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DEGENERATE AREA PRESERVING SURFACE ALLEN–CAHN

EQUATION AND ITS SHARP INTERFACE LIMIT

MICHAL BENEŠ, MIROSLAV KOLÁŘ, JAN MAGNUS SISCHKA, AND AXEL VOIGT*

Abstract. We consider formal matched asymptotics to show the convergence of a degenerate
area preserving surface Allen–Cahn equation to its sharp interface limit of area preserving geodesic
curvature flow. The degeneracy results from a surface de Gennes–Cahn–Hilliard energy and turns
out to be essential to numerically resolve the dependency of the solution on geometric properties

of the surface. We experimentally demonstrate convergence of the numerical algorithm, which
considers a graph formulation, adaptive finite elements and a semi-implicit discretization in time,
and uses numerical solutions of the sharp interface limit, also considered in a graph formulation,

as benchmark solutions. The results provide the mathematical basis to explore the impact of
curvature on cells and their collective behaviour. This is essential to understand the physical
processes underlying morphogenesis.

Key words. Motion by geodesic curvature, surface Allen–Cahn equation, de Gennes–Cahn–

Hilliard energy, matched asymptotic expansion, graph formulation.

1. Introduction

The connection between phase field approximations and geometric partial dif-
ferential equations is well established and can formally be justified by matched
asymptotics, see [1]. Geometric partial differential equations are evolution equa-
tions that evolve curves or surfaces according to their curvature. Prominent ex-
amples are mean curvature flow, area preserving mean curvature flow or surface
diffusion, see [2, 3] for reviews. Similarly to these curvature driven flows in 2D or
3D one can consider the evolution of curves on surfaces. The evolution of these
curves is governed by geodesic curvature and thus strongly depends on the local
geometric properties of the underlying surface. First analytical attempts to connect
these geodesic evolution laws to surface phase field models have been considered in
[4, 5, 6, 7]. We here show this connection for a degenerate area preserving surface
Allen–Cahn equation and an area preserving geodesic curvature flow.

This model is of particular interest in mathematical biology, where it is used to
approximate cells in epithelial tissue [8, 9, 10]. These approaches are considered
in 2D. Their extension to surfaces provides the mathematical basis to explore the
impact of curvature on cells and their collective behaviour. This is essential to
understand the physical processes underlying morphogenesis. First attempts in
this direction [11, 12] show a huge impact of curvature on collective motion but
also the sensitivity of the solution on local geometric properties of the surface,
which asks for further mathematical foundations to which this paper contributes.

2. Mathematical models

We consider a surface de Gennes–Cahn–Hilliard energy

(1) FdGCH(ϕ) = σ̃

∫
S

1

G(ϕ)

(
ϵ

2
∥∇Sϕ∥2 +

1

ϵ
W (ϕ)

)
dS
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with surface S, phase field variable ϕ, surface gradient ∇S , double well potential
W (ϕ) = 1

4 (ϕ
2−1)2, rescaled surface tension σ̃ and small parameter ϵ > 0 determin-

ing the thickness of the diffuse interface. The factor 1/G(ϕ) is called the de Gennes
coefficient in polymer science. We consider G(ϕ) = 3

2 (1− ϕ2) or a regularized ver-

sion Gη(ϕ) = ( 94 (1 − ϕ2)2 + η2ϵ2)1/2 with η > 0. The scaling coefficient is such
that the sharp interface limit equals the one obtained from the usual Cahn–Hilliard
energy without the de Gennes coefficient [13, 14]. Evolution equations based on
this energy, at least in 2D and 3D, have been shown numerically advantageous, as
the singularity, G(ϕ) or Gη(ϕ), helps to keep solutions confined in [−1, 1]. However,
a theoretical foundation of this argument remains open. From a practical point of
view, the de Gennes coefficient allows to achieve the same accuracy with larger ϵ.
Several numerical studies use this to achieve results which would not be possible
without it, see [15, 16]. We will demonstrate that this advantage is also present
on surfaces and becomes essential to numerically resolve the dependency of the
solution on geometric properties of the surface.

