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A SELECTIVELY RELAXED ALTERNATING POSITIVE

SEMIDEFINITE SPLITTING PRECONDITIONER FOR THE

FLUX-LIMITED MULTI-GROUP RADIATION DIFFUSION

EQUATIONS

XIAOQIANG YUE, RONG ZHOU, CHUNYAN CHEN, XIAOWEN XU*, AND SHI SHU*

Abstract. In this article, we concentrate on the fast numerical computation of the radiation
energy densities together with electron and ion temperatures of three-dimensional multi-group

radiation diffusion equations, which is temporally discretized with the adaptive backward Euler-
ian scheme, linearized iteratively via the method of frozen coefficients and spatially approximated
through a cell-centered finite volume discretization on the adaptive unstructured computational

meshes. We present, analyze and implement an alternating positive semidefinite splitting precon-
ditioning technique with two selective relaxations and algebraic multigrid subsolves, and provide
an algebraic quasi-optimal selection approach to determine the involved parameters. Our parallel
implementation is based on the software package jxpamg and the preconditioned flexible restarted

generalized minimal residual solver has been examined by running realistic simulations of hy-
drodynamic instability on the Tianhe-2A supercomputer to demonstrate its numerical robustness,
computational efficiency, parallel strong and weak scalabilities, and the competitiveness with some
existing popular monolithic and block preconditioning strategies.

Key words. Radiation diffusion equations, alternating positive semidefinite splitting, selective
relaxation, algebraic multigrid, parallel and distributed computing.

1. Introduction

On a spherically symmetrical bounded geometry, the flux-limited multi-group
radiation diffusion (MGD) equations



∂Eg

∂t
= ∇ · (Dg(Eg)∇Eg) + c(σBgBg(TE)− σPgEg) + Sg, g = 1, · · · , G,

ρcE
∂TE

∂t
= ∇ · (DE(TE)∇TE)− c

G∑
g=1

(σBgBg(TE)− σPgEg) + wIE(TI − TE),

ρcI
∂TI

∂t
= ∇ · (DI(TI)∇TI)− wIE(TI − TE)

(1)

are the simplest and most extensively used approximation to the spatio-temporal
orientation- and frequency-dependent thermal radiation transport equations, which
compactly describe the propagations of high-energy photons in a physical system
and the interactions with electrons directly and ions indirectly. It must be noticed
that the thermal radiation transport process occurs in various branches of physics,
such as the optical remote sensings, massive star formations and inertial confine-
ment fusion experiments. The nonlinear PDE system (1) looks for the radiation
energy density functions E1, · · · , EG, the electron temperature function TE and
the ion temperature function TI for some given density of medium ρ, the specific
heat capacities cE and cI , the nonlinear radiation diffusion coefficient Dg(Eg), the
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scattering and absorption coefficients σBg and σPg, the source item Sg and the
electron scattering energy density Bg(TE) for the photon frequency group index
g = 1, · · · , G, the nonlinear thermal-conductivity coefficients DI(TI) and DE(TE)
together with the energy transfer coefficient wIE . In most situations, the analytic
solution of problem (1) could not be available for arbitrary geometries and param-
eters or this nonlinear PDE system may not be directly solvable [33]. As a result,
it needs to be discretized in the temporal dimension, at first, with the adaptive
backward Eulerian scheme, yielding a series of semi-discrete nonlinear systems of
the form



−∇ · (Dg(Eg)∇Eg) + (
1

∆tk+1
+ cσPg)Eg − cσBgBg(TE) = Sg +

1

∆tk+1
E(k)

g ,

g = 1, · · · , G,

−∇ · (DE(TE)∇TE) + (
ρcE

∆tk+1
+ wIE)TE + c

G∑
g=1

σBgBg(TE)

− c

G∑
g=1

σPgEg − wIETI =
ρcE

∆tk+1
T

(k)
E ,

−∇ · (DI(TI)∇TI) + (
ρcI

∆tk+1
+ wIE)TI − wIETE =

ρcI
∆tk+1

T
(k)
I

(2)

at the (k + 1)-th time level, where ∆tk+1 = tk+1 − tk is the actual time-step size
and each continuous item with superscript (k) represents the correlative approxi-
mation at the preceding time level. Then, the nonlinear semi-discrete system (2) is
linearized iteratively through the method of frozen coefficients [24], where the term
Bg(TE) is approximated by its first-order Taylor series expansion

Bg(TE) ≈ B(δ)
g +

(
∂Bg

∂TE

)(δ)

(TE − T
(δ)
E )

due to its tanglesome nonlinearity while the others are replaced by their constant

(0th-order) Taylor approximations at E
(δ)
g , T

(δ)
I and T

(δ)
E . We immediately obtain

a sequence of coupled systems of second-order linear reaction-diffusion equations as
follows



−∇ · (D(δ)
g ∇Eg) + (

1

∆tk+1
+ cσ

(δ)
Pg)Eg − cσ

(δ)
Bg

(
∂Bg

∂TE

)(δ)

TE

= S(δ)
g +

1

∆tk+1
E(k)

g + cσ
(δ)
Bg

[
B(δ)

g −
(
∂Bg

∂TE

)(δ)

T
(δ)
E

]
, g = 1, · · · , G,

−∇ · (D(δ)
E ∇TE) +

[
ρc

(δ)
E

∆tk+1
+ w

(δ)
IE +

G∑
g=1

cσ
(δ)
Bg

(
∂Bg

∂TE

)(δ)
]
TE

−
G∑

g=1

cσ
(δ)
PgEg − w

(δ)
IETI =

ρc
(δ)
E

∆tk+1
T

(k)
E −

G∑
g=1

cσ
(δ)
Bg

[
B(δ)

g −
(
∂Bg

∂TE

)(δ)

