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NUMERICAL NS EQUATIONS-CONSTRAINED POWER

OPTIMIZATION OF WIND TURBINES AFFECTED BY WAKE

YOUSEF AKHAVAN, MICHAEL CHEN, AND DONG LIANG∗

Abstract. We develop a model for wind farm power optimization while considering the wake
interaction among wind turbines. The proposed model is a Navier-Stokes equations-constrained
optimization model with the objective of maximizing the total power where the operating points
of the turbines are the decision variables, and the three-dimensional vorticity-velocity Navier-

Stokes equations of wind speed are among the constraints. Moreover, we develop an efficient
numerical algorithm to solve the optimization model. This algorithm is based on the pattern
search method, the actuator line method and a time-stepping scheme which is used to solve the
vorticity-velocity Navier-Stokes equations. In the numerical experiments, we first compute the

power generation of a commercial wind turbine called WindSpot for different wind speed. It is
shown that the computed power is in a good agreement with the measurements. Then, in the case
of two turbines, we find that by optimizing the turbines’ operation while considering the wake

effect, we can gain an additional 8.11% in the total power when the incoming wind speed on the
boundary is 10 m/s.

Key words. Wind farm power optimization, the vorticity-velocity Navier-Stokes equation, wake
interaction, time-stepping, pattern search, optimization algorithm.

1. Introduction

Currently, wind turbines are operating at their own local optimum points to
maximize their own performance. Many studies have shown that operating all
turbines in a wind farm at their local optimum points leads to the suboptimal
performance of the overall wind farm [1, 2]. This is due to the wake generated by
upstream wind turbines which alter the flow field and lead to a wind velocity deficit
in downstream wind turbines [3–5]. As a consequence, if all wind turbines operate
at their own local optimum points then the downstream wind turbines cannot
generate power as much as the upstream wind turbines. For instance, Neustadter
and Spera [7] investigated the performance of three turbines separated by seven
rotor diameters. They found that if all turbines operate at their own local optimum
points then the power loss of downstream turbines can be as high as 10%. Another
investigation by Rebecca [8] shows that the power loss of downstream wind turbines
in full wake conditions can be as high as 30%, but when averaged over different
wind directions, it is around 5-8%. These studies confirm that operating turbines at
their local optimum points will lead to suboptimal performance of the overall wind
farm. Therefore, in order to improve the performance of the overall wind farm, it is
necessary to find the global optimum points of wind turbines by optimizing the total
power while taking into account the impact of the wake on power production. In
this regard, Patricio [9] studied the power optimization while considering the wake
impact where the two-dimensional Navier-Stokes equations were used to model the
airflow around turbines, where the study employed an inefficient grid search method
to find optimum operating points of the upstream wind turbine while assuming that
the downstream turbine is operating at its own local optimum points for the two
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dimensional problem. There was no work on the realistic problems of the airflow
around turbines in three dimensions modelled by three dimensional Navier-Stokes
flow equations. In the framework of wind farm power optimization, in most of the
studies, the total power is not explicitly optimized or the wake of wind turbines is
modeled via an improvised BEM-alike method which has some limitations [7–11].
In these previous studies, there was few work to tackle the problem of explicitly
optimizing the total power output in a wind farm. Thus, it is important to develop
the wind power optimization where the total power will be explicitly optimized over
multiple wind turbines in a wind farm.

In this paper, we develop a NS equations-constrained power optimization model
over multiple wind turbines, for optimizing the total power output in a wind farm,
by incorporating explicitly wake interactions among wind turbines. The important
features are that the objective function of the total power is derived from the wakes
of wind turbines by combining with the three dimensional vorticity-velocity Navier-
Stokes equations as a constrain. The model optimizes on turbine operating while
accounting for wake effects. It solves the optimization problem by embedding the
three dimensional Navier-Stokes equations in the vorticity-velocity form with blade
forces, which efficiently handles the wake effects in optimization. The proposed
model is a PDE-constrained optimization model with the objective of maximizing
the total power where the operating points of the turbines are the decision variables,
and the constrained vorticity-velocity Navier-Stokes equations are used to compute
the airflow as well as interacting wakes in the wind farm where the blade forces
represent the loading of wind turbines. In the approach, a time-stepping finite
difference scheme discretizes the three dimensional vorticity-velocity Navier-Stokes
equations, where the false-transient technique ensures numerical stability, while the
pattern-search derivative-free method is to solve the optimization procedure. The
proposed algorithm of optimization approach is efficient and capable of handling
the wind turbines in wind farms.

