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SPLITTING SCHEMES FOR BACKWARD STOCHASTIC

DIFFERENTIAL EQUATIONS

LUYING ZHENG AND WEIDONG ZHAO∗

Abstract. This paper concerns splitting methods for solving backward stochastic differential
equations (BSDEs). By splitting the original d-dimensional BSDE into d BSDEs and approxi-

mating these split BSDEs, we propose splitting schemes for the BSDE. The splitting schemes are
rigorously analyzed and first-order error estimates are theoretically obtained. Numerical tests are
given to verify the theoretical results.
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1. Introduction

Let (Ω,F ,F, P ) be a complete, filtered probability space with F = {Ft}0≤t≤T

being the natural filtration generated by a d-dimensional Brownian motion Wt =
(W 1

t ,W
2
t , · · · ,W d

t )
⊤. The general form of backward stochastic differential equation

(BSDE) on (Ω,F ,F, P ) is

(1) Yt = φ(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ],

where Xt = X0 +Wt is a forward diffusion process with X0 ∈ F0 being the initial
condition; T > 0 is the deterministic terminal time; f : [0, T ]× Rd × Rp × Rp×d →
Rp and φ : Rd → Rp are the generator and the terminal function of the BSDE,
respectively. We note that the integral term with respect to Ws of the BSDE is the
Itô-type integral. The pair of processes (Yt, Zt) : [0, T ] × Ω → Rp × Rp×d is called
an L2-adapted solution of the BSDE (1) if it is Ft-adapted, square integrable, and
satisfies (1).

In 1990, under certain standard conditions, Pardoux and Peng [26] originally
proved the existence and uniqueness of the solutions of general nonlinear BSDEs.
In 1991, Peng [29] found the nonlinear Feynman-Kac formula, that is, under some
regularity conditions, the solution (Y, Z) of (1) can be represented as

(2) Yt = u(t,Xt), Zt = ∇xu(t,Xt), t ∈ [0, T ),

where u : [0, T ] × Rd → Rp is the classical solution to the following second-order
parabolic partial differential equation (PDE)

(3)
∂u

∂t
+

1

2

d∑
i=1

∂2u

∂x2
i

+ f(t, x, u,∇xu) = 0, (t, x) ∈ [0, T )× Rd

with the terminal condition u(T, x) = φ(x) for x ∈ Rd. The representation (2)
deeply connects the BSDE and the parabolic PDE, which enables us to develop
numerical schemes for the BSDE (1) by solving the associated parabolic PDE (3),
and vice versa. Since then, significant efforts have been made to study BSDEs
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due to their important applications in various fields, such as mathematical finance,
PDEs, stochastic control, risk measurement, game theory, deep learning and so on
(see, e.g., [9, 23, 28, 29, 13] and references therein).

It is usually difficult to obtain the analytical solutions of BSDEs, and thus nu-
merical methods for solving BSDEs are in high demand. Recently, a lot of work
has been put into developing effective numerical methods for solving BSDEs. One
of the most widely used approaches is to discretize BSDEs directly, leading to
various discretization schemes for solving BSDEs [1, 2, 6, 16, 21, 36, 3]. Popular
temporal discretization strategies include Euler-type methods [14, 15, 35], the gen-
eralized θ-schemes [31, 36, 38], Runge-Kutta schemes [5], the multistep schemes
[4, 19, 20, 30, 37, 39, 40], strong stability preserving multistep schemes [10, 11],
and extrapolation methods [32, 33], etc. Additionally, there are several numerical
schemes for solving BSDEs proposed based on the nonlinear Feynman-Kac formula
and the numerical solutions of parabolic PDEs associated with BSDEs, such as in
the papers [7, 22, 24].

Parabolic equations have found wide applications in various fields, such as the
heat transfer in a superconductor, the chemical reaction from chemical engineering
and the modeling of economic processes, etc. Thus various numerical methods have
been developed for solving parabolic PDEs [8, 25]. For multi-dimensional PDEs,
splitting methods, including alternating direction implicit (ADI) [8, 27] and locally
one-dimensional (LOD) [34] methods, demonstrated significant advantages due to
their low computational complexity and high computational efficiency. The LOD
method, also known as fractional step methods, and the ADI method solve a multi-
dimensional equation by converting the multi-dimensional equation to a succession
of one-dimensional equations, while providing accurate numerical solutions. These
methods have been extended to solve nonlinear PDE problems and other physical
problems. However, up to now, there are still very few research on splitting methods
for solving BSDEs.

To fill the gap, in this paper, we shall propose splitting schemes for solving BS-
DEs. To obtain the splitting schemes, on each time subinterval [tn, tn+1] of a given
time partition 0 = t0 < t1 < · · · < tN−1 < tN = T , first we split the BSDE (1) into
d BSDEs with their solutions {(Ȳ i

t , Z̄
i
t), i = 1, · · · , d}, then, by approximating these

split BSDEs, we construct our splitting schemes for solving the original BSDE (1).
The main advantage of the schemes is that only one-dimensional approximations
are required to calculate the conditional mathematical expectations, which may
reduce computational cost. We rigorously provide the theoretical error estimates,
which show the first-order convergence rate of the schemes. Our numerical tests
also validate our theoretical results, and show the accuracy and effectiveness of our
splitting schemes.

The rest of this paper is organized as follows. In Section 2, we propose splitting
schemes for solving BSDEs by splitting the original d-dimensional BSDE into d
BSDEs and approximating these split BSDEs. In Section 3, we rigorously prove
the first-order convergence rate in time for the splitting schemes. Several numerical
tests are presented to show the accuracy and effectiveness of our splitting schemes
in Section 4. In Section 5, the conclusions are given.

2. Splitting methods for BSDEs

First, we introduce some notations. Use ∆Wt,s to denote the increment Ws −
Wt = (∆W 1

t,s, · · · ,∆W d
t,s)

⊤ of the Brownian motion Ws for s ≥ t, where ∆W i
t,s =



SPLITTING SCHEMES FOR BSDES 587

W i
s −W i

t . And for the d-dimensional process Xt, we use Ex
t [·] to denote the condi-

tional mathematical expectation operator E[·|Ft, Xt = x], and Ei,x
t [·] to denote the

conditional mathematical expectation operator E[·|Ft, X
i
t = xi]

∣∣
Xj

t=xj ,j ̸=i
, where x

is an arbitrarily fixed point in Rd. More clearly, for a given function g : Rd → Rq

with q being a positive integer, we have

Ex
t [g(Xs)] =E[g(Xs)|Ft, Xt = x],(4)

Ei,x
t [g(Xs)] =E[g(x̄1, · · · , x̄i−1, Xi

s, x̄
i+1, · · · , x̄d)|Ft, X

i
t = xi]

∣∣
Xj

t=xj ,x̄j=Xj
s ,j ̸=i

.

(5)

It is worth to note that the main difference between Ex
t [·] and Ei,x

t [·] is that the
conditional mathematical expectation Ei,x

t [g(Xs)] is only taken for the ith compo-
nent Xi

s of Xs.

