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AN UNCONDITIONALLY ENERGY-STABLE SAV-DG

NUMERICAL SCHEME FOR TUMOR GROWTH MODEL

PENGHAO GUO, BO WANG∗, AND GUANG-AN ZOU

Abstract. In this paper, we propose a linear, fully decoupled and unconditionally energy-stable

discontinuous Galerkin (DG) method for solving the tumor growth model, which is derived from
the variation of the free energy. The fully discrete scheme is constructed by the scalar auxiliary

variable (SAV) for handling the nonlinear term and backward Euler method for the time dis-

cretization. We rigorously prove the unconditional energy stability and optimal error estimates
of the scheme. Finally, several numerical experiments are performed to verify the energy stability

and validity of the proposed scheme.
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1. Introduction

According to the International Agency for Research on Cancer (IARC), the ma-
lignant tumor has become one of the major diseases affecting human health in the
world [1–4]. Due to the lack of understanding the mechanisms of tumor growth,
many difficulties have been encountered in the treatment process [5, 6]. The re-
search of tumor growth holds significance for clinical therapy, thereby generating
considerable interest from the fields of medicine, genetics and biology [7–11]. As we
know, an accurate mathematical model will help medical staff to better understand
the mechanism of tumor growth [12–15].

Recently, many researchers have focused on the mathematical models for investi-
gating the tumor growth [16–22]. In order to better predict the evolution of tumor,
the phase-field model has been widely used to study the tumor growth [23–28].
In [23] the authors used the Cahn-Hilliard equation to describe multispecies tumor
growth and tumor-induced angiogenesis. In [24], the Cahn-Hilliard type equation
with degenerate mobility had been used to simulate the evolution and growth of
solid tumors. In [27] the authors introduced the Allen-Cahn equation to describe
the progression of tumoral expansion within the growth region. In this study, we
derive the tumor growth model based on the law of energy conservation in the
polygonal domain Ω in Rd (d = 2, 3). The total free energy of the system is defined
as

(1) E(φ, σ) =

∫
Ω

[F (φ) +
λ

2
|∇φ|2 +

α

2
φ2 +

β

2
|∇σ|2 − (χφ− γ

2
σ + s)σ] dx,

with the following double-well type potential

F (φ) =
16

ε
φ2(1− φ)2,

where ε > 0 is the time scale. By using gradient flow method [29–31], the following
equation can be derived as

φt = −δE
δφ

= λ∆φ− f(φ) + χσ − αφ, in Ω× (0, T ),(2a)
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σt = −δE
δσ

= β∆σ + s+ χφ− γσ, in Ω× (0, T ),(2b)

subject with the following initial and the boundary conditions

φ(x, 0) = φ0, σ(x, 0) = σ0, in Ω,(3a)

∂nφ(x, t) = 0, ∂nσ(x, t) = 0, on ∂Ω,(3b)

where f(φ) = F ′(φ) and n is the unit outward normal vector on ∂Ω. The unknown
functions φ and σ are the phase function and the concentration of the nutrient,
respectively. The physical parameters λ represents the phase field diffusion coeffi-
cient, χ denotes the rate of tumor growth, α is the rate of normal cell apoptosis, β
represents the nutrient diffusion coefficient, s denotes the sustained supply of the
nutrient, and γ is the natural decay of the nutrient, which are positive.

To the best of the author’s knowledge, most of the researches related to tumor
growth model have focused on numerical simulations and numerical analysis [23–28,
32–38]. Lorenzo et al. [33] used isometric analysis to solve the Allen-Cahn equation
and simulated the tumor growth process. In what follows, Mohammadi et al. [34,35]
also simulated the same model numerically by applying the finite difference method
and the meshless method. For describing the growth dynamics of avascular tumors,
Medina et al. developed a hybrid discontinuous Galerkin numerical scheme for
the Cahn-Hilliard equation in [36]. However, the above-mentioned researches lack
the stability and optimal error estimates of the coupled model. Agosti et al. [24]
employed the finite element method to discrete the Cahn-Hilliard equation, and
proved the existence and uniqueness of the proposed semi-discrete scheme, without
the convergence analysis. In [37], Xu et al. used the BDF1 method to construct a
linear, fully decoupled and energy stable numerical scheme for the Cahn-Hilliard-
Navier-Stokes system, and derived the optimal error estimates. However, it should
be noted that the proposed scheme is semi-discrete in time. For the Cahn-Hilliard-
Brinkman-Ohta-Kawaski tumor growth model, the authors in [38] proposed a fully
discrete numerical scheme with the H1-norm optimal error estimates by using the
discontinuous Galerkin (DG) method. They verified the validity and stability of
the proposed scheme through several numerical experiments.

Note that constructing an efficient numerical scheme for the tumor growth model
is definitely not a simple task due to highly nonlinear term and strongly coupled
term. First of all, the main difficulty caused by the nonlinear term in model (2)
is how to propose an effective energy stable time discrete strategy for solving the
corresponding phase field equation. We use the scalar auxiliary variable (SAV)
method [39–44] to deal with the nonlinear term and transform the original equa-
tion into an equivalent linear system. Furthermore, the diffusion term in the phase
field equation produces a discontinuity at the phase transition boundary, and the
discontinuous Galerkin (DG) method [45–54] performs well for the complex bound-
ary problems. In this paper, we develop a fully discrete DG scheme which is linear,
full decoupled and unconditionally energy stable. In addition, the unique solvability
and the L2-norm optimal error estimates are given in details. Finally, the stability
and validity of the proposed scheme is verified by a series of numerical experiments.

The outline of this paper is organized as follows. Section 2 demonstrates that
the tumor growth model is unconditionally energy dissipative. In Section 3, we
develop a linear, decoupled fully discrete numerical scheme, and derive the unique
solvability and discrete energy law. The prove of optimal error estimates for the
fully discrete scheme is given in Section 4. In Section 5, we present some numerical
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experiments to illustrate the theoretical analysis. The last Section draws some
concluding remarks.

2. Preliminaries

For 1 ≤ p ≤ ∞, and k ≥ 0, we use W k,p(Ω) to denote the standard Sobolev
spaces with the order k will also be used, which equipped with the norm ‖ · ‖Wk,p .
Particularly, we denote the Hilbert space Hk(Ω) = W k,2(Ω) with norm ‖ · ‖Hk . We
denote the Lebesgue spaces Lp(Ω) = W 0,p(Ω) equipped with the norm ‖ · ‖Lp :=

(
∫
Ω
| · |pdx)

1
p

, and Lp([0, T ]) equipped with the norm ‖ · ‖Lp := (
∫ T

0
| · |pdt)

1
p

. Both
of them use the abbreviation Lp, we also denote by ‖ · ‖ and (·, ·) the norm and
inner product of L2(Ω).

The function space is defined as follows

M := H1
0 (Ω) := {ϕ ∈ H1(Ω) : ϕ = 0 on ∂Ω}.

Lemma 2.1. The system (2) poessess the following energy law

(4)
d

dt
E(φ, σ) + ‖φt‖2 + ‖σt‖2 = 0.