In numerical experiments, we first compute the power generation of a commer-
cial wind turbine called WindSpot for different wind speed. It is shown that the
computed power is in a good agreement with the measurements. We also show some
numerical results that characterize the wake structure of the WindSpot. Further-
more, we find the global optimal operating points of multiple turbines operating in
a wind farm. In the case of two turbines, we find that by optimizing the turbines’
operation while considering the wake effect, we can gain an additional 8.11% in the
total power when the incoming wind speed on the boundary is 10m/s.

The paper is organized as the follows. In Section 2, we present the problem and
the optimization model. In Section 3, we describe how to derive the aerodynamic
forces using tabulated airfoil data. In Section 4, we present our numerical approach
for solving the three-dimensional Navier-Stokes equations in the vorticity-velocity
form. In Section 5, we describe the joint optimization algorithm for maximizing
the total power production. In Section 6, we present the numerical case studies.
Finally, conclusions are addressed in Section 7.
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2. The Power Optimization Model in Wind Farm

For a wind farm with N turbines, the model for power optimization in its con-
densed form is as following

Max
β1,β2,··· ,βN
Ω1,Ω2,··· ,ΩN

GTotalPower(P) = Max
β1,β2,··· ,βN
Ω1,Ω2,··· ,ΩN

N∑
i=1

Pi

Subject to Navier-Stokes equations: (3)− (7),

βmin ≤ βi ≤ βmax, 1 ≤ i ≤ N,

Ωmin ≤ Ωi ≤ Ωmax, 1 ≤ i ≤ N.

(1)

Here, the decision variables are the rotational speed Ωi and the pitch angle βi of
the ith turbine, for i = 1, 2, · · · , N . The parameters βmin, βmax, Ωmin and Ωmax

are the physical limits of the adjustable pitch angle and the rotational speed.
The objective function of

(2) GTotalPower(P) =

N∑
i=1

Pi

is to consider the total power generated in the wind farm, where Pi is the power
generated by the ith wind turbine. The important function Pi, that describes the
relationship of the power with wake of turbine, is developed as a nonlinear function
of the direct decision variables, (24), by combining with other derived quantities
from the Navier-Stokes equations (3)-(5). Due to its complexity, we derive the non-
linear function Pi, (24), in detail in Section 3.
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Figure 1. Computational domain.

For efficiently considering the relation to the total power and the wakes of wind
turbines, we use the vorticity-velocity Navier-Stokes equations, where fϵ is the load-
ing of wind turbines. The constraint PDEs (3)-(7) are the three dimensional Navier-
Stokes equations in the vorticity-velocity form, which are formulated by applying
the curl operator on the Navier-Stokes equations in primitive variables. These e-
quations on a rectangular domain, D = [0, lx] × [0, ly] × [0, lz] (see Figure 1), are
given by

∂ω

∂t
+U.∇ω = ω.∇U+

1

Re
∇2ω +∇× fϵ,(3)

ω = ∇×U,(4)

∇ ·U = 0,(5)
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with the boundary conditions ( [6])

(6)



U(t, 0, ·, ·) = U0, V (t, 0, ·, ·) = 0, W (t, 0, ·, ·) = 0,

Ux(t, lx, ·, ·) = 0, Vx(t, lx, ·, ·) = 0, Wx(t, lx, ·, ·) = 0,

Uy(t, ·, 0, ·) = 0, Vy(t, ·, 0, ·) = 0, Wy(t, ·, 0, ·) = 0,

Uy(t, ·, ly, ·) = 0, Vy(t, ·, ly, ·) = 0, Wy(t, ·, ly, ·) = 0,

Uz(t, ·, ·, 0) = 0, Vz(t, ·, ·, 0) = 0, Wz(t, ·, ·, 0) = 0,

Uz(t, ·, ·, lz) = 0, Vz(t, ·, ·, lz) = 0, Wz(t, ·, ·, lz) = 0,

and the initial conditions ( [6])

(7) U(0, ·, ·, ·) = U0, V (0, ·, ·, ·) = 0, W (0, ·, ·, ·) = 0,

where unknowns velocity and vorticity areU = (U, V,W ) and ω = (ξ, η, ζ). fϵ is the
loading of wind turbines and Re is the Reynolds number. In the above equations,
the boundary conditions for the velocities are given explicitly in the equations (6)
while the boundary conditions for the vorticity need to be established using the
vorticity definition.
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Figure 2. Cross-sectional airfoil element showing velocity and
force vectors.