T
(δ)
E

]
,

−∇ · (D(δ)
I ∇TI) + (

ρc
(δ)
I

∆tk+1
+ w

(δ)
IE)TI − w

(δ)
IETE =

ρc
(δ)
I

∆tk+1
T

(k)
I ,

(3)
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at the (δ + 1)-th nonlinear iteration step, where the initial guess at the current
time level tk+1, i.e., the particular case when δ = 0, is just the related approximate
function at tk. Finally, we discretize the linear PDE system (3) using a cell-centered
locally conservative finite volume scheme, i.e., to approximate these functions by the
undermentioned system of linear algebraic equations that involve a finite number
of unknowns in the so-called field-by-field ordering

Au ≡

 AR DRE O
DER AE DEI

O DIE AI

 eR
tE
tI

 =

 fR
fE
fI

 ≡ f ,(4)

where the discrete radiation variables are integrated into a single entity, namely,

AR =

 A1

. . .

AG

 ∈ RGn×Gn, DRE =

 D1E

...
DGE

 ∈ RGn×n,

eR =

 e1
...
eG

 ∈ RGn, fR =

 f1
...
fG

 ∈ RGn

and DER = (DE1, · · · , DEG) ∈ Rn×Gn while AE , DEI , AI and DIE are four real
matrices of size n × n. Here n is the total number of possibly unstructured mesh
cells. It is worth emphasizing that

• all its diagonal sub-blocks Ag (g = 1, · · · , G,E, I), due to (3), originate from
discrete reaction-diffusion operators with appropriate boundary conditions
and involved coefficients in fairly different scales and discontinuities, re-
sulting in a cluster of sparse symmetric positive definite but ill-conditioned
and multi-scale matrices stored in compressed sparse row (CSR) storage
formats with the same nonzero structure;

• all its nonzero off-diagonal sub-blocks Dgg′ (g ̸= g′, g, g′ = 1, · · · , G,E, I)
are diagonal matrices with non-positive elements, also in enormously dif-
ferent orders of magnitude, and they must satisfy

DEI = DIE and DEg ̸= DgE for the photon frequency group index g = 1, · · · , G,

such that the global matrix A is multi-scale1, positive definite but necessar-
ily non-symmetric and multi-physics (namely radiation, electron and ion)
coupled in intensively time- and position-varying strengths2;

• the number of degrees of freedom of the flux-limited MGD linear system (4)
is usually ranged from 107 to 1011 as a result of the presence of hydrody-
namic instabilities together with the wave-like propagation characteristics
and multiple spatio-temporal scales in the transient solutions.

Obviously, the flexible restarted generalized minimal residual solver [36, 37],
which is to restart after each cycle ofm iteration steps and is denoted by FGMRES(m),
is generally the method of choice, in despite of the intrinsic appeals (e.g., reliability
and accessibility) of sparse direct solvers (e.g., MUMPS [2], PARDISO [40], PaStiX
[18], SuperLU [27] and UMFPACK [12]), because of their considerable amounts of
memory footprint and difficulties in developing massively parallel implementations.

1A matrix is said to be multi-scale if its off-diagonal elements span several orders of magnitude.
Otherwise, it is defined as having the single-scale property.

2This means that the coupling coefficients cσ
(δ)
Bg

(
∂Bg

∂TE

)(δ)
, cσ

(δ)
Pg (g = 1, · · · , G) and w

(δ)
IE in

(3) change dramatically at different physical times and computational locations.
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However, the convergence behavior of FGMRES(m) needs to be further boosted via
some effective preconditioning algorithm, which invariably transforms the original
system of linear equations into a mathematically equivalent linear system, never-
theless, with numerous more beneficial properties, e.g., a rather smaller (spectral)
condition number and a much more clustered eigenvalue distribution.

In response to the aforementioned challenging task, numerous scholars have pro-
posed a wide variety of preconditioning approaches over the past several decades,
which are mainly categorized into three different types: the monolithic, block (also
known as physics-based) and combined preconditioners [3, 5, 9, 16, 21, 22, 32, 41,
43, 44, 45, 47, 49, 51, 54, 48, 53, 50, 55, 56]. However, the accurate, efficient and
scalable numerical iterative solution of the flux-limited MGD linear systems still
present a formidable computational challenge, such as the relatively slow conver-
gence performance [41] or even sporadic divergence [55] when the involved Schur
complement matrices need to be approximated in the preconditioner construction
phase. More often, the inverses of certain sub-matrices therein are replaced, in a
straightforward manner, by their ‘justified’ diagonal counterparts, which gives rise
to significant uncertainty on their veritable preconditioning effects. Another point
that should be made is that the two general requirements of modern precondition-
ing techniques are the numerical robustness (in reference to the geometric, physical
and discrete parameters and the number of parallel processor cores) and the im-
plementation scalability (i.e., the setup phase and every iteration step ought to be
scalable in a parallel environment) [11]. It should be emphasized that the numerical
robustness is, without doubt, a preemptive requirement to arrive at a scalable im-
plementation. Hence, sparse iterative linear solvers paired with advanced modern
preconditioning strategies, without introducing any Schur complement matrix that
cannot be tackled precisely, is just our sustaining demand for reliable and timely
modeling predictions.

