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CONVERGENCE ANALYSIS OF A PRECONDITIONED

STEEPEST DESCENT SOLVER FOR THE CAHN-HILLIARD

EQUATION WITH LOGARITHMIC POTENTIAL

AMANDA E. DIEGEL, CHENG WANG*, AND STEVEN M. WISE

Abstract. In this paper, we provide a theoretical analysis for a preconditioned steepest descent

(PSD) iterative solver that improves the computational time of a finite difference numerical scheme
for the Cahn-Hilliard equation with Flory-Huggins energy potential. In the numerical design, a
convex splitting approach is applied to the chemical potential such that the logarithmic and the
surface diffusion terms are treated implicitly while the expansive concave term is treated with

an explicit update. The nonlinear and singular nature of the logarithmic energy potential makes
the numerical implementation very challenging. However, the positivity-preserving property for
the logarithmic arguments, unconditional energy stability, and optimal rate error estimates have

been established in a recent work and it has been shown that successful solvers ensure a similar
positivity-preserving property at each iteration stage. Therefore, in this work, we will show
that the PSD solver ensures a positivity-preserving property at each iteration stage. The PSD
solver consists of first computing a search direction (which requires solving a constant-coefficient

Poisson-like equation) and then takes a one-parameter optimization step over the search direction
in which the Newton iteration becomes very powerful. A theoretical analysis is applied to the PSD
iteration solver and a geometric convergence rate is proved for the iteration. In particular, the
strict separation property of the numerical solution, which indicates a uniform distance between

the numerical solution and the singular limit values of ±1 for the phase variable, plays an essential
role in the iteration convergence analysis. A few numerical results are presented to demonstrate
the robustness and efficiency of the PSD solver.

Key words. Cahn-Hilliard equation, logarithmic Flory Huggins energy potential, positivity

preserving, energy stability, preconditioned steepest descent iteration solver, iteration convergence
analysis.

1. Introduction

The Allen-Cahn (AC) [3] (non-conserved dynamics) and Cahn-Hilliard (CH) [7]
(conserved dynamics) equations are well known gradient flows with respect to the
total free energy given by

E(ϕ) =

∫
Ω

(
F (ϕ) +

ε2

2
|∇ϕ|2

)
dx,

where Ω ⊂ Rd (with d = 2 or d = 3) is a bounded domain, −1 < ϕ < 1 is the
variable of interest often representing the concentration of material components in a
two-phase system, ε is a positive constant associated with the diffuse interface width
separating the two phases, and F is a given double-well potential. In this work,
we consider the Flory-Huggins energy potential. Specifically, for any ϕ ∈ H1(Ω)
with a point-wise bound, i.e. −1 < ϕ < 1, the total free energy with Flory-Huggins
energy potential is given by

(1) E(ϕ) =

∫
Ω

(
(1 + ϕ) ln(1 + ϕ) + (1− ϕ) ln(1− ϕ)− θ0

2
ϕ2 +

ε2

2
|∇ϕ|2

)
dx,
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where θ0 is an additional positive constant associated with the diffuse interface
width. The Cahn-Hilliard (CH) equation is then an H−1 (conserved) gradient flow
of the energy functional (1) and is given by:

∂tϕ = ∇ · (M(ϕ)∇µ),(2)

µ := δϕE = ln(1 + ϕ)− ln(1− ϕ)− θ0ϕ− ε2∆ϕ,(3)

where M(ϕ) > 0 is a mobility function. Based on the gradient structure of (2), the
energy dissipation law is derived as

d

dt
E(ϕ(t)) = −

∫
Ω

M(ϕ)|∇µ|2dx ≤ 0.(4)

For simplicity of presentation, we assume that Ω = [0, 1]2 with periodic bound-
ary conditions but remark that the case with homogeneous Neumann boundary
conditions can be analyzed with a similar strategy.

The free energy with the Flory-Huggins logarithmic potential is generally viewed
to be more physically realistic than an energy represented by a polynomial expres-
sion since the former can be derived from regular or ideal solution theories [25].
On the other hand, the Flory Huggins energy potential posses a computational
challenge since it is associated with a singularity as the phase variable approaches
−1 or 1. Indeed, the system (2) – (3) is only well-defined if a point-wise positivity
property is imposed, i.e., 0 < 1−ϕ and 0 < 1+ϕ, so that the phase variable remains
in the interval (−1, 1). See the related works [1, 2, 4, 21, 23, 30, 5, 35, 36, 42, 49, 50],
etc.

For the CH equation with a polynomial approximation in the energy potential, a
maximum norm bound could be carefully derived, with the help of a global-in-time
H2 analysis. However, such an L∞ bound turns out to be singularly ε−1-dependent,
since the surface diffusion estimate has to be used to balance the nonlinear effects;
see the related work in [37]. In terms of an ε−1-independent L∞ bound, the sharpest
theoretical analysis in this area could be found in [6], in which a polynomial pattern
energy potential is used with a cut-off approach. On the other hand, for the Cahn-
Hilliard equation (2) – (3) with a singular Flory-Huggins energy potential (1), an
L∞ bound is automatically satisfied: −1 < ϕ < 1, so that the PDE is well-defined.
Meanwhile, in spite of such an automatic L∞ bound, a uniform distance between the
solution away from the singular limit values will play a more important role, due to
the singular nature in the nonlinear analysis. In fact, for the 2-D CH equation (2) –
(3), the separation property has also been justified at a theoretical level [2, 23], i.e.,
a uniform distance between the phase variable and the singular limit values (−1 and
1) has been derived, dependent on ε, θ0 and the initial data. For the 3-D equation,
a theoretical proof of the separation property has not been available, while we make
such an assumption in this article, to facilitate the numerical iteration analysis.

In addition, the system defined in (1) has a symmetric double-well structure.
Notice that θ0 > 0 is an O(1) constant, and many interesting profiles could be
obtained by the scientific computing with such a constant scale; see the detailed
numerical simulation results in [11], with θ0 = 3 and θ0 = 3.5. A careful calculation
reveals that, for θ0 > 1, this free energy supports a spatially uniform equilibria
solution: ϕ ≡ ±ϕ∗, with ϕ∗ ∈ (0, 1) satisfying a steady-state equation: ln(1 + ϕ)−
ln(1− ϕ)− θ0ϕ = 0. Of course, if the initial data does not have a mass average of
±ϕ∗, the PDE solution will not convergence to such a trivial steady-state solution,
ϕ ≡ ±ϕ∗. For the Allen-Cahn (AC) equation, the associated L2 gradient flow,
the separation property is satisfied with such a minima value of the double well,
i.e., −ϕ∗ ≤ ϕ ≤ ϕ∗ at any time, provided that the initial data also satisfied this
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separation bound. Meanwhile, for the CH equation, this bound will not be satisfied,
due to the fact that the maximum principle is not available any more for an H−1

gradient flow. In more details, the phase separation constant ϵ0 for the 2-D Cahn-
Hilliard equation, namely −1 + ϵ0 ≤ ϕ ≤ 1− ϵ0, depends on both θ0 and ε, as well
as the initial separation constant, since the surface diffusion part has also played
an important role in the separation estimate. Also see the related analysis in [42].

On the other hand, the value of θ0 is fixed, with 2 ≤ θ0 ≤ 4. For larger values of
θ0 the equilibrium value increases towards the singular value of ϕ = ±1. This may
impact the numerical performance; however we do not investigate the effect in this
work.

In terms of the numerical design for the Cahn-Hilliard equation (2) – (3) with
logarithmic energy potential, the positivity preserving property generally posses
the primary challenge [31, 39, 40, 43, 52, 51, 53, 55, 60]. Regarding a theoret-
ical justification of the positivity-preserving property, a pioneering analysis was
reported in [22] in which the implicit Euler algorithm was applied combined with
the finite element approximation in space. The positivity-preserving property is
proved, while the unique solvability is theoretically justified under a condition for
the time step size, which comes from the implicit discretization of the expan-
sive term. To overcome this shortcoming, a convex splitting numerical scheme
is proposed and analyzed in [13] in which implicit treatment of the singular log-
arithmic and surface diffusion terms along with an explicit update of the linear
expansive term was combined with the standard finite difference spatial approx-
imation. The theoretical properties that have been established for the proposed
numerical scheme include unconditional unique solvability, a positivity-preserving
property, unconditional energy stability, and an optimal rate of convergence in the
ℓ∞(0, T ;H−1

h ) ∩ ℓ2(0, T ;H1
h) norm. In particular, the singular and convex nature

of the logarithmic term prevents the numerical solution from reaching the singular
limit values of ±1, and this fact plays an essential role in the positivity-preserving
analysis. Such an energy minimization analysis technique has been widely used in
various gradient flows, including the phase field equation with Flory-Huggins po-
tential [10, 11, 26, 27, 28, 29, 61, 62], the liquid film droplet model [63], the Poisson-
Nernst-Planck system [47, 48], and the reaction-diffusion system [44, 45, 46], etc.