3. Blade Aerodynamics and Power Production

To determine the forces acting on the rotor blades we use a blade-element ap-
proach combined with two-dimensional airfoil characteristics [6]. In Figure 2, the
relative velocity at radius r from the hub is

(8) U2
rel(r) = (U(r))2 + (STan(r))

2,

where

(9) STan(r) = Ωr + Sair(r).

In the above equations, U(r) and STan(r) are the axial speed and the relative
tangential speed at radius r from the hub, respectively. In the equation (9), Sair

is the wind speed in tangential direction which is computed by the orthogonal
projection of V and W onto the tangential direction. One has to solve the Navier-
Stokes equations (3)-(7) to find U , V and W . Meanwhile, from Figure 2, the angle
between the relative velocity Urel and the rotor plane is

ϕ(r) = tan−1(
U(r)

STan(r)
),(10)
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Figure 3. Lift and drag coefficients.

Table 1. NACA 23012 coefficients, α ∈ [0◦, 16◦].

CL(·) CD(·)
k0 1.0318e− 1 6.0387e− 3
k1 1.0516e− 1 −3.6282e− 4
k2 1.0483e− 3 5.4269e− 5
k3 7.3487e− 6 6.5341e− 6
k4 −6.5827e− 6 −2.8045e− 7

and the angle of attack α(r), which is defined as the angle between the relative
velocity and the chord line is:

α(r) = ϕ(r)− β(r),(11)

where β(r) is the local pitch angle. We remind that Ω and β are decision variables in
the joint optimization model (1). The lift force L(r), perpendicular to the relative
wind direction, and the drag force D(r) are:

L(r) =
1

2
ρU2

rel(r)c(r)b(r)CL(α(r)),(12)

D(r) =
1

2
ρU2

rel(r)c(r)b(r)CD(α(r)),(13)

where c(·) is the chord length of the airfoil and b(·) is the width of the blade section.
In the above equations, CL(·) and CD(·) are the lift and drag coefficients at radius r
which depend on the local angle of attack α(·), see Figure 3. This figure shows the
curves for the lift and the drag coefficients which are usually obtained by testing
wing profiles in wind tunnels.

However, for numerical studies, it is convenient to have the curves as function-
s. For NACA 23012 profile [16] and for 0◦ < α(·) < 16◦, CL(·) and CD(·) are
characterized by the following polynomial [21]

(14) CL,D(α(r)) = k0 + k1α(r) + k2α(r)
2 + k3α(r)

3 + k4α(r)
4,

where the polynomial coefficients are shown in Table 1. For an angle larger than
the critical angle of attack, 16◦, we apply the following corrections [21]
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CL(α(r)) = A1 sin(2α(r)) +A2
cos2(α(r))

sin(α(r))
,(15)

CD(α(r)) = B1 sin
2(α(r)) +B2 cos(α(r)) + CDs,(16)

where

A1 =
B1

2
, B1 = CD,max,

A2 = (CLs − CD,max sin(αst) cos(αst))
sin(αst)

cos2(αst)
,

B2 =
1

cos(αst)
(CDs − CD,max sin

2(αst)).

Here CLs and CDs are the lift and drag coefficients at stall angle of attack αst, and
CD,max is the maximal value of the drag coefficient which is approximately 1, see
Figure 3. We also need another correction due to the cross-flow effect at the blade
tip. To take into account this effect, we employ the correction formulas

CL(·) =
CL(·)
Fcorr

, and CD(·) = CD(·)
Fcorr(·)

,

where ( [21])

(17) Fcorr(r) =
2

π
arccos(exp(−B R− r

2r sin(ϕ(r))
)).

