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AN ENERGY-DISSIPATION FINITE ELEMENT
PRESSURE-CORRECTION SCHEME FOR THE
HYDRODYNAMICS OF SMECTIC-A LIQUID CRYSTALS

PANPAN GUO, GUANG-AN ZOU*, AND MIN ZHANG*

Abstract. In this paper, we develop a new linear, fully-decoupled, unconditional energy-stable
BDF2-SAV-FEM scheme for solving the smectic-A liquid crystals, based on the finite element
method (FEM) for spatial discretization and two-step backward differentiation formula (BDF2)
for temporal discretization. To decouple the computations of the layer function and velocity
field, we introduce an additional stabilization term into the constitutive equation. The nonlinear
energy potential and the Navier-Stokes equations are treated by the scalar auxiliary variable
(SAV) method and the rotational pressure-correction method, respectively. The unique solvability,
unconditional energy stability, and error estimations of the proposed numerical scheme have been
demonstrated. Several numerical experiments are carried out to validate our theoretical analysis.

Key words. Liquid crystals flows, unconditional energy stability, second-order, finite element
method.

1. Introduction

Liquid crystals (LCs) are a novel intermediate state that appears in nature.
Some substances in a molten state or after being dissolved by solvents, although
losing the rigidity of solid substances, gain the fluidity of liquids and retain the
anisotropic ordered arrangement of some crystalline substance molecules, forming
an intermediate state that combines the properties of both crystals and liquids.
This oriented ordered fluid that exists during the transition from solid to liquid is
called liquid crystals (see [5,11,22]). LCs are widely used in daily life for a variety
of applications, such as using them to indicate temperature and alarm toxic gases
based on its color-changing characteristics, and using the optical properties of liquid
crystals to make liquid crystal displays. Divide liquid crystals into thermotropic
liquid crystals and lyotropic liquid crystals due to different conditions of liquid
crystals production. Thermotropic liquid crystals include two essential types: the
nematic phase and the smectic phase. The molecular arrangement of the smectic
phase is arranged in layers, and the long axes of molecules within the layer are
parallel to each other and perpendicular to the layer. There are many different
smectic phases, which are characterized by different types and degrees of positional
and orientational order(see [11,48-50]). For example, in the smectic-A phase, the
director of liquid crystals molecules is perpendicular to the smectic plane, which
means that the direction is consistent with the layers’ normal vector. But in the
smectic-C phase, the arrangement of molecules deviates from the normal vector of
the layer. This paper mainly studies the numerical approximation of the smectic-A
phase.

Recently, there has been a lot of interest in liquid crystals with many of these
works focused on studying the nematic phase, see [1,17,35,43,55,57] and references
therein. One of the most famous continuum theories for nematic liquid crystals
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is the Ericksen-Leslie model, which is derived by Ericksen and Leslie using the
variational method for the Oseen-Frank energy [14, 15,24, 25,29]. For smectic-A
liquid crystals, de Gennes and Prost proposed the first mathematical model in [11]
by coupling two order parameters that, respectively, characterize the layer structure
and the average direction of molecular alignment. In [2], the authors modified the
model of de Gennes and Prost by adding a second-order gradient term for the
smectic order parameter and studied the transition of nematic to smectic-A and
smectic-C phases. In [23], the authors investigated the smectic-A liquid crystals
by using the de Gennes energy to simulate the chevron pattern formed under the
effect of an external magnetic field. In [12], by assuming that the director field
is completely equal to the layer’s gradient, the author succeeded to derive the
simplified model of the smectic-A phase while reducing the free energy to one order
parameter.

The mathematical analysis and numerical methods for the smectic-A liquid crys-
tals are available in the literature. There are a lot of works for the theoretical
analysis [9, 10, 26,31, 53,54]. For examples, the energy dissipative relation for the
density-dependent system of the smectic-A liquid crystals were obtained and the
existence of global weak solutions in the system was demonstrated in [26]. The au-
thors studied a hydrodynamic system of smectic-A liquid crystals and analyzed the
well-posedness as well as asymptotic behavior of strong solutions in [53]. From the
view of computation, in [22] an unconditionally energy stable numerical scheme for
the model of smectic-A liquid crystals was developed, which was first-order, linear,
and decoupled time-marching. In [20], an energy-stable and second-order time-
accurate numerical scheme was proposed for the smectic-A liquid crystals model,
and numerical simulations were presented for 2D domains. The authors in [5] de-
veloped two linear, second-order time marching schemes for the system, one is the
Crank-Nicolson scheme, another is the BDF2 scheme with the Adam-Bashforth
explicit interpolation, further proved the well-posedness and unconditionally ener-
gy stability of numerical methods rigorously and used numerical experiments to
validate the stability and accuracy of the schemes, but the schemes are partially
decoupled and the error estimates of two schemes are missing. As far as we know,
there fails to be any investigation on the convergence analysis of numerical methods
for the smectic-A liquid crystals in the literature.

The discussed smectic-A phase model above is a highly nonlinear system that
couples a constitutive equation for the layer function and the incompressible Navier-
Stokes equations. For this system, there are several numerical difficulties: (i) the
coupling of layer function and fluid velocity field; (ii) the existence of nonlinear
terms; (iii) the coupling of fluid velocity field and pressure. This study is primari-
ly focused on developing a second-order time-accurate fully discrete finite element
scheme that can provide unconditional energy stability, full decoupling, and linear-
ity. To overcome the first difficulty, we add an artificial stabilization term into the
constitutive equation, which plays a significant role in decoupling the computations
of the velocity field u and layer function ¢, and use the implicit-explicit (IMEX)
approach to handle other nonlinear coupling terms [36,42,44,58]. For the nonlinear
term f(V¢), which brings a lot of difficulties when proving unconditionally energy
stable and error estimates of the numerical scheme, the SAV method is applied
to linearize this term [45-47]. Moreover, We decouple the velocity and pressure in
the Navier-Stokes equations by applying the rotational pressure-correction method.
Compared with the projection method [5,22], the rotational pressure-correction
method removes the need for artificial pressure boundary conditions. Eventually,
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the FEM is adopted for the spatial discretization. Combining these approaches
allows us to construct an effective fully discrete scheme. The essential contribution
of this work is the rigorous proof of the unconditional energy stability and error
estimates of the designed second-order time-accurate scheme. Finally, the stability,
accuracy and effectiveness of the proposed scheme are demonstrated using several
numerical experiments.

The outline of this paper is as follows. In Section 2, we introduce the model
system and the SAV method, deriving the unconditional energy stability at the
continuous level. To solve the coupled system, a linear decoupling fully discrete
scheme is developed in Section 3, whose unique solvability and unconditional energy
stability at the discrete level are proved. In Section 4, we rigorously prove the error
estimates of the proposed scheme. In Section 5, we present some numerical results
to confirm our theoretical analysis. The final section provides a brief conclusion.

2. Preliminary

2.1. The smectic-A liquid crystals. The hydrodynamic system of the smectic-
A phase liquid crystals (see [5,12]) is derived based on the generalized Fick’s law,
which states that the mass flux is proportional to the gradient of the chemical
potential [27]. In a bounded domain Q2 C R%(d = 2, 3), the smectic-A liquid crystals
read as

(la) by +u-Vo=—Muw,

OF
(1c) u; + (u-V)u — vAu+ Vp — wVe = 0,
(1d) V-u=0,

where ¢ is the layer function, u is the fluid velocity field, p denotes the pressure, the
parameter v > 0 represents the fluid viscosity and M > 0 is the elastic relaxation
time. The regularized energy E = E(¢) is defined as

E(¢) = “/Q (;|A¢|2 + F(V¢>)) do, F(V¢)= é(|v¢|2 —1)2,

where k is the splay, twist, and bend elastic constant. For simplicity, we take k = 1
below. And ¢ < 1 is a penalization parameter. The boundary and initial conditions
are given by

(2)

ulpn=0, 92 |50=0, % loa= 0,
u(x,0) =ug, o(x,0) = ¢o,Vx € Q,

where n is the unit outward normal on the boundary 0.

Introducing an auxiliary function ¢ = —Adg, then the system (1) can be rewritten
as:
(3a) e +u-Vo+ Mw=0,
(3b) w+ AP+ V- f(Ve) =0,
(3c) Y+ Ap =0,
(3d) u; + (u-V)u —vAu+ Vp —wVe =0,
(3e) V-u=0,
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where f(V¢) = F'(V¢) = 5V¢(]V|? — 1). The boundary and initial conditions
of the system (3) are

@) ulpo=10, 22 ]0=0, 5% |s0=0,
u(:B, 0) = Uo, ¢($70) = ¢07 Va € Q.