2.1. Splitting approximations. For the time interval [0, T ], we consider the
following partition:

(6) 0 = t0 < t1 < t2 < · · · < tN = T.

where N is a positive integer. Let ∆tn = tn+1 − tn, n = 0, 1, · · · , N − 1, and
∆t = max

0≤n≤N−1
∆tn. For the sake of error estimates, we assume that the time

partition satisfies the regularity constraint:

(7)

max
0≤n≤N−1

∆tn

min
0≤n≤N−1

∆tn
≤ c0,

where c0 ≥ 1 is a constant. For the uniform time partition, the time step size
∆tn = ∆t = T

N .
Let (Yt, Zt) be the adapted solution of the BSDE (1). Then for t ∈ [tn, tn+1] and

n = 0, 1, · · · , N − 1, we can rewrite (1) as

(8) Yt = Ytn+1 +

d∑
i=1

∫ tn+1

t

f i(s,Xs, Ys, Zs)ds−
∫ tn+1

t

ZsdWs,

where f i : [0, T ] × Rd × Rp × Rp×d → Rp are appropriate deterministic functions

satisfing
∑d

i=1 f
i = f .

Now based on (8), we introduce a family of intermediate processes {(Ȳ i
t , Z̄

i
t), i =

1, · · · , d} for t ∈ [0, T ], which will be utilized to construct splitting approximations
of (8). The processes (Ȳ i

t , Z̄
i
t) on [tn, tn+1], i = 1, · · · , d, are defined by the BSDEs

(9) Ȳ i
t =Ȳ i

tn+1
+

∫ tn+1

t

f̄ i
sds−

∫ tn+1

t

Z̄i
sdWs

for i = 1, · · · , d with the terminal conditions Ȳ 1
tN = φ(XT ) and Ȳ 1

tn+1
= Ȳ d

tn+1
(Xtn+1)

for 0 ≤ n < N − 1, and

(10) Ȳ i
tn+1

= Ȳ i−1
tn (Xtn+1), i = 2, 3, · · · , d,

where φ is the terminal condition defined in (1), and f̄ i
s = f i(s,Xs, Ȳ

i
s , Z̄

i
s) with

Z̄i
s = (Z̄i

s,1, · · · , Z̄i
s,d). We call the BSDEs (9) the splitting approximations of the

BSDE (8).
Let t = tn, n = 0, 1, · · · , N − 1, in (9), we obtain

(11) Ȳ i
tn = Ȳ i

tn+1
+

∫ tn+1

tn

f̄ i
sds−

∫ tn+1

tn

Z̄i
sdWs
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for i = 1, · · · , d. Then taking the conditional mathematical expectation Ex
tn [·] on

both sides of (11), we derive

(12) Ȳ i
tn = Ex

tn [Ȳ
i
tn+1

] +

∫ tn+1

tn

Ex
tn [f̄

i
s]ds.

The integrand Ex
tn [f̄

i
s] on the right-hand side of (12) is a deterministic function of s

under the filtration Ftn . By using the left rectangle rule to approximate the integral

term and using the conditional mathematical expectation Ei,x
tn [·] to approximate

Ex
tn [·] in (12), we deduce

(13) Ȳ i
tn = Ei,x

tn [Ȳ i
tn+1

] + ∆tnf̄
i
tn +Ri

ȳ,

where Ri
ȳ = Ri

f̄
+Ri

Ey with

Ri
f̄ =

∫ tn+1

tn

{
Ex
tn [f̄

i
s]− f̄ i

tn

}
ds,

Ri
Ey = Ex

tn [Ȳ
i
tn+1

]− Ei,x
tn [Ȳ i

tn+1
].

Let ∆Wn+1 = ∆Wtn,tn+1 = (∆W 1
n+1, · · · ,∆W d

n+1)
⊤. Multiplying (11) by

∆W j
n+1, taking the conditional mathematical expectation Ex

tn [·] on both sides of
the derived equations, and using the Itô isometry formula, we obtain the equations

(14) 0 = Ex
tn [Ȳ

i
tn+1

∆W j
n+1] +

∫ tn+1

tn

Ex
tn [f̄

i
s∆W j

n+1]ds−
∫ tn+1

tn

Ex
tn [Z̄

i
s,j ]ds,

where Z̄i
s,j is the jth column of Z̄i

s for j = 1, · · · , d. By using the left rectangle rule

to the two integrals and the approximation Ej,x
tn [·] of the Ex

tn [·] on the right-hand
side of (14) again, we deduce

(15) ∆tnZ̄
i
tn,j = Ej,x

tn [Ȳ i
tn+1

∆W j
n+1] +Rj

z̄,

where Rj
z̄ = Rj

z̄1 +Rj
z̄2 +Rj

Ez with

Rj
z̄1 =

∫ tn+1

tn

Ex
tn [f̄

i
s∆W j

n+1]ds,

Rj
z̄2 = −

∫ tn+1

tn

{
Ex
tn [Z̄

i
s,j ]− Z̄i

tn,j

}
ds,

Rj
Ez = Ex

tn [Ȳ
i
tn+1

∆W j
n+1]− Ej,x

tn [Ȳ i
tn+1

∆W j
n+1].

Based on the approximation equations (13) and (15), we will propose our splitting
schemes for solving the BSDE (1).

2.2. Splitting schemes. Let (Y n, Zn) be the numerical approximation of the
analytical solution (Yt, Zt) of the BSDE (1) at time t = tn, n = N,N − 1, · · · , 0.
By removing the error terms Ri

ȳ and Rj
z̄ in (13) and (15), respectively, we propose

the time semi-discrete splitting schemes for solving the BSDE (1) as follows.

Scheme 1. Given random variables Y N and ZN , for n = N − 1, · · · , 1, 0, solve
Y n = Y n(x) and Zn = Zn(x) for x ∈ Rd by

(1) Let Ȳ n+1,1 = Y n+1;
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(2) For i = 1, 2, · · · , d,

∆tnZ̄
n,i
j = Ej,x

tn [Ȳ n+1,i∆W j
n+1], j = 1, 2, · · · , d,

Ȳ n,i = Ei,x
tn [Ȳ n+1,i] + ∆tnf

i(tn, x, Ȳ
n,i, Z̄n,i),

Ȳ n+1,i+1 = Ȳ n,i

with Z̄n,i = (Z̄n,i
1 , Z̄n,i

2 , · · · , Z̄n,i
d );

(3) Let Y n = Ȳ n,d and Zn = Z̄n,d.

Remark 1. The order of the computations in (2) of Scheme 1 can be any a prior
fixed permutation of the index (1, 2, . . . , d).

In Scheme 1, we have solved the jth column Z̄n,i
j of Z̄n,i for j = 1, · · · , i − 1

to determine Z̄n,i. Thus in (2) of Scheme 1 the computations of Z̄n,i
j for j can be

changed to j = i, i+ 1, · · · , d. Based on this observation, we propose the following
Scheme 2.