In the above equation, B and R are the number of blades and the rotor radius, re-
spectively. Now, we project the lift and drag force onto the axial and the tangential
direction to get their components in these directions, from L(r) and D(r) in (12)
and (13), as

Fx(r) = L(r) cos(ϕ(r)) +D(r) sin(ϕ(r)),(18)

Fy(r) = L(r) sin(ϕ(r))−D(r) cos(ϕ(r)).(19)

Consequently, for the ith turbine with B blades, the thrust force dTi(r), the torque
dΨi(r) and the power dPi(r) are

dTi(r) = Fx(r)Bdr,(20)

dΨi(r) = Fy(r)Bdr,(21)

dPi(r) = dΨi(r)(Ωr).(22)

Here, dTi(r) is along axial direction, and it is used to compute the source term
in x-direction in the Navier-Stokes equations (3). The torque Ψi(r) is along the
tangential direction, and one must project it onto y and z-direction to compute
the source terms in y and z-direction in the Navier-Stokes equations (3). From the
equation (22), the generated power for the ith turbine with blade length R is

Pi =

∫ R

0

dP (r) =

∫ R

0

Fy(r)BΩrdr.(23)

Using equations (12) and (13), the power generated by the ith turbine is

Pi =
ρBΩ

2

∫ R

0

[
U2
rel(r)c(r)b(r)(

CL(α(r)) sin(ϕ(r))− CD(α(r)) cos(ϕ(r))

)]
rdr,(24)
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Figure 4. The staggered grid for the numerical scheme.

which is a function of Ω and α(r) = ϕ(r)− β(r). Summing Pi from i = 1 to N will
give the objective function of the optimization model (1),

(25) GTotalPower(P) =

N∑
i=1

Pi,

which is the total power generated by all N turbines.

4. Numerical Method of Three Dimensional Vorticity-Velocity Navier-
Stokes Equations

We seek numerical solutions to the three dimensional Navier-Stokes equations
(3)-(5) in the vorticity-velocity form with blade forces. In order to ensure accuracy
in the prediction of velocities and vorticities, a staggered grid system as displayed
in Figure 4 is used in the present numerical scheme ( [12]).

Let Un, V n, Wn, ξn , ηn and ζn be the numerical approximations of U , V , W , ξ
,η and ζ at time step n, then we solve the solution by the time-stepping procedure
in the following steps.

1. The velocity Poisson equations, obtained as a result of taking curl of the
vorticity, are made parabolic using the false-transient technique [13,14]

(26) α
∂Un

∂t
−∇2Un −∇× ωn−1 = 0,

where α is a relaxation parameter. Central finite differencing scheme is used to
approximate the second order derivatives that leads to a large linear system to be
solved. Here, we use Generalized Minimum Residual technique to solve these linear
systems but in a sparse format [15]. After we calculate velocities U and V using
false transient method, then velocity W is calculated from the continuity equation
as given below

(27)
∂2Wn

∂z2
= − ∂

∂z
(
∂Un

∂x
+

∂V n

∂y
).
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Since the velocities U and V are already known, the resulting set of equations from
(27) can be solved using the TDMA (Tridiagonal matrix algorithm).

2. The vorticity transport equations are discretized in time using the explicit
scheme for the nonlinear term and implicit scheme for the linear term

(28)
∂ωn

∂t
+Un · ∇ωn−1 = ωn−1 · ∇Un +

1

Re
∇2ωn +∇× fϵ.

The central finite differencing scheme is used to approximate the first and second
derivatives which leads to a large linear system, and it is solved by the general-
ized minimum residual technique. In the equation (28), the source term, fϵ =
(fϵu, fϵv, fϵw) acts as a singular vorticity source along the rotor blades. To avoid
singular behavior, fϵ is formed by taking the convolution of the computed normal
load, f = (fu, fv, fw), and a regularization kernel, ηϵ, as shown below [6]

(29) fϵ = f ⊗ ηϵ,

where

(30) ηϵ =
1

ϵ3π
3
2

exp(−(r
ϵ
)2).

We remind the reader that fu is computed directly using the equation (20). Howev-
er, one needs to project the torque in the equation (21) which is along the tangential
direction onto y and z-directions to compute fv and fw.

Finally, for a given pitch angle and rotational velocity, to compute U , V , W
and f simultaneously, we propose a time-stepping procedure which at every instant
assures a time-true solution. This procedure is summarized in Algorithm 1.

Algorithm 1 Iterations between Navier-Stokes equations and blade Forces

1: for a given decision variables βi,Ωi, i = 1, 2, · · · , N , let x =
[β1, β2, · · · , βN ,Ω1,Ω2, · · · ,ΩN ]τ . For given boundary and initial conditions
in (6) and (7) which indicates that the incoming wind speed is U0, let n = 0.