The L2-gradient flow of eq. (1) on S with an appropriate scaling in time reads

ϵβ̃∂tϕ = σ̃

(
ϵ∇S ·

(
1

G(ϕ)
∇Sϕ

)
− 1

ϵG(ϕ)
W ′(ϕ)

)
− σ̃

(
1

G(ϕ)

)′(
ϵ

2
∥∇Sϕ∥2 +

1

ϵ
W (ϕ)

)
,

with surface divergence ∇S · and Laplace–Beltrami operator ∆S . β̃ > 0 is a rescaled
kinetic coefficient. Using the asymptotic approximation [17] ϵ

2∥∇Sϕ∥2 ≈ 1
ϵW (ϕ)

and the identity ∇S · ((1/G(ϕ))∇Sϕ) = (1/G(ϕ))∆Sϕ+ (1/G(ϕ))
′ ∥∇Sϕ∥2 we can

approximate this equation by

(2) ϵβ̃∂tϕ =
σ̃

G(ϕ)

(
ϵ∆Sϕ− 1

ϵ
W ′(ϕ)

)
.

The idea for this approximation was first used for phase field approximations of
surface diffusion in [18], where G(ϕ) was introduced as a stabilizing function. Due to
this approximation the gradient flow structure is lost. However, the computational
cost is comparable to the formulation without G(ϕ). For a detailed derivation and
numerical comparison of the full and the approximated formulation in 2D, see [13].

We now introduce the Lagrange multiplier λ in eq. (2) to ensure the area con-
straint 1/|S|

∫
S ϕ dS = α with α ∈ [−1, 1]. The resulting system reads

ϵβ̃∂tϕ =
σ̃

G(ϕ)

(
ϵ∆Sϕ− 1

ϵ
W ′(ϕ)

)
+ λ(3)

1

|S|

∫
S
ϕ dS = α.(4)

By integrating eq. (3) over S, and inserting the time derivative of eq. (4), we obtain

0 = σ̃

∫
S

1

G(ϕ)

(
ϵ∆Sϕ− 1

ϵ
W ′(ϕ)

)
dS + |S|λ.

By solving for λ we arrive at the equation to be considered, a degenerate area
preserving surface Allen–Cahn equation on S

ϵβ̃G(ϕ)∂tϕ = σ̃

(
ϵ∆Sϕ− 1

ϵ
W ′(ϕ)

)
+G(ϕ)λ,(5)

λ = σ̃
1

|S|

∫
S

(
− ϵ

G(ϕ)
∆Sϕ+

1

ϵG(ϕ)
W ′(ϕ)

)
dS,(6)
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with initial condition ϕ(0) = ϕ0. The zero-levelset of the solution of eqs. (5) and
(6) provides an approximation of a closed curve γ evolving on the surface S.

The area preserving geodesic curvature flow for the curve γ on S reads

(7) βV = −σHγ + σ
1

|γ|

∫
γ

Hγ dγ

with initial condition γ(0) = γ0. V is the velocity of γ(t) in the direction of the
co-normal µ and Hγ is the geodesic curvature of γ. Let S1 = {(x, t) ∈ S × [0, T ] :
ϕ(x, t) < 0} and S2 = {(x, t) ∈ S×[0, t] : ϕ(x, t) > 0}. Then S = S1(t)∪γ(t)∪S2(t)
and we enforce the constraint |S1(t)| − |S2(t)| + α|S| = 0 for each t ∈ [0, T ]. The

kinetic coefficient and line tension are related by β = 4
√
2/5β̃ and σ = 2

√
2/3σ̃.

Besides the connection between eqs. (5) and (6) and eq. (7) by formal matched
asymptotics, we use numerical solutions of eq. (7) in a graph formulation, see [19],
as benchmark problems for a numerical approach to eqs. (5) and (6), again using
a graph formulation. We use adaptive finite elements to discretize in space and a
semi-implicit time-stepping scheme. While the asymptotic analysis also works out
without the de Gennes coefficient 1/G(ϕ), the numerical results demonstrate its
necessity to achieve the required accuracy to resolve the dependency on geometric
properties of the surface S for reasonable values of ϵ.

3. Matched asymptotic analysis

We closely follow [7] in the analysis of a phase field model in the context of
two-phase biomembranes and use the tools introduced in [4] to extend the formal
matched asymptotics for the area preserving Allen–Cahn equations in flat space
[20] and for the de Gennes–Cahn–Hilliard energy in flat space [13] to surfaces. We
demonstrate that eqs. (5) and (6) formally converge to eq. (7) for ϵ → 0. We
therefore require γ(t) to be a C2 closed curve.