Although the theoretical analysis has been well-established for the first order
convex splitting numerical scheme to the Cahn-Hilliard equation (2) – (3) with
Flory-Huggins energy potential, under the condition that it is exactly executed, the
numerical implementation turns out to be highly challenging, due to the nonlinear
and singular nature of the logarithmic terms involved in the numerical method.
The focus of this paper will therefore be centered on the development and analysis
of an iterative method for the numerical implementation of a first-order-in-time
convex splitting numerical scheme to the Cahn-Hilliard equation (2) – (3) with
Flory-Huggins energy potential. For second-order (in time) numerical schemes, the
positivity-preserving property and the modified energy stability have also been the-
oretically established, either in the BDF2 approach [13] or in the Crank-Nicolson
version [11], using similar theoretical techniques. However, the numerical imple-
mentation and the iteration analysis will be more involved and we reserve this for
future work. A näıve iterative approach may lead to a numerical solution not satis-
fying the positivity-preserving property in the iteration process. As an example, the
full approximation storage (FAS) multi-grid method was applied in [13] to imple-
ment the proposed scheme while the iteration convergence analysis for the FAS-like
multi-grid method was established in [8] for a convex optimization of a polynomial
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approximation energy potential. Although some convincing numerical results were
reported in [13] with a singular energy potential involved, a theoretical justification
of such an iteration convergence analysis is not available.

In this article, we propose and analyze an alternative iterative method, called the
preconditioned steepest descent (PSD) solver, for the numerical implementation of
the convex splitting numerical scheme to the Cahn-Hilliard equation (2) – (3) with
Flory-Huggins energy potential. The PSD solver for the p-Laplacian equation was
considered in a pioneering work [38], while an application of the PSD algorithm to
a more general, regularized elliptic equation is analyzed in [33], in which a much
sharper iteration convergence rate has been established due to the higher order
diffusion term involved. More applications of the PSD solver have been reported to
various gradient flow models [14, 15, 16, 17, 18, 32, 34, 63], etc. The robustness of
this approach is demonstrated again in the numerical implementation of the algo-
rithm to the Cahn-Hilliard equation with logarithmic energy potential, as described
in [13]. The key point is to use a linearized version of the nonlinear operator as
a pre-conditioner to obtain a search direction. In other words, at each iteration
stage, the surface diffusion operator and the (−∆h)

−1 operator (for the temporal
derivative) are kept the same as the original form, and a constant-coefficient linear
operator is used to approximate the nonlinear part in the chemical potential ex-
pansion. In turn, the resulting equation for the search direction is efficiently solved
with the help of FFT, since all the linear operators have eigenfunctions that are
exactly the same as the Fourier basis functions. Afterward, with the search direc-
tion available, a one-parameter optimization of the corresponding numerical energy
functional over the search direction is taken at the iteration stage. In fact, it is a
strictly convex optimization in terms of the parameter, with singular and monotone
logarithmic terms involved. Again, a careful positivity-preserving analysis ensures
a unique solution of this one-parameter optimization, and the positivity of the log-
arithmic arguments are theoretically justified. Since it is a convex optimization,
the Newton’s iteration can be efficiently implemented and the positivity property
will be preserved in the iteration process if the initial guess is sufficiently accurate.

To verify the advantage of such a numerical solver, we present an iteration conver-
gence analysis of the PSD iteration algorithm. Based on the fact that the equations
can be reformulated as minimization problems involving strictly convex function-
als in Hilbert spaces, the convexity analysis enables us to theoretically derive the
convergence analysis for the nonlinear iterative solver. However, such an analysis is
much more challenging than the gradient equations with a polynomial approxima-
tion of the energy potential since a positivity-preserving property must be justified
at each iteration stage. Moreover, a uniform distance between the numerical solu-
tion and the singular limit values (of ±1), i.e. the strict separation property, must be
established to pass through the nonlinear estimates associated with the logarithmic
terms. More specifically, the convergence estimate at the previous time step gives
a discrete H1

h bound of the initial iteration error. Meanwhile, the non-increasing
numerical energy (at each iteration stage) indicates a uniform discrete ℓ2 bound of
the numerical solution in the iteration process. Furthermore, a careful application
of a discrete Sobolev embedding establishes a connection between the discrete ℓ2

norm and the corresponding energy norm associated with the preconditioning stage.
All these techniques lead to a theoretical justification of the geometric convergence
rate for the PSD iteration solver. As a result, an H1

h convergence estimate for the
iteration error leads to the strict separation property of the numerical solution at
the next iteration stage, with the help of an inverse inequality. To our knowledge,
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this is the first result of a nonlinear iteration convergence for an iteration solver
applied to a singular energy potential gradient flow.

The rest of this paper is organized as follows. In Section 2, we review the finite
difference spatial discretization and recall the convex splitting numerical scheme for
the Cahn-Hilliard equation (2) – (3) with Flory-Huggins energy potential. Some
preliminary estimates are derived as well. In Section 3, the PSD iteration solver
is proposed. In Section 4, a theoretical analysis of the geometric convergence rate,
as well as the positivity-preserving analysis in the iteration process, is provided.
Finally, some numerical results are presented in Section 5 and we provide concluding
remarks in Section 6.

2. Review of the numerical scheme

2.1. The finite difference spatial discretization. The spatial discretization
notations are excerpted from [37, 57, 58], and the references therein. We summarize
the necessary notations below. For Ω = [0, 1]2, and for any N ∈ N, the mesh size is
given by h := 1

N , and it is assumed that the mesh spacing in the x and y directions
are the same. Additionally, the following two uniform, infinite grids are introduced,
with grid spacing h > 0:

E := {pi+ 1
2
| i ∈ Z}, C := {pi | i ∈ Z},

where pi = p(i) := (i− 1
2 ) ·h. With these grids in place, we define three 2-D discrete

N2-periodic function spaces:

Cper := {ν : C × C → R | νi,j = νi+αN,j+βN , ∀ i, j, α, β ∈ Z} ,

Ex
per :=

{
ν : E × C → R

∣∣∣ νi+ 1
2 ,j

= νi+ 1
2+αN,j+βN , ∀ i, j, α, β ∈ Z

}
,

Ey
per :=

{
ν : E × C → R

∣∣∣ νi,j+ 1
2
= νi+αN,j+ 1

2+βN , ∀ i, j, α, β ∈ Z
}
,

in which the identification νi,j = ν(pi, pj) was used. The functions of Cper are
called cell centered functions. The functions of Ex

per and Ey
per are called east-west

and north-south edge-centered functions, respectively. In addition, we define the
space of mean zero functions as

C̊per :=

ν ∈ Cper

∣∣∣∣∣∣0 = ν :=
h2

|Ω|

m∑
i,j=1

νi,j

 .(5)

Finally, the space E⃗per := Ex
per × Ey

per is introduced.
The spatial average and difference operators are given by

Axνi+ 1
2 ,j

:=
1

2
(νi+1,j + νi,j) , Dxνi+ 1

2 ,j
:=

1

h
(νi+1,j − νi,j) ,

Ayνi,j+ 1
2
:=

1

2
(νi,j+1 + νi,j) , Dyνi,j+ 1

2
:=

1

h
(νi,j+1 − νi,j) ,

with Ax, Dx : Cper → Ex
per, Ay, Dy : Cper → Ey

per. Similarly, the following notations
are introduced:

axνi,j :=
1

2

(
νi+ 1

2 ,j
+ νi− 1

2 ,j

)
, dxνi,j :=

1

h

(
νi+ 1

2 ,j
− νi− 1

2 ,j

)
,

ayνi,j :=
1

2

(
νi,j+ 1

2
+ νi,j− 1

2

)
, dyνi,j :=

1

h

(
νi,j+ 1

2
− νi,j− 1

2

)
,
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with ax, dx : Ex
per → Cper and ay, dy : Ey

per → Cper. The discrete gradient ∇h :

Cper → E⃗per is defined as

∇hνi,j :=
(
Dxνi+ 1

2 ,j
, Dyνi,j+ 1

2

)
,

and the discrete divergence ∇h· : E⃗per → Cper becomes

∇h · f⃗i,j := dxf
x
i,j + dyf

y
i,j ,

where f⃗ = (fx, fy) ∈ E⃗per. The standard 2-D discrete Laplacian, ∆h : Cper → Cper,
is given by

∆hνi,j :=∇h · (∇hϕ)i,j = dx(Dxν)i,j + dy(Dyν)i,j

=
1

h2
(νi+1,j + νi−1,j + νi,j+1 + νi,j−1 − 4νi,j,k) .

More generally, if D is a periodic scalar function that is defined at all of the edge

center points and f⃗ ∈ E⃗per, then Df⃗ ∈ E⃗per, assuming point-wise multiplication,
and we may define

∇h ·
(
Df⃗
)
i,j,k

= dx (Dfx)i,j + dy (Dfy)i,j .

Specifically, if ν ∈ Cper, then ∇h · (D∇h ) : Cper → Cper is defined at a point-wise
level:

∇h ·
(
D∇hν

)
i,j

= dx (DDxν)i,j + dy (DDyν)i,j .