In the present article, we investigate the properties of the linear system to de-
sign such an advanced modern block preconditioning algorithm of the semi-algebraic
category, namely, it does not require any knowledge except the flux-limited MGD
coefficient matrix and its inherent physics-informed sparse block structure. Con-
cretely speaking, a new alternating positive semidefinite splitting preconditioner
with selective relaxations (APSS-SR) and algebraic multigrid subsolves for scala-
bility is proposed, analyzed, implemented and examined in sequential and parallel
circumstances. The body of this work is organized as follows. Section 2 provides
a concise review of the research topic on alternating positive semidefinite split-
ting (APSS) preconditioners. Thereafter, we present the principal contribution of
this article in Section 3, including the construction of the APSS-SR precondition-
er induced by a two-sweep alternating direction implicit iteration scheme, spectral
distribution results and the degree of the minimal polynomial of its preconditioned
matrix, an algebraic quasi-optimal choice strategy on the involved parameters as
well as its sequential implementation and the two-level parallelization. Numeri-
cal simulations involving realistic unstructured problems aimed at examining its
numerical robustness, computational efficiency and parallel scaling properties are
carried out in Section 4. Section 5 concludes the presentation with some closing
remarks and future prospects.

2. Related works

The original idea of the APSS iteration method and its induced preconditioning
algorithm is described in [35] for two-by-two block complex-valued saddle point
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problems arising from time-harmonic eddy current models. The unconditional con-
vergence analysis is also given in [35], nevertheless, only for the simple topology
case. Subsequently, Ke, Ma and Ren proposed two improved APSS variants using
different matrix splittings applied to the same model problems and proved their
unconditional convergence properties in [26]. Afterwards, two two-parameter mod-
ified APSS variants are introduced separately for the simple and general topologies
in [25] with their eigenvalue distributions and upper bounds about the degree of
the minimal polynomial of the relevant preconditioned matrix. Two remarkable
advantages of this approach are its good convergence and easy implementation.
This type of algorithm has branched out into solving double saddle point prob-
lems [28, 30, 34] and three-by-three block singular and non-singular saddle point
problems [4, 10, 39]. For the system of linear equations (4), the relaxed APSS
preconditioner is then defined by

P̃ =
1

α̃

 AR DRE O
DER α̃Iπ O
O O α̃Iπ

 α̃Iπ O O
O AE DEI

O DIE AI


=

 AR
1
α̃DREAE

1
α̃DREDEI

DER AE DEI

O DIE AI

 ,(5)

where α̃ is a positive number and Iπ represents the identity matrix with appropriate
dimension. The preconditioner P̃, which will be utilized for a comparison study in
Section 4, is firstly derived from an alternating positive semidefinite splitting of the
global matrix A:

A =

 AR DRE O
DER O O
O O O


︸ ︷︷ ︸

:=Ã1

+

 O O O
O AE DEI

O DIE AI


︸ ︷︷ ︸

:=Ã2

,

and then induced by the two-step alternating direction implicit iteration scheme{
(α̃Iπ + Ã1)u

(k+ 1
2 ) = (α̃Iπ − Ã2)u

(k) + f

(α̃Iπ + Ã2)u
(k+1) = (α̃Iπ − Ã1)u

(k+ 1
2 ) + f

, k = 0, 1, · · ·

on account of two next-mentioned splittings

A = (α̃Iπ + Ã1)− (α̃Iπ − Ã2) = (α̃Iπ + Ã2)− (α̃Iπ − Ã1),

and finally improved by the so-called relaxed matrix splitting technique [8]. Howev-
er, the easy implementation feature is gone because it brings the explicit generations
and numerical inversions of two Schur complement matrices

SR = AR − 1

α̃
DREDER and SE = AE −DEIA

−1
I DIE

in solving the general residual equations P̃w = b, which is accomplished by the
following procedure:

(1) solve wR from SRwR = bR − 1
α̃DREbE ;

(2) solve zI from AIzI = bI ;
(3) compute yE := bE −DERwR −DEIzI and solve wE from SEwE = yE ;
(4) set pI := DIEwE , solve AIqI = pI and compute wI = zI − qI .
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This is based on the block-matrix factorization 1
α̃SR

1
α̃DRE O

O Iπ O
O O Iπ

 Iπ O O
1
α̃DER Iπ O
O O Iπ

 α̃Iπ O O
O SE DEI

O O AI


 Iπ O O

O Iπ O
O A−1

I DIE Iπ

 wR

wE

wI

 =

 bR
bE
bI

 ,

where w = (w⊤
R , w

⊤
E , w

⊤
I )

⊤ is the outgoing Krylov solution vector and b = (b⊤R, b
⊤
E ,

b⊤I )
⊤ is an arbitrarily incoming Krylov known vector. It is worthwhile to point out

that the inverse A−1
I in the Schur complement matrix SE is frequently approximated

by a diagonal matrix, such as the direct, row-maximum, row-infinity and row-Schur
diagonalizations (see [51, 56, 54]), which may seriously influence the convergence
rate of the left- or right-preconditioned FGMRES(m) solver. Another remark is
that the portion DREDER causes SR to be a full block-matrix

SR =

 A1 − 1
α̃D1EDE1 · · · − 1

α̃D1EDEG

...
. . .

...
− 1

α̃DGEDE1 · · · AG − 1
α̃DGEDEG


whose off-diagonal sub-blocks − 1

α̃DjEDEk (j ̸= k, j, k = 1, · · · , G) are undoubtedly
all diagonal matrices and have, by and large, been neglected when addressing the
first step of the above-mentioned algorithmic procedure. Moreover, the practical,
algebraic and quasi-optimal choice of the positive parameter α̃ will be discussed in
subsection 3.3.

Remark 1. It is easily seen from the above procedure that (1) an application of

P̃−1 on b to obtain w is formed from two subsolves with the coefficient matrix AI

as well as one subsolve with the coefficient matrices SR and SE; (2) in a practical
implementation, the involved inverses are achieved by one or two algebraic multigrid
V-cycles, rather than performed to calculate their exact solutions by sparse Cholesky
or LU factorization in an approximate minimum degree (AMD) or a column AMD
reordering.