Proof. By taking the L2 inner product of (2a) with φt, and (2b) with σt performing
integration by parts, and adding these relations we easily derive the energy law
(4). �

We adopt a novel approach called SAV to address the nonlinear potential in (2).
Firstly, an energy function is introduced by

(5) E1(φ) =

∫
Ω

F (φ)dx +B,

in which B is a positive constant ensuring that E1(φ) > 0 is established. Then, the
original energy E(φ, σ) can be written as
(6)

Etot(φ, σ) =

∫
Ω

[
λ

2
|∇φ|2 +

α

2
φ2 +

β

2
|∇σ|2 − (χφ− γ

2
σ + s)σ]dx + E1(φ)−B

=

∫
Ω

[
λ

2
|∇φ|2 +

α

2
φ2 +

β

2
|∇σ|2 − (χφ− γ

2
σ + s)σ]dx + |R(t)|2 −B,

where the auxiliary variable is defined as

(7) R(t) =
√
E1(φ).

We can rewrite (2) into the following equivalent system

φt = λ∆φ− R(t)√
E1(φ)

f(φ) + χσ − αφ,(8a)

σt = β∆σ + s+ χφ− γσ,(8b)

Rt =

∫
Ω

f(φ)

2
√
E1(φ)

φt dx.(8c)

Here we have R(0) =
√
E1(φ0) for any x ∈ Ω as the initial condition of the equation

(8c).
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The weak form based on the SAV scheme is: Find (φ, σ,R) ∈M ×M ×R for all
(θ, ω) ∈M ×M , there holds

(φt, θ) = −λ(∇φ,∇θ)− R(t)√
E1(φ)

(f(φ), θ) + χ(σ, θ)− α(φ, θ),(9a)

(σt, ω) = −β(∇σ,∇ω) + (s, ω) + χ(φ, ω)− γ(σ, ω),(9b)

Rt =

∫
Ω

f(φ)

2
√
E1(φ)

φt dx.(9c)

Lemma 2.2. The same energy dissipation law is complied by the system (9)

(10)
d

dt
Etot(φ, σ) + ‖φt‖2 + ‖σt‖2 = 0.

Proof. By choosing θ = φt in (9a), and ω = σt in (9b), then multiplying (9c) by
2R(t), adding these results together yields

(φt, φt) + λ(∇φ,∇φt)− χ(σ, φt) + α(φ, φt) + β(∇σ,∇σt)
+ (σt, σt)− (s, σt)− χ(φ, σt) + γ(σ, σt) + 2RRt = 0,

then, one can obtian

λ

2

d

dt
‖∇φ‖2 +

β

2

d

dt
‖∇σ‖2 +

α

2

d

dt
‖φ‖2 +

γ

2

d

dt
‖σ‖2

− χ d
dt

(φ, σ)− d

dt
(s, σ) +

d

dt
|R|2 + ‖φt‖2 + ‖σt‖2 = 0.

After a simple treatment, the intended result (10) is achieved. �

3. The SAV-DG scheme

Let Eh denote the regular triangulation of Ω, with E ∈ Eh denoting a mesh
element of the subdivision. Let hE = diam(E) and h = max

E∈Eh
hE . In subdivision

Eh, we use Γh to denote the set of interior edges. We write |e| for its length for
∀e ∈ Γh shared by elements E1

e and E2
e . Let ne represent the unit normal vector

oriented from E1
e to E2

e , where E1
e and E2

e are the two elements adjacent to e. Let
ne is the unit outward normal vector to ∂Ω, when e is on the boundary ∂Ω. We
define average and jump operators for v as follows

∀e ∈ ∂E1
e ∩ ∂E2

e , [v] = v|E1
e
− v|E2

e
, {v} =

1

2
(v|E1

e
+ v|E2

e
),

∀e ∈ ∂E1
e ∩ ∂Ω, [v] = v|E1

e
, {v} = v|E1

e
.

We then denote the broken polynomial spaces for φ and σ as follows

Mh = {ϕh ∈ L2(Ω) : ∀E ∈ Eh, ϕh|E ∈ Pk(E)}.

For any fixed positive integer k ≥ 1, Pk(E) is the space consisting of polynomials
with degree at most k defined on E.

Based on the above discrete Sobolev spaces, we introduce the following energy
norms

∀θ ∈Mh, ‖θ‖DG := (
∑
E∈Eh

‖∇θ‖2L2(E) +
∑

e∈Γh∪∂Ω

σe
|e|
‖[θ]‖2L2(e))

1
2 ,

∀ω ∈Mh, ‖ω‖DG := (
∑
E∈Eh

‖∇ω‖2L2(E) +
∑

e∈Γh∪∂Ω

σe
|e|
‖[ω]‖2L2(e))

1
2 .
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For convenience, we denote the generic constant by C, which is independent of
the time step ∆t and the mesh size h. Whenever no confusion, we write a ≤ Cb as
a . b for brevity.

Now we will give the detailed definitions of bilinear forms. The forms A1 and
A2 are defined respectively by

∀φ, θ ∈Mh, A1(φ, θ) =
∑
E∈Eh

(∇φ,∇θ)E −
∑

e∈Γh∪∂Ω

({∇φ · ne}, [θ])e

−
∑

e∈Γh∪∂Ω

({∇θ · ne}, [φ])e +
∑

e∈Γh∪∂Ω

σe
|e|

([φ], [θ])e,

∀σ, ω ∈Mh, A2(σ, ω) =
∑
E∈Eh

(∇σ,∇ω)E −
∑

e∈Γh∪∂Ω

({∇σ · ne}, [ω])e

−
∑

e∈Γh∪∂Ω

({∇ω · ne}, [σ])e +
∑

e∈Γh∪∂Ω

σe
|e|

([σ], [ω])e,

where σe > 0 is the penalty parameter should be chosen large enough.
The following operators, which are essential in numerical schemes and error

analysis, will be introduced. We use the broken elliptic projection operators Qh :
H1(Ω) → Mh and Fh : H1(Ω) → Mh throughout this paper (see [48]), which are
defined as

∀φ ∈ H1(Ω), ∀θ ∈Mh, A1(φ−Qhφ, θ) = 0,(11)

∀σ ∈ H1(Ω), ∀ω ∈Mh, A2(σ −Fhσ, ω) = 0.(12)

And then, the following estimates will be obtained (see [48])

(13)

‖φ(t)−Qhφ(t)‖DG . hk‖φ(t)‖Hk+1(Ω),

‖φ(t)−Qhφ(t)‖L2(Ω) . h
k+1‖φ(t)‖Hk+1(Ω),

‖σ(t)−Fhσ(t)‖DG . hk‖σ(t)‖Hk+1(Ω),

‖σ(t)−Fhσ(t)‖L2(Ω) . h
k+1‖σ(t)‖Hk+1(Ω).

3.1. Numerical scheme. Let tn = n∆t be a uniform partition of the time interval
[0, T ], 0 ≤ n ≤ N , with ∆t = T/N . For simplicity, we give the following denotation

δtv
n+1
h =

vn+1
h − vnh

∆t
, δtv(tn+1) =

v(tn+1)− v(tn)

∆t
.