Finally, we define the following grid inner products:

⟨ν, ξ⟩ := h2
N∑

i,j=1

νi,j ξi,j , ν, ξ ∈ Cper,

[ν, ξ]x := ⟨ax(νξ), 1⟩, ν, ξ ∈ Ex
per,

[ν, ξ]y := ⟨ay(νξ), 1⟩, ν, ξ ∈ Ey
per,⟨

f⃗1, f⃗2

⟩
:= [fx1 , f

x
2 ]x + [fy1 , f

y
2 ]y , f⃗i = (fxi , f

y
i ) ∈ E⃗per, i = 1, 2.

The norms for cell-centered functions are accordingly introduced. If ν ∈ Cper, then
∥ν∥22 := ⟨ν, ν⟩; ∥ν∥pp := ⟨|ν|p, 1⟩, for 1 ≤ p < ∞, and ∥ν∥∞ := max1≤i,j≤N |νi,j |.
The gradient norms are similarly defined: for ν ∈ Cper,

∥∇hν∥22 := ⟨∇hν,∇hν⟩ = [Dxν,Dxν]x + [Dyν,Dyν]y ,

and for 1 ≤ p <∞,

∥∇hν∥p :=
(
[|Dxν|p, 1]x + [|Dyν|p, 1]y

) 1
p

.

In addition, a discrete H1
h norm is defined as:

∥ν∥2H1
h
:= ∥ν∥22 + ∥∇hν∥22 .(6)

Proposition 2.1. Let D be an arbitrary periodic, scalar function defined on all

of the edge center points. For any ψ, ν ∈ Cper and any f⃗ ∈ E⃗per, the following
summation by parts formulas are valid:

⟨ψ,∇h · f⃗⟩ = −⟨∇hψ, f⃗⟩,(7a)

⟨ψ,∇h · (D∇hν)⟩ = −⟨∇hψ,D∇hν⟩.(7b)
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To facilitate the convergence analysis, we introduce a discrete analogue of the
space H−1

per (Ω), as outlined in [56]. Suppose that D is a positive, periodic scalar
function defined at all of the edge center points. For any ϕ ∈ Cper, there exists a

unique ψ ∈ C̊per that solves

LD(ψ) := −∇h · (D∇hψ) = ϕ− ϕ,

where we recall that ϕ := |Ω|−1⟨ϕ, 1⟩. We equip this space with a bilinear form: for

any ϕ1, ϕ2 ∈ C̊per, define

⟨ϕ1, ϕ2⟩L−1
D

:= ⟨D∇hψ1,∇hψ2⟩,

where ψi ∈ C̊per is the unique solution to

LD(ψi) := −∇h · (D∇hψi) = ϕi, i = 1, 2.

Since LD is symmetric positive definite, ⟨ · , · ⟩L−1
D

is an inner product on C̊per.
(See [56].) When D ≡ 1, we drop the subscript and write L1 = L and, in this case,
we write ⟨ · , · ⟩L−1

D
=: ⟨ · , · ⟩−1,h. In the general setting, the norm associated

with this inner product is denoted as ∥ϕ∥L−1
D

:=
√
⟨ϕ, ϕ⟩L−1

D
, for all ϕ ∈ C̊per. In

particular, if D ≡ 1, the notation becomes ∥ · ∥L−1
D

=: ∥ · ∥−1,h.

Proposition 2.2. For any ϕ ∈ C̊per, we have

∥ϕ∥2 ≤ ∥ϕ∥
1
2

−1,h ∥∇hϕ∥
1
2
2 .(8)

Proof. The identity is based on the summation-by-parts formula,

(9) ⟨ϕ1, ϕ2⟩L−1
D

= ⟨ϕ1,L−1
D (ϕ2)⟩ = ⟨L−1

D (ϕ1), ϕ2⟩,

and the definitions above. �

2.2. A positivity-preserving, energy stable numerical scheme. Consider a
uniform partition of time, 0 = t0 < t1 < · · · < tF = T , such that tk = k∆t.
The first order convex splitting scheme to the Cahn-Hilliard equation (2) – (3),
with Flory-Huggins energy potential and a constant mobility M(ϕ) ≡ 1, that we
consider herein was proposed in [13] and is stated as follows: given ϕk ∈ Cper, find
ϕk+1 ∈ Cper such that

ϕk+1 − ϕk

∆t
=∆hµ

k+1,

µk+1 = ln(1 + ϕk+1)− ln(1− ϕk+1)− θ0ϕ
k − ε2∆hϕ

k+1.

(10)

To define the initial conditions for the numerical scheme above, we let Φ be the
exact solution of the Cahn-Hilliard equation given by (2) – (3) and take the initial
data to have sufficient regularity so that the exact solution has regularity of class
R, where

(11) R := H2 (0, T ;Cper(Ω)) ∩H1
(
0, T ;C2

per(Ω)
)
∩ L∞ (0, T ;C6

per(Ω)
)
,

i.e. assume Φ ∈ R. Additionally, we suppose that N = 2K + 1 and let PN :
Cper(Ω) → BK(Ω) denote the (spatial) Fourier projection operator, where BK is
the space of Ω-periodic (complex) trigonometric polynomials of degree up to and
including K. Furthermore, we define Ph : Cper(Ω) → Cper as the canonical grid
projection operator. Set ΦN ( · , t) := PNΦ( · , t), the (spatial) Fourier projection of
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the exact solution into BK . Then, using the mass-conservative projection for the
initial data, ϕ0 = PhΦN ( · , t = 0), that is

(12) ϕ0i,j := ΦN (pi, pj , t = 0),

the positivity-preserving property, unique solvability, unconditional energy stabil-
ity, and mass conservation for this scheme have been established in [13] and are
summarized in the following theorem.

Theorem 2.3. [13] Given ϕ0 = PhΦN ( · , t = 0) and ϕk ∈ Cper, with ∥ϕk∥∞ ≤M ,

for some finite M > 0, and
∣∣∣ϕk∣∣∣ < 1, there exists a unique solution ϕk+1 ∈ Cper to

(10), with ϕk+1 − ϕk ∈ C̊per, ∥ϕk+1∥∞ < 1, and

(13) ϕm = ϕm−1, ∀ m ∈ N.
In addition, we have the following energy estimate,

Eh(ϕ
k+1) + ∆t∥∇hµ

k+1∥22 ≤ Eh(ϕ
k),(14)

where

Eh(ϕ) := ⟨1 + ϕ, ln(1 + ϕ)⟩+ ⟨1− ϕ, ln(1− ϕ)⟩ − θ0
2
∥ϕ∥22 +

ε2

2
∥∇hϕ∥22,(15)

and the following uniform-in-time H1
h estimate,

(16) ∥∇hϕ
m∥2 ≤ C1, ∀m ≥ 0,

where C1 depends only on the initial data, Ω, and ε.

Moreover, an optimal rate convergence estimate is available in the ℓ∞(0, T ;H−1
h )∩

ℓ2(0, T ;H1
h) norm and is summarized in the theorem below.

Theorem 2.4. [13] Suppose that the initial data satisfies Φ( · , t = 0) ∈ C6
per(Ω)

and assume that the exact solution Φ for the Cahn-Hilliard equation (2) – (3) is
of regularity class R. Then, for all positive integers k with tk ≤ T , there exists a
constant C2 > 0 that is independent of k, ∆t, and h such that

(17) ∥ϕ̃k∥−1,h +

(
ε2∆t

k∑
m=1

∥∇hϕ̃
m∥22

)1/2

≤ C2(∆t+ h2),

provided that ∆t and h are sufficiently small and where the error grid function ϕ̃m

is defined as

(18) ϕ̃m := PhΦ
m
N − ϕm, ∀ m ∈ {0, 1, 2, 3, · · · } .

We conclude by remarking that the discrete norm ∥ · ∥−1,h is well defined for the

error grid function ϕ̃m since (12) implies that ϕ̃m = 0, for any m ∈ {0, 1, 2, 3, · · · }.

2.3. Strict separation property of the numerical solution and other pre-
liminaries. In this subsection, we derive a strict separation property for the nu-
merical solution of (10) provided that it has been exactly implemented. With this
goal in mind, we present several useful properties for the exact solution of the
Cahn-Hilliard equation given by (2) – (3). Specifically, if we suppose that the exact
solution Φ for the Cahn-Hilliard equation (2) – (3) is of regularity class R, then we
expect to have (and assume to have) the following separation property:

(19) 1 + Φ, 1− Φ ≥ ϵ0,

at a point-wise level, for some ϵ0 > 0. Note that ϵ0 is the uniform distance
between the phase variable and the singular value limits that is dependent on
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ε, θ0, and the initial data discussed in the Introduction above. Therefore, such
a separation parameter ϵ0 is solely related to the PDE problem. Additionally, if
Φ ∈ L∞(0, T ;Hℓ

per(Ω)), then the following projection approximation is standard:

(20) ∥ΦN − Φ∥L∞(0,T ;Hn) ≤ CPh
ℓ−n ∥Φ∥L∞(0,T ;Hℓ) , ∀ 0 ≤ n ≤ ℓ,

where CP > 0 only depends on Ω. Furthermore, h can be chosen sufficiently small
so that

1 + ΦN , 1− ΦN ≥ (3/4) ϵ0.

