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A FINITE ELEMENT METHOD FOR

ANISOTROPIC CRYSTAL GROWTH ON SURFACES

HARALD GARCKE AND ROBERT NÜRNBERG

Abstract. Phase transition problems on curved surfaces can lead to a panopticon of fascinating
patterns. In this paper we consider finite element approximations of phase field models with a

spatially inhomogeneous and anisotropic surface energy density. The problems are either posed in
R3 or on a two-dimensional hypersurface in R3. In the latter case, a fundamental choice regarding
the anisotropic energy density has to be made. One possibility is to use a density defined in the
ambient space R3. However, we propose and advocate for an alternative, where a density is defined

on a fixed chosen tangent space, and is then moved along geodesics to the other tangent spaces.
Our numerical method can be employed in all of the above situations, where for the problems on
hypersurfaces the algorithm uses parametric finite elements. We prove an unconditional stability

result for our schemes and present several numerical experiments, including for the modelling of
ice crystal growth on a sphere.
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1. Introduction

Crystal growth on curved surfaces can lead to a multitude of interesting patterns.
This phenomenon is one example of a phase change problem on a surface. Other
applications involve phase separation on surfaces, the formation of two phases in
vesicles or in lipid raft formation, see [1, 14, 35, 37, 42, 45, 49, 50, 52, 54, 63]. In this
paper we numerically approximate interface evolutions on manifolds governed by an
inhomogeneous, anisotropic interfacial energy by using a phase field approach. A
particular application we have in mind is dendritic ice crystal growth on surfaces like
soap bubbles, see, e.g., the fascinating pictures in [1], partly reproduced in Figure 1.
Other possible applications are dendritic growths on aircraft bodies or metal shaped
bodies, see [60], and phase separation on surfaces, see [54, 53, 30, 52, 42]. In the
latter case one solves a Cahn–Hilliard equation on a surface with either an isotropic
or an anisotropic surface energy.

Although phase field models in the Euclidean space have received a lot of atten-
tion, see [44, 40, 26, 61, 58, 59, 29, 3], not much is known for (anisotropic) phase
field approaches for interface evolution problems on surfaces. Similarly, while for
anisotropic phase field models in the Euclidean space a lot is known for the analysis
and numerical analysis, see [33, 61, 43, 10, 11, 38, 39] and the references therein,
not much is known for anisotropic models on surfaces.

There have been some numerical computations for phase field models describing
crystal growth on surfaces, see [50, 63, 45]. However, no numerical analysis has been
performed so far. In what follows, we will first introduce the governing equations
leading to an anisotropic phase field model on a surface. This system reduces to
an anisotropic Cahn–Hilliard equation in situations in which some terms involving
time derivatives are neglected. On a surface the interfacial energy is defined on
the tangent spaces of the surface. Here, a reasonable choice on how to choose the
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anisotropy when the tangent space changes has to be taken, in order to model
physically realistic situations. We basically consider two cases. In the first case we
fix an anisotropy in R3 and then restrict the anisotropy to the respective tangent
spaces. The advantage is that the anisotropic density need not depend on space,
and existing physical models and numerical methods can be easily extended from
flat domains to surfaces. However, it will turn out that this choice has certain
undesirable properties. A second choice is obtained by moving an anisotropy given
on one fixed tangent space along geodesics to the other tangent spaces. This allows,
for example, to choose a six-fold anisotropy on all tangent spaces, see Section 3.2.

For the numerical analysis, we generalize anisotropies introduced by Barrett,
Garcke and Nürnberg in [4, 10, 12] to the surface case. This enables us to show
stability bounds as well as to prove existence and uniqueness results for fully discrete
approximations. These results are shown both for the case of a smooth potential,
as well as for the case of an obstacle potential. We remark that the anisotropies can
also depend on space, i.e., they can be inhomogeneous. We will then demonstrate
the effect of an inhomogeneous energy with the help of numerical simulations. In
addition, we will show the effect of different choices of the anisotropy. In particular,
in the case where a 3d-anisotropy is restricted to the tangent spaces, the form
of the anisotropy can change heavily from tangent space to tangent space. We
observe a change from a six-fold anisotropy to a four-fold anisotropy. Moreover, a
convergence experiment is presented using an explicit solution constructed by Rätz
in [52]. Finally, computations for spinodal decomposition and crystal growth are
also presented, where the latter leads to snow crystal growth on manifolds.

Let us now discuss literature related to this work. Basic information on para-
metric methods for curvature flow and its anisotropic variants can be found in
[26, 51, 31, 6, 15, 16, 27, 28, 3]. Related are also the works [47, 48] for curvature
flows on graphs. In the computer graphics literature also anisotropies on mani-
folds have been used and we refer to [56, 57, 64] for details. Phase separation on
manifolds using the Cahn–Hilliard model on surfaces has been studied numerically
in [54, 30, 52, 42, 22, 49]. Analytic results for inhomogeneous anisotropies can be
found in [19, 2, 27].

The outline of this paper is as follows. In Section 2 we present the governing
phase field equations on a surface in its strong and weak formulation. In Sec-
tion 3 we present the different choices of the anisotropy and state and prove certain
qualitative properties. Section 4 is devoted to a fully discrete finite element ap-
proximation of the anisotropic phase field equations on surfaces. We also state
existence, uniqueness and stability results. Their proofs are mostly straightforward
extensions of the results in [12] to surfaces and to spatially dependent anisotropies.
Finally in Section 5 we present several numerical computations which demonstrate
convergence as well as several qualitative properties of solutions.