Lemma 2.1. Defined the energy £ of the system (3) as

(5) £(u.d) = [ (Glul? + 507 + F(Vo)ia.
then, the system (3) satisfies the energy law as

(6) G0 = = [ (Mol + viVul)de < 0.

Proof. Take the time derivative for (3c) and we have
(7) i+ Agy = 0.

By taking L? inner-product of (3a), (3b), (7), and (3d) with w, ¢;, v, and wu,
respectively. Using (3e), (4), and the fact that ((u - V)u,u) = 0, we have

d 1 1
®) G [ GluP 5P+ F(Ve)dz =~ [ (Mluf? +v|Vul)iz <o
dt Jo 2 2 0
From the definition of free energy £ in (5), we have
d

e lu, ) = — / (M[w]? + v|Vul?)dz < 0.
d A

O

2.2. The SAV method. We adopt the SAV approach to construct the linearity
and energy stability scheme. We define the new scalar variable R(t) as

1/2
©) R = Eo<¢>=(/Q F<v¢>dw+e) | F(Ve) = 25(Vef 12

Here € > 0 is a fixed constant that is used to guarantee the energy variable Fy(¢) can
always be nonnegative. Hence, the total energy (5) can be rewritten into quadratic
form as

(10) &0 R) = [ (Glul + oo+ ROP —c

Taking the time derivative for (9) and we can get

Ry = 2\/;07@ /Q f[(V§) - Vde.

Moreover, we can rewrite the system (3) as
(11a) e +u-Vo+ Mw=0,
(11b) w+ A+ ey — o,

Eo(¢)
(11c) Y+ Ap=0,
(11d) u+ (u-V)u —vAu+ Vp —wVe¢ =0,
(11e) V-u=0,

1
(11f) R, = m/ﬁf(Vq’)) - Vide,
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R(t)
VvV Eo($)

Eo(¢o).

Before giving the variational formulation of the SAV scheme (11), we first define
some notations. We use W*?(Q) and LP(Q) to represent the usual Sobolev spaces
and Lebesgue spaces, respectively, for 0 < s < 0o, 1 < p < co. They are equipped
with the norms || - ||ws» and || - ||zr. In particular, when p = 2 we represent the
Hilbert spaces W*2(Q2) by H*(Q2) with norm || - ||z=. The norm and inner-product
of L*(Q) represent by || - || and (-,-). We define the following spaces:

Y= H'Q), Q=13®) = {gc LX) [ qdz =0}
Q

X = [Hy ()" = {v € [H'(Q)? : v]oq = 0}.

Taking L2-inner product of (11a), (11b), (11c), (11d), and (11le) withp € Y, 0 €Y,
peY, ve X, and g € Q, respectively, we have the variational formulation of the
SAV scheme (11): find (¢, w,¥,u,p,R) €Y XY xY x X x @ x R such that

(12a) (¢, p) + (uw-Vo,p) + M(w,p) =0,  VpeYy,
R(t)
Eo(9)

(12¢) (¢,0) = (V§, V) =0, V€Y,

(12d) (ut,v) + b(u,u,v) + v(Vu, Vo) — (p, V- v) — (wVe,v) =0, Yve X,

(12e) (V- u,q) =0, Vg€ Q,

(12f) R, = m /Q f[(V) - Vde.

where = 1 is used here. Note that the initial condition of (11f) is R(0) =

(12b) (w,0) = (V4), Vo) —( f(V¢),Vo) =0,  Voev,

Note that the term b(u, v, w) = ((u - V)v,w) in (12d) which equals to zero when
v=wfor V-u=0.

Lemma 2.2. The system (12) satisfies the energy law as

(13) 6.1 == [ (Mluf? +v|VupP)iz <0,
Q

Proof. Taking p = w, 0 = ¢¢, and v = w in (12a), (12b), and (12d), respectively,
taking L? inner-product of (7) with ¢ and multiplying (12f) by 2R, we can derive
(61, w) + (u- Vo, w) + M|w|* =0,
(U} d)t) (V¢a V¢t) - (f(v¢)7 v¢t) = 07
(¢t ) (véta Vw) = 07
() .9 VUl - (5, V- w) — (wV6,u) = 0
d
—|R|? / (Vo) - Vorda.
ZIRJ? = W 1(V9) - Vo,
Using (12¢) and b(u, w,u) = 0, we can get
d 1 1
G (LGl + 3loP)de + 18R ) == [ (Mluf? + viTuf)de <0
dt \ Jo 2 2 0

From the definition (10), we have

5Ew o, R) = jt (/(|u|2+;|1/)|2)da:+|R|2> <0
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3. Well-posedness and energy stability of the scheme

3.1. The BDF2-SAV-FEM scheme. Let 7, = {K} be a regular mesh of Q

consisting of elements K, and K is a triangle with the mesh parameter h = ax hk,
€Th

where hx denotes diameters of K. Let X, C X,Y, C Y,Q;, C Q be the finite-
element spaces and define as:
n={vn € X, 0p| € [Pr(K)]*},
Y = {¢n €Y, bnlx € Pr(K)},
Qn ={an € Q,qnlx € Pr_1(K)},
where P (K) is the space of polynomials degree not great than k¥ > 1 on K.

Now we approximate (¢, w,¥,u,p,R) € Y xY xY x X x @ x R by finding
(dn, Wh, Yn, Up, phy BRr) € Yy X Yy X Yy X X X Qp X R, respectively, then we have
the semi-discrete SAV-FEM scheme:

(14)
((Pn)t> pn) + (un - Von, pr) + M(wn, pn) = 0, Vpn € Ya,

—(wn, 1) + (Vibn, Vo) + (\/%f(quh),Vah):O, Yo, € Ya,

(Yn,on) — (Von,Veor) =0, Yon € Yy,

((wn)e,vn) + b(up, wp, vy) + v(Vup, Voi) — (o, V - vi) — (wpVép,v,) =0,
Yoy, € Xh,

(V"U/h,Qh) :07 th S Qh,

(Rn): = W(f(v%), V(on)t)-

Let 0t be the time step size satisfying 0 < 0t < 1, ¢, = ndt, n=1,2,--- | N with
ending time T' = N§t. We now consider the BDF2 scheme for discretization (14) in
time. To develop a linear, fully-decoupled, fully-discrete BDF2-SAV-FEM scheme,
we present the calculations in the following four steps. In the initial time tg, we

define the initial data as ¢)h = thbo, u) = Prug, p) = Rupo, R) = /Eo(do),
@) =), 2) =pY), and ¢; ' = @), u; ' = uf as in [56]. At the domain boundary,
we set uﬁ“ loo=0, 6n¢z+1 loa= 0, 6‘; ZH loa= 0.

Step 1: Find (o)™, wi ™t vt RIY) € (Y, Ya, Vi, R) satisfying

3 n+1 4 n+ T .
(15) AT ZIENT ) L (o ag) + Mg )

+ Bt (Wit G, pp V) =0, Vpp € Vi,

R’rLJrl

(16) — (wpt on) + (VY Vo) + (—=—=Ff(Vé}),Vou) =0, Vo, €Yy,
Eo(o7)
(17) (pT on) — (Vo V) =0, Ve, €Yy,
3R, — 4Ry 4+ R 1 oy 3V —4ven 4 V!
(13) 21 bt (F(vap), 20 Ot Voh

25t 2\/% 26t
Step 2: Find u}"' € X, such that
(19)
(3~”+1 duf +up !
26t

vp) + by, @)t vy) + v(Vaptt, Vo)

— (i, V - vp) — (WpTIVR, v) =0, Yo, € X
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Step 3: Find ()™, pp ! upth) € (Qn, Qn, X 1) such that

n 3 n
(20) (Vz ', Van) = —T&(V “aptan),  Van € Qn,
(21) (et —pioan) +v(V-a an) = (7 an),  VYan € Qn,
3uptt — 3upt!

7Uh)_(v’vh>2;f+1)=0, Vv, € Xy,.

(22) (

20t
We now make a few remarks on the above scheme. First, we introduce the
linearly extrapolated forms ¢} := 2¢} — Zfl and uj = 2u} — qul for the layer

function ¢ and velocity w, respectively.