Finally, the following mass conservative property is available at the discrete level
since ΦN ∈ BK :

(21) Φm
N =

1

|Ω|

∫
Ω

ΦN (·, tm) dx =
1

|Ω|

∫
Ω

ΦN (·, tm−1) dx = Φm−1
N , ∀ m ∈ N,

where the notations Φm
N , Φm denote ΦN ( · , tm) and Φ( · , tm), respectively.

Lemma 2.5. Let the initial data Φ( · , t = 0) ∈ C6
per(Ω) and suppose the exact solu-

tion for the Cahn-Hilliard equation (2) – (3) is of regularity class R. Additionally,
suppose that the exact solution for the Cahn-Hilliard equation (2) – (3) satisfies the
separation property (19). Then, provided ∆t and h are sufficiently small and we
take a linear refinement of ∆t such that CLh ≤ ∆t ≤ CUh, we have

(22) 1 + ϕm, 1− ϕm ≥ ϵ0
2
,

at a point-wise level, for all positive integers m such that 0 ≤ m ≤ k + 1.

Proof. As a result of the leading order convergence estimate (17) and the linear
refinement requirement, we obtain

(23) ∥∇hϕ̃
m∥2 ≤ C2(∆t+ h2)

ε∆t
1
2

≤ C3(∆t
1
2 + h

3
2 ), 0 ≤ m ≤ k + 1.

Meanwhile, the following inverse inequality is available for any function f such that
f = 0:

(24) ∥f∥∞ ≤ CInv∥∇hf∥2
hδ0

, for δ0 > 0.

Hence, we arrive at the following ∥ · ∥∞ estimate of the numerical error function,
at each time step tm:

∥ϕ̃m∥∞ ≤CInv∥∇hϕ̃
m∥2

hδ0
≤ CInvC3(∆t

1
2 + h

3
2 )

hδ0

≤CInvC3(∆t
1
4 + h

5
4 ) ≤ ϵ0

4
, 0 ≤ m ≤ k + 1,(25)

for 0 < δ0 <
1
4 , provided that ∆t and h are sufficiently small. The combination of

this inequality with the fact that 1+ΦN , 1−ΦN ≥ (3/4) ϵ0, concludes the proof. �

Finally, the strict separation property of the numerical scheme allows us to obtain
the following lemma which will be critical to the proof of the geometric convergence
of the PSD solver presented in Section 4.

Lemma 2.6. Let the initial data Φ( · , t = 0) ∈ C6
per(Ω) and suppose the exact

solution Φ for the Cahn-Hilliard equation (2) – (3) is of regularity class R. Ad-
ditionally, suppose that the exact solution for the Cahn-Hilliard equation (2) – (3)
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satisfies the separation property (19). Let ϕk ∈ Cper and ϕk+1 ∈ Cper be solutions
to (10) at consecutive time steps. Define

Rk :=
ε2

2
(∥∇hϕ

k∥22 − ∥∇hϕ
k+1∥22) + ⟨1 + ϕk, ln(1 + ϕk)⟩ − ⟨1 + ϕk+1, ln(1 + ϕk+1)⟩

+ ⟨1− ϕk, ln(1− ϕk)⟩ − ⟨1− ϕk+1, ln(1− ϕk+1)⟩ − θ0⟨ϕk, ϕk − ϕk+1⟩.
(26)

Then, provided ∆t and h are sufficiently small and a linear refinement of ∆t is
taken such that CLh ≤ ∆t ≤ CUh, we have

Rk ≤ CR(∆t
1
2 + h

3
2 ),(27)

where CR depends on Ω, ε, ϵ0, and θ0 but does not depend on k, h or ∆t.

Proof. To begin, we note that the regularity assumption for the exact solution Φ
implies the following estimates for the projection solution ΦN :

∥Φk+1
N − Φk

N∥−1,h ≤C4∆t,

∥Φk+1
N − Φk

N∥2 ≤C5∆t,

∥∇h(Φ
k+1
N − Φk

N )∥2 ≤C6∆t.

(28)

Meanwhile, inequalities (17) and (23) yield

(29) ∥ϕ̃m∥2 ≤ ∥ϕ̃m∥
1
2

−1,h · ∥∇hϕ̃
m∥

1
2
2 ≤ C

1
2
2 C

1
2
3 (∆t

3
4 + h

7
4 ), m = k, k + 1,

where we have invoked Proposition 2.2. A combination of (28) with (29) indicates
that

∥ϕk+1 − ϕk∥2 ≤
(
C5 + C

1
2
2 C

1
2
3

)
(∆t

3
4 + h

7
4 ),(30)

and

∥∇h(ϕ
k+1 − ϕk)∥2 ≤ (C6 + C3) (∆t

1
2 + h

3
2 ),(31)

provided ∆t < 1 and where we have added and subtracted appropriate terms and
invoked the triangle inequality.

Therefore, based on the Cauchy-Schwarz and triangle inequalities and the uniform-
in-time H1

h estimate (16), the following estimate is available for the first term in
the definition of Rk:

∥∇hϕ
k∥22 − ∥∇hϕ

k+1∥22 = ⟨∇h(ϕ
k + ϕk+1),∇h(ϕ

k − ϕk+1)⟩

≤ ∥∇h(ϕ
k + ϕk+1)∥2 · ∥∇h(ϕ

k − ϕk+1)∥2
≤ 2C1 (C6 + C3) (∆t

1
2 + h

3
2 ).(32)

For the nonlinear inner product difference, an application of the intermediate value
theorem gives

⟨1 + ϕk, ln(1 + ϕk)⟩ − ⟨1 + ϕk+1, ln(1 + ϕk+1)⟩

=⟨ln(1 + η1) + 1, ϕk − ϕk+1⟩,(33)

where η1 is between ϕ
k and ϕk+1. Meanwhile, by the strict separation property (22),

we see that

| ln(1 + η1) + 1| ≤ ln(2ϵ−1
0 ) + 1.(34)
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In turn, a combination of (33) and (34) along with the fact that ∥f∥2 ≤ |Ω| 12 ∥f∥∞,
for any f ∈ Cper(Ω), leads to

⟨1 + ϕk, ln(1 + ϕk)⟩ − ⟨1 + ϕk+1, ln(1 + ϕk+1)⟩

≤|Ω| 12 ∥ ln(1 + η1) + 1∥∞ · ∥ϕk − ϕk+1∥2

≤
(
C5 + C

1
2
2 C

1
2
3

)
|Ω| 12 (ln(2ϵ−1

0 ) + 1)(∆t
3
4 + h

7
4 ),(35)

with the convergence estimate (30) applied in the last step. Similarly, we are able
to obtain

⟨1− ϕk, ln(1− ϕk)⟩ − ⟨1− ϕk+1, ln(1− ϕk+1)⟩

≤
(
C5 + C

1
2
2 C

1
2
3

)
|Ω| 12 (ln(2ϵ−1

0 ) + 1)(∆t
3
4 + h

7
4 ).(36)

Finally, the last term on the right hand side of (26) is bounded as follows:

−θ0(ϕk, ϕk − ϕk+1) ≤ θ0∥ϕk∥2 · ∥ϕk − ϕk+1∥2

≤ θ0|Ω|
1
2

(
C5 + C

1
2
2 C

1
2
3

)
(∆t

3
4 + h

7
4 ),(37)

in which the fact that ∥ϕk∥∞ < 1 has been applied. Therefore, a substitution
of (32), (35), (36), and (37) into (26) results in the following bound, provided that
∆t and h are sufficiently small:

Rk ≤ CR(∆t
1
2 + h

3
2 ),(38)

where CR depends on Ω, ε, ϵ0, and θ0 but does not depend on k, h or ∆t. �

3. The preconditioned steepest descent iteration solver

In this section, we present the preconditioned steepest descent iteration solver.
For the numerical solution of (10), we consider the discrete operator

Nh(ϕ) := (−∆h)
−1(ϕ− ϕk) + ∆t(ln(1 + ϕ)− ln(1− ϕ))− ε2∆t∆hϕ,(39)

and we set

f = θ0∆tϕ
k.(40)

Hence, given ϕk ∈ Cper, solving the numerical scheme (10) for ϕk+1 ∈ Cper is
equivalent to solving the following nonlinear system

Nh(ϕ) = f, for ϕ ∈ Cper.(41)

It should be understood that the analysis focuses on a single iteration of the
numerical method (10) and we thus utilize the notation ϕ := ϕk+1 throughout the
remainder of the paper.