2. The mathematical model and its weak formulation

2.1. The underlying anisotropic interfacial energy. Let M ⊂ R3 be a given
stationary smooth manifold, with or without boundary. We let n denote a continu-
ous unit normal field on M, and m the outer conormal on ∂M. Let (Γ(t))t∈[0,T ] be
a family of evolving curves on M. Then we consider a general anisotropic energy
of the form

E(Γ) =
∫
Γ

γ(z, νM(z)) dH1(z) =

∫
Γ

γ(·, νM) dH1,
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Figure 1. Freezing of a soap bubble deposited on an ice disk.
Taken from [1, Fig. 2]. This figure is used under a Creative Com-
mons Attribution 4.0 license (CC BY 4.0). No changes have been
made to the original photograph.

where γ : M × R3 → R≥0 is a given anisotropic energy density that is spatially
inhomogeneous and absolutely one-homogeneous in the second argument. In addi-
tion, νM denotes a geodesic normal field to Γ on M, i.e., it lies in the normal space
of Γ and in the tangent space of M. We always denote by dHd, d ∈ N, integration
with respect to the d-dimensional Hausdorff measure. For more information about
the geometry of curves and surfaces we refer to [16, 6].

For what follows, we assume that Γ(t) separates the manifold into two regions:

M±(t) with M = M+(t) ∪M−(t) and Γ(t) = M+(t) ∩M−(t). From now on we
assume that νM points into M+(t). See, e.g., [6].

The sharp interface problem for anisotropic crystal growth on a manifold is the
surface Stefan problem with surface tension and kinetic undercooling. To define
the flow we introduce κγ , the anisotropic geodesic curvature of Γ(t), see below for
a precise definition, and the velocity V of Γ(t) in the direction of the normal νM.
We then seek w defined on M, which depending on the setting can be either a
temperature field or a concentration field, such that

ϑwt −∇s · (K∇sw) = 0 in M+(t) ∪M−(t),(1a)

aw = ακγ − ρV/β(·, νM) on Γ(t),(1b)

λV = −[K∇sw · νM] on Γ(t),(1c)

where [.] denotes the jump of a quantity across the interface, β is a kinetic mobility
and ϑ, K, a, α, ρ, λ are physical parameters, which for simplicity are assumed to
be constant. The system then needs to be closed with boundary conditions for w
on ∂M, as well as initial conditions for Γ(0) and possibly w(0). We note that in
the case ϑ = 0 we obtain the surface Mullins–Sekerka problem. In addition, ∇s

denotes the surface gradient on M, and we define similarly the surface divergence
and the surface Laplacian, ∆s = ∇s · ∇s, see, e.g., [16]. Finally, the anisotropic
geodesic curvature is defined as the first variation of the energy E , so that κγ =
−∇s · (PMγp(·, νM)), see, e.g., [6], where γp = (γp1 , γp2 , γp3)

T denotes the first
derivatives of γ with respect to the second argument, and where

PM = Id− n⊗ n
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is the projection on the tangent space of M. Similarly to [11], we now introduce
a corresponding phase field model, where in a first step we replace E(Γ) by an
analogue for a diffuse interface.

Following [46, 62, 25, 34, 32], we define

A(z, p) = 1
2γ

2(z, p), z ∈ M, p ∈ R3.

On introducing a phase field parameter φ : M → R, where later on M±(t) ≈ {z ∈
M : ±φ(z, t) > 0}, we consider the anisotropic Ginzburg–Landau energy

(2) Eε(φ) =
∫
M

εA(·,∇sφ) + ε−1Ψ(φ) dH2,

where ε > 0 is an interfacial parameter and Ψ : R → [0,∞] is a suitable potential
function. In this work we consider either the smooth double-well potential

(3) Ψ(s) = 1
4 (1− s2)2, s ∈ R,

or the double-obstacle potential

(4) Ψ(s) = Ψ0(s) + I[−1,1](s), s ∈ R,

where Ψ0(s) =
1
2 (1− s2) and I[−1,1] stands for the indicator function of the interval

[−1, 1], see [21], i.e., I[−1,1] is zero on [−1, 1] and ∞ outside of the interval [−1, 1].
Note that (2) is the natural generalization of well-known phase field free energies
in the flat case to the case of a smooth manifold studied here. We refer to [32, 33,
26, 10, 12] for more details in the flat case.

In the following presentation, for ease of exposition, we assume that Ψ is smooth.
Rigorous arguments involving the obstacle potential (4) involve subdifferentials and
variational inequalities. We leave these details to the reader, see also [10, 12], and
make them more precise when we state our numerical approximations.

2.2. Strong formulation. Given the Ginzburg–Landau energy (2), for a given
ε > 0 and Ψ, in this paper we want to study the general anisotropic surface phase
field equations

ϑwt +
1
2λφt −∇s · (K∇sw) = 0,(5a)

1
2cΨaw = ρεµ(·,∇sφ)φt − αε∇s · (PMAp(·,∇sφ)) + αε−1Ψ′(φ)(5b)

on M, together with suitable boundary and initial conditions for w and φ. Here

∇s · (PMAp(·,∇sφ)) = ∇s ·Ap(·,∇sφ)−∇s · ((Ap(·,∇sφ) · n)n)
= ∇s ·Ap(·,∇sφ)−Ap(·,∇sφ) · n∇s · n
= ∇s ·Ap(·,∇sφ) +HMAp(·,∇sφ) · n,

with
HM = −∇s · n

denoting the mean curvature of M.
In addition, we define

cΨ =

∫ 1

−1

√
2Ψ(s) ds,

which is needed to relate the phase field approach to the sharp interface limit (1),
see [11, 52]. Moreover, µ : M × R3 → R>0 is given by γ/β to ensure that (1) is
recovered in the sharp interface limit, see [11].

We note that the general model (5) includes several special cases, amongst which
are the anisotropic viscous Cahn–Hilliard equation (ϑ = 0), the anisotropic Cahn–
Hilliard equation (ϑ = ρ = 0) and the anisotropic Allen–Cahn equation (a = 0).
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We remark that in applications γ is often chosen spatially homogeneous, so that

(6) γ(z, p) = γ0(p) ∀z ∈ M, p ∈ R3.