Scheme 2. Given random variables Y N and ZN , for n = N − 1, · · · , 1, 0, solve
Y n = Y n(x) and Zn = Zn(x) for x ∈ Rd by

(1) Let Ȳ n+1,1 = Y n+1;
(2) For i = 1, 2, · · · , d,

∆tnZ̄
n,i
j = Ej,x

tn [Ȳ n+1,i∆W j
n+1], j = i, i+ 1, · · · , d,

Ȳ n,i = Ei,x
tn [Ȳ n+1,i] + ∆tnf

i(tn, x, Ȳ
n,i, Z̄n,i),

Ȳ n+1,i+1 = Ȳ n,i

with Z̄n,i = (Z̄n,1
1 , Z̄n,2

2 , · · · , Z̄n,i
i , Z̄n,i

i+1, · · · , Z̄
n,i
d );

(3) Let Y n = Ȳ n,d and Zn = Z̄n,d.

In the above two schemes, one of the simplest splittings is f i = 0 (1 ≤ i ≤ d− 1)
and fd = f . For this simplest splitting, we solve Ȳ n,i without calculating the values
of f i(tn, Xtn , Ȳ

n,i, Zn,i) for 1 ≤ i ≤ d − 1. In this case, to make the above two

schemes work, only the ith column Z̄n,i
i of Z̄n,i (i = 1, · · · , d) are needed. Based

on these observations, to be more efficient, we propose the following Scheme 3.

Scheme 3. Given random variables Y N and ZN , for n = N − 1, · · · , 1, 0, solve
Y n = Y n(x) and Zn = Zn(x) for x ∈ Rd by

(1) Let Ȳ n+1,1 = Y n+1;
(2) For i = 1, · · · , d− 1,

∆tnZ̄
n,i
i = Ei,x

tn [Ȳ n+1,i∆W i
n+1],

Ȳ n,i = Ei,x
tn [Ȳ n+1,i],

Ȳ n+1,i+1 = Ȳ n,i,

and for i = d,

∆tnZ̄
n,d
d = Ed,x

tn [Ȳ n+1,d∆W d
n+1],

Ȳ n,d = Ed,x
tn [Ȳ n+1,d] + ∆tnf(tn, x, Ȳ

n,d, Z̄n,d)

with Z̄n,d = (Z̄n,1
1 , Z̄n,2

2 , · · · , Z̄n,d
d );

(3) Let Y n = Ȳ n,d and Zn = Z̄n,d.
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Remark 2. Among the above three schemes, Scheme 3 is the most efficient. Fur-
thermore, both Schemes 1 and 2 depend on the splitting of the generator f . The
errors produced by Scheme 1 and 2 with the splitting f1 = f and f i = 0 (2 ≤ i ≤ d)
are identical. The numerical solutions obtained by Schemes 2 and 3 are identical
when the splitting f i = 0 (1 ≤ i ≤ d− 1) and fd = f is used. Our numerical tests
will show all these observations.

Remark 3. (1) According to the nonlinear Feynman-Kac formula, our schemes
can be used for solving nonlinear PDEs. Note that existing splitting methods
for solving PDEs, such as LOD methods, are challenging for solving non-
linear PDEs, especially for the function f that depends on ∇xu. However,
our methods overcome this difficulty.

(2) All of the above schemes can be extended to the forward backward stochastic
differential equations (FBSDEs) combining the BSDE (1) with the forward
diffusion process Xt defined by

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

where Xt : [0, T ] × Ω → Rq, the drift coefficient b : [0, T ] × Rq → Rq and
the diffusion coefficient σ : [0, T ]× Rq → Rq×d.

3. Error analysis

In this section, we will rigorously prove that Scheme 3 has first-order convergence
in time for solving BSDEs. For simplicity, we only consider two-dimensional scalar
BSDEs (i.e. p = 1, d = 2). All the error estimates can apply to the general
multi-dimensional BSDEs.

3.1. Error equations. Let (Yt, Zt) and (Y n, Zn), n = 0, 1, · · · , N , be the analyti-
cal solution of the BSDE (1) and the approximate solution of Scheme 3, respectively.

For simplicity, we use Ex
tn [·] and Ei,x

tn [·] to denote EXtn
tn [·] and Ei,Xtn

tn [·], respectively.
We denote Ytn − Y n by eny , and Ztn − Zn by enz , where

enz = (en,1z , en,2z ) = (Z1
tn − Zn,1, Z2

tn − Zn,2).

By the BSDE (1), we have

(16) Ytn = Ytn+1 +

∫ tn+1

tn

f(s,Xs, Ys, Zs)ds−
∫ tn+1

tn

ZsdWs

for n = 0, 1, · · · , N − 1. By taking the conditional mathematical expectation Ex
tn [·]

on both sides of (16) and using the left rectangle rule to approximate the integral
term in the derived equation, we deduce the equation

(17) Ytn = Ex
tn [Ytn+1 ] + ∆tnf(tn, x, Ytn , Ztn) +Rn

y ,

where

(18) Rn
y =

∫ tn+1

tn

{
Ex
tn [f(s,Xs, Ys, Zs)]− f(tn, x, Ytn , Ztn)

}
ds.

Multiplying (16) by ∆W⊤
n+1, taking the conditional mathematical expectation Ex

tn [·]
on both sides of the derived equation, and using the left rectangle rule to the two
integrals, we deduce

(19) ∆tnZtn = Ex
tn [Ytn+1∆W⊤

n+1] +Rn
z ,

where

(20) Rn
z = Rn

z1 +Rn
z2
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with

Rn
z1 =

∫ tn+1

tn

Ex
tn [f(s,Xs, Ys, Zs)∆W⊤

n+1]ds,

Rn
z2 = −

∫ tn+1

tn

{
Ex
tn [Zs]− Ztn

}
ds.

Here Ztn = (Z1
tn , Z

2
tn) and Rn

z = (Rn,1
z , Rn,2

z ).
By Scheme 3, the equations in (2) of Scheme 3 are written in the equivalent form

∆tnZ̄
n,1
1 = E1,x

tn [Y n+1∆W 1
n+1],(21)

∆tnZ̄
n,2
2 = E2,x

tn [E1,x
tn [Y n+1]∆W 2

n+1],(22)

Y n =E2,x
tn [E1,x

tn [Y n+1]] + ∆tnf(tn, x, Y
n, Zn).(23)

Note that the components of Xtn are independent of each other. By using Fubini’s
theorem [12], (23) can be rewritten as

(24) Y n =Ex
tn [Y

n+1] + ∆tnf(tn, x, Y
n, Zn).

Similarly, (22) can also be rewritten as

∆tnZ̄
n,2
2 = E2,x

tn [E1,x
tn [Y n+1]∆W 2

n+1] = Ex
tn [Y

n+1∆W 2
n+1].(25)

Now we let Z̃tn = (Z̃1
tn , Z̃

2
tn), where

(26) ∆tnZ̃
1
tn = E1,x

tn [Ytn+1∆W 1
n+1], ∆tnZ̃

2
tn = Ex

tn [Ytn+1∆W 2
n+1].

Then by the reference equation (17) we get

(27)
Ytn =Ex

tn [Ytn+1 ] + ∆tnf(tn, x, Ytn , Ztn) +Rn
y

=Ex
tn [Ytn+1 ] + ∆tnf(tn, x, Ytn , Z̃tn) +Rn

y +Rn
y1
,

where Rn
y is defined in (18), and

(28) Rn
y1

= ∆tnf(tn, x, Ytn , Ztn)−∆tnf(tn, x, Ytn , Z̃tn).