Second, we emphasize that the fluid velocity field uZ‘H satisfies the discrete
divergence free condition (see [51]). To be specific, take vy, = Vg, in (22), combine
with (20), and use the integration by parts we can get

(23) (V : ’U’Z-‘rla qh) = 07 th S Qh-

In the following, we denote by C' a generic constant that is independent of the
size h and the step size §t. Generally, to describe that there exists a generic constant
C such that a < Cb, we employ the expression a < b. To derive the well-posedness,
energy stability, and error estimate of our scheme below, we give some following
lemmas and elliptic projection operators.

Remark 3.1. To decouple the computation of the layer function ¢ and velocity u,
a second-order artificial stabilization term BJt%wZHV(;ASZ,phVQASZ) (where B is a
artificial parameter) has been added in (15) to impose the stability of the scheme.
And [33,34,59] provide similar methods.

Remark 3.2. The pressure gradient is explicitly calculated in the suggested numer-
ical scheme. Consequently, since the pressure gradient is no longer coupled with the
divergence-free constraint, a Stokes-style solver is avoided. Stokes-style solvers can
be avoided in some works [4, 38].

Remark 3.3. We utilize a second-order rotational pressure-correction scheme in
(20)-(22) to solve the Navier-Stokes equations, which can decouple the calculation
of the pressure p and the velocity w. Compared to the standard forms of pressure-
correction projection method [3, 4, 7, 38], the rotational pressure-correction in the
proposed scheme eliminate a portion of artificial pressure boundary conditions.

Lemma 3.4. The following inverse inequality holds (see [40])

Cmyd_d
(24) o llwm.e S R4 Jon]lwna,
where d is the dimension of the space and C' is a positive constant that is independent
of h, with0 <n<m<1, 1<g<s< 0.
Lemma 3.5. (Inf-sup condition [18]) The spaces Xy and Qy satisfy the inf-sup
condition, which yields

. (Q7v : 'U)
25 inf sup ————— 2 ||q||-
(25) AL Tom llqll

Defined the elliptic projection operators Qy : Y — Y3, and Ry, : QNH () — Qp
as (see [37]): for any ¢ € Y and p € Q N H ()
(26) (V¥ = Qnp), Voor) =0, Vo € Y,
(27) (V(p—Rip),Van) =0, Van € Qn.
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Defined the operator Py, : X — X, as (see [19]): for any u € X
(28) (V : (u — Phu),qh) =0, Vg, € Qp.

The operators Qp,, Pp, Ry, have the classical approximation properties (see [30, 36,
37]):

16— Qnéll + RV (e = Qua)ll S K gllwsr, Vo € HHQ)NY,

(29)  llu—Prull + 2|V (w — Pru)| S Bl gesn,  Vue [HHQ) N X,
IV'p = V' Rypll S B Hlpllge,  i=0,1, vpe HY(Q)NQ.

3.2. Well-posedness. We will prove the well-posedness of the scheme (15)-(22).

Theorem 3.6. The numerical solution of the scheme (15)-(22) is unique.

Proof. We rewrite the formula (15)-(18) as
(30)

28t2

20t R .
(ZH,Ph)JrM?(wZH,Ph)Jr 3 (Wt on, pV i)

1 20 .
= S (49] — g3 o) — 5 (VR ),

(31)

RnJrl R
— (wp on) + (Voprt! Vo) + (—L—f(Vo}), Von) = 0,

Eo(o})
(32)
(Wt on) — (Voprt!, V) =0,

D “
2RYTD — ————(f(V}), Verth)
Eo(o})

(33)

D . 2
= ———(f(Vé}), ~4Ve} + V™" + S(4R;D — R ' D).

- 31/ Eo(47)

Here we have multiplied D € R with both side of (18).
Defined a bilinear form A;(+,-) : (Yp, Yn, i, R) X (Y4, Y3, Yy, R) — R and a linear

form F1(-) : (Y, Y3, Ys,R) > R as
20t 235t*

Av(w, 0,9, B; p, 0,0, D) = (6, p) + M=~ (w, p)) + =—(wV}, pVo}) — (w, )

+ (V. Vo) + (—ee (V). V0) + (6, 0)

Eo(o})
D A
~ (V6,Vg) +2RD — ———(J(V3}),V6),
Eo(o})
1 20 .
Filpsop, D) = 5(407 — 617 p) = S5 (VR )

5 2
(F(VER), ~4V6h + Vo, ™) + S(4RD — R~ D).

D
" 34/ Eo(¢})
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Therefore, the scheme (30)-(33) can be rewritten as:

(34) Ax(wpt opt op L RS pny oy ons D) = Fiph, o, o, D).

Using the Cauchy-Schwarz inequality and Poincaré’s inequality [13], we have
Av(w, 9,4, R; p,0,¢,D)

26t 2835t* n
<lllol -+ 222 ool + 220 ol 93 + o]
F(V}
L 1velliVol + RIS 1o + o lilel + IValIvel
Ey(o™)
F(Véy
Lor|D| + o) LY v

\/Eo(d;Z)
< Ci(IVoll + [[wll + IV + [R) (el + Vol + Vel + | D),

where C; depends on t, M, 3, ||V$Z||Lm And the boundedness of ||V$Z||L°° can

be obtained from the Step 3 of Lemma 4.2’s proof. Taking (p, o, ) = (w, ¢, 1), we
derive

26t 2035t* o

AsCa, 16, B, 6, ) = Mot u? + 2200 g+ e+ 20R1P

> Co([[wl® + [l + |R?),

where Cy depends on 6t, M, 5. Then from the Lax-Milgram theorem, we know that
(15)-(18) has a unique solution (w}™*, @7+t 4n ). For (19), we define a bilinear
form As(-,-) : X, x X — R and a linear form F5(+) : Xp — R as

3
Az (u,v) = o= (u,v) + b(ay, w,v) + v(Vu, Vv),

20t
Fa(v) = ﬁ(‘hﬁf —up )+ (7, Vo) + (wp IV v).
Then (19) can be expressed as
(35) As(@y ™t vp) = Fa(vp).

With the similar process, we can get that As(+,-) is bounded and coercive:

3 5
Az(u,v) < oo [[ullv]l + @]l [Vulllvll + v Veul[[Vo]

< G| Vul[[|[ Vo],
3

T 20t
where C3 depends on dt, v, |4y || L~ and Cy depends on 6¢,v. Thus from the Lax-
Milgram theorem, we note that (19) has a unique solution '&Z‘H € Xp. Using
a similar way to deal with (20)-(22), we can demonstrate the existence and the

uniqueness of (2!, uZH,pZH) € (Qn, X1, Qr). The proof is finished. O

Az (u, u) [l + v [[Vul|* > Caf| Vul,

3.3. Unconditionally energy stability. Here we introduce some auxiliary vari-
ables to demonstrate the energy stability [28,59]. The following auxiliary functions
S € Qn and dj € @, are defined by

(36) Sp=vY V-u, dy=pp+Sp, S"=0, d"=p",
j=1
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with SP = 0 and d) = 0. We can rewrite (21) as
(37) pptt =pp+ 2t — vV -4y

Theorem 3.7. The scheme (15)-(22) is unconditionally energy stable, i.e., it obeys
the following discrete law of energy dissipation

(38) gh(uz+1a Z+1) < gh(u27 ¢Z>7

where the discrete energy &, is defined as

n mn 1 n 1 n n— n n n—
En(uy, dp) = §||¢h||2 + 5”21% — M1+ |RR1P + 2Ry — Ry

1, oy Lo - 2612 _ o St
g luf? + S 12up — w2+ 2 v + g
Proof. Firstly, let us recall the following two facts
1
(39) a(a—b) = 5(laf* = [b]* +|a — b*),

1
(40) a(3a—4b+c) = §(|a|2 — 0% 4 [2a — b]* = |2b — ¢|* + |a — 2b + c[?).

Setting pj, = 26tw; ™! and oy, = 367! — 4¢7 + ¢! in (15) and (16), respectively,
we have

(41)
(Bpt! —dop + 0h  wp ™) + 20t (w TV ] @)
+ 2Mt||wp 2 4 28583 [wi IV R|2 = 0

(42)
—(wpt,3op — dof + 6 ) + (VU VB — 49f + 6 1)
RZ+1 n n+1 n n—1 _
+ (7E0(¢Z)f(v¢h)v V(3¢ Ay + ¢, 7)) = 0.