2: repeat
3: using Un, V n, Wn at the plane of wind turbines and the equations (8)-(24),

compute the normal load of turbines f as well as the power production of the
turbines.

4: calculate fϵ using the computed normal load f and the equation (29).
5: using (26), (27) and (28), solve the Navier-Stokes equations (3)-(5) with the

boundary and initial conditions given in (6) and (7) to get Un+1, V n+1 and
Wn+1.

6: until steady-state solution is reached.

5. The Joint Optimization Algorithm

The objective function in (1) is the sum of the power produced by the individual
turbines, Pi, which is given in the equation (24). From this equation, we note that
Pi is a complicated nonlinear function of the direct decision variables as well as the
wind speed at the plane of the rotor which is the solution of Navier-Stokes equations
(3)-(5). Therefore, it is almost impossible to find the derivative of the objective
function. Hence, we adopt the pattern search algorithm [17] which is a derivative
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free method to solve the joint optimization model (1). For the model (1), let x be
the vector of all decision variables and Dfeasible be the feasible region

x ≡ [β1, β2, · · · , βN ,Ω1,Ω2, · · · ,ΩN ]τ ,(31)

Dfeasible = {x | β1min ≤ x1 ≤ β1max, · · · ,
ΩNmin ≤ x2N ≤ ΩNmax},(32)

and G be the objective function:

G ≡
N∑
i=1

Pi,(33)

then the joint optimization algorithm based on the pattern search method in its
matrix notation is presented in Algorithm 2.

Algorithm 2 The Joint Numerical Optimization

1: initialize the parameters γtol, θ, η, µ(·), guess x0 and set γ0 ≥ γtol.
2: evaluate G(x0) by Algorithm 1 and (24).
3: for k = 1, 2, · · · ,K do
4: if γk ≤ γtol then
5: return.
6: end if
7: for pk ∈ d do
8: if (xk + γkpk) /∈ Dfeasible then
9: xk + γkpk = xb.

10: end if
11: evaluate G(xk + γkpk) by Algorithm 1 and (24).
12: if G(xk + γkpk) > G(xk) + µ(γk) then
13: xk+1 ← xk + γkpk and γk+1 ← γkη.
14: break.
15: else
16: xk+1 ← xk and γk+1 ← γkθ.
17: end if
18: end for
19: end for

In Algorithm 2, xb refers to the boundary point in the feasible search space. It is
used when the step size and search direction take the solution outside the feasible
region defined by the constraints on β and Ω. The parameters used in this algorithm
are the convergence tolerance γtol = 1e− 6, the contraction parameter θ = 0.5, the
aggressive parameter η = 2, the sufficient increase function µ(s) = s3/2 and the
direction set d ≡ {pi, i = 1, 2, · · · , n+1}. In this direction set, the search directions
are given by pi =

1
2nE − Ei, for i = 1, 2, · · · , n, and pn+1 = 1

2nE, and E is the n
dimensional vector of all ones and Ei is the ith column of the unit matrix of size
n. Where n represents the number of decision variables (i.e., the pitch angle β and
the rotational speed Ω). For a wind farm with N turbines, there are 2N decision
variables, and we thus have n = 2N . Note that the search direction does not come
from the gradient, but rather from a predetermined direction set d. Moreover, one
member of d is a improving direction [17].
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6. Numerical Experiments

6.1. Model Validation by Experimental Data. WindSpot is a 3.5kW three-
bladed wind turbine with a rotor diameter of 4.05 meters. It can be fitted with
different set of blades, essentially at zero twist angle with a active pitch control
system. The chord length of this turbine is 0.254 meters at the hub, and it decreases
linearly to 0.156 meters at the blade tip. Moreover, it is operating at a fixed
rotational speed of 12 rad

s and a fixed pitch angle of 10.5 degrees [18]. To compute
the flow field past the WindSpot, the computational domain is taken as 30m ×
14m × 14m and the location of the wind turbine’s hub is taken as (10, 7, 7) in
the domain. Moreover, the grid points are concentrated near the blade tips and
stretched in the x, y and z-direction. The resulting grid consists of 46 grid points
in the axial direction, 50 points in the y-direction and 57 points in the z-direction.
In the axial direction the grid spacing ranges from ∆x = 0.02 at the rotor plane
to about ∆x = 1.9476 in the far wake and in the y-direction the spacing takes
values from ∆y = 0.02 near the tip to about ∆y = 1.2150 at the lateral boundary.
Moreover, in the z-direction the spacing takes values from ∆z = 0.0346 near the
tip to about ∆z = 1.4863 at the lateral boundary.
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Figure 5. Comparison between forces on the fine mesh and orig-
inal mesh.