Lemma 3.1. Let ϕk ∈ Cper be given. Define the discrete energy

Jh(ϕ) :=
1

2
∥ϕ− ϕk∥2−1,h +∆t(⟨1 + ϕ, ln(1 + ϕ)⟩+ ⟨1− ϕ, ln(1− ϕ)⟩)

+
ε2∆t

2
∥∇hϕ∥22 − ⟨f, ϕ⟩,(42)

over the admissible set

Wh :=
{
ϕ ∈ Cper

∣∣∣ϕ− ϕk ∈ C̊per
}
.(43)

Then, solving (41) is equivalent to minimizing Jh(ϕ).
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Proof. A direct calculation reveals that Jh is twice Gataeux differentiable and con-
vex. Specifically, we have

δϕJh(ϕ)(v) =⟨(−∆h)
−1(ϕ− ϕk) + ∆t(ln(1 + ϕ)− ln(1− ϕ)), v⟩

+ ε2∆t⟨∇hϕ,∇hv⟩ − ⟨f, v⟩,(44)

for any v ∈ C̊per, and

δϕϕJh(ϕ)(v, w) =⟨(−∆h)
−1v, w⟩+∆t

⟨
1

1 + ϕ
+

1

1− ϕ
, vw

⟩
+ ε2∆t⟨∇hv,∇hw⟩,(45)

for any v, w ∈ C̊per. This implies the convexity of Jh, due to the fact that

δϕϕJh(ϕ)(v, v) =⟨(−∆h)
−1v, v⟩+∆t

⟨
1

1 + ϕ
+

1

1− ϕ
, v2
⟩

+ ε2∆t⟨∇hv,∇hv⟩ ≥ 0.(46)

Setting δϕJh(ϕ)(v) = 0 concludes the proof. �

In a steepest descent approach for finding the minimizer of Jh(ϕ), the general

strategy is to find the normalized steepest descent direction dn ∈ C̊per such that

δϕJh(v)(dn) = −∥δϕJh(v)∥∗ ,(47)

under the restriction that

∥dn∥C̊per
= 1,(48)

for all v ∈ C̊per, where ∥ · ∥C̊per
is a norm on C̊per and ∥ · ∥∗ is the standard dual

norm defined by

∥δϕJh(v)∥∗ := sup
u∈C̊per

|δϕJh(v)(u)|
∥u∥C̊per

.(49)

However, the steepest descent method is not optimal. We therefore introduce pre-
conditioning. Specifically, we introduce the operator Ah such that

Ahψ := (−∆h)
−1ψ +∆tψ − ε2∆t∆hψ,(50)

for ψ ∈ C̊per. This operator is clearly symmetric and positive definite. In fact, the
standard steepest descent solver would lead to a very slow iteration convergence
rate, especially for a high-dimensional optimization problem with a high condition
number. A preconditioning approach, such as the one given by (50), provides a
search direction much closer to the exact error than the standard gradient direction.
In fact, among the operators involved in the nonlinear scheme (39), a linearized
approach has to be taken. In particular, the temporal derivative and the surface
diffusion parts correspond to constant-coefficient linear terms, so that the form
of these two linear operators is exactly kept in the preconditioning process (50).
Meanwhile, the nonlinear term ∆t(ln(1 + ϕ) − ln(1 − ϕ)) is monotone, and its
linearized Lipschitz constant, which relies on its derivative, ∆t

1−ϕ2 , is expected to be

ofO(∆t), provided that the separation property is satisfied. In turn, we take a linear
term, ∆tψ, to approximate the change associated with the nonlinear term. Such
a combined choice will greatly improve the iteration convergence rate for a convex
optimization with elliptic structure, as will be demonstrated by the theoretical
analysis in the later sections. Also see the related analysis in [33].
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With this operator at our disposal, the preconditioned steepest descent method
is defined via the following algorithm.

Algorithm 1 Preconditioned Steepest Descent Solver

Define ϕ(0) := ϕk.
For n ≥ 0, solve

Ahdn = f −Nh(ϕ
(n)),(51)

for dn ∈ C̊per.
Determine step length ᾱ via

ᾱ = argminαJh(ϕ
(n) + αdn) = argzeroα

⟨
δϕJh(ϕ

(n) + αdn), dn

⟩
.(52)

Set

ϕ(n+1) = ϕ(n) + ᾱdn.(53)

Remark 3.2. Equation (51) can be exactly and efficiently implemented by an FFT-
based finite difference solver.

Remark 3.3. It is observed that Jh is a strictly convex function, and the convex
energy terms, ⟨1 + ϕ, ln(1 + ϕ)⟩, ⟨1 − ϕ, ln(1 − ϕ)⟩, have singular and monotone
derivatives as ϕ ↘ −1 and ϕ ↗ 1. In turn, the one-parameter function in (52),

namely
⟨
δϕJh(ϕ

(n) + αdn), dn

⟩
, is strictly convex in terms of α, and this one-

parameter function has singular and monotone derivatives as (ϕ(n) + αdn) → ±1.
As a result, with an application of the positivity-preserving analysis technique report-
ed in [13], there is a unique solution to this one-dimensional optimization problem,
with −1 < ϕ(n+1) < 1, at a point-wise level.

4. The geometric convergence of the preconditioned steepest descent
solver

We will now show that the preconditioned steepest descent solver has a geometric
convergence rate. The proof of this fact requires the following lemmas and corollary.

Lemma 4.1. The search direction dn defined in (51) is the steepest descent direc-
tion, at ϕ(n) ∈Wh with respect to the norm ∥ · ∥Ah

, where

∥un∥2Ah
= ∥un∥2−1,h +∆t ∥un∥22 + ε2∆t ∥∇hun∥22 .(54)

Proof. The proof follows similarly to that found in [14]. By definition, the normal-

ized steepest decent direction at the point v ∈ Wh is a vector d ∈ C̊per satisfying
(47). From (51), we have

⟨Ahdn, v⟩ = −δϕJh(ϕ(n))(v),(55)

for all v ∈ C̊per. Note that dn is the Riesz representation of the functional δϕJh(ϕ
(n))

in the space C̊per with respect to the norm ∥ · ∥Ah
. Hence

(56) ∥dn∥Ah
=
∥∥∥δϕJh(ϕ(n))∥∥∥

∗
,

and

δϕJh(ϕ
(n))(dn) = −∥dn∥2Ah

= −
∥∥∥δϕJh(ϕ(n))∥∥∥

∗
· ∥dn∥Ah

,(57)

for all dn ∈ C̊per. �
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Corollary 4.2. Let {ϕ(n)} be the sequence generated by (53). Then we have

Jh(ϕ
(n+1)) ≤ Jh(ϕ

(n)).(58)

Lemma 4.3. For any u, v ∈ C̊per, the following inequality is valid

⟨δϕJh(u)− δϕJh(v), u− v⟩ ≥ CLB ∥u− v∥2Ah
,(59)

with CLB = min
{

1
2 , ε∆t

− 1
2

}
.

Proof. A careful calculation reveals that

⟨δϕJh(u)− δϕJh(v), u− v⟩ = ∆t⟨ln(1 + u)− ln(1 + v)− ln(1− u) + ln(1− v), u− v⟩
+ ∥u− v∥2−1,h + ε2∆t∥∇h(u− v)∥22.(60)

Meanwhile, the following estimates are available by the convexity of the logarithmic
terms:

⟨ln(1 + u)− ln(1 + v), u− v⟩ ≥ 0,(61)

and

⟨− ln(1− u) + ln(1− v), u− v⟩ ≥ 0.(62)

As a consequence, we get

⟨δϕJh(u)− δϕJh(v), u− v⟩ ≥ ∥u− v∥2−1,h + ε2∆t ∥∇h(u− v)∥22

≥ 1

2
∥u− v∥2−1,h +

1

2
ε2∆t ∥∇h(u− v)∥22 + ε

√
∆t∥u− v∥22,(63)

in which we have utilized Proposition 2.2 to obtain

1

2
∥u− v∥2−1,h +

1

2
ε2∆t ∥∇h(u− v)∥22 ≥ ε

√
∆t∥u− v∥−1,h · ∥∇h(u− v)∥2

≥ ε
√
∆t∥u− v∥22.(64)

In comparison with the form of ∥u− v∥2Ah
:

∥u− v∥2Ah
= ∥u− v∥2−1,h +∆t ∥u− v∥22 + ε2∆t ∥∇h(u− v)∥22 ,(65)

we conclude that estimate (59) is valid by choosing CLB = min
{

1
2 , ε∆t

− 1
2

}
. �

Lemma 4.4. Let {ϕ(n)} be the sequence generated by (53). Furthermore, suppose
that

(66) 1 + ϕ(n) ≥ ϵ0
4
, 1− ϕ(n) ≥ ϵ0

4
,

at a point-wise level and define the iteration error en := Jh(ϕ
(n)) − Jh(ϕ). Then

we have

en ≤ ⟨δϕJh(ϕ(n))− δϕJh(ϕ), ϕ
(n) − ϕ⟩ ≤ CUB

∥∥∥δϕJh(ϕ(n))∥∥∥2
∗
,(67)

and

|δϕϕJh(θn)(dn, dn)| ≤ CD2 ∥dn∥2Ah
,(68)

for any θn in the line segment from ϕ(n) to ϕ(n+1), where the constants CUB, CD2

have the following forms:

CUB = C−1
LB = max

{
2, ε−1∆t

1
2

}
, and CD2 = 1 + 4ϵ−1

0 ε−1∆t
1
2 .(69)
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Proof. By the properties of the convexity, we have

en = Jh(ϕ
(n))− Jh(ϕ) ≤ ⟨δϕJh(ϕ(n))− δϕJh(ϕ), ϕ

(n) − ϕ⟩.(70)

Using the fact that δϕJh(ϕ) ≡ 0, combined with an application of inequality (59)
(from Lemma 4.3) and Young’s inequality, we arrive at

⟨δϕJh(ϕ(n))− δϕJh(ϕ), ϕ
(n) − ϕ⟩

= ⟨δϕJh(ϕ(n)), ϕ(n) − ϕ⟩

≤
∥∥∥δϕJh(ϕ(n))∥∥∥

∗

∥∥∥ϕ− ϕ(n)
∥∥∥
Ah

≤ 1

2
C−1

LB

∥∥∥δϕJh(ϕ(n))∥∥∥2
∗
+

1

2
CLB

∥∥∥ϕ− ϕ(n)
∥∥∥2
Ah

≤ 1

2
C−1

LB

∥∥∥δϕJh(ϕ(n))∥∥∥2
∗
+

1

2
(δϕJh(ϕ

(n))− δϕJh(ϕ), ϕ
(n) − ϕ).(71)

Therefore, we can take constant CUB = C−1
LB = max

{
2, ε−1∆t

1
2

}
, such that

en ≤ ⟨δϕJh(ϕ(n))− δϕJh(ϕ), ϕ
(n) − ϕ⟩ ≤ CUB

∥∥∥δϕJh(ϕ(n))∥∥∥2
∗
.(72)

Next we derive an estimate for |δϕϕJh(θn)(dn, dn)|. We begin by applying the
discrete Hölder inequality to (44) and (45) to obtain the following bounds:

|δϕJh(ϕ)(v)| ≤ ∥ϕ∥−1,h · ∥v∥−1,h + S0∆t|Ω|
1
2 ∥v∥2

+ ε2∆t ∥∇hϕ∥2 · ∥∇hv∥2 + ∥f∥2 · ∥v∥2 ,(73)

and

|δϕϕJh(ϕ)(v, w)| ≤ ∥v∥−1,h · ∥w∥−1,h + S1∆t ∥v∥2 · ∥w∥2 + ε2∆t ∥∇hv∥2 · ∥∇hw∥2 ,
(74)

where

S0 =

∥∥∥∥ln(1 + ϕ

1− ϕ

)∥∥∥∥
∞
, and S1 =

∥∥∥∥ 2

1− ϕ2

∥∥∥∥
∞
.(75)

With the strict separation assumption (66) at hand, the following bounds for S0

and S1 become available:

S0 =

∥∥∥∥ln 1 + ϕk+1,(n)

1− ϕk+1,(n)

∥∥∥∥
∞

≤ ln(4ϵ−1
0 ), and S1 =

∥∥∥∥ 2

1− (ϕk+1,(n))2

∥∥∥∥
∞

≤ 8ϵ−1
0 .(76)

Thus, with an application of (74), we get

|δϕϕJh(θn)(dn, dn)| ≤ ∥dn∥2−1,h + S1∆t ∥dn∥22 + ε2∆t ∥∇hdn∥22 .(77)

On the other hand, an application of the discrete Sobolev inequality (8) (in
Proposition 2.2) indicates that

∥dn∥2−1,h + ε2∆t ∥∇hdn∥22 ≥ 2ε∆t
1
2 ∥dn∥−1,h · ∥∇hdn∥2 ≥ 2ε∆t

1
2 ∥dn∥22 .(78)

Consequently, a substitution of (78) into (77) yields

|δϕϕJh(θn)(dn, dn)| ≤ ∥dn∥2−1,h + ε2∆t ∥∇hdn∥22 + S1∆t ∥dn∥22
≤
(
1 + 4ϵ−1

0 ε−1∆t
1
2

)
(∥dn∥2−1,h + ε2∆t ∥∇hdn∥22).(79)

In comparison with the form of ∥dn∥2Ah
:

∥dn∥2Ah
= ∥dn∥2−1,h +∆t ∥dn∥22 + ε2∆t ∥∇hdn∥22 ,(80)
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we conclude that estimate (68) is valid by choosing CD2 = 1 + 4ϵ−1
0 ε−1∆t

1
2 . �

Remark 4.5. We see that CUB = O(1) if ∆t = O(ε2), while CUB = O(ε−1∆t
1
2 )

with a small ε value. A similar scaling law is available for CD2. Specifically,

CD2 = O(ϵ−1
0 ) if ∆t = O(ε2), while CD2 = O(ϵ−1

0 ε−1∆t
1
2 ) with a small ε value.

Theorem 4.6. Under the separation assumption (19) for the exact PDE solution,
let {ϕ(n)} be the sequence generated by (53). Furthermore, it is assumed that

(81) 1 + ϕ(n) ≥ ϵ0
4
, 1− ϕ(n) ≥ ϵ0

4
,

at a point-wise level. Then we have

en ≤
(
1− 1

2CUBCD2

)n

e0, with
1

2CUBCD2
< 1.(82)

Proof. From the definition of the steepest descent direction, we apply (68) (from
Lemma 4.4) and get the following inequality, for an arbitrary α:

Jh(ϕ
(n) + αdn)− Jh(ϕ

(n)) = αδϕJh(ϕ
(n))(dn) +

α2

2
δϕϕJh(θ)(dn, dn)

≤ αδϕJh(ϕ
(n))(dn) +

α2

2
CD2 ∥dn∥2Ah

=
(
− α+

α2

2
CD2

) ∥∥∥δϕJh(ϕ(n))∥∥∥2
∗
.(83)

Hence, the minimum is achieved at ᾱ = 1
CD2

and we have

en+1 − en = Jh(ϕ
(n+1))− Jh(ϕ

(n))

≤ Jh(ϕ
(n) + ᾱdn)− Jh(ϕ

(n))

= − 1

2CD2

∥∥∥δϕJh(ϕ(n))∥∥∥2
∗
.(84)

Therefore,

en − en+1 ≥ 1

2CD2

∥∥∥δϕJh(ϕ(n))∥∥∥2
∗

≥ 1

2CUBCD2
en,(85)

in which the estimate (67) of Lemma 4.4 was applied in the last step. Hence,

en+1 ≤
(
1− 1

2CUBCD2

)
en,(86)

and the desired result follows. �
Remark 4.7. A geometric convergence rate is assured by Theorem 4.6. Regarding
the convergence constant, we observe that CUBCD2 = O(ϵ−1

0 ) for a time step choice
of ∆t = O(ε2), while CUBCD2 = O(ϵ−1

0 ε−2∆t) with a small ε value. In turn, this

estimate leads to a convergence rate of αn
0 , with α0 = 1−O(∆t−1ϵ−1

0 ε
5
2 ) such that

0 < α0 < 1 for ∆t = O(ε2).
This analysis also verifies the following well-known fact observed in the exten-

sive numerical experiments: the steepest descent nonlinear iteration provides a fast
convergence for a small time step size. Specifically, with a smaller value of ε, the
numerical implementation becomes more and more challenging. Fortunately, the
choice of a small time step size also accelerates the convergence speed for a small
value of ε.
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In fact, because of a general estimate CUBCD2 = O(ϵ−1
0 ε−2∆t), we see that an

O(1) geometric convergence rate is ensured if the time step size satisfies a con-
straint ∆tε−2 = O(ϵ0) ≪ 1. Meanwhile, for the first order scheme (10), the
ℓ∞(0, T ;H−1

h )∩ℓ2(0, T ;H1
h) convergence analysis, as presented in [13], only requires

a constraint ∆t ≤ ε2. This constraint is milder than the O(1) geometric iteration
convergence rate requirement, since the convexity analysis has greatly helped the
error estimate. On the other hand, if an ℓ∞(0, T ; ℓ2) ∩ ℓ2(0, T ;H2

h) error analysis
is derived for the numerical scheme, a more severe time step constraint would be
needed in the estimates, due to the complicated nonlinear expansion structure. Also
see the related work [47], in which the ℓ∞(0, T ; ℓ2) error estimate has been presented
for the Poisson-Nernst-Planck system.

Remark 4.8. If the first order numerical scheme (10) could be exactly implement-
ed, the positivity-preserving, energy stability and optimal rate convergence analysis
would be unconditional, i.e., the convergence estimate (17) would be always valid,
and there is no constraint for the time step size ∆t. Meanwhile, in terms of the PS-
D iteration solver to implement the numerical algorithm (10), the above estimates
imply that, the iteration convergence rate will be greatly accelerated with an addi-
tional constraint ∆t ≤ O(ϵ0ε

2). However, even if such an additional constraint is
not satisfied, the iteration estimate (82) still indicates a geometric convergence rate
for the PSD iteration, although the convergence speed will not be as good as the one
with the additional constraint ∆t ≤ O(ϵ0ε

2). Extensive numerical experiments have
revealed that, five to ten iteration stages would be sufficient for the implementation
in most practical computational examples, with reasonable physical parameters and
time step sizes.