Subtract (17) from the previous time step and the two previous time steps by the
appropriate treatments, one can easily get

(43)  Bupt =g+ on) = (VBopT — 4gp + ¢p "), Ver) = 0.

Take @5, = ¥ in (43) and use (40), we have

(HWHHQ H‘/)hHQ + 290+ =yl
(44) — 1207 — w7 I e — 207 +¢"*1H2>
—(V(3 ¢"+1 Ay + ), V) =
Multiplying (18) by 46tR}™, and using (40) lead to
(IR — Ry + 2R — Ry|?

~[2RE — Ry R~ 2R+ R )
RTL-‘rl

- Eo(67)

(45)
(F(VoR),3Vertt —aver + Verh).
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Adding (41)-(42), and (44)-(45), we have
25t(w;;+1v¢z, ap) + 2Mt|lwi | 4 28683 [wl IV op |2

<||w“+l||2 12 + 1200+ — op 2
(46) f||2whf T2 et = 2ur 4 P ?)
+ (|RyTY? = [Rp + [2RpH — Ry
— [2Ry — BT+ BT - 2R+ BT = 0.

By setting v, = 25tu"+1 in (19) and using the fact that b(u,v,v) = 0, we can
obtain

(Baptt —dul + )t At + 2wt | Va2

47
47 — 28t (p, V - @) — 26t (w TV R, At = 0.

Taking vj, = 3u;,
can get
(48)

n+l —duf + uz_ in (22), using (V - uzﬂ,qh) = 0,Yqn, € Qp we

25t(uz+1 — )} Bultt —duf +ul ) = (Ve Buptt — Al ), 2t = 0.

Then from (48), we arrive at
(Bapt — du) +up ! a;;“)

= (Bup™ —duf +uf L ur ) + Bup T — duf 4w Al — )t

(3~n+1 3’U,Z+1,’&Z+1)

49
() =5<||u2+1||2 o P+ 12—
R e
= ~“+1||2 gt g  agt R

From (49) and (47), we can get

(50)

%(HUZHH2 i1 + 120 = uh|® = [12uh — up 7P+ flup ™ = 2uh +up )
+ §(||17'ZH||2 o R R D2 i
— 265t(p}, V - ah ) — 20t (wl VR artt) = 0.

Taking qp, = 8{; z™! in (20), we have

61 B stz =~ g gt ),

Setting vy, = 26tw; T in (22), we can derive

(52) o (™I — I — ™ — g — 2669 - g o) =0,

We rewrite (22) as

(3) (- o) - (- g wn) = — ol (V).
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Choosing v, = @t — 4} in (53) and using the fact that (V - @}, ;') = 0, we
get

~n+1 ~n 2 n+1 ~n ~n+1 ~mn 24t ~n+1 _n+1
(54) wy,™ = apl” = (up™ —ay,ap" —ay) = _?(V STz ).
To deal with the term —2§t(V - ~"+1,ph) (50), applying the definition of d}}, we
have

(55) —20L(V - a) Tt pt) = —266(V - @)t dy) + 20H(V - @t S,
Using the definition of S}, we obtain

(56) Sptt — S =vV - ay.

From (36)-(37) and (56), it is easy to check that

(57) dptt —dyp = pitt —pp 4 S - G =

Then by setting g, = %d” in (20) and applying (57), we derive

4512

—25H(V - T dp) = (V2T V)

452 " . .
= T(V(dh+1 —dy,),Vdy)
(58) 25t2 12 2 1 2
= ——(IVdy 1 = IV |? = IV (dp™ — d)[?)
25t2

= IV 2 = (IVdR|1* = IV2%).

For the second term 25t(V - @)™ Sh) in the right-hand side of (55), applying (56)
and (39), we derive

20t , ., " on

v (S i Sh ) Sh)

6 n n n
:;(IISh“H2 ISEIZ = 1S5 = Sql).

26H(V - @)t Sy =
(59)

By substituting (58) and (59) into (55), we get

262

—20t(V -y ph) = = (V1P = VA |* = 1V 27)

(60) &
— (ISP = ISR = 11557 = SR

Combining (46), (50)—(52) (54) and (60), we can obtain
(||1/1"+1||2 — lwrl?) + (IIQWJrl YRl = l2en —vp )
(|R”+1|2 — |Rp?) + (|2R"+1 — Ry — 2R — Ry 1)
(|| PP = llupl?) + (||2u"+1 up|® — [|2uj — UZHHQ)

25t
+ 2

(61)

(V2 = (IVdR|*) + (HS [ S )+7IIV Al

||¢n+1 _ 21/% + wn 1”2 + ‘RZ+1 _ 2RZ + Rn—1|2 ||un+1 _ 2“’2 + u2—1H2

+ 21/5t||Vu”+1 12 4 lap ™ — 2u) +upt? + 2M5t|\w”+1 12+ 286 |wp v on |2
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ot
=26t (wy MV OR, ap Tt —a) + (uptt - ag, aptt —ap) + | Sptt - sp R

For the term (ut* — @}, @)™ — 4}), by using the definition of @}, the Cauchy-
Schwarz inequality and the average inequality, we derive

(62)

( n+1 ~n ~n—+1 An)

n+1
uh — uh7uh — Uy

*Ilu = 2up g *IIN”+1 2u; + w2,

For the term 2£|| ;™ — S7||2, using the definition of S} and ||V - v[? < ||Vvl?
(see [21]), we obtain

ot
(63) f||s;;+1 — S = vt||V - @ t? < 2ut|| Va1,
To bound the term 246t(w HV(;S,I, '&ZH —y, ), from the Cauchy-Schwarz inequality
and Young’s inequality, we get

20t (] IV, wrtt - A><26t||w;z+1v¢h||||~”+l—ahn
(64)
< 268w VGRIP + g — 2uf +

Combining (61)-(64), and choosing the artificial parameter § = 2t—N, then one can
deduce
(65)

(IW’“II2 = IeRl*) + (IIW”Jrl Unll? = 11295 — v 1) + (BT — IR )
+(12Ry T = Ry — 2Ry — Ry + (IIU"“H2 = uhll?)

(I\Qu’“”1 —up|? — |2uh ~ uh )+ (IIVd”HII2 A

+ ;(IIShHII2 —ISRI*) + fIIV Al ||1/) R

+ |RPY —2RE 4+ R+ 2M5t\|wg+1||2 < o.
Then the desired result follows immediately. O
4. Error estimates

We can now prove the estimated errors for the system (15)-(22) as follows. Let
us assume that the exact solution satisfies the following assumptions on regularity:

w € L0, T; [H* Q)] 0 [Wh(Q)]), uy € L0, T; [H*H(Q)]9),
wy € L0, T; [L2(Q)]), e € L0, T [L(Q)]%),

¢ € L=(0, T3 HH(Q) nWh(Q)), ¢ € L¥(0, T; H*(9)),

(66) Vo € L0, T; L*(2)), ¢ € L(0,T; H?(Q2)),
Gue € L(0, T; WHe(Q) N H' (),

Y, € L0, T; H*1(Q)), w € L>=(0,T; L=(Q)),
p,pe € L0, T; HE(Q) N H'(Q)).

From Lemma 2.2, Theorem 3.4, and the assumptions (66), applying the Sobolev
embedding theorem, it is easily get that f(V¢) satisfies the following condition [56]:

(67) (VO 1F (Vo). 1" (Vo) 1f(Vep)| < C.
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For convenience, we introduce the notions for any n > 0:

eg =" — o =&4 + g, £ =" — Qno", ny = Qne"™ — o,
ey =W —wy =&+, G =w" = Qpuw”, Ny = Lrnw" — wy,
ey =P =y =&+, Ep =9" — Qpy", Ny = QnY™ — Uy,
€y =u" —up =& + 1y, §u =u" — Pru”, Nu = Pru" — uy,
€y =u" —uy =&y + 1y, §u =u" — Ppu”, N = Pru” — uy,
ey =p" —pp =&, + 1y, & =p" — Rnp", Ny = Rnp" — ph,
e =d" —djy =&} + 13, £ =d" —Rpd", ni = Rnd" — dy,

ey = R" — R},.