3. A selectively relaxed alternating positive semidefinite splitting pre-
conditioner

In this section, we establish a new APSS preconditioner with two selective relax-
ations for solving the flux-limited MGD linear system (4), provide the eigenvalue
and eigenvector distribution results with respect to its left- or right-preconditioned
matrix, derive an algebraic, quasi-optimal and easy-to-implement estimation for-
mulae for the involved positive parameters and discuss the sequential algorithmic
implementation as well as the two-level parallelization for the preconditioner on
the strength of the jxpamg (parallel algebraic multigrid solvers and preconditioners
developed by JiuSuo and XTU) software library [46]3.

3It had already served as a scalable third-party library of jasmin (j adaptive structured meshes
applications infrastructure) [31] and jaumin (j adaptive unstructured meshes applications infras-
tructure) [29]. Moreover, we detailed in [46] its algorithms, parallel implementation techniques,

software architecture, user interfaces as well as typical applications.
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3.1. Preconditioner constitution. The above two disadvantages of the relaxed
APSS preconditioning algorithm, when solving the block (G+2)-by-(G+2) linear
system (4), can be remedied immediately by introducing a different alternating
positive semidefinite splitting

A =

 AR O O
DER AE O
O O O


︸ ︷︷ ︸

:=A1

+

 O DRE O
O O DEI

O DIE AI


︸ ︷︷ ︸

:=A2

(6)

and a new-style two-step alternating direction implicit iteration scheme{
(Λ1 +A1)u

(k+ 1
2 ) = (Λ1 −A2)u

(k) + f

(Λ2 +A2)u
(k+1) = (Λ2 −A1)u

(k+ 1
2 ) + f

, k = 0, 1, · · ·(7)

based on the two splittings

A = (Λ1 +A1)− (Λ1 −A2) = (Λ2 +A2)− (Λ2 −A1)

with two selective relaxations

Λ1 =

 O O O
O O O
O O αIπ

 and Λ2 =

 βIπ O O
O γIπ O
O O O

 ,(8)

including three positive parameters α, β and γ in order to guarantee that the
coefficient matrices Λ1 +A1 and Λ2 +A2 are both nonsingular. Eliminating the
intermediate unknown u(k+ 1

2 ) in (7) yields

u(k+1) =(Λ2 +A2)
−1(Λ2 −A1)(Λ1 +A1)

−1(Λ1 −A2)︸ ︷︷ ︸
:=G

u(k)

+ (Λ2 +A2)
−1(Λ2 +Λ1)(Λ1 +A1)

−1︸ ︷︷ ︸
:=P−1

f ,

where the iteration matrix can be rewritten in the form

G = [Iπ − (Λ2 +A2)
−1A][Iπ − (Λ1 +A1)

−1A] = Iπ −P−1A

and our APSS-SR preconditioning matrix, by the definitions (6) and (8), is defined
through

P = (Λ1 +A1)(Λ2 +Λ1)
−1(Λ2 +A2)

=

 AR
1
βARDRE O

DER
1
βDERDRE +AE

1
γAEDEI

O DIE AI

(9)

associated with the iteration scheme (7). It follows from (9) that the parameter
α has no effect on the convergence performance of the iteration scheme (7) or the
preconditioning behavior of P, namely, what we have developed are a degenerate
two-parameter selectively relaxed APSS iteration method and its related precondi-
tioner.

3.2. Spectral properties of the preconditioned matrix. As known to all,
the convergence performance of the preconditioned FGMRES(m) solver is not only
mightily susceptible to the eigenvalue distribution of its preconditioned matrix, but
also remarkably correlated with the condition number of the corresponding eigen-
vector matrix [7]. With regard to the APSS-SR left-preconditioned matrix P−1A,
or equivalently, the APSS-SR right-preconditioned variant AP−1, the eigenvalue
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and eigenvector distribution results are stated in the following theorem, where N (·)
represents the null space of the relevant matrix.

Theorem 1. Let sub-matrices AR, DRE, AE, DER, DEI , AI and DIE be de-
fined by (4), and β and γ be two arbitrarily given positive parameters. Then, the
APSS-SR preconditioned matrices P−1A and AP−1 both have the eigenvalue 1 with
algebraic multiplicity at least (G+ 1)n while their remaining eigenvalues are of the
form 1− µj with µj being the j-th eigenvalue of the real n× n matrix

Zγ := A−1
E DERA

−1
R DRE(Iπ +

1

γ
DEIS

−1
I DIE)− (

1

γ
Iπ −A−1

E )DEIS
−1
I DIE .(10)

where the Schur complement matrix

SI = AI −
1

γ
DIEDEI .

Furthermore, assume that the matrix DEI and at least one of the sub-matrices DgE

(g = 1, · · · , G) are full row-rank, then P−1A has the following Gn+s (0 ≤ s ≤ 2n)
linearly independent eigenvectors:

• Gn eigenvectors of the form [u⊤
l , 0

⊤, 0⊤]⊤ (l = 1, · · · , Gn) associate with
the eigenvalue 1, where ul ∈ RGn are arbitrary linearly independent vectors;

• s eigenvectors of the form [û⊤
l , v̂

⊤
l , ŵ

⊤
l ]

⊤ (l = 1, 2, · · · , s) correspond to the
eigenvalues λl ̸= 1, where v̂l ∈ N (Ql) \ {0} with

Ql = (λl − 1)AE +DERA
−1
R DRE +DEIA

−1
I DIE − λl

γ
AEDEIA

−1
I DIE

while ûl and ŵl are given by

ûl =
1

1− λl
(
λl

β
Iπ −A−1

R )DRE v̂l and ŵl = −A−1
I DIE v̂l.

Proof. As a result of (9), the respective difference below can be derived

R = P−A =

 O ( 1βAR − Iπ)DRE O

O 1
βDERDRE ( 1γAE − Iπ)DEI

O O O

 .