3.1. Expansions and matching conditions. By (ϕϵ, λϵ), we denote a family
of solutions of eqs. (5) and (6) that converge formally to some limit denoted by
(ϕ, λ). We assume that ϕ = χγ with χγ a BV -function on S with χγ = −1
on S1 and χγ = 1 on S2 for some smooth curve γ that separates the regions
S1 = {(x, t) ∈ S × [0, T ] : ϕ(x, t) = −1} and S2 = {(x, t) ∈ S × [0, t] : ϕ(x, t) = 1}.
We consider an outer and an inner expansion

fϵ(x, t) = f0(x, t) + ϵf1(x, t) + ϵ2f2(x, t) + . . .(8)

Fϵ(s, z, t) = F0(s, z, t) + ϵF1(s, z, t) + ϵ2F2(s, z, t) + . . . ,(9)

respectively, with fϵ(x, t) = Fϵ(s, z, t), z = r/ϵ and Θ(s, r, t) a parametrization such
that s → Θ(s, 0, t) is a parametrization of γ(t) on S and r is the signed geodesic
distance of x = Θ(s, r, t) ∈ S to ∂S1. We consider the outer and inner expansion
of solutions ϕϵ, λϵ and write fϵ = ϕϵ, λϵ and Fϵ = Φϵ,Λϵ. The outer expansion
holds away from γ(t) and the inner expansion near γ(t). In regions where both
expansions are valid the following matching condition holds

(10) F0(s,±∞, t) = f±0 (x, t),

where we define f±0 (x, t) = limδ→0 f0(Θ(s,±δ, t), t) for a function f0(x, t) = f0(Θ(s,
r, t), t).

3.2. Outer solution. Considering the terms ofO(ϵ−1) in eq. (5) leads toW ′(ϕ0) =
0 and thus the only stable solutions are

(11) ϕ0 = ±1.
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3.3. Inner solution. The Laplace–Beltrami operator and the total time deriva-
tive of Fϵ(s, z, t) are

∆SFϵ =
1

ϵ2
∂zzFϵ +

Hγ

ϵ
∂zFϵ + ∂ssFϵ +O(ϵ)(12)

d

dt
Fϵ = −1

ϵ
V∂zFϵ + ∂tFϵ +O(ϵ)(13)

with ∂ss the second derivative along γ. Considering terms of O(ϵ−1) in eq. (5) leads
to 0 = σ̃ (∂zzΦ0 −W ′(Φ0)). Using the outer expansion eq. (11) and the matching
condition eq. (10) shows that Φ0(s, z, t) is a solution of ∂zzΦ0 = W ′(Φ0) with
Φ0(±∞) = ±1 and thus

(14) Φ0(z) = tanh

(
z√
2

)
independent of s and t. Using this in O(ϵ0) of eq. (5) leads to

(15) − β̃VG(Φ0)∂zΦ0 = σ̃ (Hγ∂zΦ0 −W ′′(Φ0)Φ1 + ∂zzΦ1) +G(Φ0)Λ0.

Multiplying by ∂zΦ0 and integrating leads to

(16) − β̃V
∫ +∞

−∞
G(Φ0)(∂zΦ0)

2 dz =

σ̃

∫ +∞

−∞
Hγ(∂zΦ0)

2 − ∂zW
′(Φ0)Φ1 + ∂zzΦ1∂zΦ0 dz + Λ0

∫ +∞

−∞
G(Φ0)∂zΦ0 dz.

It holds∫ +∞

−∞
−∂zW ′(Φ0)Φ1 + ∂zzΦ1∂zΦ0 dz =

∫ +∞

−∞
Φ1∂z(−W ′(Φ0) + ∂zzΦ0) dz = 0

and thus

(17) −β̃V
∫ +∞

−∞
G(Φ0)(∂zΦ0)

2 dz = σ̃Hγ

∫ +∞

−∞
(∂zΦ0)

2 dz+Λ0

∫ +∞

−∞
G(Φ0)∂zΦ0 dz.

With eq. (14) we obtain ∂zΦ0 = 1√
2
(1−Φ2

0) and thus
∫ +∞
−∞ G(Φ0)(∂zΦ0)

2 dz = 4
√
2

5 ,∫ +∞
−∞ (∂zΦ0)

2 dz = 2
√
2

3 and
∫ +∞
−∞ G(Φ0)∂zΦ0 dz = 2 and therefore

(18) βV = −σHγ − 2Λ0.