Next, we present the fully discrete DG scheme of system (9).
Step 1: Find (φn+1

h , Rn+1
h ) ∈ (Mh,R) such that for all θh ∈Mh, there holds

(
φn+1
h − φnh

∆t
, θh) =− λA1(φn+1

h , θh)−
Rn+1
h√
E1(φnh)

(f(φnh), θh)

+ χ(σnh , θh)− α(φn+1
h , θh),(14a)

Rn+1
h −Rnh =

1

2
√
E1(φnh)

(f(φnh), φn+1
h − φnh),(14b)

where E1(φnh) and Rn+1
h in (14a)-(14b) are given by{

E1(φnh) =
∫

Ω
F (φnh)dx +B,

Rn+1
h =

√
E1(φn+1

h ).



DISCONTINUOUS GALERKIN METHOD FOR THE TUMOR GROWTH MODEL 515

Step 2: Find σn+1
h ∈Mh such that for all ωh ∈Mh, there holds

(15) (
σn+1
h − σnh

∆t
, ωh) = −βA2(σn+1

h , ωh) + χ(φn+1
h , ωh) + (s, ωh)− γ(σn+1

h , ωh),

with the following initial conditions

(16) φ0
h = Qhφ0, σ0

h = Fhσ0, R0
h =

√
E1(φ0

h).

3.2. Well-posedness. We first introduce several important results frequently used
in this paper, and then show the well-posedness of the considered scheme.

Lemma 3.1. (see [48]) The bilinear forms A1 and A2 satisfy the following prop-
erties

(17)
∀φ, θ ∈Mh, A1(θ, θ) & ‖θ‖2DG, A1(φ, θ) . ‖φ‖DG‖θ‖DG,
∀σ, ω ∈Mh, A2(ω, ω) & ‖θ‖2DG, A2(σ, ω) . ‖σ‖DG‖ω‖DG.

From the coercivity of A1 and A2, one can easily get that A1(θ, θ) ≥ 0 and
A2(ω, ω) ≥ 0. In addition, broken DG (semi) norm ||| · ||| is defined by

(18) |||θ|||2 = A1(θ, θ), |||ω|||2 = A2(ω, ω).

Lemma 3.2. (Broken Sobolev Poincaré inequality, see [48]) There exist some con-
tants independent of h, such that

(19) ‖θ‖Lp(Ω) . ‖θ‖DG,
for all θ ∈Mh, 2 ≤ p <∞ when d = 2 and 2 ≤ p ≤ 6 when d = 3.

Lemma 3.3. (Discrete Gronwalls lemma, see [48]) Let {an}, {bn} and {cn} be
nonnegative real sequences, for constants ∆t > 0, B > 0 and C > 0

(20)

if am + ∆t

m∑
i=0

bi ≤ C∆t

m∑
i=0

ai + ∆t

m∑
i=0

ci +B, C∆t < 1,

then am + ∆t

m∑
i=0

bi ≤ eC(n+1)∆t(B + ∆t

m∑
i=0

ci), ∀m ≥ 0.

Lemma 3.4. (Trace inequality, see [48]) For a bounded domain E in R2, such that

(21)
∀θ ∈ Pk(E), e ∈ ∂E, ‖θ‖L2(e) . h

−1/2
E ‖θ‖L2(E),

∀θ ∈ Pk(E), e ∈ ∂E, ‖∇θ · n‖L2(e) . h
−1/2
E ‖∇θ‖L2(E),

where hE and e are diameter and side of E, respectively.

To focus on the well-posedness of the given scheme, we demonstrate the existence
and uniqueness of numerical solution using the Lax-Milgram theorem.

Theorem 3.5. (Unique solvability) The scheme (14)-(15) admits a unique solution
(φn+1
h , σn+1

h , Rn+1
h ) ∈ (Mh,Mh,R).

Proof. To begin with, we define a bilinear form F(·, ·) : (Mh,Mh,R)×(Mh,Mh,R)→
R by
(22)

F((φ, σ,R), (θ, ω,Q)) = (φ, θ) + λ∆tA1(φ, θ) + α∆t(φ, θ) + ∆t
R√

E1(φnh)
(f(φnh), θ)

+ 2∆tRQ+ (σ, ω)−∆t
Q√

E1(φnh)
(f(φnh), φ)

+ β∆tA2(σ, ω)− χ∆t(φ, ω) + γ∆t(σ, ω),
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and a linear form by L(·) : (Mh,Mh,R)→ R, namely

(23)

L(θ, ω,Q) = (φnh, θ) + χ∆t(σnh , θ) + 2∆tRnhQ+ (σnh , ω)

−∆t
Q√

E1(φnh)
(f(φnh), φnh) + ∆t(s, ω).

Then, (14)-(15) can be expressed as: find (φn+1
h , σn+1

h , Rn+1
h ) ∈ (Mh,Mh,R)

such that for any (θh, ωh, Qh) ∈ (Mh,Mh,R), there holds

(24) F((φn+1
h , ωn+1

h ,Rn+1
h ), (θh, ωh, Qh)) = L(θh, ωh, Qh).

Using the Cauchy-Schwarz inequality and Lemma 3.1, we can infer that F(·, ·)
is bounded, namely

(25)

F((φ, σ,R), (θ, ω,Q))

≤ ‖φ‖‖θ‖+ λ∆t‖φ‖DG‖θ‖DG + α∆t‖φ‖‖θ‖+ ∆t|R|‖θ‖+ 2∆t|R||Q|
+ ∆t|Q|‖φ‖+ ‖σ‖‖ω‖+ β∆t‖σ‖DG‖ω‖DG + χ∆t‖φ‖‖ω‖+ γ∆t‖σ‖‖ω‖
≤ C1(‖φ‖DG + |R|+ ‖σ‖DG)(‖θ‖DG + ‖ω‖DG + |Q|).

In what follows, by taking (θ, ω,Q) = (φ, σ,R), using Young’s inequality, we can
prove F(·, ·) is coercive.

(26)

F((φ, σ,R), (φ, σ,R))

= ‖φ‖2 + λ∆t‖|φ‖|2 + α∆t‖φ‖2 + 2∆tR2 + ‖σ‖2

+ β∆t‖|σ‖|2 − χ∆t(φ, σ) + γ∆t‖σ‖2

≥ ‖φ‖2 + λ∆t‖|φ‖|2 + α∆t‖φ‖2 + 2∆tR2 + β∆t‖|σ‖|2

+ ‖σ‖2 − χ

2
∆t‖σ‖2 − χ

2
∆t‖φ‖2 + γ∆t‖σ‖2

≥ C2(‖φ‖2 + |R|2 + ‖φ‖2DG + ‖σ‖2 + ‖σ‖2DG)

≥ C3(‖φ‖2DG + |R|2 + ‖σ‖2DG),

where constants C1, C2, C3 ≥ 0 depend on ∆t, λ, α, β, χ, γ and χ ≤ 2α or 2γ.
Therefore, we can derive that the scheme (14)-(15) admits a unique solution

using the Lax-Milgram theorem. �

3.3. Energy stability. The following is the unconditional energy stability of the
proposed scheme (14)-(15).

Theorem 3.6. The scheme (14)-(15) preserves an energy dissipation law uncon-
ditionally

Ehtot(φ
n+1
h , σn+1

h ) +
λ

2
‖|φn+1

h − φnh‖|2 +
α

2
‖φn+1

h − φnh‖2 +
β

2
‖|σn+1

h − σnh‖|2
(27)

+
γ

2
‖σn+1

h − σnh‖2 + |Rn+1
h −Rnh |2 +

‖φn+1
h − φnh‖2

∆t
+
‖σn+1

h − σnh‖2

∆t
= Ehtot(φ

n
h, σ

n
h).

