the numerical results are depicted in Fig. 6, which shows that
the proposed scheme is stable while the split-step θ-method and θ-Milstein method
are unstable. This is because the corresponding point (x, y) = (−4, 8) lies inside the
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Figure 6. Mean square of the numerical solutions of three meth-
ods for the test Eq. (63) with θ = 0.5, λ = −8, µ = 4 and step size
h = 2−1.

Figure 7. Mean square of the numerical solutions of three meth-
ods for the test Eq. (63) with θ = 0.5, λ = −8, µ = 4 and step size
h = 2−6.

stability region of the proposed scheme, but outside that of the split-step θ-method
and θ-Milstein method. If we reduce the step size to h = 2−6, then three methods
are mean square stable, which is shown in Fig. 7. This shows that the stability of
the θ-Milstein method and the split-step θ-method are less restrictive than that of
the improved stochastic θ-scheme. As a further aspect of providing comparisons of
the stability properties of the methods, we now consider a fixed set of values of the
parameters λ and µ and, using Matlab, numerically evaluate the spectral radius of
the stability matrices H ⊗H for different values of step sizes h and parameter θ.
Table 1 provide the corresponding values and illustrate clearly the different stability
properties of the three methods considered.

Example 5.2. Let us consider the following nonlinear singular SVIE with Mittag-
Leffler kernels:

y(t) = y0 + λ

∫ t

0

(t− s)−γEα

(
(t− s)α

)
sin(y(s))ds

+ µ

∫ t

0

(t− s)−σEα

(
(t− s)α

)
cos(y(s))dW (s), t ∈ [0, T ],(64)

where γ ∈ (0, 1), σ ∈ (0, 12 ) and α ∈ (0, 1). It is obvious that the coefficients F and
G satisfy the global Lipschitz condition and linear growth condition. Next, we will
give the stability results of the proposed scheme for the nonlinear test Eq. (64) with
γ = 0.6, σ = 0.3 and α = 0.9.
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Figure 8. Boundaries of the mean square stability regions in the
(x, y)-plane for the proposed scheme (cyan area), the split-step θ-
method (grey area) and the θ-Milstein method (yellow area) with
step size h = 2−6.

Figure 9. Boundaries of the mean square stability regions in the
(x, y)-plane for the proposed scheme (cyan area), the split-step θ-
method (grey area) and the θ-Milstein method (yellow area) with
step size h = 2−10.

Now, we verify the numerical stability results given in Figs. 8 and 9. Firstly,
we test for two values of θ and step sizes h = 2−6 and 2−10, respectively, and their
stability regions in the (x, y)-plane. Figs. 8 and 9 show that the stability regions
of the proposed scheme become large when the value of θ increases. For the given
nonlinear test Eq. (64), we generate 104 numerical sample paths over the interval
[0, 25] and plot the mean square of the numerical solution, which indicates that the
numerical scheme tends to be stable as the step size decreases.

Next, we make a comparison between the stability of the proposed scheme and
that of the split-step θ-method and θ-Milstein method. We take θ = 0.5 and consider
the nonlinear test Eq. (64) with λ = −150 and µ = 12. For h = 2−6, the numerical
results are depicted in Fig. 10, which shows that the proposed scheme is stable
while the split-step θ-method and θ-Milstein method are unstable. This is because
the corresponding point (x, y) = (−2.34, 2.25) lies inside the stability region of the
proposed scheme, but outside that of the split-step θ-method and θ-Milstein method.
If we reduce the step size to h = 2−10, then three methods are mean square stable,
which is shown in Fig. 11. This shows that the stability of the θ-Milstein method
and the split-step θ-method are less restrictive than that of the proposed scheme.
Table 2 provide the corresponding values and illustrate clearly the different stability
properties of the three methods considered.
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Figure 10. Mean square of the numerical solutions of three meth-
ods for the nonlinear test Eq. (64) with θ = 0.5, λ = −150, µ = 12
and step size h = 2−6.

Figure 11. Mean square of the numerical solutions of three meth-
ods for the nonlinear test Eq. (64) with θ = 0.5, λ = −150, µ = 12
and step size h = 2−10.

Table 2. Values of the spectral radius of the stability matrices
H ⊗H for the nonlinear test Eq. (64) with λ = −150 and µ = 12.

Improved θ-scheme Split-step θ-method θ-Milstein method

h θ = 0.5 θ = 0.8 θ = 0.5 θ = 0.8 θ = 0.5 θ = 0.8

2−1 0.675 stable 0.591 stable 1.944 unst. 0.468 stable 3.511 unst. 2.099 unst.
2−2 0.706 stable 0.636 stable 0.551 stable 0.533 stable 1.244 unst. 0.410 stable
2−4 0.759 stable 0.702 stable 0.617 stable 0.582 stable 0.528 stable 0.473 stable
2−6 0.821 stable 0.778 stable 0.683 stable 0.645 stable 0.574 stable 0.533 stable
2−10 0.934 stable 0.854 stable 0.746 stable 0.707 stable 0.645 stable 0.607 stable

6. Conclusion

This paper presents an innovative method for constructing the stochastic θ-
scheme for SVIEs (1) with double singular kernels. The proposed approach utilizes
the SOE approximation to improve computational efficiency. Furthermore, we dis-
cussed an analysis on the mean square stability of the proposed scheme, focusing
specifically on a linear test equation. Based on the explicit structure of the stability
matrices, we plotted and compared the numerical stability regions.
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