In order to determine Λ0 we consider the constraint
1
|S|
∫
S ϕϵ dS = α. Using eq. (13)

in O(ϵ−1) gives 0 =
∫
γ
V∂zΦ0 dγ and as ∂zΦ0 is independent of s also

∫
γ
V dγ = 0.

Integrating eq. (18) we thus obtain

(19) 2Λ0 = −σ 1

|γ|

∫
γ

Hγ dγ

which leads to the desired eq. (7). This analysis is not affected by considering Gη

instead of G and can also be done along the same lines without the de Gennes
factor 1/G(ϕ).
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4. Graph formulations

Before we numerically solve both models, the degenerate area preserving surface
Allen–Cahn equation (5) and (6) and the area preserving geodesic curvature flow
(7), we reformulate them in a graph formulation. Assume that the surface S is the
graph of the function h : Ω → R where Ω ⊆ R2 is a bounded domain, i.e.

S = {[x, h(x)]| x ∈ Ω}.
Let us also assume that the closed curve γ(t) ⊂ S is represented by a closed curve
g(t) ⊂ Ω, and the curve g(t) is given by a 1-periodic parametrization X : (0, T ) ×
(0, 1) → Ω as g(t) = {X(t, l)|t ∈ (0, T ), l ∈ (0, 1)}, and consequently γ(t) =
{[X(t, l), h(X(t, l))]| t ∈ (0, T ), l ∈ (0, 1)}.

In [19] eq. (7) is transformed to the flow of g(t)

(20) βV = −aHg + b+ c
1∫

g

√
1 + (∇h · tg)2 dg

∫
g

Hγ

√
1 + (∇h · tg)2 dg

with the normal velocity V , the coefficients a > 0, b and c given as

a =
σ

1 + (∇h · tg)2
, b =

σtTg ∇2htg(∇h · ng)

(1 + (∇h · tg)2)(1 + |∇h|2)
, c = σ

√
1 + (∇h · tg)2
1 + |∇h|2

.

The unit tangent tg, unit outer normal ng and curvature Hg of the curve g(t) are
given as

(21) tg =
∂lX

|∂lX|
, ng =

1

|∂lX|
(∂lX2,−∂lX1)

T , Hg = − 1

|∂lX|
∂l

(
∂lX

|∂lX|

)
· ng

and the geodesic curvature Hγ of γ(t) is given as

(22) Hγ = − 1
3
√
1 + (∇h · tg)2

(√
1 + |∇h|2Hg −

tTg ∇2htg√
1 + |∇h|2

(∇h · ng)

)
.

For details and the numerical realization we refer to [19, 21, 22].
The graph formulation for eq. (5) and (6) can be formulated as

ϵβ̃Gη(ϕ)∂tϕ = σ̃ψ − σ̃Gη(ϕ)∫
Ω

√
1 + |∇h|2 dΩ

∫
Ω

√
1 + |∇h|2
Gη(ϕ)

ψ dΩ(23)

with ψ = ϵ∇· ((I− (∇h)2

1+|∇h|2 )∇ϕ)−
1
ϵW

′(ϕ). As the Lagrange multiplier is evaluated

explicitly numerical and truncation errors can accumulate over time, we follow [23]
and introduce a relaxation rate for the Lagrange multiplier, which can also be inter-
preted as an additional penalization of the area of the form µ

(
1/|S|

∫
S ϕ dS − α

)
,

with penalization parameter µ. The resulting semi-discrete graph formulation with
ϕn = ϕ(tn) reads

ϵβ̃Gη(ϕ
n)
ϕn+1 − ϕn

τ
= σ̃ψn+1 − σ̃Gη(ϕ

n)∫
Ω

√
1 + |∇h|2 dΩ

∫
Ω

√
1 + |∇h|2
Gη(ϕn)

ψn dΩ

− c

(∫
Ω

√
1 + |∇h|2ϕn dΩ∫

Ω

√
1 + |∇h|2 dΩ

− α

)
,

with ψn = ϵ∇ · ((I − (∇h)2

1+|∇h|2 )∇ϕ
n)− 1

ϵW
′(ϕn) and W ′(ϕn+1) ≈W ′(ϕn) +W ′′(ϕn)

×(ϕn+1−ϕn). The resulting equation for ϕn+1 is linear and discretized in space by
standard P 1 finite elements. The problem is implemented in AMDiS [24, 25] and
the linear system is solved with the direct solver of UMFPACK.
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5. Numerical results

We consider 4 examples provided in [19] and take the numerical solutions pro-
vided in [19] (with M = 200 finite volumes) as benchmark solutions. The problem
settings are provided in Table 1.