Using the approach of [19, 20] it can be shown that for the sharp interface limit,
ε → 0, in the sense of Γ-limits it holds that

1

cΨ
Eε → E0,

where for a subset E of M with finite perimeter one defines

E0(χE) =

∫
∂E

γ(·, ν∂E) dH1,

where ν∂E is the outward geodesic normal to E ⊂ M. In a similar way, the sharp
interface limit of the evolution equations (5) can also be investigated. In the planar
case this sharp interface limit has been studied in [23, 24, 46, 19, 41, 2], and using
ideas from [35, 37] it is possible to translate these ideas to surfaces.

2.3. Weak formulation. The natural weak formulation of (5), with the associ-
ated boundary conditions

Ap(·,∇sφ) ·m = 0 on ∂M, ∇sw ·m = 0 on ∂NM, w = wD on ∂DM,

where ∂M = ∂NM∪ ∂DM with relatively open subsets ∂NM and ∂DM of ∂M
such that ∂NM∩ ∂DM = ∅, and where wD ∈ R is a fixed constant, is then given
as follows. For t ∈ (0, T ) find (φ,w) ∈ H1(M) ×H1(M) with w = wD on ∂DM
such that

ϑ

∫
M

wtχ dH2 + 1
2λ

∫
M

φtχ dH2 +

∫
M

K∇sw · ∇sη dH2 = 0 ∀ χ ∈ H1
0 (M),

(7a)

1
2cΨa

∫
M

wη dH2 = ρε

∫
M

µ(·,∇sφ)φtη dH2 + αε

∫
M

Ap(·,∇sφ) · ∇sη dH2

+ αε−1

∫
M

Ψ′(φ)η dH2 ∀ η ∈ H1(M).

(7b)

Above, we used the function space

H1
0 (M) = {χ ∈ H1(M) : χ = 0 on ∂DM}.

3. Properties of anisotropic energies

3.1. Minimal energy directions on the sphere. If one wants to split the unit
sphere S2 into two parts with the same area with a minimal isotropic interfacial
energy, then each great circle solves this variational problem. In case that the energy
is anisotropic a great circle can lower its interfacial energy by rotating the great
circle on S2. The following lemma discusses the problem of minimizing anisotropic
interfacial energy for the problem of splitting the sphere S2 into two parts with the
same area.

Lemma. 3.1. Let M = S2 and let γ(z, ·) = γ0(·) for all z ∈ M. Then the
isoperimetric problem

(8) min

{∫
∂E

γ0(ν∂E) dH1 : E ⊂ M,H2(E) = 1
2H

2(M)

}
is solved by a half sphere E whose boundary ∂E is a great circle with constant
outward geodesic normal ν∂E ∈ argminν∈M γ0(ν).
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Proof. As γ0 is continuous and M is compact, we deduce that γ0 attains its min-
imum on M. Let νmin ∈ argminν∈M γ0(ν), and let H ⊂ R3 be the hyperplane
orthogonal to νmin, with H≤0 denoting the half space such that νmin is its outer
normal on H = ∂H≤0. Then the half sphere Emin = M ∩ H≤0 solves (8). To
see this, we first note that it is an admissible candidate due to H2(M) = 4π for
the unit sphere. In addition, it holds for any admissible candidate E in (8) that
H1(∂E) ≥ H1(∂Emin) = 2π and hence∫

∂E

γ0(ν∂E) dH1 ≥ H1(∂E)γ0(νmin) ≥ H1(∂Emin)γ0(νmin) = 2πγ0(νmin),

with equality for E = Emin, since ν∂Emin = νmin everywhere on ∂Emin. �

3.2. Consistent 2d anisotropies on the unit sphere. In this section we discuss
the idea of extending an anisotropy, which is initially defined on just one tangent
space of a surface, in a consistent way to all the tangent spaces of the surface. We
remark that we only need to define the anisotropy on the tangent spaces and not for
all z ∈ R3. Assume that at one reference point on the surface an anisotropy density
function is given and in certain directions the anisotropy takes a minimal value.
Then we want to move the anisotropy along geodesics to other tangent spaces.

This is done in such a way that unit tangent vectors to the geodesic have the same
anisotropic density. In fact, this idea can be used for general surfaces. However,
we discuss the idea for the unit sphere with the north pole as the reference point,
since in this case explicit expressions can be more easily stated. If, for example,
on the north pole, we have a six-fold anisotropy, this will remain the case on all
the other tangent spaces as well. The procedure will lead to a spatially dependent
anisotropy. We point out that for spatially homogeneous anisotropies of the form
(6), the strength and shape of the anisotropy may vastly differ between tangent
spaces based at different points. Hence the property that the anisotropy remains
of the same structure (for example six-fold) will in general not hold true for these
anisotropies. We will visualize this phenomenon with some numerical evidence later
on.

Due to the hairy ball theorem it is not possible to move an anisotropic energy
density in a continuous way along the unit sphere. In fact, we cannot choose
tangents at all points on the surface for which the energy density is minimal in
such a way that the tangent depends continuously on the point of the surface. We
thus have to consider a subset of the sphere. Without loss of generality, assume
that M ⊂ S2 with ∂M ̸= ∅ and such that e3 ∈ M but −e3 ̸∈ M, so the open
manifold is a part of the unit sphere that contains the north pole but not the south
pole.

Then for any z ∈ M we will construct a rotation matrix Q(z) that rotates the
plane spanned by e3 and z around the axis e3 × z by the angle between e3 and z,
so that Q(z)z = e3. The same transformation then also rotates the tangent space
TzM, and we can evaluate the anisotropy in Q(z)TzM = Te3M = R2×{0}. Then
we consider

(9) γ(z, p) = γ0(Q(z)p).