In all the experiments, to ensure that the flow is fully developed in most of the
wake, we solve Navier-Stokes equations with a time step of ∆t = 1e− 3 until t=10
which corresponds to 10000 time steps. Moreover, the relaxation parameter in the
equation (26) is taken as α = 1 [19], the Reynolds number is taken as 10 and the
constant which adjust the strength of the regularization function in the equation
(30) is taken as ϵ = 0.03 [20].

6.1.1. Influence of employed grid. To investigate the influence of the employed
grid, we compute the distribution of the axial and tangential forces using a finer
mesh which consist of 96 × 100 × 107 grid points and the original mesh when the
incoming wind speed is U0 = 10m

s . These distribution of the forces are displayed
in Figure 5. From this figure, we can barely see the difference between forces in
two computations. Therefore, the original grid is fine enough to ensure that the
numerical results will be accurate.

6.1.2. Power generation of WindSpot. We now apply Algorithm 1 to esti-
mate the power generation of WindSpot for different incoming wind speeds. The
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Figure 6. Comparison of measured and computed power.

numerical results are displayed in Figure 6. This figure shows the computed and
the experimental power coefficient of WindSpot for different incoming wind speeds.
From this figure, it is evident that the computed and measured values are in excel-
lent agreement for wind speeds up to about 10 m

s .

Figure 7. Computed magnitude of vorticity at the y − z plane
for U0 = 10m

s .

6.1.3. Wake structures. Here we investigate the wake structure of WindSpot
when the incoming wind speed is U0 = 10m

s . The numerical results are displayed
in Figures 7 and 8 which show the contours of magnitude of vorticity at y−z planes
in front of the turbine, at the plane of the turbine, at near wake and far wake. In
these figures, the three blades are seen as lines with a high density of contour lines.
Figure 8 shows the diffusion of the vortex about 3 to 4 rotor diameters behind the
wind turbine. However, from experiments, it is known that the diffusion of the
vortex happens at distance far behind the wind turbine [6]. This early diffusion of
the vortex in our simulation which is explained by Sorensen in [6] is due to small
Reynolds number and coarse grid used at far wake.
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Figure 8. Computed magnitude of vorticity at the y− z plane in
near and far wake.
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6.2. Power Optimization. In this section, we present two numerical case studies
to test the efficiency and accuracy of the proposed numerical Algorithm 2. In these
numerical case studies, we use a three-bladed wind turbine with a rotor diameter
of 10 meters where the blade sections consist of NACA 23012 series airfoils. The
chord length and the pitch angle as function of radius for this turbine are displayed
in Figure 9 which are obtained using the Schmitz’s formula for the design of the
optimal pitch angle and the chord length [21]. In both numerical case studies, the
computations are carried out on a 100m × 60m × 60m computational domain. In
the case of one turbine, the location of the hub is taken as (20, 30, 30) and the case
of two turbines the location of the hubs are taken as (20, 30, 30) and (60, 30, 30) for
upstream and downstream turbines, respectively.
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To capture the gradients of the flow field, grid points are concentrated near the
blade tips and stretched in the axial direction as well as in the y and z-direction.
In the case of one turbine, the resulting grid consists of 76 grid points in the axial
direction, 80 points in the y-direction and 92 points in the z-direction. In the case
of two turbines, the resulting grid consists of 96 grid points in the axial direction,
80 points in the y-direction and 92 points in the z-direction. In the axial direction,
the grid spacing ranges from ∆x = 0.02 at the rotor plane to about ∆x = 1.9476 in
the far wake and in the y-direction, the spacing takes values from ∆y = 0.02 near
the tip to about ∆y = 1.2150 at the lateral boundary. Moreover, in the z-direction,
the spacing takes values from ∆z = 0.0346 near the tip to about ∆z = 1.4863 at
the lateral boundary.