By a simple trentment, we can obtain the following discrete energy dissipation law

Ehtot(φ
n+1
h , σn+1

h ) ≤ Ehtot(φnh, σnh),(28)

where the modified total energy Ehtot is defined as

Ehtot(φ
n
h, σ

n
h) =

λ

2
‖|φnh‖|2 +

α

2
‖φnh‖2 +

β

2
‖|σnh‖|2

+
γ

2
‖σnh‖2 + |Rnh |2 − (s, σnh)− χ(σnh , φ

n
h)−B.(29)
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Proof. First of all, we introduce the following identity

(30) a(a− b) =
1

2
(|a|2 − |b|2 + |a− b|2).

Setting θh = (φn+1
h − φnh) in (14a) and from (30) , we can have

(31)
‖φn+1

h − φnh‖2

∆t
− χ(σnh , φ

n+1
h − φnh) +

λ

2
(|||φn+1

h |||2 − |||φnh|||2 + |||φn+1
h − φnh|||2)

+
α

2
(||φn+1

h ||2 − ||φnh||2 + ||φn+1
h − φnh||2) +

Rn+1
h√
E1(φnh)

(f(φnh), φn+1
h − φnh) = 0.

Letting ωh = (σn+1
h − σnh) in (15) and from (30), we can obtain

(32)

‖σn+1
h − σnh‖2

∆t
+
γ

2
(‖σn+1

h ‖2 − ‖σnh‖2 + ‖σn+1
h − σnh‖2)− (s, σn+1

h − σnh)

− χ(φn+1
h , σn+1

h − σnh) +
β

2
(|||σn+1

h |||2 − |||σnh |||2 + |||σn+1
h − σnh |||2) = 0.

Multiplying by 2Rn+1
h in (14b), and using (30) leads to

(33) |Rn+1
h |2 − |Rnh |2 + |Rn+1

h −Rnh |2 =
Rn+1
h√
E1(φnh)

(f(φnh), φn+1
h − φnh).

Adding the above equations (31)-(33), we can obtain

(34)

‖φn+1
h − φnh‖2

∆t
+
‖σn+1

h − σnh‖2

∆t
− (s, σn+1

h − σnh)

+
λ

2
(|||φn+1

h |||2 − |||φnh|||2 + |||φn+1
h − φnh|||2)

+
β

2
(|||σn+1

h |||2 − |||σnh |||2 + |||σn+1
h − σnh |||2)

+
α

2
(||φn+1

h ||2 − ||φnh||2 + ||φn+1
h − φnh||2)

+
γ

2
(‖σn+1

h ‖2 − ‖σnh‖2 + ‖σn+1
h − σnh‖2) + |Rn+1

h |2 − |Rnh |2 + |Rn+1
h −Rnh |2

+ χ(σnh , φ
n
h)− χ(φn+1

h , σn+1
h ) = 0.

Substituting the above formula into (29), we can have

λ

2
‖|φn+1

h ‖|2 +
α

2
‖φn+1

h ‖2 +
β

2
‖|σn+1

h ‖|2 +
γ

2
‖σn+1

h ‖2 + |Rn+1
h |2 − (s, σn+1

h )

− χ(σn+1
h , φn+1

h ) +
λ

2
‖|φn+1

h − φnh‖|2 +
α

2
‖φn+1

h − φnh‖2 +
β

2
‖|σn+1

h − σnh‖|2(35)

+
γ

2
‖σn+1

h − σnh‖2 + |Rn+1
h −Rnh |2 +

‖φn+1
h − φnh‖2

∆t
+
‖σn+1

h − σnh‖2

∆t

=
λ

2
‖|φnh‖|2 +

α

2
‖φnh‖2 +

β

2
‖|σnh‖|2 +

γ

2
‖σnh‖2 + |Rnh |2 − (s, σnh)− χ(σnh , φ

n
h),

it directly achieves (27). �

4. Numerical Analysis

Based on the fully discrete numerical scheme (14)-(15) established in the Section
3, we will analyze the optimal error estimates of φ and σ in terms of space and time
discretization.
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In what follows, we introduce the following concepts for all n ≥ 0

enφ = φ(tn)− φnh = ξnφ + ηnφ , ξnφ = φ(tn)−Qhφn, ηnφ = Qhφn − φnh,
enσ = σ(tn)− σnh = ξnσ + ηnσ , ξnσ = σ(tn)−Fhσn, ηnσ = Fhσn − σnh ,
enR = R(tn)−Rnh .

In particular, we assume the solutions to the system (9) satisfy

(36)


φ, σ ∈ L∞(0, T ;Hk+1(Ω) ∩ L∞(Ω)),

φt, σt ∈ L∞(0, T ;Hk+1(Ω) ∩H2(Ω)),

φtt ∈ L∞(0, T ;H2(Ω)), σtt ∈ L∞(0, T ;L2(Ω)).

By the lemma 2.2 and Theorem 3.6, there exists

(37) ‖φ(t)‖ ≤ K, ‖∇φ(t)‖ ≤ K, ‖φnh‖ ≤ K, ‖φnh‖DG ≤ K,

where contant K depends on φ0, T and Ω. From (36) and (37), we can have

(38) |f(φ(t))| ≤ K, |f ′(φ(t))| ≤ K, |f(φnh)| ≤ K, |f ′(φnh)| ≤ K.

As shown below, the exact solution of system (9) comlpies with the truncation
forms for any 0 ≤ n ≤ N − 1.

(
φ(tn+1)− φ(tn)

∆t
, θ) = −λA1(φ(tn+1), θ)− R(tn+1)√

E1(φ(tn))
(f(φ(tn)), θ)(39a)

+ χ(σ(tn+1), θ)− α(φ(tn+1), θ) + (Enφ , θ),

(
σ(tn+1)− σ(tn)

∆t
, ω) = −βA2(σ(tn+1), ω) + χ(φ(tn+1), ω) + (s, ω)(39b)

− γ(σ(tn+1), ω) + (Enσ , ω),

R(tn+1)−R(tn) =
1

2
√
E1(φ(tn))

(f(φ(tn)), φ(tn+1)− φ(tn)) + ∆tEnR,(39c)

where

Enφ = R(tn+1)[
f(φ(tn))√
E1(φ(tn))

− f(φ(tn+1))√
E1(φ(tn+1))

] +
φ(tn+1)− φ(tn)

∆t
− φt(tn+1),

Enσ =
σ(tn+1)− σ(tn)

∆t
− σt(tn+1),

EnR =
R(tn+1)−R(tn)

∆t
−Rt(tn)− 1

2
√
E1(φ(tn))

(
φ(tn+1)− φ(tn)

∆t
− φt(tn), f(φ(tn))).