The contraction estimate (82) is valid for the error of the discrete energy (42).
Meanwhile, such a contraction estimate is not directly available for the numerical
error associated with the phase variable at the k + 1 time step: qn := ϕ(n) − ϕ.
However, we are still able to derive a geometric convergence estimate for such a
numerical error. As in the previous section, we define ϕ := ϕk+1.

Theorem 4.9. Let the initial data Φ( · , t = 0) ∈ C6
per(Ω) and suppose the exact

solution Φ for the Cahn-Hilliard equation (2) – (3) is of regularity class R. Ad-
ditionally, suppose that the exact solution for the Cahn-Hilliard equation (2) – (3)
satisfies the separation property (19). Let ϕ(n) be the sequence generated by (53)
and define the numerical error associated with the phase variable at the (k + 1)-th
time step to be qn := ϕ(n) − ϕ. Then, for any n ≥ 0, provided ∆t and h are suffi-
ciently small and we take a linear refinement of ∆t such that CLh ≤ ∆t ≤ CUh, it
follows that

∥∇hqn∥22 ≤ 2CR

ε2

(
1− 1

2CUBCD2

)n

(∆t
1
2 + h

3
2 ),(87)

and

∥qn∥2−1,h ≤
(
1− 1

2CUBCD2

)n

(∆t
3
2 + h

3
2 ),(88)

which implies that

∥qn∥2H1
h
≤
(
ε2 + 2CR

2ε2

)(
1− 1

2CUBCD2

)n

(∆t
1
2 + h

3
2 ),(89)

with
1

2CUBCD2
< 1.
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Proof. The proof proceeds by induction. The base case with n = 0 follows from
inequalities (30) and (31) and the fact that ∆t, h > 0 are chosen small enough.

Now, let

∥∇hqn∥22 ≤ 2CR

ε2

(
1− 1

2CUBCD2

)n

(∆t
1
2 + h

3
2 ),(90)

and

∥qn∥2−1,h ≤
(
1− 1

2CUBCD2

)n

(∆t
3
2 + h

3
2 ),(91)

so that

∥qn∥2H1
h
≤
(
ε2 + 2CR

2ε2

)(
1− 1

2CUBCD2

)n

(∆t
1
2 + h

3
2 ),(92)

for some n > 0. As a result, the following iteration error estimate becomes available:

∥∇hqn∥2 ≤
√
2ε−1C

1
2

R (∆t
1
4 + h

3
4 ),(93)

in which the fact that
(
1− 1

2CUBCD2

)
< 1 has been applied. Its substitution into

the discrete inverse inequality (24) leads to

(94) ∥qn∥∞ ≤ CInv∥∇hqn∥2
hδ0

≤
√
2ε−1CInvC

1
2

R (∆t
1
8 + h

1
2 ) ≤ ϵ0

4
,

for δ0 <
1
8 , and provided that ∆t and h are sufficiently small. A combination of (94)

and the strict separation property (22) (for the exact numerical solution of (10), at
m = k + 1) results in

(95) 1 + ϕ(n), 1− ϕ(n) ≥ ϵ0
4
, at a point-wise level.

Additionally, the following functional inequality is available:

Jh(ϕ
(n+1))− Jh(ϕ) = δϕJh(ϕ)(qn+1) +

1

2
δϕϕJh(β)(qn+1, qn+1)

=
1

2
δϕϕJh(β)(qn+1, qn+1)

≥ 1

2
∥qn+1∥2−1,h +

ε2∆t

2
∥∇hqn+1∥22,(96)

with β in the line segment from ϕ(n) to ϕ. Note that the second step comes from
the facts that δϕJh(ϕ) ≡ 0 and⟨

1

1 + θ
+

1

1− θ
, q2n+1

⟩
≥ 0.(97)

As a direct consequence, a combination of Lemma 4.4 and Theorem 4.6 yields

1

2
∥qn+1∥2−1,h +

ε2∆t

2
∥∇hqn+1∥22 ≤ en+1

≤
(
1− 1

2CUBCD2

)n+1

e0

≤
(
1− 1

2CUBCD2

)n+1 (
− 1

2
∥ϕ− ϕk∥2−1,h +∆tRk

)
≤ ∆t

(
1− 1

2CUBCD2

)n+1

Rk,(98)
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where Rk has been defined in Lemma 2.6 and we have used the fact that

−⟨f, ϕ(o)⟩+ ⟨f, ϕ⟩ = ⟨f, ϕk+1⟩ − ⟨f, ϕk⟩

= ⟨f, ϕk+1 − ϕk⟩

= θ0∆t⟨ϕk, ϕk+1 − ϕk⟩.
Hence,

∥∇hqn+1∥22 ≤ 2CR

ε2

(
1− 1

2CUBCD2

)n+1

(∆t
1
2 + h

3
2 ),(99)

and

∥qn+1∥2−1,h ≤
(
1− 1

2CUBCD2

)n+1

(∆t
3
2 + h

3
2 ),(100)

with
1

2CUBCD2
< 1.

An application of Proposition 2.2 and the definition of the discrete H1 norm con-
cludes the proof. �

Remark 4.10. We observe that, although the preliminary estimate (27) gives Rk =

O(∆t
1
4 + h

3
4 ) at a theoretical level, the practical computations indicate that Rk =

O(∆t), since ϕ is the exact numerical solution ϕk+1 for the convex splitting scheme,
so that the iteration convergence could be accelerated.

Remark 4.11. For simplicity of presentation, we only provide the analysis for
the 2-D Cahn-Hilliard equation (2) with Flory-Huggins energy potential. For the
3-D gradient flow, the strict separation property is an open problem even for the
PDE solution, and such a theoretical issue poses a great challenge in the associated
numerical analysis. Meanwhile, if the strict separation property is available for
the 3-D PDE solution, the iteration convergence analysis and the strict separation
estimate for the related numerical solver could be derived in a similar manner.

Remark 4.12. For the sake of brevity, we only consider a constant mobility,
M(ϕ) ≡ 1. If a ϕ-dependent mobility function is involved, the iteration conver-
gence estimate and positivity-preserving analysis for the corresponding PSD solver
could be derived in a careful way, following the techniques presented in [14] to deal
with a gradient flow with polynomial approximation potential. The technical details
are left to interested readers.

Remark 4.13. The periodic boundary condition is considered in this article, for
simplicity of presentation. Meanwhile, if a homogeneous Neumann boundary con-
dition is imposed for the CH equation (2) – (3), given by

(101) ∂nϕ = 0, ∂nµ = 0, on ∂Ω,

the positivity-preserving, energy stability and optimal rate convergence analysis for
the numerical scheme (10) could be derived in the same manner. In fact, with a
discrete approximation to the homogeneous Neumann boundary condition, the sum-
mation by parts formulas take the same form as the ones with a periodic boundary
condition. The Sobolev interpolation inequality is also valid with a physical bound-
ary condition, so that all the theoretical results become available. See the related
works [12, 24, 59] for the CH equation with a homogeneous Neumann boundary
condition, in a polynomial approximation in the energy potential. In addition, the
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iteration convergence analysis for the PSD solver could also be established if the
physical boundary condition is imposed, following similar ideas.

5. Numerical results

5.1. Convergence test for the numerical scheme. In this subsection we per-
form a numerical accuracy check for the numerical scheme (10), implemented by the
proposed PSD iteration solver. The computational domain is chosen as Ω = [0, 1]2,
and the exact profile for the phase variable is set to be

(102) Φ(x, y, t) =
1

π
sin(2πx) cos(2πy) cos(t).

With the choice of this exact profile, it is clear that the quantities 1 + Φ and
1 − Φ stay positive at a point-wise level, so that a uniform distance is available
between the PDE solution and the singular limit values of ±1. Of course, to force
Φ to satisfy the original PDE (2) – (3), we must add an artificial, time-dependent
forcing term. In turn, the numerical scheme (10) is implemented to solve for (2),
using the proposed PSD iteration.

First, we verify the efficiency and accuracy of the proposed PSD iterative solver.
The first time step is taken into consideration, and we take the spatial resolution as
N = 256 (with h = 1

256 ). The discrete ℓ∞ and ℓ2 iteration errors are displayed in
Figure 1, in terms of the iteration number, if we take the time step size as ∆t = 0.01,
and the interface width parameter as ε = 0.05. The geometric convergence rate
has been clearly observed in the iteration process, which justifies the theoretical
analysis (89). In fact, such an iteration has reached the machine precision within
20 iteration stages. In the practical computations, only 5 to 10 iteration stages are
needed at each time step.

Moreover, to investigate the iteration performance and its dependence on certain
parameters, such as the time step size ∆t and interface width ε, we record the
number of iterations to reach the machine precision (so that the discrete ℓ2 error is
less than 10−15). In more details, the left plot of Figure 2 displays the number of
iterations in terms of ε = 0.01 : 0.01 : 0.1, with a fixed ∆t = 0.01, while the right
plot displays that in terms of ∆t = 0.01 : 0.01 : 0.1, with a fixed ε = 0.05. In all
these numerical tests, only 5 to 10 iteration stages are needed to reach a machine
precision. Meanwhile, such a number of iteration will be reduced from 6 to 5 with
an increase of ε, or with a decrease of the value of ∆t. This numerical behavior
also agrees with the analysis outlined in Remark 4.7.