6.2.1. Influence of employed grid. To investigate the influence of the employed
grid, we compute the distribution of forces using finer meshes which consist of
126×130×142 and 146×130×142 grid points in the case of one and two turbines,
respectively, and the original meshes when the incoming wind speed is U0 = 10m

s
and turbines are operating at their own local optimum points. These distribution
of the forces are similar to the ones displayed in Figure 5 which indicate that the
original grids for both cases are fine enough to ensure that the numerical results
will be accurate.

Table 2. Optimal operating point of NACA 23012.

Wind speed init. β Ω α T Ψ P

U0=9 m
s (-3, 2) 1.121 1.68 13.046 5.687 0.807 20.511

U0=10 m
s (1, 1.9) 1.375 1.800 13.187 6.545 1.010 30.006

U0=11 m
s (2, 1) 1.414 2.050 13.419 8.090 1.241 40.544

6.2.2. One turbine. We apply the developed numerical Algorithm 2 to find the
optimal operating points of NACA 23012 when the incoming wind speed is 9m

s ,
10m

s and 11m
s . The results are tabulated in Table 2. From this table, the optimal

pitch angle and the rotational speed are β = 1.1215◦ and Ω = 1.684 rad/s when
the incoming wind speed is 9m

s . At this optimal operating point, the generated
power is P = 20.5110kw, the thrust is 5.6873 kilonewton, and the torque is 0.80744
kilonewton. These results are consistent with the field-tested results in [22]. More-
over, at this optimal operating point, the averaged angle of attack is α = 13.046◦

which yields high glide ratio.
We now examine the performance of the developed numerical algorithm with

different initial guesses. In this regard, we apply Algorithm 2 to find the optimal
operating points of NACA 23012 using different initial guesses. The results are
tabulated in Table 3. From this table, we observe that Algorithm 2 starting from the
initial guesses β0 = 0◦ and Ω0 = 1 rad/s finds the optimal solutions of β = 1.1213◦

and Ω = 1.6837 rad/s when the incoming wind speed is 9m
s . The magnitude of

difference between these optimal points and those optimal points associated with
the incoming wind speed of 9m

s in Table 2 is very small. The algorithm showed
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consistency with respect to the two initial guesses tested. Moreover, these results
imply that the optimal operating points of a free-standing turbine are unique.

Table 3. Optimal operating point of NACA 23012 (different ini-
tial point).

Wind speed init. β Ω α T Ψ P

U0=9 m
s (0, 1) 1.121 1.683 13.046 5.687 0.807 20.511

U0=10 m
s (-2, 1) 1.375 1.802 13.188 6.545 1.010 30.006

U0=11 m
s (-2, 1.7) 1.416 2.055 13.412 8.090 1.240 40.543

iteration
0 5 10 15 20

F
u

n
c
ti
o

n
 v

a
lu

e

10

20

30
Best Function Value: 29.6382

iteration
0 5 10 15 20

F
u

n
c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

1

2

3

4
Total Function Evaluations: 45

iteration
0 5 10 15 20

M
e

s
h

 S
iz

e

0

1

2
Current Mesh Size: 0.0078125

Figure 10. Pattern search results for the incoming wind speed
U0 = 10.