Here we have defined an anisotropic density γ0 : R2 ×{0} → R, via γ0(p1, p2, p3) =
γ̂(p1, p2) for an γ̂ : R2 → R that is one-homogeneous.
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It is easy to check that the following matrix has the desired properties for Q(z):

(10) Q(z) =

z3 +
z2
2

1+z3
− z1z2

1+z3
−z1

− z1z2
1+z3

z3 +
z2
1

1+z3
−z2

z1 z2 z3

 z ∈ S2 \ {−e3}.

In particular, it is easy to check that

Q(z)Q(z)T = Id, Q(z)z = e3, Q(z)(e3 ⊗ z) = e3 ⊗ z.

3.3. BGN-type anisotropies. For the numerical analysis, we restrict ourselves
to the following anisotropies of BGN-type

(11) γ(z, p) =
L∑

ℓ=1

γℓ(z, p) =
L∑

ℓ=1

[p ·Gℓ(z)p]
1
2 , ∀ p ∈ R3, z ∈ M,

where Gℓ : M → R3×3, for ℓ = 1, . . . , L, are functions that map to symmetric
and positive definite matrices. For the case that Gℓ are constant matrices, these
anisotropies have first been introduced by Barrett, Garcke and Nürnberg in [4, 5].

Lemma. 3.2. Let γ be of the form (11). Then γ(z, ·) is convex for every z ∈ M
and the anisotropic operator A satisfies

Ap(z, p) · (p− q) ≥ γ(z, p)[γ(z, p)− γ(z, q)] ∀ p ∈ R3 \ {0}, q ∈ R3,

(12a)

A(z, p) ≤ 1
2γ(z, q)

L∑
ℓ=1

[γℓ(z, q)]
−1[γℓ(z, p)]

2 ∀ p ∈ R3, q ∈ R3 \ {0}(12b)

for every z ∈ M.

Proof. The result follows pointwise from [10, Lemma 2.1]. �

Following [10, 12], we let for every z ∈ M

B(z, q) :=


γ(z, q)

L∑
ℓ=1

[γℓ(z, q)]
−1Gℓ(z) q ̸= 0,

L
L∑

ℓ=1

Gℓ(z) q = 0.

As A(z, p) = 1
2γ

2(z, p), it clearly holds that

B(z, p)p = Ap(z, p) ∀ p ∈ R3 \ {0},

and it turns out that approximating Ap(z, p) with B(z, q)p maintains the mono-
tonicity property (12a).

Lemma. 3.3. Let γ be of the form (11). Then it holds that

(13) [B(z, q)p] · (p− q) ≥ γ(z, p) [γ(z, p)− γ(z, q)] ∀ p, q ∈ R3,

for every z ∈ M.

Proof. The result follows pointwise from [10, Lemma 2.2]. �
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We observe that on letting

(14) γ̂(p) =

L∑
ℓ=1

[p · Ĝℓp]
1
2 , ∀ p ∈ R2,

the anisotropy (9) with (10) falls into the category (11) with the special choices

Gℓ(z) = QT (z)

(
Ĝℓ 0

0 1

)
Q(z).

4. Finite element approximation

Let Mh be a polyhedral hypersurface approximating M, and let {T h}h>0 be
a family of open triangles with Mh = ∪σ∈T hσ. We refer to [16] for more details
on polyhedral approximations of surfaces and finite element spaces on polyhedral
surfaces. Associated with T h is the finite element space

Sh = {χ ∈ C(Mh) : χ |σ is affine ∀ σ ∈ T h}.

Let J be the set of nodes of T h and {pj}j∈J the coordinates of these nodes. Let
{χj}j∈J be the standard basis functions for Sh; that is χj ∈ Sh and χj(pi) = δij
for all i, j ∈ J . A discrete semi-inner product for functions that are piecewise
continuous on T h can be defined by

(15) ⟨η1, η2⟩hMh =
∑
σ∈T h

⟨η1, η2⟩hσ =
∑
σ∈T h

1
3 |σ|

2∑
k=0

(η1η2)((pjk)
−),

with {pjk}2k=0 denoting the vertices of σ, and where we define η((pjk)
−) = lim

σ∋q→pjk

η(q),

k = 0, . . . , 2. We note that (15) induces the discrete semi-norm |η|h := [⟨η, η⟩hMh ]
1
2

on L∞(Mh), that becomes a norm on Sh.
We introduce also

Kh = {χ ∈ Sh : |χ| ≤ 1},

Sh
0 = {χ ∈ Sh : χ = 0 on ∂DMh} and Sh

D = {χ ∈ Sh : χ = wD on ∂DMh},

where ∂DMh ⊂ ∂Mh is a suitable approximation of ∂DM.
In addition to T h, let 0 = t0 < t1 < . . . < tN−1 < tN = T be a partitioning of

[0, T ] into possibly variable time steps τn := tn − tn−1, n = 1, . . . , N .

4.1. The obstacle potential. Let Φ0 ∈ Kh be an approximation of φ(0). Sim-
ilarly, if ϑ > 0 let W 0 ∈ Sh

D be an approximation of w(0). Then, for n ≥ 1, find
(Φn,Wn) ∈ Kh × Sh

D such that

ϑ

⟨
Wn −Wn−1

τn
, χ

⟩h

Mh

+ 1
2λ

⟨
Φn − Φn−1

τn
, χ

⟩h

Mh

+ ⟨K∇sW
n,∇sχ⟩hMh = 0 ∀ χ ∈ Sh

0 ,(16a)

ε
ρ

α

⟨
µ(·,∇sΦ

n−1)
Φn − Φn−1

τn
, χ− Φn

⟩h

Mh

+ ε
⟨
B(·,∇sΦ

n−1)∇sΦ
n,∇s[χ− Φn]

⟩h
Mh

≥
⟨

1
2cΨ

a

α
Wn + ε−1Φn−1, χ− Φn

⟩h
Mh

∀ χ ∈ Kh.(16b)
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Remark. 4.1. It is possible to generalize the considered model in the following
ways. All of the results presented in this paper remain valid for these generaliza-
tions, on using the techniques developed by the authors in [12].