By (19) and (26), we have

∆tnZ
1
tn =E1,x

tn [Ytn+1∆W 1
n+1] +Rn,1

ez +Rn,1
z ,(29)

∆tnZ
2
tn =Ex

tn [Ytn+1∆W 2
n+1] +Rn,2

z ,(30)

where Rn
z = (Rn,1

z , Rn,2
z ) is defined in (20), and

(31) Rn,1
ez = Ex

tn [Ytn+1∆W 1
n+1]− E1,x

tn [Ytn+1∆W 1
n+1].

Let en
f̃
= f(tn, x, Ytn , Z̃tn)− f(tn, x, Y

n, Zn). Subtracting (24), (21) and (22) from

(27), (29) and (30), respectively, we obtain the error equations

eny = Ex
tn [e

n+1
y ] + ∆tne

n
f̃
+Rn

y +Rn
y1
,(32)

∆tne
n,1
z = E1,x

tn [en+1
y ∆W 1

n+1] +Rn,1
ez +Rn,1

z ,(33)

∆tne
n,2
z = Ex

tn [e
n+1
y ∆W 2

n+1] +Rn,2
z .(34)
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3.2. General error estimates. In this subsection, based on the error equations
(32), (33) and (34), we will theoretically derive the error estimates of Scheme 3
according to the error terms Rn

y , R
n
y1
, Rn,1

ez , Rn,1
z , and Rn,2

z . The general estimate
results are given in the following theorem, which will be used in deriving our error
estimates of Scheme 3.

Theorem 3.1. Let (Yt, Zt), t ∈ [0, T ] be the exact solution of the BSDE (1),
and (Y n, Zn), n = 0, 1, · · · , N , be the approximate solution obtained by Scheme 3.
Assume that the generator f(t,X, Y, Z) of the BSDE (1) is Lipschitz continuous
with respect to X, Y and Z, and the Lipschitz constant is L. Let c0 be the time
partition regularity parameter defined in (7). Then for sufficiently small time step
∆t, we have

(35)

E[|eny |2] + ∆t
N−1∑
i=n

(1 + C∆t

1− C∆t

)i−n

(E[|ei,1z |2] + E[|ei,2z |2])

≤C ′E[|eNy |2] +
N−1∑
i=n

(1 + C∆t

1− C∆t

)i−n C

∆t(1− C∆t)

(
E[|Ri

y|2]

+ E[|Ri
y1
|2] + 2E[|Ri,1

ez |2] + 2E[|Ri,1
z |2] + E[|Ri,2

z |2]
)

for n = N − 1, · · · , 1, 0, where C ′ and C are two positive constants depending on
c0, T and L, and Ri

y, Rn
y1
, Ri,1

ez and Ri
z = (Ri,1

z , Ri,2
z ) are defined in (18), (28),

(31) and (20), respectively.

Proof. There are mainly three parts in the proof of the theorem: (i) the estimate
of eny ; (ii) the estimates of enz ; (iii) the estimate (35) in the Theorem 3.1.

(i) the estimate of eny . For 0 ≤ n ≤ N − 1, we easily get from (32) that

(36) |eny | ≤ |Ex
tn [e

n+1
y ]|+∆tn|enf̃ |+ |Rn

y |+ |Rn
y1
|.

By the inequalities

(a+ b)2 ≤ (1 + γ∆t)a2 +
(
1 +

1

γ∆t

)
b2, (

m∑
n=1

an)
2 ≤ m

m∑
n=1

a2n

with any positive real number γ and positive integer m, we deduce

(37)

|eny |2 ≤(1 + γ∆t)|Ex
tn [e

n+1
y ]|2 +

(
1 +

1

γ∆t

){
∆tn|enf̃ |+ |Rn

y |+ |Rn
y1
|
}2

≤(1 + γ∆t)|Ex
tn [e

n+1
y ]|2 + 3

(
1 +

1

γ∆t

)
(∆tn)

2|en
f̃
|2

+ 3
(
1 +

1

γ∆t

)
|Rn

y |2 + 3
(
1 +

1

γ∆t

)
|Rn

y1
|2.

Based on the properties of the generator f , we have

(38)

|en
f̃
|2 ≤|L(|Ytn − Y n|+ ∥Z̃tn − Zn∥)|2

≤2L2(|eny |2 + |Z̃1
tn − Zn,1|2 + |Z̃2

tn − Zn,2|2)

≤2L2
(
|eny |2 + 2|en,1z |2 + 2|en,2z |2 + 4|Rn,1

ez |2

(∆tn)2
+

4|Rn,1
z |2

(∆tn)2
+

2|Rn,2
z |2

(∆tn)2

)
,
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where ∥·∥ represents the Euclidean norm. Inserting (38) into (37), we obtian

(39)

|eny |2 ≤(1 + γ∆t)|Ex
tn [e

n+1
y ]|2 + 6

(
1 +

1

γ∆t

)
(∆t)2L2(|eny |2 + 2|en,1z |2

+ 2|en,2z |2) + 6
(
1 +

1

γ∆t

)
L2

(
4|Rn,1

ez |2 + 4|Rn,1
z |2 + 2|Rn,2

z |2
)

+ 3
(
1 +

1

γ∆t

)
|Rn

y |2 + 3
(
1 +

1

γ∆t

)
|Rn

y1
|2.

(ii) the estimates of enz = (en,1z , en,2z ). We first estimate en,1z . By (33), we
easily obtain

(40) ∆tne
n,1
z = Ex

tn [e
n+1
y ∆W 1

n+1] + E2,x
tn [Rn,1

ez ] + E2,x
tn [Rn,1

z ].

Then we have

(41) |en,1z | ≤ 1

∆tn
|Ex

tn [e
n+1
y ∆W 1

n+1]|+
1

∆tn
E2,x
tn [|Rn,1

ez |] + 1

∆tn
E2,x
tn [|Rn,1

z |].

By using the inequality (a+b)2 ≤ (1+ε)a2+
(
1+ 1

ε

)
b2 for any positive real number

ε, we deduce

(42)

|en,1z |2 ≤(1 + ε)
1

(∆tn)2
|Ex

tn [e
n+1
y ∆W 1

n+1]|2

+ 2
(
1 +

1

ε

){E2,x
tn [|Rn,1

ez |2]
(∆tn)2

+
E2,x
tn [|Rn,1

z |2]
(∆tn)2

}
.

Furthermore, applying

(43)
|Ex

tn [e
n+1
y ∆W 1

n+1]|2 = |Ex
tn [(e

n+1
y − Ex

tn [e
n+1
y ])∆W 1

n+1]|2

≤ ∆tn(Ex
tn [|e

n+1
y |2]− |Ex

tn [e
n+1
y ]|2)

into (42), we obtain

(44)

|en,1z |2 ≤(1 + ε)
1

∆tn
(Ex

tn [|e
n+1
y |2]− |Ex

tn [e
n+1
y ]|2)

+ 2
(
1 +

1

ε

){E2,x
tn [|Rn,1

ez |2]
(∆tn)2

+
E2,x
tn [|Rn,1

z |2]
(∆tn)2

}
.