From the definition of d} and d"™ in (36), we can easily obtain £ = p™ —Ryp"™,n =
Rup" — (p, + Si)-
The exact solution satisfies the following equations for any 0 <n < N — 1:

(68a)

n+1 _ 4™ n—1
L D)+ (Ve ) - M) = (B ),
(68D)

n+1
— (@) + (T, Vo) + (e f(V4), Vo) = (B, 0),
Eo(¢™)

(68¢)
(" @) = (Vo™ V) =0,
(68d)

n+1 _ n n—1 R n+1l _ n n—1
3R ;lg + R _ 1 : (f(v¢n)73v¢+ 42V5;b + Vo )—FE;%J'_I,

2¢/ Eo(o™)

(68e)

3un+1 — 4u™ + unfl

,v) + b(u" T u" T v) 4 v(Vu T, Vo) — (" Vo)

20t
o (wn+1v¢n+1’v) _ (E,ZJrl,’U),
(68f)
3
(V" =p"),Va) = =5 (V-u"" ) + (V" = p"), Va),
(68g)
3utt — 3unt!
(—7'0) - (v : ,v7pn+1 _pn) = _(V : ,U,pn—&-l _pn)7

26t

where the approximation of v at time t,, is denoted by v™ = v(t,,), the approxima-
tion of w at time t, is represented by u™ = wu(t,), and the truncation errors are
defined by

3¢n+1 _ 4¢n 4 d)n—l _—
26t - ¢t )

En+1 — Rn+1 f(vczg") _ Rn+l f(v¢n+1)
’ Eo(6") VEo(@" 1)

3untl —4u” 4yt il
26t e

n+1 _
E¢ =

n+1 __
E, =
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3R™! —4R" + R" 1
n+1 _ _ n+1 n+1 n+1
1 w3V — 4V 4 Vg
- (f(V5"), Al ).

24/ Eo(¢™)

Lemma 4.1. Under the assumption (66), the truncation errors ERtl Entl and
EZH satisfy that

(69) Cmax (B + B+ L) S 62

Proof. Applying the Taylor formula, the assumption (66) and f is Lipschitz con-
tinuous (referring to [6]), we have

3 n+l _ g4 n—1 tn41
Byt = |2 < oot [ ulo)lds < oo
tn
3utl — 4y n—1 tnt1
Bt = P e < oot [ fu(s)lds < Cor,
t

ity _ et F(VO") iy F(V"H)
B =R \/M—R W|
< V9N — SV
Eo(9™)
£ (V" H)|(Eo(¢" ) — Eo(¢™))]
V Eo(6m) Eo(m+) (y/ Bo(m) + /Eo(@7 1)
< O( max [R()] + [IVoullo(sr))5t*.

By a direct calculation, we deduce that

3 3
Ry = 78 %EO((;S)E’ (/Q f(V(b)Vq’)tda:)
3 / 2
N [ 19aVada [ (£/(90)(Vor? + F(V0)V0u)da

Q

+

)

1 " 3 /
*3 NG /Q (f"(Vo)(Ve)” + 3 (V)V Vb + f(VP)V e )de.
From (66) and (67), we have

T T
/ |Ryse|*dt < C/ (IVell® + IV P IV e I* + IV ee1?) + Vel S
0 0
+ IVl + Vel * + Ve ||*)dt < C,

3R —4R" 4+ R™! 1
E7L+1 — _ pn+l n+1 n+1
1 n 3v¢n+1 _ 4v¢n + v¢n—1
- V"), A )

2y/ Eo(¢™)

tni1
t t

n n

tnt

|V iie(s)|ds + 5752) < C6¢t2.
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Combining the bounds above, we derive (69). O
Lemma 4.2. Let (¢} wp ™ it wf ™t pith) be the solution of (15)-(22), we
have

(70) lup 2 < Ko, IV [T < K.

Proof. Here we utilize the mathematical induction method to prove it.
Step 1: For n = 0, we have ||u)|? « < Ky and ||V@) |7« < K¢ immediately.
Assuming ||[ul]|2. < Ko and ||V} |2 < K§ are valid for n = 0,1,..., N — 1,
then we shall prove |[u} "2 < Ky and ||[Vo; |2 < K.
Step 2: Subtracting (15)-(22) from (68), the error equations become
(71a)
(36(’;le —dej + egfl

,on) + (W —ap Vo, pr) + M (el pn)

20t
— BO (wp IOy, o V) = (B, pr),
(71b)
1 1 R
— (ep™ on) + (Ve ™, Vo) + (7f(v¢n) Vo)
Eo(ém)
Rn+1 R
— (—=1(Ve}), Vo) = (E3*,on),
Eo(o})
(71c)
( n+17 @h) (Vegﬂ, VCP]—L) = 07
(71d)
3entt — den 4 et 1 2y 3V =4Vt 4 Ve !
24/ Eo(9™)
1 N v A A v L v .
N (AL A L T N
24/ Eo(o7)
(Tle)
~n+1 _ n n—1
= ;;tu o o) + b(u T u" T vy) = by, wptt vs) + v(VeRtt, Vo)
— (" =P, Veop) = (VT —wp VR vy) = (Bt vn),
(71f)
n n 3 "’7L 7
(Ve ™ — Vel Van) = —55; (V@ an) + (VP =V, Van),
(71g)
3entl — gen+l
(— vp) = (V-op, et —ef) = =(V o, p" T = p™).

26t
Adding and subtracting the projection operators and using (27) and (28), we obtain

(72a)
(377 —4ng + 1,
26t

= —M(E " pn) — (

n—1

n+1

,on) + Mt pr)

35”-‘,—1 4{ + é-n 1
? Ph)
26t ’
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+ (B3 pn) — (WY —apV e, pn) + B (wi TV R, pn V),
(72b)
— (™ on) + (VT Von) = (€57 on) — (VELT, Von) + (BT on)

Rn+1 R Z+1 .
— (———=f(V¢"),Von) + (————=Ff(Vey), Von),
Eo(o™) Eo(o7)
(72¢)
(™ on) = (Vg™ Ven) = =657 on) + (VELT, Vin),
(72d)
3t — et 4 e 1 f(Ve")  f(Vp) 3V —4v¢"+v¢n—1)
20t \/Eo @) \/Eo o 20t
1, f(Vér) 3Vt —avny 4+ Vi)~ 1)
+ 5( o (é")’ 26t
h
1, f(Vop) 3VET —4aver + Vet _
NENCYE = e
h
(72e)
n+1 n—1
(377 ;lg:, + N ’vh) (Vﬂn+1 V’Uh)
n+1 _ n n—1
= ;5;‘ EE o)~ (Ve o)

+ (BT vp) — b ™ vy + by, w)t vn) 4+ (p" T = pf, Vo)

+ (W — W TIVen vy,

(72f)

(V™ = Vi, Van) = 25t(V it qn) + (Vp" = Vp™, V),
(72g)

377n+1 3nn+1 a1 .

(T vy) = (Vv T =)

20t
(v Uh, TL+1 gg) - (v ' vhapn+1 _pn)

By taking pp = 25t77"+1 and py, = 20ty in (72a), respectively, we derive
(73)
(Iln"“\l2 gl + 1205+t = mg |1 = N12m —ni = H1Z + I+ - 2772 + %)
+2Mt(np ) = —2MSt(EnT ) — (3T — gy + &t
+20t(ER T np ) = 26t(u T VT — ap Vg it
+ 2868 (wi T VR, T Vo),
and
Bug ™t —Anf +ny =t a4+ 2M 6t P = —2Mat(Ent ntY)
(74) — (3T =gy + &t + 26t(E T
= 26t (u" IV — apV gy, ) + 286t° (wi VR, itV GR).
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Setting o, = 377(15 —dng + g ~1in (72b), we obtain

— (3t — Al )+ (VL V@t — A )
= (&3t — Ay 4yt = (VETL V@B — Al 40l Th)
(EnJrl 377n+1 4n¢+nn 1)
(75) — Ry F(Vo") F(Vop) V(3772+1
\/Eo Gn  /Eoap)

o SV0)

) \/EO@Z)’
n-1y

Taking @5 = —(3n} " — 4 — ]}

—dng 40y h)

Vo —anp + 0y h).

n (72c), we derive

(IIW"“II2 V0312 + 12V = Vg ||? — [12Vnf — V=2
(76) IV = 29 Vo) = (B — g )
(€Z+1 3nn+1 4n¢+nn 1) (vg;Jrl v(gnn+1 477¢+77n 1))

From (43) and (72c), we have

(377Z+1 iy 4+ on) = (VB0 —dng + 07 1), Veon)

7
7 —(3En+ — A€ + €071 on) + (V(3ELHE — 465 + €071), Vipn).