Table 1. Numerical examples, initial parametrization of curve
and height profile. r(l) = 1 + 0.65 cos (10πl).

X(0), l ∈ (0, 1) h

Problem 1 X(0, l) = ( 1
4
+ r(l) cos 2πl,− 1

4
+ r(l) sin 2πl)T h(x, y) =

√
4− x2 − y2

Problem 2 X(0, l) = (cos 2πl, 1
10

+ sin 2πl)T h(x, y) = y2

Problem 3 X(0, l) = (cos 2πl,− 1
5
+ sin 2πl)T h(x, y) = sinπy

Problem 4 X(0, l) = ( 1
2
cos 2πl, sin 2πl)T h(x, y) = x2 − y4

Figure 1 shows the zero contour ϕϵ = 0 with ϵ = 0.025 of numerical solutions of
the degenerate area preserving surface Allen–Cahn equation and the corresponding
sharp interface limit as reference solutions for selected time instances. The spatial
resolution considers at least 10 mesh points across the projected interface in Ω and
the time step is chosen to ensure the CFL (Courant–Friedrichs–Lewy) condition
with τ ≈ k2, where k is the corresponding mesh size within the diffuse interface. The
mesh is adaptively refined to ensure these conditions. Other numerical parameters
are chosen as η = 0.01 and c = 2000. The physical parameters are set as β = 1 and
σ = 1.

Table 2. Hausdorff distance of the planar projections of the
curves γ200(t) (benchmark solution) and γϵ(t) (ϕϵ = 0 level-set)
onto Ω in space. Shown are the L2-norm in time of the projected
Hausdorff distances and the values at the end of the simulation
for the four problems shown in Table 1. By then, the equilibrium
state has been reached. The last row shows the comparison the
same measures for the non-degenerate case with G(η(ϕ

n) = 1 in
the semi-discrete graph-formulation.

Problem 1 Problem 2 Problem 3 Problem 4

ϵ ∥ · ∥L2 equil ∥ · ∥L2 equil ∥ · ∥L2 equil ∥ · ∥L2 equil

0.1 0.0075 0.0577 0.0014 0.0096 0.0033 0.0211 0.0031 0.0175

0.05 0.0043 0.0332 0.0009 0.0044 0.0019 0.0105 0.0011 0.0069

0.025 0.0032 0.0311 0.0007 0.0026 0.0015 0.0074 0.0007 0.0056

0.025 0.0042 0.0219 0.0039 0.0304 0.0055 0.0094 0.0061 0.0365

We measure the space-time error of the Hausdorff distance for different ϵ of the
projected curves γ200(t) (benchmark solutions) and γϵ(t) (ϕϵ = 0 level-sets) onto
Ω. We consider the L2-norm in time of this distance. In addition we provide the
Hausdorff distance for the reached equilibrium solutions, see Table 2 (first three
rows). As the benchmark solution is also just a numerical approximation, we only
discuss convergence qualitatively and do not consider any order of convergence.
The values at least indicate a reduction of the considered errors. A more detailed
and analytically supported convergence study of the numerical solutions requires
to extend results of [26] to surfaces, which is beyond the scope of this paper.

In order to demonstrate the importance of the de Gennes factor 1/G(ϕ) we also
consider the four problems without this term. This simply requires to consider
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Figure 1. Comparison of the numerical solutions of the degener-
ate area preserving surface Allen–Cahn equation (solid) with the
numerical solutions of the corresponding sharp interface limit as
reference solutions (dotted). Shown is the zero contour of the phase
field function ϕϵ for ϵ = 0.025. The evolution in time is shown in
color, running from light green to dark blue. The problem numbers
correspond to Table 1 and the time instances shown are Problem
1: t = 0, 0.1, 0.2, 0.4, 1, Problem 2: t = 0, 0.25, 0.5, 1, 2, Problem 3:
t = 0, 0.5, 1, 2, 4, and Problem 4: t = 0, 0.25, 0.5, 1, 2.4.