Dividing both sides of the inequality (44) by 1+ε
∆t , we deduce

(45)

∆t

1 + ε
|en,1z |2 ≤c0(Ex

tn [|e
n+1
y |2]− |Ex

tn [e
n+1
y ]|2)

+
2∆t

ε

{E2,x
tn [|Rn,1

ez |2]
(∆tn)2

+
E2,x
tn [|Rn,1

z |2]
(∆tn)2

}
.

Similarly, the estimate of en,2z is

(46)
∆t

1 + ε
|en,2z |2 ≤ c0(Ex

tn [|e
n,1
y |2]− |Ex

tn [e
n,1
y ]|2) + ∆t

ε

|Rn,2
z |2

(∆tn)2
.
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(iii) the estimate of (35). Multiplying (39) by c0, (45) and (46) by 1
2 , and

adding the derived inequalities to obtain
(47)

c0|eny |2 +
∆t

2(1 + ε)
(|en,1z |2 + |en,2z |2)

≤c0(1 + γ∆t)Ex
tn [|e

n+1
y |2] + 6c0

(
1 +

1

γ∆t

)
(∆t)2L2(|eny |2 + 2|en,1z |2 + 2|en,2z |2)

+ 3c0

(
1 +

1

γ∆t

)
|Rn

y |2 + 3c0

(
1 +

1

γ∆t

)
|Rn

y1
|2

+ 6c0

(
1 +

1

γ∆t

)
L2

(
4|Rn,1

ez |2 + 4|Rn,1
z |2 + 2|Rn,2

z |2
)

+
∆t

ε

{E2,x
tn [|Rn,1

ez |2]
(∆tn)2

+
E2,x
tn [|Rn,1

z |2]
(∆tn)2

}
+

∆t

2ε

|Rn,2
z |2

(∆tn)2
,

which can be further simplified to

(48)

c0(1− C1∆t)E[|eny |2] + C3∆t(E[|en,1z |2] + E[|en,2z |2])

≤c0(1 + C2∆t)E[|en+1
y |2] + C4

∆t

(
E[|Rn

y |2] + E[|Rn
y1
|2]

)
+

C5

∆t

(
2E[|Rn,1

ez |2] + 2E[|Rn,1
z |2] + E[|Rn,2

z |2]
)
,

where

C1 =
6L2(1 + γ∆t)

γ
, C2 = γ, C3 =

1

2(1 + ε)
− 8c0L

2(1 + γ∆t)

γ
,

C4 =
3c0(1 + γ∆t)

γ
, C5 =

8c0L
2(1 + γ∆t)

γ
+

(c0)
2

2ε
.

Now we choose ε = 1, γ large enough, and ∆t0 sufficiently small such that for
0 ≤ ∆t ≤ ∆t0, then C1 ≤ C, C2 ≤ C, C4 ≤ C, C5 ≤ C, and 1 − C∆t ≥ 0, where
C is a positive constant depending on c0 and L. Then for 0 ≤ ∆t ≤ ∆t0, we have

(49)

c0E[|eny |2] + C3∆t(E[|en,1z |2] + E[|en,2z |2])

≤c0
1 + C∆t

1− C∆t
E[|en+1

y |2] + C

∆t(1− C∆t)

(
E[|Rn

y |2] + E[|Rn
y1
|2]

+ 2E[|Rn,1
ez |2] + 2E[|Rn,1

z |2] + E[|Rn,2
z |2]

)
,

which is written in the equivalent form

(50)

c0E[|eny |2] + C3∆t
N−1∑
i=n

(1 + C∆t

1− C∆t

)i−n

(E[|ei,1z |2] + E[|ei,2z |2])

≤c0

(1 + C∆t

1− C∆t

)N−n

E[|eNy |2] +
N−1∑
i=n

(1 + C∆t

1− C∆t

)i−n C

∆t(1− C∆t)

(
E[|Ri

y|2]

+ E[|Ri
y1
|2 + 2E[|Ri,1

ez |2] + 2E[|Ri,1
z |2] + E[|Ri,2

z |2]
)
,

which leads to the inequality (35). The proof is completed. �

3.3. Error estimates. Under certain conditions, we will first estimate the error
terms Rn

y , R
n
y1
, Rn,1

ez and Rn
z = (Rn,1

z , Rn,2
z ), and then present the error estimates

of Scheme 3. For simplicity, we make the following assumption.
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Assumption 3.1. The functions f and φ of the BSDE (1) are bounded and smooth
enough, and their derivatives are also bounded.

Before giving the error estimates of the termsRn
y , R

n
y1
, Rn,1

ez andRn
z = (Rn,1

z , Rn,2
z ),

we introduce the following lemma.

Lemma 3.1. Let Ws be a d-dimensional Brownian motion. Assume that the func-
tion g(s, x) is bounded and smooth enough with bounded derivatives. Then we have

(51) |Ex
t [g(s,Xs)∆W i

t,s]− Ei,x
t [g(s,Xs)∆W i

t,s]| ≤ C(s− t)2, s ≥ t

for i = 1, · · · , d, where C > 0 is a generic constant depending on the bounds of
derivatives of g.

Proof. Without loss of generality, we set d = 2. We consider i = 1, and the case of
i = 2 is similar. By using the Taylor expansion formula, we deduce

(52)

g(s, x1 +∆W 1
t,s, x

2 +∆W 2
t,s)− g(s, x1 +∆W 1

t,s, x
2)

=g′x2(s, x1 +∆W 1
t,s, x

2)∆W 2
t,s +

1

2
g′′x2x2(s, x1 +∆W 1

t,s, x
2)(∆W 2

t,s)
2

+
1

6
g′′′x2x2x2(s, x1 +∆W 1

t,s, x
2)(∆W 2

t,s)
3

+
1

24
g
(4)
x2x2x2x2(s, x

1 +∆W 1
t,s, ξ

2)(∆W 2
t,s)

4,

where ξ2 ∈ (t, s). We denote (52) as h(s, x1+∆W 1
t,s), then by the Taylor expansion

formula, we get

(53)

h(s, x1 +∆W 1
t,s)∆W 1

t,s

=h(s, x1)∆W 1
t,s + h′

x1(s, x1)(∆W 1
t,s)

2 +
1

2
h′′
x1x1(s, x1)(∆W 1

t,s)
3

+
1

2
h′′′
x1x1x1(s, ξ1)(∆W 1

t,s)
4,

where ξ1 ∈ (t, s). Noted that ∆W 1
t,s and ∆W 2

t,s are independent. Inserting (52)
into (53), we deduce

(54)

|E[g(s, x1 +∆W 1
t,s, x

2 +∆W 2
t,s)∆W 1

t,s]− E[g(s, x1 +∆W 1
t,s, x

2)∆W 1
t,s]|

=|E[h(s, x1 +∆W 1
t,s)∆W 1

t,s]|
≤C(s− t)2,

which leads to the inequality (51). The proof is completed. �

To get the error estimates of Scheme 3, we need the estimates of Rn
y , R

n
y1
, Rn,1

ez

and Rn
z = (Rn,1

z , Rn,2
z ) in (35), which are stated in the following lemma.