• It is possible to consider a phase-dependent K, e.g., by defining b(s) =
1
2 (1 + s)K+ + 1

2 (1− s)K−, and replacing K in (7a) by b(φ).
• It is possible to consider functions ϱ that accelerate the convergence of the
phase field model to the sharp interface limit. To this end, the two factors
1
2 in (7) are replaced by the coefficients ϱ(φ) in the two associated integrals,
where, e.g.,

(17) (i) ϱ(s) = 1
2 , (ii) ϱ(s) = 1

2 (1− s) , (iii) ϱ(s) = 15
16 (s

2 − 1)2 .

• It is possible to extend the numerical analysis to a more general family of
anisotropies. In particular, in place of (11) the family of densities

γ(z, p) =

(
L∑

ℓ=1

|γℓ(z, p)|r
) 1

r

, r ∈ [1,∞),

can be considered, so that (11) collapses to the case r = 1. In the case r > 1,
the term B(·,∇sΦ

n−1) in, e.g., (16b) needs to be changed to Br(·,∇sΦ
n−1,

∇sΦ
n), where the matrices Br are defined analogously to the flat and spa-

tially homogeneous case in [12].

Let

Eh(W,Φ) =
ϑ

2
|W − wD|2h +

λα

a

1

cΨ

[
1
2ε|γ(·,∇sΦ)|2h + ε−1⟨Ψ(Φ), 1⟩hMh

]
,

and define

Fh(W,Φ) = Eh(W,Φ)− λwD⟨ 12 , 1 + Φ⟩hMh

for all W,Φ ∈ Sh.

Theorem. 4.2. Let γ be of the form (11). Then there exists a solution (Φn,Wn) ∈
Kh×Sh

D to (16), where Φn is unique and Wn is unique up to an additive constant.
If ϑ > 0 or ∂DMh ̸= ∅ then Wn is unique. If ϑ = 0 and ∂DMh = ∅, then Wn is
unique if there exists a j ∈ J such that |Φn(pj)| < 1. In addition, it holds that any
solution (Φn,Wn) ∈ Kh × Sh

D to (16) satisfies the stability bound

Fh(Wn,Φn)+τn⟨K∇sW
n,∇sW

n⟩hMh + τn
λ ρ

a

ε

cΨ

∣∣∣∣[µ(·,∇sΦ
n−1)]

1
2
Φn − Φn−1

τn

∣∣∣∣2
h

≤Fh(Wn−1,Φn−1) .(18)

Proof. The existence and uniqueness results follow analogously to Lemma 3.1 in
[12], and so we omit their proof here.

Choosing χ = Wn − wD in (16a) and χ = Φn−1 in (16b) yields that

ϑ⟨Wn −Wn−1,Wn − wD⟩hMh + 1
2λ⟨Φ

n − Φn−1,Wn − wD⟩hMh

+ τn⟨K∇sW
n,∇sW

n⟩hMh = 0 ,(19a)

ε
ρ

α
τ−1
n ⟨µ(·,∇sΦ

n−1)[Φn − Φn−1],Φn−1 − Φn⟩hMh

+ ε⟨B(·,∇sΦ
n−1)∇sΦ

n,∇s[Φ
n−1 − Φn]⟩hMh

≥ ⟨ 12cΨ
a

α
Wn + ε−1Φn−1,Φn−1 − Φn⟩hMh .(19b)
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It follows from (19), on noting the elementary identity

2y(y − z) = y2 − z2 + (y − z)2 ∀ y, z ∈ R,

and on recalling (13), that

1
2ε|γ(·,∇sΦ

n)|20 − 1
2ε

−1|Φn|2h +
ϑ

2

a

λ a
cΨ|Wn − wD|2h

+ τnε
ρ

α

∣∣∣∣[µ(·,∇sΦ
n−1)]

1
2
Φn − Φn−1

τn

∣∣∣∣2
h

− wD
a

α
cΨ ⟨ 12 ,Φ

n − Φn−1⟩hMh

+ τn
a

λα
cΨ⟨K∇sW

n,∇sW
n⟩hMh

≤ 1
2ε|γ(·,∇sΦ

n−1)|20 − 1
2ε

−1|Φn−1|2h +
ϑ

2

a

λ a
cΨ|Wn−1 − wD|2h .

This yields the desired result (18) on adding the constant 1
2 ε

−1
∫
Mh 1 dH2 on both

sides, and then multiplying the inequality with λα
acΨ

. �

4.2. Smooth potentials. The unconditionally stable approximation (16) for the
obstacle potential (4) can be easily adapted to the case of a smooth potential such
as (3). Such approximations rely on a convex/concave splitting of ϕ = Ψ′, i.e.,
ϕ = ϕ+ + ϕ− with

±(ϕ±)′(s) ≥ 0 ∀ s ∈ R .

For the quartic potential (3) the natural choices are

(20) ϕ+(s) = s3 and ϕ−(s) = −s ,

and for simplicity we restrict our attention to that case. Details on how to deal
with more general potentials can be found in [12].

As before, given Φ0 ∈ Kh and, if ϑ > 0, W 0 ∈ Sh
D, for n ≥ 1, find (Φn,Wn) ∈

Sh × Sh
D such that

ϑ

⟨
Wn −Wn−1

τn
, χ

⟩h

Mh

+ 1
2λ

⟨
Φn − Φn−1

τn
, χ

⟩h

Mh

+ ⟨K∇sW
n,∇sχ⟩hMh = 0 ∀ χ ∈ Sh

0 ,(21a)

ε
ρ

α

⟨
µ(·,∇sΦ

n−1)
Φn − Φn−1

τn
, χ

⟩h

Mh

+ ε
⟨
B(·,∇sΦ

n−1)∇sΦ
n,∇sχ

⟩h
Mh

+ ε−1
⟨
ϕ+(Φn), χ

⟩h
Mh

=
⟨

1
2cΨ

a

α
Wn − ε−1ϕ−(Φn−1), χ

⟩h
Mh

∀ χ ∈ Sh.(21b)

Theorem. 4.3. Let γ be of the form (11). Let Ψ be given by (3) and let (20) hold.
Then there exists a unique solution (Φn,Wn) ∈ Sh × Sh

D to (21). Moreover, the
solution satisfies the stability bound (18).