Of course, the accuracy test for the fully implemented numerical scheme is also
very important. We fix the spatial resolution as N = 512 (with h = 1

512 ), so that
the spatial numerical error is negligible. The final time is set as T = 1, and the
surface diffusion parameter is given by ε = 0.5, while the expansive parameter is set
as θ0 = 2. A sequence of time step sizes are taken as ∆t = T

NT
with NT = 100 : 100 :

1000. The expected temporal numerical accuracy assumption e = C∆t indicates
that ln |e| = ln(CT ) − lnNT , so that we plot ln |e| versus lnNT to demonstrate
the temporal convergence order. The fitted line displayed in Figure 3 shows an
approximate slope of −0.9938, which in turn verifies a nice first order temporal
convergence in both the discrete ℓ2 and ℓ∞ norms.

5.2. Numerical simulation of coarsening processes. In this subsection, a
two-dimensional numerical simulation of the coarsening process is presented. The
computational domain is set as Ω = [0, 1]2, the expansive parameter is chosen to
be θ0 = 3, and the interface width parameter is taken as ε = 0.005. Meanwhile, a
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Figure 1. The discrete ℓ∞ and ℓ2 numerical errors vs. the itera-
tion number, with a spatial resolution N = 256. The numerical re-
sults are obtained by the proposed PSD iteration solver. The time
step size and surface diffusion parameters are taken as: ∆t = 0.01,
ε = 0.05.
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Figure 2. Left: The number of iterations needed to obtain a
machine precision for the PSD solver, in terms of ε = 0.01 : 0.01 :
0.1, with a fixed ∆t = 0.01. Right: The number of iterations
needed to obtain a machine precision for the PSD solver, in terms
of ∆t = 0.01 : 0.01 : 0.1, with a fixed ε = 0.05.

random initial data is chosen:
(103)
ϕ0i,j = 0.1+0.05·(2ri,j−1), ri,j are uniformly distributed random numbers in [0, 1].

Such a random initial data contains a wide spectrum of wave lengths in the Fourier
expansion, so that many interesting structures will be observed in the long time
simulation, in comparison with a smooth initial data. Meanwhile, although such
a random initial data is only of L2(Ω) regularity, the constant-coefficient surface
diffusion term would create a smooth solution within a short time interval, due to
the parabolic nature of the PDE. Also see the related works [9, 19, 54], in which
a local-in-time Gevrey regularity (with real analytic regularity) solution has been
established for certain gradient flow models, even if the initial data is only of H1 or
H2 regularity. Extensive numerical experiments [11] have also indicated a smooth
solution profile after a very short initial time interval, with a random initial data.
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Figure 3. The discrete ℓ2 and ℓ∞ numerical errors versus tem-
poral resolution NT for NT = 100 : 100 : 1000, with a spatial
resolution of N = 512. The numerical results are obtained by the
computation using the proposed PSD iteration solver to the numer-
ical scheme (10). The surface diffusion parameter is taken to be
ε = 0.5, and the expansive parameter is set as θ0 = 2. The data lie
roughly on curves CN−1

T for appropriate choices of C, confirming
the full first order accuracy of the scheme.

As a result, all the theoretical analysis in this article is expected to be valid in this
numerical simulation.

Again, the proposed PSD iteration solver is applied to implement the numerical
scheme (10) in this simulation. In the coarsening process, increasing values of ∆t are
taken in the time evolution: ∆t = 5×10−5 on the time interval [0, 1], ∆t = 10−4 on
the time interval [1, 3], ∆t = 2×10−4 on the time interval [3, 7], and ∆t = 5×10−4

on the time interval [7, 15]. Whenever a new time step size is applied, we initiate
the two-step numerical scheme by taking ϕ−1 = ϕ0, with the initial data ϕ0 given
by the final time output of the last time period. The time snapshots of the evolution
with ε = 0.005 are displayed in Figure 4, with significant coarsening observed in the
system. At the earlier time steps, many small structures are present. At the final
time, T = 15, a single structure emerges, and further coarsening is not possible.

To investigate whether the strict separation property is satisfied for the proposed
numerical solver, we display the maximum and minimum values of the phase vari-
able at the associated time sequence in Table 1. A safe distance, with an order
of O(10−1), between the numerical solution and the singular limit values of ±1, is
clearly observed in the simulation. This numerical result also confirms the strict
separation estimate established in the theoretical analysis [2, 23]. In fact, the spa-
tially uniform equilibria solution turns out to be ϕ∗ ≡ 0.8586 for such an expansive
parameter value of θ0 = 3. The maximum and minimum values in Table 1 reveal
that, the numerical solution in principle stays within the interval [−ϕ∗, ϕ∗], while
a minor deviation of order O(10−2) is observed from time to time. Such a minor
deviation comes from the fact that, the Cahn-Hilliard equation does not preserve
the bound of [−ϕ∗, ϕ∗], in comparison with the Allen-Cahn equation, in which the
maximum principle could be rigorously justified. Instead, the 2-D Cahn-Hilliard
equation preserves a separation property, −1+ϵ0 ≤ ϕ ≤ 1−ϵ0, in which ϵ0 depends
on ε and θ0, while 1− ϵ0 ̸= ϕ∗.

Furthermore, the long time characteristics of the solution, such as the energy
decay rate, are of great scientific interest. The t−1/3 energy decay scaling law has
been reported for the Cahn-Hilliard flow with a polynomial approximation energy
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Figure 4. (Color online.) Snapshots of the phase variable at the
indicated time instants over the domain Ω = [0, 1]2, ε = 0.005,
θ0 = 3, with a constant mobility M ≡ 1.

Table 1. The maximum and minimum values of of the phase
variable at the indicated time instants over the domain Ω = [0, 1]2,
ε = 0.005, θ0 = 3.

Time instants the maximum value the minimum value
t1 = 0.05 0.8643153 -0.8744858
t2 = 0.1 0.8602455 -0.8700498
t3 = 0.2 0.8589113 -0.8740629
t4 = 0.5 0.8598682 -0.8645398
t5 = 1 0.8577464 -0.8755585
t6 = 3 0.8571105 -0.8611945
t7 = 7 0.857263 -0.8600106
t8 = 15 0.8571818 -0.8599258

potential, at both the theoretical and numerical levels [15, 20, 41]. Meanwhile, such
a theoretical analysis has not been available for the energy potential with Flory-
Huggins logarithmic energy potential. A numerical experiment for a t−b∗ (with b∗

close to −1
3 ) scaling law was reported in a recent work [11], based on a second

order accurate scheme for the Flory-Huggins-Cahn-Hilliard flow. In this article, we
provide numerical evidence of this scaling law. Figure 5 presents the log-log plot
for the energy versus time, based on the PSD iteration solver for the numerical
scheme (10). The detailed scaling “exponent” is obtained using least squares fits
of the computed data up to time t = 100. A clear observation of the aet

be scaling
law can be made, with ae = 0.01933, be = −0.3271.
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Figure 5. Log-log plot of the temporal evolution of the discrete
energy for ε = 0.005, θ0 = 3, with a constant mobility M ≡ 1.
The energy decreases similar to aet

be until saturation. The red
line represents the energy plot obtained by the simulations, while
the straight blue line is obtained by least squares approximations
to the energy data. The least squares fit is only taken for the linear
part of the calculated data, and only up to t = 100. The fitted line
has the form aet

be , with ae = 0.01933, be = −0.3271.

6. Concluding remarks

In this article, the preconditioned steepest descent (PSD) iteration solver is con-
sidered to implement a finite difference numerical scheme for the Cahn-Hilliard
equation with Flory-Huggins energy potential. A convex-concave decomposition is
applied to the energy functional, and the convex splitting numerical approximation
to the chemical potential: implicit treatment for the singular logarithmic term and
the surface diffusion term, combined with an explicit update for the expansive con-
cave term. The positivity-preserving analysis, unconditional energy stability, and
the optimal rate error estimate have been theoretically derived in a recent work.
In terms of the numerical implementation of this nonlinear and singular numerical
scheme, we propose a preconditioned steepest descent iteration solver in the com-
putation, based on the fact that the implicit parts of the numerical scheme are asso-
ciated with a strictly convex energy. This iteration solver consists of a computation
of the search direction (involved with a Poisson-like equation), and a one-parameter
optimization over the search direction. At a theoretical level, a geometric conver-
gence rate is proved for the PSD iteration, and the positivity-preserving property is
theoretically established at each iteration stage in the process. Moreover, a uniform
distance estimate between the numerical solution and the singular limit values of
±1 for the phase variable has played an essential role in the theoretical analysis.
Such an iteration convergence analysis and positivity-preserving analysis is a first
for a phase field model with a singular energy potential. A few numerical examples
are presented to demonstrate the robustness and efficiency of the PSD solver.
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