With making use of the undermentioned block factorization

P =

 AR O O
DER AE O
O DIE Iπ

 Iπ
1
βDRE O

O Iπ
1
γDEI

O O SI

 ,(11)

it is easy to verify that

P−1 =

 Iπ − 1
βDRE

1
βγDREDEIS

−1
I

O Iπ − 1
γDEIS

−1
I

O O S−1
I


×

 A−1
R O O

−A−1
E DERA

−1
R A−1

E O
DIEA

−1
E DERA

−1
R −DIEA

−1
E Iπ


and

P−1R =

 O Θ1 Θ2

O Υ11 Υ12

O Υ21 Υ22

(12)
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where

Θ1 =(
1

β
Iπ −A−1

R )DRE − 1

β
DREA

−1
E DERA

−1
R DRE

− 1

βγ
DREDEIS

−1
I DIEA

−1
E DERA

−1
R DRE ,

Θ2 =− 1

β
DRE(

1

γ
Iπ −A−1

E )DEI −
1

βγ
DREDEIS

−1
I DIE(

1

γ
Iπ −A−1

E )DEI ,

Υ11 =(Iπ +
1

γ
DEIS

−1
I DIE)A

−1
E DERA

−1
R DRE ,

Υ12 =(Iπ +
1

γ
DEIS

−1
I DIE)(

1

γ
Iπ −A−1

E )DEI ,

Υ21 =− S−1
I DIEA

−1
E DERA

−1
R DRE ,

Υ22 =− S−1
I DIE(

1

γ
Iπ −A−1

E )DEI .

Observe from the block structure of P−1R that its eigenvalues are 0 with algebraic
multiplicity Gn and those of the bottom right 2n× 2n sub-matrix

Yγ :=

[
Υ11 Υ12

Υ21 Υ22

]
=

[
Iπ + 1

γDEIS
−1
I DIE

−S−1
I DIE

]
︸ ︷︷ ︸

:=Uγ

[
A−1

E DERA
−1
R DRE ( 1γ Iπ −A−1

E )DEI

]
︸ ︷︷ ︸

:=Vγ

,

which has the same nonzero eigenvalues as Zγ defined in (10) and calculated by the
formula Zγ = VγUγ while the other eigenvalues are 0 with algebraic multiplicity
at least n. Therefore, the first desired result can be directly verified through the
relation

P−1A = P−1(P−R) = Iπ −P−1R

and the similarity transformation AP−1 = P(P−1A)P−1 between AP−1 and
P−1A.

The second portion of this theorem can now be proved. Let λ be an eigenvalue
of P−1A and q = [u⊤, v⊤, w⊤]⊤ be the eigenvector associated with it. From the
relation P−1Aq = λq, we get AR DRE O

DER AE DEI

O DIE AI

 u
v
w


=λ

 AR
1
βARDRE O

DER
1
βDERDRE +AE

1
γAEDEI

O DIE AI

 u
v
w

 ,

which can equivalently be reformulated into
(λ− 1)ARu+ (

λ

β
AR − Iπ)DREv = 0

(λ− 1)DERu+ (λ− 1)AEv +
λ

β
DERDREv + (

λ

γ
AE − Iπ)DEIw = 0

(λ− 1)(DIEv +AIw) = 0

.(13)
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We first assume that λ = 1. Then (13) can be reduced to
(
1

β
AR − Iπ)DREv = 0

1

β
DERDREv + (

1

γ
AE − Iπ)DEIw = 0

.

Since 1
βAR−Iπ is nonsingular, this shows that v ∈ N (DRE). Moreover, if DEI and

at least one of the sub-matrices DgE (g = 1, · · · , G) are full row-rank, then v = 0
and w = 0 as a result of the nonsingularity of 1

γAE−Iπ. As a consequence, there are

Gn linearly independent eigenvectors [u⊤
l , 0

⊤, 0⊤]⊤ (l = 1, · · · , Gn) corresponding
to the eigenvalue 1, where ul are arbitrary linearly independent vectors in RGn.
Secondly, under the assumption that λ ̸= 1, we have

w = −A−1
I DIEv and u =

1

1− λ
(
λ

β
Iπ −A−1

R )DREv

from the third and first equations in (13), respectively. Substituting these two
expressions into the second equation of (13) yields v ∈ N (Q) \ {0}, where

Q = (λ− 1)AE +DERA
−1
R DRE +DEIA

−1
I DIE − λ

γ
AEDEIA

−1
I DIE .

Since v is nonzero, this yields s linearly independent eigenvectors [û⊤
l , v̂

⊤
l , ŵ

⊤
l ]

⊤

(l = 1, 2, · · · , s) which correspond to the eigenvalue λl ̸= 1. Finally, we prove that
the above Gn+ s eigenvectors are linearly independent, i.e., u1 · · · uGn

0 · · · 0
0 · · · 0


︸ ︷︷ ︸

:=U

 ϑ1

...
ϑGn


︸ ︷︷ ︸

:=ϑ

+

 û1 · · · ûs

v̂1 · · · v̂s
ŵ1 · · · ŵs


︸ ︷︷ ︸

:=Û

 ϑ̂1

...

ϑ̂s


︸ ︷︷ ︸

:=ϑ̂

=

 0
0
0

(14)

is valid only when the vectors ϑ and ϑ̂ are both zero. Multiplying all members of
the above equation from the left by P−1A leads to u1 · · · uGn

0 · · · 0
0 · · · 0


 ϑ1

...
ϑGn

+

 û1 · · · ûs

v̂1 · · · v̂s
ŵ1 · · · ŵs


 λ1ϑ̂1

...

λsϑ̂s

 =

 0
0
0

 .(15)

The reason is that the first matrix U in (14) is composed of the eigenvectors as-

sociated with the eigenvalue 1 while the matrix Û is made up of the eigenvectors
corresponding to the eigenvalues that are different from 1, both column by column.
By subtracting (14) from (15), it holds that û1 · · · ûs

v̂1 · · · v̂s
ŵ1 · · · ŵs


 (λ1 − 1)ϑ̂1

...