Proof. The existence and uniqueness results follow analogously to Theorem 3.8 in
[12]. The proof of the stability bound (18) is similar to the proof of Theorem 4.2,
making use of the convex/concave splitting Ψ′ = ϕ = ϕ+ + ϕ−. �

5. Numerical results

We implemented the scheme (16) with the help of the finite element toolbox
ALBERTA, see [55]. To increase computational efficiency, we employ adaptive
meshes, which have a finer mesh size hf ≈ 1

Nf
within the diffuse interfacial regions
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Figure 2. (ε = (16π)−1) Solutions for the Cahn–Hilliard equa-
tion in the case of a spatially inhomogeneous energy in the plane.
Snapshots of the evolutions at times t = 0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 2.

and a coarser mesh size hc ≈ 1
Nc

away from them, with Nf , Nc ∈ N, see [18, 17]
for a more detailed description in the planar case. For the solution of the nonlinear
systems of equations we employ the iterative solvers discussed in [12].

Unless otherwise stated, for the physical parameters in (5) we choose ϑ = ρ = 0,
λ = K = a = α = 1, µ = 1 and (4) for the potential Ψ. In addition, we employ
uniform time steps τn = τ , n = 1, . . . , N .

5.1. Spatially inhomogeneous anisotropies in 2d. In this section we consider
the special case M ⊂ R2 × {0} ⊂ R3, i.e., we reformulate evolutions in R2 within
the framework of this paper.

Then, on M = (−3
2 ,

3
2 ) × (−1

2 ,
1
2 ) × {0} we use the spatially weighted isotropic

surface energy

γ(z, p) = (0.01 + |z|)|p|.
As the initial interface we choose a circle of radius 0.3 centred at (−1, 0)T . Clearly,
the interface can reduce its energy by moving towards a circle centred at the origin,
which we conjecture to be the global minimizer for this setting. The evolution for
the solutions from our scheme (16) can be seen in Figure 2. Here we let ε = (16π)−1,
Nc = 32, Nf = 512 and τ = 10−4.

5.2. Spatially homogeneous anisotropies in 3d. In this section we consider
anisotropies of the form (6).

5.2.1. Simulations for Lemma 3.1. We choose as anisotropy the density
(22)

γ(·, p) = γ0(p) = lδ(R2(
π
2 ) p) + w

3∑
ℓ=1

lδ(R1(
ℓ π
3 ) p), δ = 0.01,


w = 1√

3
(a)

w = 1 (b)

w = 1
2
√
3

(c)

,

where R1(θ) =

(
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

)
, R2(θ) =

(
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

)
and lδ(p) =

[
δ2 |p|2

+p21 (1− δ2)
] 1

2 . The Wulff shapes for (22) are shown in Figure 3. We recall from
[36] that for a given anisotropy γ0 the boundary of its Wulff shape is the solution of
the isoperimetric problem for E0(Γ) =

∫
Γ
γ0(ν) dH2. Hence they are often used to

visualize the properties of γ0. We note that for δ = 0, the densities (22) represent
crystalline anisotropies, whose Wulff shapes are given by hexagonal prisms, cf. [9,
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Figure 3. The Wulff shapes for (22)(a), (22)(b) and (22)(c).

Fig. 3]. The coefficients in (22)(a) are chosen such that, in the limit δ = 0, the eight
admissible normal directions all have the same energy, while in (22)(b) and (22)(c)
the two normals ±e3 have a smaller/larger energy than the other six directions.

We use the anisotropy (22)(b) with δ = 10−2 to numerically investigate the
statement from Lemma 3.1. To this end, we choose as initial interface a perturbed
great circle on the unit sphere, that lies in a hyperplane that makes a certain fixed
angle θ with the x − z-plane. In particular, in Figure 4 we show simulations for
θ = 10◦, 30◦, 60◦. Here we let ε = (16π)−1, Nc = 1, Nf = 128 and τ = 10−4.
We note that each simulation settles on a great circle on the sphere. Here we note
that as νmin = e3, the equator has the lowest energy of all the great circles, and
so if the initial curve on M is sufficiently inclined, that global minimizer is indeed
reached by the evolution. For only small deviations from a north-south great circle,
the evolutions settle on that local minimizer instead. We remark that the discrete
steady state solutions exhibit final discrete energies Fh(Wn,Φn) of 12.7, 6.7 and
6.7, respectively. This once again confirms that the equator has the lowest energy.

5.2.2. Convergence experiment on the unit sphere. We use the rotationally
symmetric solution for the Mullins–Sekerka problem on the unit sphere from [52]
for a convergence experiment for our approximations as ε → 0, see also [7].

We consider an annulus domain on the unit sphere, which is bounded by two
circles on the lower half with radii 1 > R1(t) > R2(t) > 0. This uniquely defines
angles θi(t) ∈ (π2 , π) such that Ri(t) = sin θi(t) and hi(t) = cos θi(t) < 0 denotes
the heights of the two circles. That means at any given time, the annulus will
enclose a surface area of 2π(h1(t)− h2(t)) = 2π(cos θ1(t)− cos θ2(t)). Hence a0 :=
cos θ1(0)− cos θ2(0) = cos θ1(t)− cos θ2(t) is an invariant, and so

(23) θ2(t) = arccos(cos θ1(t)− a0),

which means that the ODE system for (θ1, θ2) from [52] can be reduced to a scalar
differential equation. The former is given by

(24a) λθ′i(t) = − c+(t)

sin θi(t)
, i = 1, 2,

where

(24b) c+(t) = −α
cot θ1(t) + cot θ2(t)

ln(tan θ1(t)
2 )− ln(tan θ2(t)

2 )
.