Lemma 4.1. Based on the regularity assumption (36), the truncation errors Enφ ,
Enσ and EnR comply that

(40) max
1≤n≤N

(‖Enφ‖+ ‖Enσ‖+ |EnR|) . ∆t.
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Proof. Using Taylor formula, we can get

‖Enφ‖ =|R(tn+1)|‖( f(φ(tn+1))√
E1(φ(tn+1))

− f(φ(tn))√
E1(φ(tn))

)‖+ |δtφ(tn+1)− φt(tn+1)|

≤ max
0≤t≤T

|R(t)|( |E1(φ(tn+1))− E1(φ(tn))|‖f(φ(tn))‖
(
√
E1(φ(tn+1)) +

√
E1(φ(tn)))

√
E1(φ(tn+1))E1(φ(tn))

+
‖f(φ(tn+1))− f(φ(tn))‖√

E1(φ(tn+1))
) + C

∫ tn+1

tn

|φtt(s)|ds

≤C( max
0≤t≤T

|R(t)|, ‖φ‖L∞(L∞), ‖φt‖L∞(H1))∆t+ C

∫ tn+1

tn

|φtt(s)|ds ≤ C∆t,

|Enσ | = |δtσ(tn+1)− σt(tn+1)| ≤ C
∫ tn+1

tn

|σtt(s)|ds ≤ C∆t.

By (36) and (38), it can be easily checked that

Rtt = − 1

4
√
E1(φ)3

(

∫
f(φ)φtdx)2 +

1

2
√
E1(φ)

∫
(f ′(φ)φ2

t + f(φ)φtt)dx

≤ C(‖f(φ)‖2‖φt‖2L6(Ω) + ‖f ′(φ)‖‖φt‖2L6(Ω) + ‖f(φ)‖‖φtt‖)

≤ C(‖φt‖2H1(Ω) + ‖φtt‖),

then we can get

|EnR| = |δtR(tn+1)−Rt(tn)− 1

2
√
E1(φ(tn))

∫
Ω

f(φ(tn))(δtφ(tn+1)− φt(tn))dx|

≤ C(

∫ tn+1

tn

|Rtt(s)|ds+

∫ tn+1

tn

∫
Ω

|φtt(s)|dxds) ≤ C∆t.

Summing up the above estimates, it directly achieves (40). �

Theorem 4.2. Suppose that the scheme (14)-(15) has unique solutions φn+1
h , σn+1

h ,

Rn+1
h . Under the regularity assumption of (36), we have the following estimates

for any m = 0, 1, · · · , N − 1.

(41)

‖em+1
φ ‖2 + ‖em+1

σ ‖2 + 2|em+1
R |2 +

m∑
n=0

‖en+1
φ − enφ‖2

+

m∑
n=0

‖en+1
σ − enσ‖2 + 2

m∑
n=0

|en+1
R − enR|2 + λ∆t

m∑
n=0

‖en+1
φ ‖2DG

+ β∆t

m∑
n=0

‖en+1
σ ‖2DG + α∆t

m∑
n=0

‖en+1
φ ‖2 + γ∆t

m∑
n=0

‖en+1
σ ‖2

. ∆t2 + h2k.

Proof. Firstly, the difference between (14)-(15) and (39) gives the following error
equations

(
en+1
φ − enφ

∆t
, θh) =− λA1(en+1

φ , θh)− R(tn+1)√
E1(φ(tn))

(f(φ(tn)), θh)− α(en+1
φ , θh)

+ χ(enσ, θh) +
Rn+1
h√
E1(φnh)

(f(φnh), θh)

+ χ(σ(tn+1)− σ(tn), θh) + (Enφ , θh),(42)
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(
en+1
σ − enσ

∆t
, ωh) =− βA2(en+1

σ , ωh) + χ(en+1
φ , ωh)

− γ(en+1
σ , ωh) + (Enσ , ωh),(43)

en+1
R − enR =

1

2
√
E1(φ(tn))

(f(φ(tn)), φ(tn+1)− φ(tn))

− 1

2
√
E1(φnh)

(f(φnh), φn+1
h − φnh) + ∆tEnR.(44)

Using (11) and (12), we can obtain

(
ηn+1
φ − ηnφ

∆t
, θh) + λA1(ηn+1

φ , θh)− χ(ηnσ , θh) + α(ηn+1
φ , θh)

(45)

= −(
ξn+1
φ − ξnφ

∆t
, θh) + χ(ξnσ , θh)− α(ξn+1

φ , θh)−
en+1
R√
E1(φnh)

(f(φnh), θh)

+R(tn+1)(
f(φnh)√
E1(φnh)

− f(φ(tn))√
E1(φ(tn))

, θh) + χ(σ(tn+1)− σ(tn), θh) + (Enφ , θh),

(
ηn+1
σ − ηnσ

∆t
, ωh) + βA2(ηn+1

σ , ωh)− χ(ηn+1
φ , ωh) + γ(ηn+1

σ , ωh)

(46)

= −(
ξn+1
σ − ξnσ

∆t
, ωh) + χ(ξn+1

φ , ωh)− γ(ξn+1
σ , ωh) + (Enσ , ωh),

en+1
R − enR =

1

2
(

f(φ(tn))√
E1(φ(tn))

− f(φnh)√
E1(φnh)

, φ(tn+1)− φ(tn))

(47)

+
1

2
(

f(φnh)√
E1(φnh)

, ξn+1
φ − ξnφ) +

1

2
(

f(φnh)√
E1(φnh)

, ηn+1
φ − ηnφ) + ∆tEnR.

Taking θh = ∆tηn+1
φ in (45), we can derive

(48)
(ηn+1
φ − ηnφ , ηn+1

φ ) + λ∆tA1(ηn+1
φ , ηn+1

φ )− χ∆t(ηnσ , η
n+1
φ ) + α∆t(ηn+1

φ , ηn+1
φ )

=− (ξn+1
φ − ξnφ , ηn+1

φ ) + χ∆t(ξnσ , η
n+1
φ )− α∆t(ξn+1

φ , ηn+1
φ )

−
en+1
R√
E1(φnh)

∆t(f(φnh), ηn+1
φ ) +R(tn+1)∆t(

f(φnh)√
E1(φnh)

− f(φ(tn))√
E1(φ(tn))

, ηn+1
φ )

+ χ∆t(σ(tn+1)− σ(tn), ηn+1
φ ) + ∆t(Enφ , η

n+1
φ ).

Setting ωh = ∆tηn+1
σ from (46), we can obtain

(49)
(ηn+1
σ − ηnσ , ηn+1

σ ) + β∆tA2(ηn+1
σ , ηn+1

σ )− χ∆t(ηn+1
φ , ηn+1

σ ) + γ∆t(ηn+1
σ , ηn+1

σ ) =

− (ξn+1
σ − ξnσ , ηn+1

σ ) + χ∆t(ξn+1
φ , ηn+1

σ )− γ∆t(ξn+1
σ , ηn+1

σ ) + ∆t(Enσ , η
n+1
σ ).