Taking ¢y, = "‘H n (77), we derive
(78)

(||n”“\|2 gl 120 =g = 1205 — 0l 1 + Il = 20 + )12
— (V@ =g+ ), Vi) = =BT — Al + €t
+(VEEGT —agg + &7, v,

Multiplying (72d) by 46te’s™ leads to
(79)
(NeRFH P = NleRl® + l12e™ — Rl — 12k — e 12 + e — 2ef + e 1)

_ ent f(Ve")  F(Vp)

IR RPN eNE

, 3V T —4Ve" + Vo)

+ 67{+1(7f(v A) 3Vn"+1 AVng + Vg~ H
Eo(o}
_i_e%-ﬁ-l( f(v h) 3V§n+1 4V£¢ —|—V£¢ )+45t(En+1 n+1).
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Taking vy, = 26t72+! in (72e), from (36) and (49), we obtain

(||77”+1H2 \|77u||2+||277"+1 Mall?

- ||277u TP+ et =2 P

(||~"“||2 P A Nt )

17
(80) (377”+1 A+ =) 4 206t Vi 2
= -3 — gy + Tt — wet (Ve Vi)
+ 26t (BT Aty — 25tb(w T w4 26tb(a), aptt, antt)
+ 20t (w TV —wp IR it + 26t (pn T — p", Vit
+ 26(€7,V - 7T 4 20t (7, V - L) 4 26¢(SP, V- in L.

Setting g, = 4‘? n7t in (72f), we have

26t2 n+12 2 n+1 n|2
—— Vg = IV 7 + Vg™ = Vg [I7)

3
~n+1 n+1 46t2 n+1 n+1
= =204(V g ) + == (VT = VT Vg ).

(81)

Due to (V- el g,) = 0 and (V- €L q,) = 0, we can derive the fact that
(V-ntl gn) = 0. Using it and taking v;, = 2(57577”"’1, = 2t 3pntl — 4y 4pn )
in (72g), we get

(82) (||77"“H2 a1 = (|t = np %) = 26¢(V - aptt it —n))
_ 26t(V ~n+1 n+1 gd) _ 2(5t(V X ~n+1,pn+1 _ pn)’
and
(natt —aett 3natt —dnl 4+ )
20t n " n
= S (V- G = A4y =)
(83) 25t
+ 3 (VB = g ), €67 — €0
- ?(v : (377u+1 - 47]1/, +T]u 1)7p + —-P ) = O
Combining (73)-(76) and (78)-(83), we derive
(84)
1 n T n T n—
(II%HH2 gl + 12m Y = mgl1® = 112mg —nl =M1 + g™ = 20% + 0311
(IIn”“II2 g1+ 20 = mipl)? - ||2?712 TP =2 0P
(H@"“II2 leBll® + [12e5T — el — [12¢ — ||2 + [left — 2eR + el %)
(Iln’”‘“ll2 Il + (1200 = nll? = 1205 — na 12+ lng ™ — 205 + 0 1%)

(IIW"“II2 — IVngll? + 12Vt = Vgl = 12V} — Vi~ |1®

+ ”V"M — 2V} + VY 2) 4 206t + 206t Vit

262 n n
+ - IV P = IVl + [ Vng ™ = Vg )



656 P. GUO, G. ZOU, AND M. ZHANG

= —2M 6t () = 2Mat(E T ) — 2M et (€T
— 2wSH(VELTY, VARt - 26t (EL T, ) + 201(ELTY, 771,3“)
+ASH(ERT et + 20t Byt ) — (3¢t —agy + &5t
— B¢ A+t - Bt —agg — gLt
(5”*1 Agp + &t ) 4 (g 30t —dni 4
_|_( n+1 n—i—l 4n¢+77n 1) (V§£+1 V(B’I?n+1 477¢+77n 1))
<vsg“ V(?m"“ A+ 1) + (VBT — gy — o), vt

46t2
+20t(Sp, Vit + T(VIUWr1 Vp", Vit

+20H(V - et en Ty — 25th(w T T et 4 26tb(ag, ap T At
+ 26t (w" TV — wi IV i) — 26t (u T Ve T — ap Vg i)
+ 280t% (w TV G, TV GR) — 20t (u TV — ap Ve, i)
+25(5t3( +1V¢h, +1V¢h> (En—H 37771+1 4"7¢>+772 1)

F(Vp)

+ (€3 — Al T et !
Eo(o})

L 3VERT —aven + Ve

et F(Vo")  F(VR)
R ~
\/Eo ")\ Eol(d})
f(VO™)  F(VR)
\/Eo G \JEalop)
=hL+Ir+- -+ 3.

From the Cauchy-Schwarz inequality, Young’s inequality [13] and Lemma 4.1, we
can get

3V T — 4V 4 Vo)

— R™Y( V@t —dng 40 7h)

I = —2Mst(ngtt, ™) S 5t||n”“H2 + Ot 2,
I = =2M6t(E nith) S 5th2k+2 + 5t||n;;+1|\2

Iy = —2M6t(€$+1,173+1) < 5th2k+2 5t||77n+1||2,
Iy = —2ust(VETT Vintl) < sth?* + 5t||v~"+1||2,
Iy = 20t(Ey T ity S ot® + §tH "+1||2

Is = 26t(EL ™) S 68° + 5t||77"+1||2’

I = 46t(ERH et ly < ot° 4 5t|e;;+1|2.

Using the Cauchy-Schwarz inequality, Young’s inequality, and Poincaré’s inequality,
we derive

Ig = 26t(EMTE ity < 615 + 6t\\v~”+1\|2.

Applying Cauchy-Schwarz inequality, Young’s mequahty and (29), we deduce

. ¢
et g g s [ 1% R s
t

n
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t"n,
S8 [ st + P
t

n

5 5th2k+2 +6t||77n+1H2

tnt1
Io = —(3E7H —4€8 + €071yt / 1952 2+ oty

n

tn41
S [ o et +
t

n

5 5th2k+2 5t||7]n+1||27

T 3 n+1l _ 4 n+1 < fnt1 851/1 2dt 5t n+12
11 =—( f fw f My ) S = ot | + ||77 |
tn

tnt
S22 [ e+ ot
t

n

S 5th2k+2 _’_515”7734&“27

_ n+1 n n—1 =n+ly < fnt1 agu 2 ~n+1(2
Ly ==& — 46 +&0 i) S =57 [Pt + ot V7™l
t

n

tn+
Sl R A
t

n

< 5th2RH2 4 5tHV~”+1H2.
Using (26), we have
Lis = —(VE, VBT —dng +057h)
L= —(VET, V@™ —dnf + 037 h) =
Ly = (VBT =4 — &7, V™) = 0.
Since 72t = Ppuntt — @)t using (23), (56) and (63), we get
Iig = 26t(S}, V - iju ) = —6t(Sy, V - apth)

= spspt - s

= o (ISETHP = ISR1%) + o 1Sk — S
6t n mn od 13
< —o (ISP = ISRIP) + 5tHV w2
From Taylor formula and CFL condition 6t < h?, it is easily get that
46t 46t3
Lo = == (V" = Vp", Vg ™) == Vpu(ta) [V 1| S 0th" + 687 |V T 2.

Utilizing Young’s inequality, (29) and the fact that ||V -v||? < ||Vv]]? (see [21]), we
deduce

g = 26t(V - i+, €0ty < 6th?F + 5t||v~n+1||2.