Combining (24) with (23) yields a scalar differential equation for θ1.
For the initial data we choose R1(0) = 2R2(0) = 0.8, so that h1(0) = −0.6 and

h2(0) = −
√
0.84, respectively. In order to get the same time scale as in [52], we use

α =
√
2
3 and λ = 2 for these experiments, and we visualize the phase field energies

1
2ε|∇sΦ

m|2h + ε−1⟨Ψ(Φm), 1⟩hMh ,
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Figure 4. (ε = (16π)−1) Anisotropic Cahn–Hilliard equation on
a sphere. Snapshots of the evolutions at times t = 0, 1, 5 (from
left to right). The initial data approximates a great circle within
a hyperplane that is tilted by 10◦, 30◦, 60◦ (from top to bottom).

Figure 5. (α =
√
2
3 , λ = 2) Energy plots for (21) (left) and (16)

(right) for ε = (8π)−1, ε = (16π)−1 and ε = (32π)−1, compared to
the sharp interface solution.

for deceasing values of ε, compared to the energy 2πcΨ(sin θ1(tm) + sin θ2(tm)) of
the sharp interface solution. See Figure 5, where our numerical results confirm the
asymptotic convergence as ε → 0 to the sharp interface limit.

5.2.3. Spinodal decomposition on closed surfaces. In this section we consid-
er ε = (16π)−1, as well as Nc = 1, Nf = 128, τ = 10−6. We use different surface
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Figure 6. (ε = (16π)−1) Spinodal decomposition on a sphere, for
γ(p) = |p|. Snapshots of the evolutions at times t = 10−4, 2 ×
10−4, 5× 10−4, 10−3, 0.01, 1.

Figure 7. (ε = (16π)−1) Spinodal decomposition on a sphere, for
(22)(a). Snapshots of the evolutions at times t = 2 × 10−4, 5 ×
10−4, 10−3, 5× 10−3, 0.01, 2.

Figure 8. (ε = (16π)−1) Spinodal decomposition on a sphere, for
(22)(b). Snapshots of the evolutions at times t = 2 × 10−4, 5 ×
10−4, 10−3, 2× 10−3, 0.01, 1.

energy densities for evolutions that start from a random mixture with mean zero
and values in [−0.1, 0.1]. At first we choose the unit sphere M = S2. In this
isotropic case, we observe the well known spinodal decomposition patterns, see Fig-
ure 6. When we use the anisotropy (22)(a), for which in the limit δ = 0 the normals
ν = ±e3 have the same energy density as the other six main facet normals of the
crystalline Wulff shape, during the spinodal decomposition we can observe corners,
see Figure 7. Note that the spatially homogeneous anisotropy leads to hexagonal
symmetries only at the two poles, whereas the patterns near the equator resemble
squares. The corresponding evolution for the anisotropy (22)(b) is shown in Fig-
ure 8. Here it can be seen that ν = ±e3 is now the preferred normal direction,
and so the interfaces very quickly align with it. As a final experiment, we also use
the anisotropic density (22)(c), see Figure 9 for the numerical results. Now the
opposite effect can be observed: since the normals ν = ±e3 are relatively expen-
sive, they are avoided by the developing interfaces. We also observe that out of
the four spinodal decomposition experiments, only two settle on a global energy
minimizer as described in Lemma 3.1. We conjecture that the final shape for the
other two simulations is made up of “straight” segments that are aligned with the
Wulff shape, in the sense that their normal vectors correspond to directions with
minimal energy density. The anisotropic nature of the surface energy then seems
to make it impossible to go from this local minimizer to one of the global ones.

We end this subsection with a simulation on a surface that is the boundary
of a nonconvex domain. In particular, we base Mh on a rescaled version of the
biconcave disk obtained in [13, Fig. 8]. The total dimensions of Mh are about
0.28× 1× 1. On this surface we repeat the simulation from Figure 7. The results
of this new numerical experiment are shown in Figure 10, where we once again
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Figure 9. (ε = (16π)−1) Spinodal decomposition on a sphere, for
(22)(c). Snapshots of the evolutions at times t = 2 × 10−4, 5 ×
10−4, 10−3, 5× 10−3, 0.01, 1.

Figure 10. (ε = (16π)−1) Spinodal decomposition on a biconcave
disk, for (22)(a). Snapshots of the evolutions at times t = 10−4, 2×
10−4, 5× 10−4, 10−3, 5× 10−3, 0.01.

observe the squared patterns due to the alignment of the surface with respect to
the Wulff shape of the anisotropy (22)(a).

5.2.4. Crystal growth on a sphere cap. In this section we use the hexago-
nal, spatially homogeneous anisotropic density (22)(a) for computations of crystal
growth on a sphere cap. Here the sphere cap M ⊂ S2 is given by

M =


0
0
1

 ∪


 z1

|z| cos θ(z)
z2
|z| cos θ(z)

sin θ(z)

 : z =

z1
z2
0

 ∈ R3, 0 < |z| ≤ 1

 ,

where θ(z) = (π2 + π
18 )(1− |z|)− π

18 .

For the physical parameters, similarly to [12, Fig. 9], we choose α = 0.03, ρ = 0.01
and wD = −8.

Some first computations are shown in Figure 11, where for ε = (32π)−1 we select
the discretization parameters Nc = 16, Nf = 128 and τ = 10−5. We start with an
initial seed of radius r0 = 0.02: either at the north pole, or on the equator on the
x-axis, or on the equator on the y-axis. The evolutions in Figure 11 make it clear
that the hexagonal aspect of the anisotropy (22)(a) only comes to the fore at the
north pole. At the equator, on the other hand, we see interfaces with a four-fold
symmetry, consistent with the Wulff shape displayed in Figure 3. We remark that
these computations are for (17)(ii), compare with [12, (2.11)(ii)]. Repeating the
same simulations for (17)(i) leads to the creation of boundary layers, which is why
we prefer the choice (17)(ii) here and from now. We refer to [12] for a more detailed
discussion of this aspect.