Gη(ϕ
n) = 1 in the semi-discrete graph-formulation. Figure 2 shows the comparison

with the sharp interface solution and the previous results with the de Gennes factor
from Figure 1 for ϵ = 0.025 and Problem 2 as an example. The differences are clear-
ly visible. They are quantified using the same measures in Table 2 (last row) and
indicate a significant error reduction. Only for the equilibrium shape in Problem 1,
which is a circle the error is not reduced. In most cases the error measures for the
non-degenerate case are even larger than the corresponding measures for the degen-
erate case with ϵ = 0.1. The difference certainly depend on the specific geometric
setting of the problems. However, the largest differences between the degenerate
and non-degenerate problem are found for Problem 4, which geometrically is the
most complex with both principle curvatures being space-dependent.

Additionally, we analyse the quality of area conservation and the evolution of the
system energy (1). The results are shown in Figure 3 and demonstrate the desired
properties.
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...

h

.

x

.

y

Figure 2. Comparison of the non-degenerate and degenerate area
preserving surface Allen–Cahn equation (solid) with the numerical
solutions of the corresponding sharp interface limit as reference
solutions (dotted) for Problem 2. Shown is the zero contour of
the phase field function ϕϵ for ϵ = 0.025. The evolution in time
is shown in color, running from light green to dark blue for the
degenerate area-preserving surface Allen–Cahn equation and from
light green to dark red for the non-degenerate version. The time
instances shown are t = 0, 0.5, 2.

Figure 3. Time evolution of the area enclosed by the zero contour
of the phase field function ϕϵ (left) and the system energy (1)
(right) for ϵ = 0.025. The time is normalized for all four problems.
In the left plot we show the reference areas for the four problems
according to [19]. For ϵ = 0.025, the maximum absolute deviation
from the reference area is 0.082 for Problem 1, 0.0180 for Problem
2, 0.0745 for Problem 3, and 0.0344 for Problem 4. The mean
absolute deviations are 0.0646 for Problem 1, 0.0059 for Problem
2, 0.0633 for Problem 3, and 0.0133 for Problem 4.

We would like to remark that the equilibrium shapes in Problem 2 and Problem 3,
which are considered on ruled surfaces, are isotropic. Unrolling the surfaces provides
the circular shapes of the final curves. This is consistent with known results for
(reaction-)diffusion problems on curved surfaces. E.g. for the surface heat equation
it is known that the heat kernel to lowest order only depends on the Gaussian
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curvature of the underlying surface [27, 28]. As this is zero for ruled surfaces, the
surface should not have any effect on the evolution and a circular equilibrium shape
on the surface, as in flat space, can be expected. For the mentioned applications in
epithelial tissue, where cells respond to the curvature of the surface, it is essential
to resolve these properties.

6. Conclusions

We propose a phase field approximation for area preserving geodesic curvature
flow. The considered equation is a degenerate area preserving surface Allen–Cahn
equation. The connection between both models is established by formal matched
asymptotic analysis and confirmed by numerical solutions for different problems in
a graph formulation.

The degeneracy in the surface Allen–Cahn equation results from the de Gennes
factor 1/G(ϕ) in the energy (1), see [13]. While the formal matched asymptotic
analysis also holds for G(ϕ) = 1 the numerical results rely on the de Gennes factor.
It ensures ϕ ∈ [−1, 1] much better than without it. This is a desired feature also
in 2D and 3D, where the factor 1/G(ϕ) is used in various applications [15, 16].
However, on curved surfaces it is even more essential as deviations have a more
dramatic effect due to the spatially varying geometric properties of the surface
which can enhance the resulting errors. These geometric properties also need to be
considered in the mesh resolution in the graph formulation. We need to ensure a
desired resolution of the projected diffuse interface. Also the additional penalization
of the area [23] helps to obtain the shown convergence results. If all these aspects
are considered the proposed phase field approximation provides an appropriate way
to solve the highly non-linear problem of area preserving geodesic curvature flow
by standard tools for solving partial differential equations in 2D and provides the
mathematical basis to extend models for epithelial tissue epithelial tissue [8, 9, 10]
to surfaces.
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