(λs − 1)ϑ̂s

 =

 0
0
0

 .

The linear independence of s eigenvectors [û⊤
l , v̂

⊤
l , ŵ

⊤
l ]

⊤ (l = 1, 2, · · · , s) and the

eigenvalues λl ̸= 1 for l = 1, · · · , s can be used to obtain ϑ̂ = 0. Substituting this

into (14) yields ϑ = 0, which completes the proof.

One of the best-known sufficient conditions to search an effective preconditioning
strategy should capacitate us to lower the degree of the minimal polynomial of the
preconditioned matrix as much as possible [42]. Next, we conclude an upper bound
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for the degree of the minimal polynomial of the APSS-SR preconditioned matrix
P−1A by exploiting Theorem 1 in a similar way to [6, Proposition 2.2] and [17,
Theorem 4].

Theorem 2. Assume that the condition of Theorem 1 holds. Then, the degree
of the minimal polynomial of P−1A, i.e., the dimension of the Krylov subspace
K(P−1A, f −Au0) for an arbitrarily given initial guess vector u0, is no more than
2n+ 1, where n is the size of each sub-matrix of A.

3.3. An algebraic selection strategy for determining the involved two
parameters. If these two parameters β and γ are such two values that P is as close
to A as possible, then the block (G+2)-by-(G+2) matrix R would be approaching
the zero matrix. Therefore, it can be seen that the iteration scheme (7) would gain
a fast convergence behavior and the preconditioned matrix is typically with a nice
clustering of its eigenvalues. In short, now consider a similar idea to [23] in which
the two parameters β and γ can be sought to minimize the objective function

η(β, γ) = ∥R∥2F = trace(RR⊤).

Then, by immediate calculations, we obtain

η(β, γ) =trace((
1

β
AR − Iπ)DRED

⊤
RE(

1

β
AR − Iπ)

+
1

β2
DERDRED

⊤
RED

⊤
ER + (

1

γ
AE − Iπ)D

2
EI(

1

γ
AE − Iπ))

=
1

β2
k1 −

1

β
k2 +

1

γ2
k3 −

1

γ
k4 + k5

=k1(
1

β
− k2

2k1
)2 + k3(

1

γ
− k4

2k3
)2 + k5 −

k22
4k1

− k24
4k3

(16)

where

k1 =trace(ARDRED
⊤
REAR +DERDRED

⊤
RED

⊤
ER),

k2 =trace(ARDRED
⊤
RE +DRED

⊤
REAR),

k3 =trace(AED
2
EIAE),

k4 =trace(AED
2
EI +D2

EIAE),

k5 =trace(DRED
⊤
RE +D2

EI).

From (16), it can be deduced that

β∗ =
2k1
k2

and γ∗ =
2k3
k4

(17)

are the desired quasi-optimal choices.

Remark 2. It is able to be derived in exactly the same way that the quasi-optimal
choice of the positive parameter α̃ in the relaxed APSS preconditioner P̃, defined
by (5), is

α̃∗ =
trace(DREA

2
ED

⊤
RE +DRED

2
EID

⊤
RE)

trace(DREAED⊤
RE)

.

By comparing with the relaxed APSS preconditioner P̃ defined by (5), there are two
positive parameters β and γ which serve the purpose of approximating AR and AE

in the APSS-SR preconditioner P defined by (9) while only one positive parameter

α̃ is in P̃. From this fact one should expect the flexible restarted GMRES solver
preconditioned by P to converge in a smaller number of iterations.
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3.4. Sequential and parallel implementation procedures. When the flexible
restarted GMRES solver with the APSS-SR preconditioning algorithm P is applied
to solve the flux-limited MGD linear system (4) with (G+2)-by-(G+2) sparse block
structure, we need to carry out a solution procedure for the following generalized
residual linear system at each step

Pw ≡

 AR
1
βARDRE O

DER
1
βDERDRE +AE

1
γAEDEI

O DIE AI

 wR

wE

wI

 =

 bR
bE
bI

 ≡ b,(18)

where w and b are respectively the unknown outgoing Krylov solution vector and
an arbitrarily given incoming Krylov right-hand side vector. By utilizing the matrix
decomposition (11), the generalized residual equations (18) must be coped with by
consecutively solving two undermentioned systems of linear equations AR O O

DER AE O
O DIE Iπ

 uR

uE

uI

 =

 bR
bE
bI


and  Iπ

1
βDRE O

O Iπ
1
γDEI

O O AI − 1
γDIEDEI

 wR

wE

wI

 =

 uR

uE

uI

 ,

namely, the specifically algorithmic implementation procedure to figure up the gen-
eralized residual solution vector w is described below:

(1) solve uR from ARuR = bR;

(2) compute b̃E := bE −DERuR and solve uE from AEuE = b̃E ;
(3) calculate uI := bI −DIEuE and solve wI from (AI − 1

γDIEDEI)wI = uI ;

(4) set wE := uE − 1
γDEIwI and wR := uR − 1

βDREwE .

It can be observed from the above procedure that there are G+2 sparse linear sub-
systems in the same nonzero structure to be solved by either a specified number of
the best practices algebraic multigrid V-cycles [13] or iterating this type of algebraic
multigrid V-cycles till a prescribed relative or absolute tolerance is reached.

Remark 3. It is worth highlighting from the implementation procedure of P̃w = b
in Section 2 that (1) G + 3 sparse sub-matrix inverses must be operated for P̃
(hence, in a more expensive computational overhead per iteration) and (2) the Schur

complement matrices in P̃ are just approximated while the one in P can be explicitly
formed, as AI− 1

γDIEDEI is shaped like AI with some modifications to its diagonal

entries, because the contribution item − 1
γDIEDEI is just a diagonal matrix.