Having established that for the homogeneous hexagonal anisotropies in this sec-
tion it is beneficial for six-fold structures to start with a seed at the north pole, we
present a few more computations with a seed of radius r0 = 0.02 at the north pole.
Then for different physical parameters, we obtain slightly different evolutions. But
note that what they all have in common is that the crystal will initially grow sixth
arms, but these will then often display non-hexagonal sidearms and structures.
The simulations shown in Figure 12 are for wD = −12, with either ρ = α = 0.01,
ρ = 10α = 0.01 or ρ = α = 0.001, respectively. Here we let ε = (32π)−1 and
Nc = 32, Nf = 256 and τ = 10−5. For the next simulations we left everything
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Figure 11. (ε = (32π)−1) Parameters as in [12, Fig. 9], but here
ε = (32π)−1 and wD = −8. Starting seed on top (top), at the
front (middle) and on the right (bottom). Displayed times are
t = 0, 0.05, 0.1 (top) and t = 0, 0.01, 0.02 (middle and bottom).

Figure 12. (ε = (32π)−1) Parameters as in Figure 11 but
wD = −12 and: ρ = α = 0.01 (top), ρ = 10α = 0.001
(middle) and ρ = α = 0.001 (bottom). Displayed times are
t = 0.01, 0.05, 0.08, 0.12 (top), t = 0.01, 0.03, 0.06, 0.09 (middle)
and t = 0.01, 0.02, 0.03, 0.04 (bottom).
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Figure 13. (ε = (64π)−1) Parameters as in Figure 12 but with
wD = −8 and starting from a smaller initial seed, with radius
r0 = 0.005. Displayed times are t = 0.01, 0.05, 0.08, 0.14 (top),
t = 0.01, 0.03, 0.06, 0.012 (middle) and t = 0.01, 0.02, 0.04, 0.1 (bot-
tom).

Figure 14. The Wulff shape for (25).

unchanged, apart from wD = −8 and starting from a smaller seed, with radius
r0 = 0.005. As a consequence we also change the values of ε = (64π)−1, Nc = 32,
Nf = 512 and τ = 2.5× 10−6. The new results are shown in Figure 13. We stress
once more that if the seed would not be placed at the north pole, or if the ambient
anisotropy would be rotated so that the tangent space at the north pole is not
aligned with the six-fold symmetry, then the resulting growth would not show the
desired six-fold symmetric patterns.

5.3. Consistent 2d anisotropies on the unit sphere. In this subsection we
present some numerical evidence in support of the construction of consistent anisotro-
pies along a surface as proposed in §3.2. We first repeat the simulations in Fig-
ure 11, but now for the anisotropy (9) with (14), for L = 3, the usual 2d hexagonal
anisotropy from, e.g., [4, 7, 10, 12], i.e.,

(25) γ̂(p) =
3∑

ℓ=1

lδ(R̂1(
ℓ π
3 ) p),



A FEM FOR ANISOTROPIC CRYSTAL GROWTH ON SURFACES 631

Figure 15. (ε = (32π)−1) Parameters as in Figure 11, but for
the anisotropy (9) with (25). Starting seed on top (top), at the
front (middle) and on the right (bottom). Displayed times are
t = 0, 0.05, 0.1, 0.4 (top) and t = 0, 0.01, 0.02, 0.05 (middle and
bottom).

Figure 16. (ε = (32π)−1) Parameters as in Figure 12, but with
the anisotropy (9) with (25).

with R̂1(θ) :=
(

cos θ sin θ
− sin θ cos θ

)
, similarly to (22). We visualize the Wulff shape of

(25) in Figure 14.
The numerical results are shown in Figure 15, and the difference to Figure 11

is obvious. While the two simulations for the initial seed at the north pole are
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Figure 17. (ε = (64π)−1) Parameters as in Figure 13, but with
the anisotropy (9) with (25).

Figure 18. (ε = (64π)−1) The results from the final row in
Figure 17 displayed from a different point of view, and at times
t = 0.001, 0.005, 0.01, 0.02, 0.04, 0.1.

qualitatively very close, the seeds that start on the equator have very different
evolutions. In Figure 11, the seeds grow into a quadrilateral interface, while in
Figure 15 these also grow hexagonally. The explanation can be found in the Wulff
shape of (22), which for tangent spaces on the equator of the sphere will lead to
four-fold structures, rather than six-fold structures at the two poles.

With this arguably more realistic anisotropy for ice crystal growth on a sphere in
place, we can repeat the simulations in Figure 12 now for this new anisotropy. The
results are shown in Figure 16, where for the last row we observe the development
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Figure 19. An experiment with three initial seeds. Each crystal
grows symmetrically to the others.

of some mushy regions, suggesting that ε was not chosen sufficiently small to resolve
the physics of the underlying sharp interface problem.

When we repeat the simulations in Figure 13 for the new anisotropy these mushy
regions disappear, see Figure 17. Observe that compared to the dendritic growth
in the former case, the new simulations show the natural six-fold growth also way
beyond the equator. In fact, the interface growths in Figure 18 look very similar to
the 2d simulations in [7, 8, 9].

In Figure 19 we show a snapshot of a simulation that started from three initial
seeds. Due to the symmetric arrangement of the seeds, the three crystals continue
to grow symmetrically.

Overall the simulations in this subsections underline the ability of the anisotropies
introduced in §3.2 to model a hexagonal crystal growth on all parts of the unit
sphere segment, in contrast the the results for the simpler global anisotropies seen
in, e.g., §5.2.4.
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