Lemma 3.2. Let Rn
y , R

n
y1
, Rn,1

ez and Rn
z = (Rn,1

z , Rn,2
z ) be the error terms defined

in (18), (28), (31) and (20), respectively. Then under the Assumption 3.1, for
sufficiently small time step ∆tn, we have

(55)
|Rn

y | ≤ C(∆tn)
2, |Rn

y1
| ≤ C(∆tn)

2, |Rn,1
ez | ≤ C(∆tn)

2,

|Rn,1
z | ≤ C(∆tn)

2, |Rn,2
z | ≤ C(∆tn)

2,

where C is a positive constant only depending on T , the Lipschitz constant L of f
and the upper bounds of the derivatives of the functions f and φ.
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Proof. Under Assumption 3.1, it is well known that the solution u(s,Xs) of (3) and
its derivatives are bounded [18], and by the nonlinear Feynman-Kac formula (2),
the solution of (1) can be represented as Ys = u(s,Xs) and Zs = ∇xu(s,Xs) for
s ∈ [0, T ]. Then by Lemma 3.1, we easily obtain the estimate

(56) |Rn,1
ez | ≤ C(∆tn)

2.

Under the condition of Assumption 3.1, based on the standard Itô-Taylor expansion
formula [17] and the properties of the Brownian motion, for sufficiently small time
step ∆tn, we have

(57) |Rn
y | ≤ C(∆tn)

2, |Rn,1
z | ≤ C(∆tn)

2, |Rn,2
z | ≤ C(∆tn)

2.

From (28), we get

(58)

|Rn
y1
| ≤∆tn|f(tn, Xtn , Ytn , Ztn)− f(tn, Xtn , Ytn , Z̃tn)|

≤∆tnL∥Ztn − Z̃tn∥

≤∆tnL(|Z1
tn − Z̃1

tn |+ |Z2
tn − Z̃2

tn |)
≤L(|Rn,1

ez |+ |Rn,1
z |+ |Rn,2

z |),

where ∥·∥ represents the Euclidean norm. Inserting (56) and (57) into (58), we have

(59) |Rn
y1
| ≤ C(∆tn)

2.

The proof is completed. �

Now combining Theorem 3.1 and Lemma 3.2, we obtain the following theorem.

Theorem 3.2. Under the condition of Assumption 3.1, let (Yt, Zt), t ∈ [0, T ] be
the solution of the BSDE (1), and (Y n, Zn), n = 0, 1, · · · , N , be the approximate
solution obtained by Scheme 3. Suppose that the terminal value satisfies E[|YtN −
Y N |2] = O((∆t)2), then we have the following error estimate

(60) E[|Ytn − Y n|2] + ∆t
N−1∑
i=n

E[∥Ztn − Zn∥2] ≤ C(∆t)2,

where ∥·∥ represents the Euclidean norm, and C is a constant depending on c0, T ,
the Lipschitz constant L of f and the upper bounds of f and φ.

4. Numerical tests

In this section, we will present several numerical tests to demonstrate the accu-
racy and effectiveness of our schemes for solving BSDEs.

In order to use the splitting schemes, space partition Rd
h and the approximation

of Ei,x
tn [·] (i = 1, · · · , d) at discrete space grid points xj ∈ Rd

h are needed. For the

space Rd, we introduce the following spatial partition Rd
h:

(61) Rd
h =

{
xj = (x1

j1 , x
2
j2 , · · · , x

d
jd
)⊤|xj ∈ Rd, jm ∈ Z,m = 1 · · · , d

}
,

where Z is the set of all integer numbers. We use ∆xm to denote the uniform
space step in the mth direction, that is, xm

k = k∆xm. It should be noted that the

conditional mathematical expectations Ei,x
tn [·] are continuous and deterministic. In

practice, we evaluate Ei,x
tn [·] by using one-dimensional Gauss-Hermite quadrature

rule in the ith direction of Xtn = x, and the values of the integrands of Ei,x
tn [·] at

non-grid points are approximated by local cubic interpolations. Since our goal is
to test the accuracy of the splitting schemes with respect to the time step size ∆t,
we set the number of Gauss-Hermite quadrature points to a relatively big value
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to ensure that the error of the Gauss-Hermite quadrature rule can be neglected.
For simplicity, we use a uniform partition for the time interval [0, T ]. The time
partition number is N and the time step size ∆t is given by ∆t = T

N .

Let (Y0, Z0) denotes the exact solution of (1) at t = 0, and (Y 0, Z0) denotes
the approximate solution of Schemes 1, 2 and 3 at n = 0. The splitting of the

generator f is set as f i = αif , where
∑d

i=1 α
i = 1 with αi ∈ [0, 1] (i = 1, · · · , d).

We denote the convergence rates and running time by CR and RT, respectively.
For all the tests, we set the terminal time T = 1.0. All numerical tests are carried
out in Python 3.11.7 on a laptop with an Intel Core i9-18500HX 16-Core Processor
(2.06GHz) and 32.0 GB of DDR5 RAM (7500MT).

Example 1. We demonstrate the capability of our splitting schemes for the fol-
lowing two-dimensional BSDE

(62) Yt = YT +

∫ T

t

(
(1 +

5

2
σ2)e−2t Yt

Y 2
t + (Ztσ̃)2

)
ds−

∫ T

t

ZsdWs

with Xt = X0 + σWt and YT = e−T sin(X1
T + 2X2

T ). Here Zt = (Z1
t , Z

2
t ), σ̃ =

( 3σ ,−
1
σ )

⊤, and Wt is a standard two-dimensional Brownian motion. The analytical
solution is given by

(63)

{
Yt = e−t sin(X1

t + 2X2
t ),

Zt = (σe−t cos(X1
t + 2X2

t ), 2σe
−t cos(X1

t + 2X2
t )).

In this example, we set σ = 0.2. We use Schemes 1, 2 and 3 to solve the above
BSDE. The errors |Y0−Y 0|, |Z1

0 −Z0
1 | and |Z2

0 −Z0
2 |, CR and RT for different time

partitions with different parameters of αi (i = 1, 2) are listed in Tables 1-3.
By the numerical results in Tables 1-3, we have the following conclusions.

(1) Our splitting schemes are accurate and effective for solving the BSDE (62),
and the expected first-order convergence in time is observed.

(2) Scheme 3 is the most efficient. The different splittings of the generator f
may affect numerical results, but all are first-order accurate. The numerical
errors of Schemes 2 and 3 with the splitting f1 = 0, f2 = f are identical.
Schemes 1 and 2 produce the same errors when using the splitting f1 =
f, f2 = 0. These results are consistent with the conclusions in Remark 2.

Table 1. Numerical results of Schemes 1, 2 and 3 for Example 1
with α1 = 0, α2 = 1.

N = 15 N = 18 N = 21 N = 24 N = 27 CR

Scheme 1

|Y0 − Y 0| 3.412E-02 2.838E-02 2.431E-02 2.128E-02 1.891E-02 1.002

|Z1
0 − Z0

1 | 1.163E-02 9.665E-03 8.280E-03 7.209E-03 6.415E-03 1.014

|Z2
0 − Z0

2 | 2.263E-02 1.892E-02 1.627E-02 1.436E-02 1.279E-02 0.969
RT 1.337s 2.390s 4.037s 6.634s 10.182s

Scheme 2

|Y0 − Y 0| 3.348E-02 2.778E-02 2.365E-02 2.070E-02 1.838E-02 1.021

Scheme 3

|Z1
0 − Z0

1 | 1.101E-02 9.351E-03 7.693E-03 6.817E-03 6.049E-03 1.035

|Z2
0 − Z0

2 | 2.068E-02 1.812E-02 1.543E-02 1.363E-02 1.213E-02 0.919
RT(Scheme 2) 0.994s 1.779s 3.039s 5.143s 8.041s
RT(Scheme 3) 0.637s 1.221s 2.088s 3.420s 5.181s
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Table 2. Numerical results of Scheme 1 for Example 1 with dif-
ferent αi (i = 1, 2).