Because of the advancement of the massively distributed-memory supercomput-
ing, parallel computer simulations have become an enabling technology supporting a
wide range of supersized applications in science and engineering, where the superfine
computational mesh with an ultrahigh mesh resolution must be used to resolve very
small spatial scales (e.g., not a few defects in geometry, splicing spots of different
materials and sudden but drastic changes in values of many physical quantities at
a certain region) to offer sufficiently accurate numerical solutions when simulating
the hydrodynamic Rayleigh-Taylor instability during the deceleration phase of laser
indirect-driven spherical implosions [15]. Also, appropriately designed, extraordi-
narily efficient and highly parallel preconditioners are in urgent need for an effective
utilization of modern hardware resources, which are interconnected via multifarious
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high-speed networks and carry out data exchanges among parallel processor cores
by utilizing the message passing interface (MPI) library. It is apparent by now that
the increase in the computing power is no longer from faster processors, but from
the rapid increase in the number of physical processors, which makes numerical
and parallel scalabilities of the preconditioned FGMRES(m) algorithm much more
important than ever. It should be mentioned that the most momentous component
is the preconditioner, without which the FGMRES(m) solver does not converge or
converges quite slowly, and a good choice of preconditioning algorithm would ac-
celerate the convergence significantly. Furthermore, it is supposed to be scalable to
a good deal of parallel processor cores and to guarantee the numerical robustness
with respect to different geometries, physical parameters, spatio-temporal discrete
meshes and processor counts. However, three issues needed to be addressed are the
design of an MPI processor topology for the preconditioning algorithm, the parallel
matrix and vector data structures together with the communication overhead of
data flows. Here, we point out that the two-level parallelization strategy described
below is ideally suitable for effectively implementing the APSS-SR preconditioner
P defined by (9) in parallel to bring down the data communication overhead as
much as possible:

• Within the first-level parallelization stage, we need to uniformly partition
the global communicator, which is assumed to be composed of (G + 2)q
parallel processor cores used for the parallel computing, into G + 2 com-
munication sub-groups. This type of procedure is done by the MPI func-
tion ‘MPI Comm split’. The communication sub-groups are distinguished
by their owned ‘color’ value, i.e., COMM R (consisting of COMM 1, · · · ,
COMM G), COMM I and COMM E, and their respective q parallel pro-
cessor cores are labeled as their local continuous ‘key’ values (starting from
0 to q − 1), as illustrated in Figure 1. Each sparse linear subsystem a-
long with the correlative off-diagonal sub-blocks (stored in the vector form)
are assigned to one communication sub-group according to the sequence
number of physical variables.

• The principal mission and responsibility of the second-level parallelization
stage is to distribute the rows of the sub-matrix Ag, all of nonzero sub-
vectors Dgg′ (g ̸= g′) in the coefficient matrix A and a number of additional
auxiliary sub-vectors as evenly as possible (to ensure the load balancing and
guarantee the parallel performance) onto different parallel processor cores
within the communication sub-group COMM g (g = 1, · · · , G, I, E), i.e.,
compared with the other processor cores, at most one more row of nonzero
entries are descended into a certain processor core. More concretely, the
data structure used to manage the sub-matrix Ag is the parallel compressed
sparse row (CSR) matrix storage format while the diagonal entries are
preferentially stored at each row, that is, the ParCSRMatrix container in
the open-source software package hypre (high performance preconditioners
and solvers featuring multigrid) [14] from Lawrence Livermore National
Laboratory, while the ParVector container in hypre is applied to tackle all
of nonzero sub-vectors.

It is important to emphasize that the communication mechanism for message ex-
changes among these communication sub-groups is fairly simple and easy to imple-
ment: message exchanges only take place between two parallel processor cores with
the same local identifier (i.e., ‘key’ value).
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local processor identifier:

communication sub-group:

⋯

   0   1       q-1⋯

⋯

   0   1       q-1⋯

⋯ ⋯

   0   1       q-1⋯

⋯

   0   1       q-1⋯

COMM_1 COMM_G COMM_E COMM_I{
COMM_R

A1 D1E , b1 AG DGE, bG AE

DE1 …

DEG,DEI,
bE

, ,
AI −

1D
IEγ D

EI

DIE, bI

Figure 1. An abridged general view of the G+2 communication
sub-groups derived from a quick and easy disassembly of the global
communicator containing (G + 2)q parallel processor cores. Each
of them is accompanied by the coefficient matrix (left), an MPI
topology of q parallel processor cores (middle) and the correlative
off-diagonal sub-blocks together with the right-hand side vector
(right).

Remark 4. The quasi-optimal positive parameters β∗ and γ∗ defined by (17) would
have to be determined at the cost of the embarrassingly parallel computations of all
diagonal entries of G + 1 ParCSRMatrix-by-ParCSRMatrix multiplications, i.e.,
AED

2
EIAE and AgD

2
gEAg (g = 1, · · · , G), which is mathematically equivalent to

one ParCSRMatrix-by-ParCSRMatrix multiplication within a certain communica-
tion sub-group. We note that the matrix-product should not be completely calculated,
because only the diagonal (i.e., first) entries need to be generated, which can be ac-
complished via certain modifications to the subroutine ‘hypre ParMatmul’ in hypre.
Furthermore, the MPI functions ‘MPI Reduce’ and ‘MPI Bcast’ are also needed to
complete the whole calculation.

The proposed preconditioning algorithm is implemented on the top of the soft-
ware library ‘jxpamg’ [46]. The parallel calculation workflow and network topology
structure on information communications of a single application of P is depicted in
Figure 2, whose complete particular description is as follows:

• parallel calculation step1: within the communication sub-group COMM g
(g = 1, · · · , G), numerically solve Agug = bg to obtain ug via the Boomer-
AMG solver (a frequently-used and prestigious parallel implementation of
classical algebraic multigrid in hypre) [19] with a specified maximum num-
ber of iterations nmax

g and a prescribed relative tolerance δg for stopping of
inner iterations.