We also investigate the efficiency of the developed numerical algorithm in terms
of the number of objective function evaluations required for our algorithm to reach
convergence. In this regard, the best objective function value, the number of ob-
jective function evaluations and the mesh size at each iteration of Algorithm 2 are
plotted for U0 = 10 in Figure 10. From this figure, it is evident that Algorithm 2
converges to the stationary point 29.6382 as the sequence of the mesh size parameter
tends to zero. From this figure, we also note that the number of objective function
evaluations is 45. With this number of objective function evaluations, Algorithm
2 seems to find the optimal operating points of a single turbine in a reasonable
time. However, as the number of turbine increases the objective function evalua-
tion becomes substantially expensive. Therefore, for future work we are planning
to develop a robust optimization algorithm to speed up the optimization process.
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6.2.3. Two turbines. We now apply the developed numerical Algorithm 2 to
find the global optimum operating point of two NACA 23012 which are four rotor
diameters apart. The results are tabulated in Table 4. From this table, the global
optimum point of upstream and downstream turbine are (β,Ω) = (1.1646, 1.5915)
and (β,Ω) = (0.7470, 1.3086), respectively. Moreover, from this table, we also
note that the upstream turbine generates 18.575 kw power and the downstream
turbine generates 17.107 kw power when they operate at their global optimum
point. In this case, the total power output of wind turbines is 35.682 kw. In
contrast, when both turbines operate at their own optimum point, i.e., (β,Ω) =
(1.1215, 1.6840), as shown in Table 2, then the upstream turbine generates 16.495kw
power and the downstream turbine generates 16.226 kw power. In this case, the
total power output of wind turbines is 32.721 kw. Therefore, by optimizing the
turbines’ operation while considering the wake effect, we can gain an additional
9.05% in the total power when the incoming wind speed on the boundary is 9m/s,
since 35.682/32.721 = 1.0905. Moreover, we also note that this extra gain in the
total power does not lead to increased loading on wind turbines. For example, from
Table 4, the thrust of the downstream turbine operating at its global optimum
point and in the wake of upstream turbine is T = 5.2265kN which is less than
the thrust of a free-standing turbine T = 5.6873kN , see Table 2, operating at its
own optimal point with no exposure to the wake of another turbine. Further, for
the results related to other two incoming wind speeds 10m/s and 11m/s in Table
4, comparing with those in Table 2, we can see that by optimizing the turbines’
operation, we can safely gain additional 8.11% in the total power when the incoming
wind speed on the boundary is 10m/s and additional 7.37% in the total power when
the incoming wind speed on the boundary is 10m/s.

Table 4. Joint optimal operating points of two NACA 23012.

Wind speed turbine β Ω α T Ψ P

1st, joint 1.164 1.591 13.120 5.170 0.755 18.575
2nd, joint 0.747 1.308 22.369 5.226 0.750 17.107

U0=9 m
s 1st 1.121 1.684 11.300 5.146 0.643 16.495

2nd 1.121 1.684 11.163 5.118 0.629 16.226
Gain: 9.04%

1st, joint 0.597 1.525 15.186 6.348 0.985 26.879
2nd, joint 0.082 1.393 18.151 6.391 0.965 25.835

U0=10 m
s 1st 1.375 1.800 11.459 5.945 0.815 24.520

2nd 1.375 1.800 11.332 5.913 0.800 24.246
Gain: 8.11%

1st, joint 0.331 1.722 17.489 8.242 1.199 35.750
2nd, joint 0.827 1.611 16.451 7.255 1.197 34.691

U0=11 m
s 1st 1.416 2.050 11.674 7.360 1.004 33.306

2nd 1.416 2.050 11.551 7.323 0.986 32.860
Gain: 7.37%

From Table 2, we note that a free-standing wind turbine operating at its opti-
mum point (β,Ω) = (1.1215, 1.6840) generates 20.5110kw power when the incoming
wind speed is 9m

s . In contrast, if two turbines are grouped in a wind farm, and they
operate at the optimum point of a free-standing turbine, then the upstream and
downstream turbine generate 16.495kw and 16.226kw power, respectively. This
power reduction of the downstream turbine is due to the wake generated by up-
stream wind turbine which alters the flow field and leads to a wind velocity deficit
in the downstream wind turbine. The power reduction of the upstream wind tur-
bine can be justified due to the thrust generated by the downstream turbine which
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reacts to the common flow field, and leads to a wind velocity deficit in the upstream
wind turbine. In this perspective, the wake zone concept could be extended. It is
not only the turbine at front affects the performance of the turbines at rear; rather,
all turbines affect each other via the common flow field in which they are immersed.

7. Conclusion

In this paper, we studied how to optimize power production of multiple wind
turbines by considering the wake interactions among them. A NS equations-
constrained power optimization model was developed for optimizing the total power
output over wind turbines in a wind farm by incorporating explicitly wake inter-
actions. We modeled the intricate interference of multiple turbines through the
actuator line method and the three dimensional Navier-Stokes equations in the
vorticity velocity form. We find that by optimizing the turbines’ operation, we can
safely gain an additional 8.11% in the total power when the incoming wind speed
on the boundary is 10 m/s.

We find that not only the turbine at the front affects the production of a turbine
at the rear, but all turbines affect each other by exerting forces into the flow field
in which all turbines are immersed.

This work paves a way for a larger scale power production optimization and more
accurate wind farm layout optimization.
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