N = 15 N = 18 N = 21 N = 24 N = 27 CR

α1 = 1
|Y0 − Y 0| 4.748E-02 3.924E-02 3.344E-02 2.913E-02 2.581E-02 1.036

α2 = 0
|Z1

0 − Z0
1 | 1.306E-02 1.084E-02 9.281E-03 8.112E-03 7.206E-03 1.011

|Z2
0 − Z0

2 | 2.558E-02 2.140E-02 1.840E-02 1.616E-02 1.440E-02 0.977
RT 1.350s 2.588s 4.318s 6.830s 10.207s

α1 = 0.5
|Y0 − Y 0| 6.780E-03 5.656E-03 4.821E-03 4.202E-03 3.726E-03 1.021

α2 = 0.5
|Z1

0 − Z0
1 | 7.015E-03 5.837E-03 5.005E-03 4.364E-03 3.884E-03 1.006

|Z2
0 − Z0

2 | 1.407E-02 1.175E-02 1.010E-02 8.907E-03 7.933E-03 0.973
RT 1.313s 2.411s 4.319s 6.833s 10.264s

α1 = 0.25
|Y0 − Y 0| 1.249E-02 1.031E-02 8.805E-03 7.692E-03 6.821E-03 1.029

α2 = 0.75
|Z1

0 − Z0
1 | 7.899E-03 6.584E-03 5.653E-03 4.928E-03 4.391E-03 1.000

|Z2
0 − Z0

2 | 1.568E-02 1.312E-02 1.130E-02 9.981E-03 8.895E-03 0.962
RT 1.179s 2.202s 4.410s 6.754s 10.350s

α1 = 0.75
|Y0 − Y 0| 2.764E-02 2.303E-02 1.974E-02 1.726E-02 1.534E-02 1.001

α2 = 0.25
|Z1

0 − Z0
1 | 8.721E-03 7.247E-03 6.205E-03 5.418E-03 4.817E-03 1.010

|Z2
0 − Z0

2 | 1.735E-02 1.450E-02 1.246E-02 1.095E-02 9.762E-03 0.978
RT 1.147s 2.138s 4.325s 6.677s 10.195s

Table 3. Numerical results of Scheme 2 for Example 1 with dif-
ferent αi (i = 1, 2).

N = 15 N = 18 N = 21 N = 24 N = 27 CR

α1 = 1
|Y0 − Y 0| 4.748E-02 3.924E-02 3.344E-02 2.913E-02 2.581E-02 1.036

α2 = 0
|Z1

0 − Z0
1 | 1.306E-02 1.084E-02 9.281E-03 8.112E-03 7.206E-03 1.011

|Z2
0 − Z0

2 | 2.558E-02 2.140E-02 1.840E-02 1.616E-02 1.440E-02 0.977
RT 1.030s 2.038s 3.387s 5.508s 8.107s

α1 = 0.5
|Y0 − Y 0| 7.960E-03 6.729E-03 5.814E-03 5.104E-03 4.558E-03 0.950

α2 = 0.5
|Z1

0 − Z0
1 | 1.490E-02 1.233E-02 1.043E-03 9.038E-03 7.980E-03 1.066

|Z2
0 − Z0

2 | 2.892E-02 2.405E-02 2.048E-02 1.787E-02 1.583E-02 1.026
RT 1.011s 1.938s 3.112s 5.112s 7.991s

α1 = 0.25
|Y0 − Y 0| 2.335E-02 1.942E-02 1.662E-02 1.451E-02 1.288E-03 1.011

α2 = 0.75
|Z1

0 − Z0
1 | 1.362E-02 1.111E-02 9.495E-03 8.249E-03 7.301E-03 1.057

|Z2
0 − Z0

2 | 2.662E-02 2.181E-02 1.870E-02 1.636E-02 1.453E-02 1.025
RT 1.043s 2.062s 3.179s 5.006s 7.560s

α1 = 0.75
|Y0 − Y 0| 1.659E-02 1.379E-02 1.179E-02 1.029E-02 9.130E-03 1.016

α2 = 0.25
|Z1

0 − Z0
1 | 1.502E-02 1.228E-02 1.040E-02 9.026E-03 7.973E-03 1.077

|Z2
0 − Z0

2 | 2.908E-02 2.403E-02 2.048E-02 1.787E-02 1.584E-02 1.032
RT 1.059s 1.898s 3.085s 4.965s 7.607s

Example 2. We use our schemes for solving the following two-dimensional BSDE

(64) Yt = φ(XT ) +

∫ T

t

YsZsσ̃ds−
∫ T

t

ZsdWs,

where Xt = X0 + σWt with Xt = (X1
t , X

2
t ), Zt = (Z1

t , Z
2
t ), σ̃ = (− 1

σ ,−
1
σ )

⊤, Wt

is a standard two-dimensional Brownian motion, and the function φ : R2 → R is
given. According to the nonlinear Feynman-Kac formula, the solutuon (Yt, Zt) of
(64) can be represented as

(65) Yt = u(T − t,Xt), Zt = σ∇xu(T − t,Xt), t ∈ [0, T ],

where u : [0, T ]× R2 → R is the classical solution of the following two-dimensional
Burgers equation

(66)
∂u

∂t
+ u∇u− σ2

2
∆u = 0 in (0, T ]× R2

with initial condition u(0,x) = φ(x) for x ∈ R2.
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In this example, the function φ and σ =
√
0.3 are chosen such that the exact

solution u is given by u = 1

1+exp(
X1

t +X2
t −t

σ2 )
. The errors |Y0 − Y 0|, |Z1

0 − Z0
1 | and

|Z2
0 − Z0

2 |, CR and RT by Schemes 1, 2 and 3 for different time partitions with
different parameters of αi (i = 1, 2) are listed in Tables 4-6. The same conclusions
as shown in Example 1 are observed for solving the BSDE (64).

Table 4. Numerical results of Schemes 1, 2 and 3 for Example 2
with α1 = 0, α2 = 1.

N = 15 N = 18 N = 21 N = 24 N = 27 CR

Scheme 1

|Y0 − Y 0| 7.166E-02 5.767E-02 4.835E-02 4.165E-02 3.660E-02 1.142

|Z1
0 − Z0

1 | 1.224E-02 1.071E-02 9.134E-03 7.939E-03 6.924E-03 0.977

|Z2
0 − Z0

2 | 1.253E-02 1.100E-02 9.568E-03 8.362E-03 7.445E-03 0.894
RT 4.494s 9.501s 17.961s 31.191s 49.978s

Scheme 2

|Y0 − Y 0| 6.145E-02 5.027E-02 4.256E-02 3.691E-02 3.259E-02 1.079

Scheme 3

|Z1
0 − Z0

1 | 2.124E-02 1.620E-02 1.305E-02 1.091E-02 9.369E-03 1.392

|Z2
0 − Z0

2 | 2.128E-02 1.628E-02 1.318E-02 1.106E-02 9.579E-03 1.359
RT(Scheme 2) 3.412s 7.140s 14.139s 23.893s 38.941s
RT(Scheme 3) 2.322s 4.821s 9.398s 16.430s 26.228s

Table 5. Numerical results of Scheme 1 for Example 2 with dif-
ferent αi (i = 1, 2).