Multiplying (47) by 2en+1
R leads to

(50)

2en+1
R (en+1

R − enR) = en+1
R (

f(φ(tn))√
E1(φ(tn))

− f(φnh)√
E1(φnh)

, φ(tn+1)− φ(tn))

+ en+1
R (

f(φnh)√
E1(φnh)

, ξn+1
φ − ξnφ) + en+1

R (
f(φnh)√
E1(φnh)

, ηn+1
φ − ηnφ) + 2∆tEnRe

n+1
R .
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Combining (48)-(50), using Lemma 3.1, then we can derive

(51)
1

2
(‖ηn+1

φ ‖2 − ‖ηnφ‖2 + ‖ηn+1
φ − ηnφ‖2)

+
1

2
(‖ηn+1

σ ‖2 − ‖ηnσ‖2 + ‖ηn+1
σ − ηnσ‖2) + |en+1

R |2

− |enR|2 + |en+1
R − enR|2 + λ∆t‖ηn+1

φ ‖2DG
+ β∆t‖ηn+1

σ ‖2DG + α∆t‖ηn+1
φ ‖2 + γ∆t‖ηn+1

σ ‖2

.∆t(Enφ , η
n+1
φ ) + ∆t(Enσ , η

n+1
σ ) + 2∆tEnRe

n+1
R

+ χ∆t(ηn+1
φ , ηn+1

σ ) + χ∆t(ηn+1
φ , ηnσ )

− α∆t(ξn+1
φ , ηn+1

φ )− γ∆t(ξn+1
σ , ηn+1

σ ) + χ∆t(ξn+1
φ , ηn+1

σ ) + χ∆t(ηn+1
φ , ξnσ )

− (ξn+1
φ − ξnφ , ηn+1

φ )− (ξn+1
σ − ξnσ , ηn+1

σ ) + χ∆t(σ(tn+1)− σ(tn), ηn+1
φ )

−
en+1
R√
E1(φnh)

∆t(f(φnh), ηn+1
φ ) +R(tn+1)∆t(

f(φnh)√
E1(φnh)

− f(φ(tn))√
E1(φ(tn))

, ηn+1
φ )

+ en+1
R (

f(φ(tn))√
E1(φ(tn))

− f(φnh)√
E1(φnh)

, φ(tn+1)− φ(tn))

+ en+1
R (

f(φnh)√
E1(φnh)

, ηn+1
φ − ηnφ) + en+1

R (
f(φnh)√
E1(φnh)

, ξn+1
φ − ξnφ)

= I1 + I2 + ...+ I16 + I17.

By use of the Cauchy-Schwarz inequality, Lemma 4.1 and Young’s inequality, we
can derive

(52) I1 = ∆t(Enφ , η
n+1
φ ) . ∆t3 +

α

20
∆t‖ηn+1

φ ‖2.

(53) I2 = ∆t(Enσ , η
n+1
σ ) . ∆t3 +

γ

8
∆t‖ηn+1

σ ‖2.

(54) I3 = 2∆tEnRe
n+1
R . ∆t3 + ∆t|en+1

R |2.

(55) I4 = χ∆t(ηn+1
φ , ηn+1

σ ) .
γ

8
∆t‖ηn+1

σ ‖2 +
α

20
∆t‖ηn+1

φ ‖2.

(56) I5 = χ∆t(ηn+1
φ , ηnσ ) . ∆t‖ηnσ‖2 +

α

20
∆t‖ηn+1

φ ‖2.

From the Cauchy-Schwarz inequality, (13), lemma 3.4 and Young’s inequality,
we can have

(57) I6 = −α∆t(ξn+1
φ , ηn+1

φ ) . ∆th2k+2 +
α

20
∆t‖ηn+1

φ ‖2.

(58) I7 = −γ∆t(ξn+1
σ , ηn+1

σ ) . ∆th2k+2 +
γ

8
∆t‖ηn+1

σ ‖2.

(59) I8 = χ∆t(ξn+1
φ , ηn+1

σ ) . ∆th2k+2 +
γ

8
∆t‖ηn+1

σ ‖2.

(60) I9 = χ∆t(ηn+1
φ , ξnσ ) . ∆th2k+2 +

α

20
∆t‖ηn+1

φ ‖2.
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(61)

I10 = −(ξn+1
φ − ξnφ , ηn+1

φ ) =−∆t(
ξn+1
φ − ξnφ

∆t
, ηn+1
φ ) .

∫ tn+1

tn

‖∂ξφ
∂t
‖2dt+ ∆t‖ηn+1

φ ‖2

.h2k+2

∫ tn+1

tn

‖φt‖2Hk+1(Eh)dt+
α

20
∆t‖ηn+1

φ ‖2.

(62)

I11 =− (ξn+1
σ − ξnσ , ηn+1

σ ) = −∆t(
ξn+1
σ − ξnσ

∆t
, ηn+1
σ )

.h2k+2

∫ tn+1

tn

‖σt‖2Hk+1(Eh)dt+
γ

8
∆t‖ηn+1

σ ‖2.

Applying the Young’s inequality, (38) and Cauchy-Schwarz inequality, we can
get

(63)
I12 = χ∆t(σ(tn+1)− σ(tn), ηn+1

φ ) = χ∆t2(
σ(tn+1)− σ(tn)

∆t
, ηn+1
φ )

. ∆t3 +
α

20
∆t‖ηn+1

φ ‖2.

(64) I13 = −en+1
R ∆t(

f(φnh)√
E1(φnh)

, ηn+1
φ ) . ∆t|en+1

R |2 +
α

20
∆t‖ηn+1

φ ‖2.

Then, we can get

f(φ(tn))√
E1(φ(tn))

− f(φnh)√
E1(φnh)

=
f(φ(tn))− f(φnh)√

E1(φ(tn))
+

(E1(φnh)− E1(φ(tn)))f(φnh)

(
√

(E1(φ(tn)) +
√
E1(φnh)))

√
E1(φ(tn))E1(φnh)

,

and using the fact that E1(φ) ≥ C0 and (38), we can have
(65)

‖ f(φ(tn))√
E1(φ(tn))

− f(φnh)√
E1(φnh)

‖ .‖f(φ(tn))− f(φnh)‖+ (E1(φnh)− E1(φ(tn)))‖f(φnh)‖

.‖φ(tn)− φnh‖ = ‖enφ‖.

From the Cauchy-Schwarz inequality, |R(t)| ≤ C, (65) and Young’s inequality,
we can get

(66)
I14 =−R(tn+1)∆t(

f(φ(tn))√
E1(φ(tn))

− f(φnh)√
E1(φnh)

, ηn+1
φ )

.∆t|R(tn+1)|(enφ, ηn+1
φ ) . ∆th2k+2 + ∆t‖ηnφ‖2 +

α

20
∆t‖ηn+1

φ ‖2.