From b(u,v,v) = 0,u,v € [H}(Q)]¢, General Hélder mequahty, Poincaré’s inequal-
ity and (29), we derive

Iny + Iny = —26tb(uw™ w1 7oty + 26tb(ay, 4y L att)
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= —20tb(ay,, eyt i) — 20tb(2ey;, — ey~ w T )

_ 2(575()( n+l ,an n+17ﬁz+1)

< Stllah e [IVELIITL I + ot)12er, — e~ IIVa" oo || 7+

3 n+1 01
07, max lue @IV o |77

< 0t° 4 6th® + 5th? 2 1 5t)|2n” — 12 + 6t|\v~"+1 2.
Using General Holder inequality, Taylor formula and (29) ylelds
23 = 20t(w" T V" — wi VR it
= 0t(w" T (V" — V") + w' V(2] — e ) — el Ve i)
S Stl|w™ M| oo |V — V|7 + St e V(265 — e 17|
+ Stllen ™ IV SR | oo 175

< 617 + 6th?* 4 5th** 2 + 6t(|2V g — Vil ~H|* + 5t||77”+1||2 5t||v*"+1||2,

181((J

where we choose v and M so that §
Iy = =20t(u" V" — ap v gt
= —0t((u™ — @)Vt ity — at((2ey, — e )V it
= Ot(ap V(¢ — @)yt — ot(ay (2Vey — Vep ™), ny )
S Stllu™t —a([[[Vo" oo | + tl|2ey, — e VO™ [ nee g |
+ 8tl|ag || [V (0" = 6™)[Inf | + Stllag | o 12V el — Vep I [lmg ™|
< 617+ 6th* 4 5th™* 2 4 6tl|ni |17 + 6t |20 — ni P + ot 2Vng — Vi,
Iy = 286t (wi T Vi +1V¢h)
= 2B6t* (wp ' Vi — Quu TV + Quu TV it V)
= —286t° (T VORIV OR) + 2863 (Quuw TV R, i TV R)
S 255t3||773+1H||V$ZII%w I 1+ 2858% | Quuw™ IV @h 17 I
SOt + Sty + 5t||77"“||2,
I = —2(u" T vt — A"quh, )
= —St((u"tt — ")Vt utt) — 6t((2ep, — e VO Tt
— SRV (@™ = "), th) — St(an (2Vey — Vel ), mint)
S otllu T — @[V | pee [l + 0tl|2e — e VO™ e i
+ Ot||ag | = ||V (6" — é”)HIInZHH + Ot ||ag || L [12Vel — Vey H[[lng |
< 65 + 5th?F + §th? 2 4 5t|| (e
+ ot 2mg — P+ 5tH2V77¢ - V%,
Iz = 2B5t% (wi T Vg i V)
= 286t° (W IV R — Quu IV + Quuw VR, VR
= =286t (T Vo, TV OR) + 28583 (Quu TV G, IV )



FINITE ELEMENT METHOD FOR THE SMECTIC-A LIQUID CRYSTALS 659

< 255t3||77”“H IVORIIZ +2658°|| Quw™ IV SR IIZ ot |

<5t5 75]5 n+1 2.
< 01° 4 oot

w

Taking p, = 26te"+1, pn = 20tE7TL and pj, = 26tE"TL in (72a), by using Cauchy-
Schwarz, 1nequahty, Young’s inequality and (29), we get

Iz + 114

( n+1 377n+1 n— 1)

—dng +ny

= _2M5t(n;},+1 et —2Mat(gptt et — (3T — Ak + € el
— 20t (u" T VT — apvoy, e "H)+2ﬁ5t3(wh+lv¢h,ew+lv¢h)
+26t(ES T et

3¢5 - 45" +&

S Mot eyl + Mot lle ™ + ot R 1
+ 0t|u™ T — @[V ool | + 0t 265, — e 1IIHV<Z>"“IIL I
+ 0ty [l [V (6" = ) lllmy | + otk | < 12V — Ve~ [
+ 2868 |, IV R €l ™ | + 2868 | Quuo™ IV 67 e el ™|
+ ot Eg T llley ™

+1H

S Ot° + 6th** + 6th?F 2 + 5t||77”“||2 + ot 205 — g~
+6t)|2Vny — VP + 5t\|77"“||2,
g = (BR300t —an + 07 h)
= —2Mot(nyt ERTY) - 2Mat(gnt Bt — (36T —4gh + T BT
— 26t (u" T VT — AV gy, BN
+2B0t3 (w T Vg, BRIV ) + 20t (BT BT
3¢t - 45,’; +é

< Mat|np I ES T 4+ Mat|lgg BRI+ ot IEL I
+ 0t — @[V | Lo [l FH| + 6t|2€7, — enn” 1IIHW"“IIL [l
+ 6ty || oo [V (67T — ") [l | + Otl| ey ]| L~ 12V el — Vel [[|mpt |
+ 2863 Il IVl < | B + 28683 | Q™ T Vi |17 < | B
+ ot BRI ER
< 546 2k kv, M n+1y2
< 0t° + 8th*" + oth + ﬂ5t||77w I
+ Ot]|2m — ma 17 + 612V — V2,
Iy = (fn+1 3nn+1 477¢ _'_ng 1)
= —2M§t(np et — 2Mat(en T Entt) — (3¢t — 4 + 5 et
= 20t(u" T VT — apven, &t
+ 2863 (wi T VR, LTIV R + 20t (BT €t
3¢ptt —agn + ¢3!
5t

< Moty e+ Mate st + ot [lliseamll
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+ Ottt — A”HIIVWHIIL i+ dtli2e, — e~ IV O™ Lo [l |
+8t|[ | L= V(6" = ™) Imi | + atl|a || < [[2Veg — Ve ™ | Ing |
+ 2888 I VORI T < 160 F | + 2868 | Quuw™ [V dhl[7 < €5
+ ot By lllen |
5 2k okre , M n+1))2
< 0t° + 0th*" 4 dth + ﬂétﬂnw I
+ tl12n5 — np 1P + 0tl|2Vn — Vi
Applying Cauchy-Schwarz inequality, Young’s inequality, (29) and (67), we get

I = et (L) (W?) 3VELT —4vER + Ve
Eo(o)

tn+1 b
</ | vg¢’|| dt + otlen|?

~

tn

n+1
< h / 102 dt + Bt]elsH 2
t

n

< oth** + stlely 2.
For the last two terms I3; and I3s, it is easy to get that
f(Vo")  f(Y9h)
VEo@m)  /Eo(dp)
_f(Vo") — 1Y) F(VR)(Eo(9h) — Eo(6™)
Eo(6m) \/Eo ") Eq ¢h \/Eo (¢") + \/Eo
Using the fact that Eo(¢) > B and (67), we can derive
f (Vo")  f(Vp)
JEO G B

SIVe" = Vép| = [2Vel — Ve ™',

| SIF(VO™) = F(VOM| + | F (VIR (Eo(f) — Eo(™))

Using the above formula, Cauchy-Schwarz inequality, Young’s inequality, and (29),
we derive

’ﬂ

I3 = e JV9) f , 3V T —4Ve" + Vo)
\/Eo (ém) \/Eo
f(Vo")  [(VR) 3Vt —4vgr 4 Vet
VEG B 20t
< Sth™* + 6tlel™ [ + 6t |2V — Vi 7t

_ +1
= 25tel;(

)

Applying (71c), taking pp = 26tR”+1(263 - eZ_l) in (72a), using Cauchy-Schwarz
inequality, Young’s inequality and (29), we have

FVO") S V%)

\/Eo Gm Ry

S IR™(2Vey - Ve, V(33— 4+ 7))

Isp = — R V@t —dng )
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= [R™F(2el, — ey, 3y — A )|
= —2MR"+15t(n;5+1, 2ey — el 1) — 2MRMISH(ELT 2ef — el )
— R -4y + &5 26 — el
— 2R 15w V" — Vo, 2el — el )
+ 28R 6t (wp IV R, (2 — el M) VoR)
+ 2R”+1(5t(E;‘+1, 2ey, — ez b
S Ot° + 6th®* + 6th? 2 4 5tlln"“ll2 + ot]|2ny —ny 2

+ 6t]|2Vng — Vi P + 5t||2n¢ L

Combining the above estimates, we deduce

(85)

(II%“H2 Ingl1® + 1205 = ngll® = 120 —np =M% + Iy — 208 + 03711
2(Iln”“ll2 g1+ 20 —mpl)? - ||27712 TP A (It =203 4+ 0P
+ (et = ekl + l12ef — e — |2 — ||2 + et — 2e + e %)
%(Iln”“ll2 el 120t =g ll® = 1205 — 01 + ™ = 2ng + 0 1%

(||V77"+1||2 IVngll* + HQVU"“ Vngl? = 12V — VP
+ [Vt =2V + V) + (HV??”HHQ — [Vnil*)
+ ;i(HS”HH2 —IShI1?) + 5t||7723+1|\2 + 5t\|V~"+1||2

< 6t° + 5th* + 6th? + 5th2k+2 + 0ty 1P+ e 2+ I TP + o2 Vg 1P
1205 =g P 12V — Vg TP 120 — 07