N = 15 N = 18 N = 21 N = 24 N = 27 CR

α1 = 1
|Y0 − Y 0| 5.498E-02 4.306E-02 3.532E-02 2.992E-02 2.594E-02 1.277

α2 = 0
|Z1

0 − Z0
1 | 7.995E-02 6.718E-02 5.756E-02 5.021E-02 4.445E-02 1.000

|Z2
0 − Z0

2 | 7.981E-02 6.699E-02 5.723E-02 4.983E-02 4.393E-02 1.016
RT 4.367s 8.909s 17.965s 32.009s 50.096s

α1 = 0.5
|Y0 − Y 0| 8.295E-03 6.664E-03 5.573E-03 4.784E-03 4.194E-03 1.159

α2 = 0.5
|Z1

0 − Z0
1 | 3.541E-02 2.809E-02 2.331E-02 1.990E-02 1.738E-02 1.210

|Z2
0 − Z0

2 | 3.515E-02 2.782E-02 2.290E-02 1.949E-02 1.687E-02 1.247
RT 4.488s 9.566s 18.722s 32.302s 52.083s

α1 = 0.25
|Y0 − Y 0| 3.384E-02 2.715E-02 2.269E-02 1.949E-02 1.708E-02 1.161

α2 = 0.75
|Z1

0 − Z0
1 | 1.903E-02 1.460E-02 1.192E-02 1.005E-02 8.739E-03 1.323

|Z2
0 − Z0

2 | 1.876E-02 1.432E-02 1.150E-02 9.641E-03 8.226E-03 1.400
RT 4.754s 9.155s 18.662s 31.806s 51.899s

α1 = 0.75
|Y0 − Y 0| 3.785E-03 2.793E-03 2.203E-03 1.826E-03 1.554E-03 1.512

α2 = 0.25
|Z1

0 − Z0
1 | 4.427E-02 3.466E-02 2.844E-02 2.409E-02 2.089E-02 1.277

|Z2
0 − Z0

2 | 4.401E-02 3.438E-02 2.803E-02 2.368E-02 2.038E-02 1.308
RT 4.805s 9.632s 18.528s 32.356s 52.055s

Table 6. Numerical results of Scheme 2 for Example 2 with dif-
ferent αi (i = 1, 2).

N = 15 N = 18 N = 21 N = 24 N = 27 CR

α1 = 1
|Y0 − Y 0| 5.498E-02 4.306E-02 3.532E-02 2.992E-02 2.594E-02 1.277

α2 = 0
|Z1

0 − Z0
1 | 7.995E-02 6.718E-02 5.756E-02 5.021E-02 4.445E-02 1.000

|Z2
0 − Z0

2 | 7.981E-02 6.699E-02 5.723E-02 4.983E-02 4.393E-02 1.016
RT 3.413s 7.117s 14.155s 24.083s 39.303s

α1 = 0.5
|Y0 − Y 0| 1.674E-02 1.339E-02 1.116E-02 9.571E-03 8.377E-03 1.177

α2 = 0.5
|Z1

0 − Z0
1 | 3.032E-02 2.346E-02 1.914E-02 1.617E-02 1.400E-02 1.313

|Z2
0 − Z0

2 | 3.016E-02 2.328E-02 1.885E-02 1.588E-02 1.363E-02 1.348
RT 3.535s 7.319s 14.303s 24.514s 39.739s

α1 = 0.25
|Y0 − Y 0| 3.709E-02 2.979E-02 2.492E-02 2.143E-02 1.881E-02 1.154

α2 = 0.75
|Z1

0 − Z0
1 | 1.021E-02 7.873E-03 6.451E-03 5.484E-03 4.777E-03 1.290

|Z2
0 − Z0

2 | 1.010E-02 7.736E-03 6.236E-03 5.261E-03 4.484E-03 1.376
RT 3.571s 7.822s 14.631s 25.032s 39.400s

α1 = 0.75
|Y0 − Y 0| 3.701E-03 3.184E-03 2.754E-03 2.403E-03 2.129E-03 0.944

α2 = 0.25
|Z1

0 − Z0
1 | 4.229E-02 3.233E-02 2.610E-02 2.187E-02 1.882E-02 1.377

|Z2
0 − Z0

2 | 4.207E-02 3.210E-02 2.575E-02 2.152E-02 1.838E-02 1.407
RT 3.342s 7.816s 14.758s 24.607s 39.633s
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Moreover, to clearly see the efficiency of Scheme 3, we list the errors |Y0 −
Y 0|, |Z1

0 − Z0
1 | and |Z2

0 − Z0
2 |, CR and RT by Schemes 3 and the Euler scheme

[35, 36, 37, 38] in Table 7 for the different time partition number N . The numerical
results in Table 7 show that Scheme 3 is more efficient than the Euler scheme.

Table 7. Numerical results of Schemes 3 and the Euler scheme
for Example 2.

N = 20 N = 24 N = 28 N = 32 N = 36 CR

Scheme 3

|Y0 − Y 0| 4.486E-02 3.691E-02 3.136E-02 2.726E-02 2.411E-02 1.055

|Z1
0 − Z0

1 | 1.395E-02 1.091E-02 8.947E-03 7.578E-03 6.571E-03 1.281

|Z2
0 − Z0

2 | 1.407E-02 1.106E-02 9.171E-03 7.859E-03 6.887E-03 1.213
RT 6.574s 13.726s 26.858s 45.930s 67.241s

Euler scheme

|Y0 − Y 0| 2.793E-02 2.259E-02 1.895E-02 1.632E-02 1.432E-02 1.136

|Z1
0 − Z0

1 | 4.287E-02 3.336E-02 2.717E-02 2.287E-02 1.972E-02 1.322

|Z2
0 − Z0

2 | 4.287E-02 3.336E-02 2.717E-02 2.287E-02 1.972E-02 1.322
RT 8.256s 18.013s 33.551s 57.885s 83.846s

In conclusion, all our numerical tests above show that the splitting Schemes 1, 2
and 3 are effective and first-order accurate for solving BSDEs, which are consistent
with our theoretical results.

5. Conclusions

This paper focuses on splitting methods for solving BSDEs. By splitting the
BSDE (1) into d BSDEs on each time subinterval [tn, tn+1] and approximating
these split BSDEs, we proposed splitting schemes for solving the BSDE (1). The
key feature of the splitting schemes is that only one-dimensional approximations are
needed to calculate the conditional expectations, which may reduce computational
cost. We rigorously analyzed the splitting schemes, and derived the first-order
convergence rate for the schemes, which are validated by our numerical tests.
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