(67)

I15 =en+1
R (

f(φ(tn))√
E1(φ(tn))

− f(φnh)√
E1(φnh)

, φ(tn+1)− φ(tn))

.∆t|en+1
R |‖ f(φ(tn))√

E1(φ(tn))
− f(φnh)√

E1(φnh)
‖‖φ(tn+1)− φ(tn)

∆t
‖

.∆t|en+1
R |2 + ∆th2k+2 + ∆t‖ηnφ‖2.
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Setting θh = ∆t
f(φn

h)√
E1(φn

h)
in (45), by applying the Cauchy-Schwarz inequality,

(13), (65) and Young’s inequality, we can arrive that
(68)

(ηn+1
φ − ηnφ ,

f(φnh)√
E1(φnh)

) = −(ξn+1
φ − ξnφ ,

f(φnh)√
E1(φnh)

)− λ∆tA1(ηn+1
φ ,

f(φnh)√
E1(φnh)

)

+ χ∆t(enσ,
f(φnh)√
E1(φnh)

)− α∆t(en+1
φ ,

f(φnh)√
E1(φnh)

)

−∆t
en+1
R√
E1(φnh)

(f(φnh),
f(φnh)√
E1(φnh)

) + χ∆t(σ(tn+1)− σ(tn),
f(φnh)√
E1(φnh)

)

+R(tn+1)∆t(
f(φnh)√
E1(φnh)

− f(φ(tn))√
E1(φ(tn))

,
f(φnh)√
E1(φnh)

) + ∆t(Enφ ,
f(φnh)√
E1(φnh)

),

thus the term I16 can be bounded as
(69)

I16 =en+1
R (

f(φnh)√
E1(φnh)

, ηn+1
φ − ηnφ)

=− en+1
R (ξn+1

φ − ξnφ ,
f(φnh)√
E1(φnh)

)− λ∆ten+1
R A1(ηn+1

φ ,
f(φnh)√
E1(φnh)

)

+ χ∆ten+1
R (enσ,

f(φnh)√
E1(φnh)

)− α∆ten+1
R (en+1

φ ,
f(φnh)√
E1(φnh)

)

−∆t
en+1
R√
E1(φnh)

(f(φnh),
f(φnh)√
E1(φnh)

) + χ∆ten+1
R (σ(tn+1)− σ(tn),

f(φnh)√
E1(φnh)

)

+R(tn+1)∆ten+1
R (

f(φnh)√
E1(φnh)

− f(φ(tn))√
E1(φ(tn))

,
f(φnh)√
E1(φnh)

)

+ ∆ten+1
R (Enφ ,

f(φnh)√
E1(φnh)

)

.∆t‖
ξn+1
φ − ξnφ

∆t
‖2 + ∆t|en+1

R |2 + ∆t‖ηn+1
φ ‖2DG

+ ∆t‖enσ‖2 + ∆t‖en+1
φ ‖2 + ∆t3 + ∆t‖enφ‖2 + ∆t‖Enφ‖2

.(∆t3 + ∆th2k+2) + ∆t|en+1
R |2 +

λ

4
∆t‖ηn+1

φ ‖2DG

+ ∆t‖ηnσ‖2 +
α

20
∆t‖ηn+1

φ ‖2 + ∆t‖ηnφ‖2.

From the Cauchy-Schwarz inequality, (13), (38) and Young’s inequality, we can
derive

(70)

I17 =− en+1
R (

f(φnh)√
E1(φnh)

, ξn+1
φ − ξnφ)

=∆ten+1
R (

f(φnh)√
E1(φnh)

,
ξn+1
φ − ξnφ

∆t
)

.∆t|en+1
R |2 + h2k+2

∫ tn+1

tn

‖φt‖2Hk+1(Eh)dt.
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Combining with the above estimates, one obtains

(71)

1

2
(‖ηn+1

φ ‖2 − ‖ηnφ‖2 + ‖ηn+1
φ − ηnφ‖2)

+
1

2
(‖ηn+1

σ ‖2 − ‖ηnσ‖2 + ‖ηn+1
σ − ηnσ‖2) + |en+1

R |2

− |enR|2 + |en+1
R − enR|2 +

λ

2
∆t‖ηn+1

φ ‖2DG

+
β

2
∆t‖ηn+1

σ ‖2DG +
α

2
∆t‖ηn+1

φ ‖2 +
γ

2
∆t‖ηn+1

σ ‖2

. ∆t3 + ∆th2k+2 + ∆t‖ηnφ‖2 + ∆t‖ηn+1
φ ‖2

+ ∆t‖ηnσ‖2 + ∆t‖ηn+1
σ ‖2 + ∆t|en+1

R |2.

Summing (71) over n = 0 to m ≤ N − 1, we can get

(72)

‖ηm+1
φ ‖2 + ‖ηm+1

σ ‖2 + 2|em+1
R |2 +

m∑
n=0

‖ηn+1
φ − ηnφ‖2

+

m∑
n=0

‖ηn+1
σ − ηnσ‖2 + 2

m∑
n=0

|en+1
R − enR|2

+ λ∆t

m∑
n=0

‖ηn+1
φ ‖2DG + β∆t

m∑
n=0

‖ηn+1
σ ‖2DG

+ α∆t

m∑
n=0

‖ηn+1
φ ‖2 + γ∆t

m∑
n=0

‖ηn+1
σ ‖2

. ∆t

m∑
n=0

(∆t2 + h2k+2)

+ C1∆t

m∑
n=0

(‖ηnφ‖2 + ‖ηn+1
φ ‖2 + ‖ηnσ‖2 + ‖ηn+1

σ ‖2 + |en+1
R |2).

When 0 < ∆t ≤ ∆t0 := 1
2C1

< 1
C1

, since 1 ≤ 1
1−C1∆t ≤ 2 and from (72), we can

get

(73)

‖ηm+1
φ ‖2 + ‖ηm+1

σ ‖2 + 2|em+1
R |2 +

m∑
n=0

‖ηn+1
φ − ηnφ‖2

+

m∑
n=0

‖ηn+1
σ − ηnσ‖2 + 2

m∑
n=0

|en+1
R − enR|2

+ λ∆t

m∑
n=0

‖ηn+1
φ ‖2DG + β∆t

m∑
n=0

‖ηn+1
σ ‖2DG

+ α∆t

m∑
n=0

‖ηn+1
φ ‖2 + γ∆t

m∑
n=0

‖ηn+1
σ ‖2

.
∆t

1− C1∆t

m∑
n=0

(∆t2 + h2k+2)

+
C1∆t

1− C1∆t

m∑
n=0

(‖ηnφ‖2 + ‖ηn+1
φ ‖2 + ‖ηnσ‖2 + ‖ηn+1

σ ‖2 + |en+1
R |2).
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Figure 5.1. L2 numerical error and convergence order for the
approximation at time t = 0.6. (a): convergence order in spatial
direction. (b): convergence order in temporal direction.

Applying the discrete Gronwall’s inequality, we can have

(74)

‖ηm+1
φ ‖2 + ‖ηm+1

σ ‖2 + 2|em+1
R |2 +

m∑
n=0

‖ηn+1
φ − ηnφ‖2

+

m∑
n=0

‖ηn+1
σ − ηnσ‖2 + 2

m∑
n=0

|en+1
R − enR|2

+ λ∆t

m∑
n=0

‖ηn+1
φ ‖2DG + β∆t

m∑
n=0

‖ηn+1
σ ‖2DG

+ α∆t

m∑
n=0

‖ηn+1
φ ‖2 + γ∆t

m∑
n=0

‖ηn+1
σ ‖2

. ∆t2 + h2k+2.

Using the triangle inequality, the proof is finished. �

5. Numerical examples

This section presents several numerical experiments to solve the tumor growth
model by implementing the fully discrete scheme (14)-(15). Further, we use the
P2−P2 element for φ and σ, and we also use the scheme to simulate the variations
of phase field function and nutrient function in tumor growth.

5.1. Accuracy and stability tests. The first numerical examples focuses on
the convergence and energy stability of the proposed scheme. We consider the
computational domain in the square Ω = [0, 2]2 (unit : 103µm) and the total
computational time is set as T = 0.6 (unit : year). The initial conditions are
chosen as

φ0 =

{
1, 0.94 < x < 1.06 and 0.80 < y < 1.20,
0, otherwise,

σ0 =

{
sin(2πx), 0.94 < x < 1.06,

0, otherwise.