Summing (85) over n from 0 to m, using ng = 0,772} = 0,70 =0,n% =0,9) =
0,¢e% = 0 and neglecting some positive terms, we have

g 2+ 2+ Hem“ll2 + e TP+ Vg P

452
+ 7||V m+1||2 ||Sm+1||2
+ ||277erl g |I” + ||2nerl Mg+ l12e T = R I1P + 1205+ —ni|
R PA Vn$|\2+5tZ(Mllnlb“H2 ||V~”“|| )
(86) n=0
SOty (0t 4 bt 4 1P 4 hPRE?)
n=0

m

+Cs6t > (ImptH I + leig™ 1 + I FHIP + 68 [V )12
n=0

0208 — P+ 1290 — VP 20 — a7 P
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When 0 < 6t < 0ty :=
readily seen that
[ o (e 15 (e S A
46t2 ot

< since 1 < < 2 and from (86), it can be

1 1
20 5 T—Chot

+ 7||V TR+ ||5m+1||2
+||277’”+1 |I2+II277’"+1 ni 2+ [12e5+ = eRI1P + 1200 — ni|?
12Vt = g2+ 6ty (Mgt + ||V77"+1|| )
n=0
St -

< 6t4 h4 th h2k+2
N1—055t7;( R AT RT

C55t m . . ) . N
T Goar 2120 = P+ 1129 — Vg - l12m — P).
n=0

Applying the discrete Gronwall’s inequality [13], we derive

2 2+ el 2 A+ 12+ 7 )12

45t2 ot
+ 7”V m+1||2 ||Sm+1||2
+ ||277’"+1 g + ||277’"+1 g |? 126 — eI+ |2t —

+ 2Vt = VP 46t (Mt + IIVﬁ"“II )
n=0
< 6ttt 4 h2k
Finally, applying the triangle inequality, it is easy to get that

lleg 1 + Nl P + llez 1% + llew TP + Ve 1>

4612
+ fHVem“HQ + ;HSZ”“H2
®7) T ||26m+1 e |? + [12e T — P+ 12T — e+ (|26t — el
m v .
+[2Vegtt — Ve |* 4 6ty (Met? + ACA )
n=0

< CT(St* + n* + n%F).
Step 3: From (87), using Lemma 3.1, then we derive
Iy 12 < 20 [T + 2]len I
< 2u" Lo + 207 A7 e P
< 2wt 2 . + 207 CTATA(6t* 4+ bt + h2F)
< Co,

IV 7 <2V [T + 2 Vel ™ |7
<2V e + 207 R Ve 2
<2V t2 . 4 20 CTRTA(S 4 bt 4 B2F)
< (g,
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for 6t < é/ﬁ’ h < hg, where hg is a small positive constant and d = 2,3
represents the dimension of 2. The above estimate implies that the induction
assumption (70) could be recovered at n = N — 1 with Cp < Ky and C§ < K, the
similar skills can be found in [40, 52,55, 56]. Thus the mathematical induction is

closed. O

Theorem 4.3. For any 0 < m < N — 1, under the assumptions (66), the following
inequality holds

leg ™12 + lleg 1% + e ™I + llew 1% + 1 Ve 12

4612 5t

+ THVQTH”z + ;HSZLH”Q
+12ep ™ — et + [12e T — e lP +lI2eR T — R 4 12T — e
m v )
+[2Vett — Vep (P 46t > (M]leptt | + 1ACA )
n=0
< ott + bt 4+ B2,
Proof. The process of this proof can be found in Step 2 of Lemma 4.2. O

Remark 4.4. We have provided the error estimates for variables ¢ and u under
the L? norm above. The error estimation of pressure can be obtained by using a
similar method and the inf-sup condition in Lemma 3.5. For simplicity, we omit
the proof and only use numerical experiments to confirm the result.

Remark 4.5. A molecule beamer epitaxial (MBE) style free energy [16, 32, 39] is
taken in this work. We found that the long time simulation results in the MBE model
has been established theoretically, which indicate a structure with the gradient of the
layer function approzimately of Fuclidean norm 1. For the SAV-related numerical
schemes, we also can observe the phenomenon in [8,41]. By a more careful analysis
similar to the references [16, 41], it is achievable to obtain similar result of our
proposed numerical scheme.

5. Numerical Simulations

In this section, a few numerical examples are simulated on a domain Q = [—1, 1]
to validate our theoretical analysis of the proposed scheme. Here we adopt P, — P;
elements for u,p and P> element for ¢, respectively.

5.1. Accuracy test. To show the convergence rates of the scheme (15)-(22), we
take the parameters M = 1, = 1,v = 1 in the smectic-A phase liquid crystals (1)
and the artificial parameter 5 = 2000. The exact solution is set by
u = msin(2my) sin’ () sin(t),
(88) v = —wsin(27z) sin®(my) sin(t),
¢ = 2+ cos(mwz) cos(my) sin(¢),
p = cos(mx) sin 7y sin(t).

To show the convergence rates of spatial errors, we fix the spatial mesh size h =
1/100 and choose the temporal mesh sizes ¢t = 1/20,1/40,1/80,1/160,1/320. The
temporal error in L? norm for the layer function ¢, velocity field |u|, and pressure p
are plotted in Fig.1(a). The convergence rates are closed O(§t?) which corresponds
to the theoretical predictions given in Section 4. Then we try to show the spatial
convergence rate, we plot the spatial L? error for the layer function ¢, velocity field
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FIGURE 1. The errors of computed ¢, u,p in L?-norm at ¢t = 0.5.
(a): convergence rate in the temporal. (b): convergence rate in the
spatial.

0 0.2 0.4 0.6 0.8 1
Time

FIGURE 2. Time evolution of the total energy £ ,.

|u|, and pressure p of fixing a small enough time mesh size 6t = 0.001 with different
spatial step sizes h = 1/5,1/10,1/20,1/40,1/80 in Fig.1(b). It shows that the
spatial convergence rates are close to O(h?), which coincides with our theoretical
analysis.

5.2. Energy stability test. In this example, we set the parameters to be M =
l,e =1,v =1, = 200. The initial conditions are set as

¢o = cos(mx) cos(my), wug = (uo,v0) =0, po=0.

The temporal step size and spatial mesh size are taken as dt = 0.01, h = 1/50.
The time evolution of the total energy for the proposed scheme is plotted in Fig.2.
It is evident that the discrete energy decreases with time, i.e., our scheme is energy
stable.

5.3. The dynamical evolution. We simulate the evolution of the layer function
¢ and the velocity field w in this example. The parameters are taken as M =
0.1, =0.01,v = 1,8 = 200. The initial conditions as given by

$o = sin(x) cos?(y), wuo = (ug,v0) =0, po = 0.

The temporal step size and spatial mesh size are taken as 6t = 0.01, h = 1/50. The
simulations of ¢ and u eventually reach the steady states at ¢ = 1.8. The dynamic
evolution of the layer function ¢ and velocity field w in the simulation are shown
in Fig. 3 and Fig. 4. By observing the right columns of Fig. 3, we can see that
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FIGURE 3. The evolution of the layer function ¢ (the left column-
s) and the orientation vector V¢ (the right columns) at different

times. (a): t =0.01, (b): ¢

0.3, (c): t=0.8, (d): t=1.8.

the topological defects of the orientation vector V¢ are eventually formed. From

the right columns of Fig. 4, we can see that the velocity field uw eventually forms

vortices as it changes with time.

In this paper, we propose a linear, decoupled, unconditionally energy-stable
BDF2-SAV-FEM scheme for the smectic-A liquid crystals.

6. Conclusion
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FIGURE 4. The evolution of the velocity field |u| (the left columns)
and u (the right columns) at different times. (a): ¢ = 0.01, (b):
t=0.3, (c): t =0.8, (d): t = 1.8,

and pressure, we utilize the rotational pressure-correction method for the Navier-
Stokes equations. For the constitutive equation, we introduce an additional stabi-
lization term to achieve the explicit treatment of the coupled nonlinear term, which
decouples the computations of the velocity field and the layer function. Moreover,
we apply the subtle IMEX technique for the nonlinear coupled terms and the SAV
method to linearize the nonlinear energy potential. In addition, the unconditional
energy stability at the discrete level is derived, and we rigorously demonstrate the
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error estimates of the proposed scheme. Finally, some numerical experiments are
carried out to demonstrate the accuracy and stability of the proposed system, and
the numerical results show the good performance of the proposed system.
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