The model parameters in this case are set as λ = 160000 µm2/year, ε = 0.01 year,
χ = 600 L/(g · year), α = 600 1/year, β = 5000000 µm2/year, s = 2.7 g/(L · day)
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Figure 5.2. Time evolution of the total energy functional Ehtot for
∆t = 0.0001, 0.0002, 0.0005 and 0.0010.

Figure 5.3. The evolution of the phase field function φ (the sub-
figures (a1)-(a6)) and nutrient function σ (the subfigures (b1)-(b6))
at s = 2.60 g/(L · day) in the two dimensional case and different
times for: (1) t = 0.1; (2) t = 0.2; (3) t = 0.3; (4) t = 0.4; (5)
t = 0.5; (6) t = 0.6.

and γ = 1000 1/year. It is hard to get the exact solution of (2), and we compute the
reference solution by taking time step size ∆t = 0.0001 and mesh size h = 1/120.

To test the convergence behavior of spatial error, we choose the decreasing spatial
step sizes h = 1/10, 1/20, 1/40 and 1/80, and fix the time step size ∆t = 0.001
to show the L2 errors for the phase field function φ and nutrient function σ in
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Figure 5.4. The evolution of the phase field function φ (the sub-
figures (a1)-(a6)) and nutrient function σ (the subfigures (b1)-(b6))
at s = 2.70 g/(L · day) in the two dimensional case and different
times for: (1) t = 0.1; (2) t = 0.2; (3) t = 0.3; (4) t = 0.4; (5)
t = 0.5; (6) t = 0.6.

Fig. 5.1(a). It can be seen that the obtained spatial convergence rate isO(h2), which
is consistent with our theoretical prediction. In addition, to verify the convergence
rates of temporal errors for the considered scheme, we perform the L2 errors for the
phase field function φ and nutrient function σ at t = 0.6 in Fig. 5.1(b), by fixing
the spacial size h = 1/80 and choosing the temporal step sizes with ∆t = 0.00125,
0.0025, 0.005 and 0.01. It is apparent that the order of convergence is O(∆t) for
all variables, which is consistent with the theoretical analysis.

In Fig. 5.2, we compute the discrete energy Ehtot dissipation of the considered
scheme with different time steps ∆t = 0.0001, 0.0002, 0.0005 and 0.0010. It can be
seen that the total energy of the system is dissipated regardless of the time step
taken, and the rate of dissipation slows down as the time step increases, but the
energy still tends to dissipate.

5.2. Growth of tumors in 2D. This subsection primarily aims to validate the
capability of the numerical scheme (14)-(15) in illustrating the tumor growth. In
the following numerical example, we consider the tumor growth of choosing dif-
ferent values of the nutrient supply in 2D. We take the computational domain
Ω = [0, 2]2 (unit : 103µm) with T = 2.0 (unit : year). We set temporal step size
∆t = 0.0001 and spacial size h = 0.01. The nutrient supply parameter s is set as
2.60 g/(L · day), 2.70 g/(L · day) and 2.80 g/(L · day), other parameters are fixed
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Figure 5.5. The evolution of the phase field function φ (the sub-
figures (a1)-(a6)) and nutrient function σ (the subfigures (b1)-(b6))
at s = 2.80 g/(L · day) in the two dimensional case and different
times for: (1) t = 0.1; (2) t = 0.2; (3) t = 0.3; (4) t = 0.4; (5)
t = 0.5; (6) t = 0.6.

as previous subsection. φ = 0 and σ = 0 are imposed on all boundaries, and the
initial conditions are the same as in the previous subsection.

In Fig. 5.3, Fig. 5.4 and Fig. 5.5, we give the simulation results with s is 2.60 g/(L·
day), 2.70 g/(L ·day) and 2.80 g/(L ·day), respectively. We show the evolution of
the phase field function φ and nutrient function σ at time t = 0.1, 0.2, 0.3, 0.4, 0.5
and 0.6. The two dimensional simulation results are similar to previous studies,
and can be seen in [34] and [35].

5.3. Growth of tumors in 3D. In this example, we study the tumor growth
in 3D based on the proposed DG scheme. We choose the computational domain
Ω = [0, 2]3 (unit : 103µm) with T = 2.0 (unit : year). We set temporal step
size ∆t = 0.0006 and spacial size h = 0.04. The model parameters and boundary
conditions are the same as in the previous subsection and the initial conditions are
set as follows

φ0 =

{
1, 0.94 < x < 1.06, 0.80 < y < 1.20 and 0.80 < z < 1.20,
0, otherwise,

σ0 =

{
sin (2πx) , 0.94 < x < 1.06,

0, otherwise.
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Figure 5.6. The evolution of the phase field function φ (the sub-
figures (a1)-(a6)) and nutrient function σ (the subfigures (b1)-(b6))
at s = 2.60 g/(L · day) in the three dimensional case and different
times for: (1) t = 0.1; (2) t = 0.2; (3) t = 0.3; (4) t = 0.4; (5)
t = 0.5; (6) t = 0.6.

In Fig. 5.6 and Fig. 5.7, we also give the simulation results with s is 2.60 g/(L·day)
and 2.70 g/(L·day), respectively. We show the evolution of the phase field function
φ and nutrient function σ at time t = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. It can be observed
that when the s = 2.60 g/(L · day), the fingered morphology grows thinner and
branches less. Through to increase the nutrition value s to 2.70 g/(L · day), the
tumor of the fingered morphology produce wider branches. It can also be observed
that the tumor grows slowly when s is small. However, the growth rate of the
tumor will accelerate, when increasing s to 2.70. At the same time, the results
in this paper and those reported in [33] indicate that the tumor initially grows in
a spherical shape. If the tumor continues to develop in this morphology, it will
consume more nutrients and the concentration of nutrient will decrease. With a
constant supply of nutrients, the simulation results show that the supply of nutrients
and the growth of the tumor reached a steady state when t = 0.55, the pattern of
tumor does not change, and finally appeared as a fingered morphology.

6. Conclusion and outlook

In this paper, we firstly derive a tumor growth model based on free energy.
For this model, the scalar auxiliary variable (SAV) is used to handle the nonlin-
ear term. Combining the backward Euler (BDF1) method and the discontinuous
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Figure 5.7. The evolution of the phase field function φ (the sub-
figures (a1)-(a6)) and nutrient function σ (the subfigures (b1)-(b6))
at s = 2.70 g/(L · day) in the three dimensional case and different
times for: (1) t = 0.1; (2) t = 0.2; (3) t = 0.3; (4) t = 0.4; (5)
t = 0.5; (6) t = 0.6.

Galerkin (DG) method to discretize the model, we propose a linear, fully decou-
pled and unconditionally energy stable numerical scheme. The rigorous and de-
tailed proof processes of solvability and stability are given, and we prove optimal
error estimates of the related variables through strict theoretical analysis. Through
some numerical experiments, the validity of the model and numerical scheme are
demonstrated numerically. In addition, the tumor growth process is simulated by
numerical scheme. However, our study is an isotropic equation, while the growth
of real tumor is anisotropic, that is a great challenge will be considered in future
work.
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