• data transfer (a): send the real arrays ug (g = 1, · · · , G) from COMM g to
COMM E between processor cores of the same ‘key’ value.

• parallel calculation step2: within the communication subgroup COMM E,

receive the data packets, compute b̃E := bE−
∑G

g=1 DEgug and, by invoking
the BoomerAMG solver, determine the numerical solution uE from AEuE =
b̃E , using the fixed nmax

E and δE for the inner stopping criterion.
• data transfer (b): between two processor cores of the same ‘key’ value, send
the real array uE from COMM E to COMM I.

• parallel calculation step3: after the piece of data is received within the
communication subgroup COMM I, generate uI := bI − DIEuE and seek
for the approximate solution wI from

(AI −
1

γ
DIEDEI)wI = uI

by exploiting the BoomerAMG solver with nmax
I and δI being prescribed.
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• data backhaul (c): send the resulting real array wI from COMM I to COM-
M E between processor cores of the same ‘key’ value.

• parallel calculation step4: within the communication subgroup COMM E,
compute wE := uE − 1

γDEIwI when the piece of data has been received.

• data backhaul (d): from COMM E to COMM g (g = 1, · · · , G), send the
resultant real array wE between two processor cores of the same ‘key’ value.

• parallel calculation step5: after the piece of data is received, generate
wg := ug − 1

βDgEwE within the communication sub-group COMM g (g =

1, · · · , G).

⋯ ⋯

⋯

⋯step3

step1

⋯

(c)

(a) (a) (a) (a) (a) (a)

(d) (d) (d) (d) (d) (d)

(c)(c)

(b) (b) (b)

COMM_R

COMM_1 COMM_G

}
COMM_E

COMM_I

step5

step1

step5

step2

step4

Figure 2. A graphic representation of the parallel calculation
workflow and network topology structure on information commu-
nications of a single application of the APSS-SR preconditioner
P.

4. Numerical results and discussion

This section is devoted to investigating and discussing the numerical robust-
ness, computational efficiency and parallel strong and weak scaling properties of
the proposed APSS-SR preconditioner P, compared with the monolithic Boomer-
AMG preconditioner [19], the physical-variable based coarsening two-level (PCTL)

preconditioner [22, 44, 55] and the relaxed APSS preconditioner P̃ defined by (5),
which are effectively implemented in hypre, jxpamg and jxpamg, respectively4.

4.1. Experimental setup. The experimental study and numerical comparison
are carried out using three successively refined three-dimensional (adaptive) un-
structured computational meshes (referred to as M0 represented in Figure 3, M1

and M2, respectively, with 93,177, 745,416 and 5,963,328 grid cells) under the
jaumin framework [29] and seven flux-limited MGD linear systems (symbolized by
U26-2, U88-1, U42-3, U97-2, U39-3, U110-1 and U169-2, arising, respectively, from
the discrete linear second-order reaction-diffusion equations in the 2nd, 1st, 3rd,
2nd, 3rd, 1st and 2nd nonlinear iterations at the 26th, 88th, 42nd, 97th, 39th,
110th and 169th time-levels of three different real-world sixty-four-group (G = 64)
capsule implosion simulations). The initial and boundary value conditions for the
nonlinear PDE system (1) are: the initial radiation, electron and ion temperatures

4These implementations can be made freely available upon reasonable request while the authors

do not have permission to share data.
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are all set to 3.0× 10−4 while radiation energy densities are computed through the
Plank interpolation formula and the initial radiation temperature; the zero-flow
boundary condition is imposed at all physical boundaries of the electron and ion
temperature variables together with the angle direction and spherical center of the
radiation energy density variables, at whose outer radius are the different inflow
boundary conditions.

Figure 3. The half and full side views of the coarsest computa-
tional grid M0 with 93,177 mesh cells.

All computations of the before-mentioned challenging realistic unstructured cap-
sule implosion test cases are performed on the Tianhe-2A supercomputer, which is
deployed at China’s National Supercomputer Center in Guangzhou and current-
ly ranked 24th in the November 2024 TOP500 list. It exercises the Kylin Linux
operating system and delivers 100.68 petaflops peak performance in theory and
61.44 petaflops Linpack performance with 17,792 computing nodes. Each of them
is assembled with dual 12-core Intel Ivy Bridge Xeon E5-2692v2 central processing
units (24 parallel processor cores in total), which are all clocked at 2.2 gigahertz
and have 64.0 gigabytes of DDR3 main memory and the Matrix-2000 processors
for performance acceleration. The proprietary high-performance TH Express-2 in-
terconnect network topology is an opto-electronic hybrid and hierarchical fat tree.
We make use of the Intel C compiler (icc) with Tianhe’s self-optimized mpich-3.2
in an MPI-only mode (i.e., the ‘configure’ script is executed with ‘--with-MPI’ and
‘--without-openmp’ options so that the pure MPI implementation is under inves-
tigation), take the optimization flag ‘-O3 -mavx’ and link all C codes to Intel MKL
composer xe 2015.1.133. All of the 24 MPI parallel processes in each computing
node are utilized to run parallel C codes.

For solutions of all the sparse linear subsystems involved in the practical im-
plementations of PCTL, P̃ and P, a single BoomerAMG V(1,1)-cycle (with 1 pre-
and 1 post-smoothing steps) is applied, namely, nmax

g = 1 and δg = 10−6 (which
is generally unreachable) in the parallel operations step1, step2 and step3 for the
index g = 1, · · · , G, I, E. Another important remark is that all applications of
the BoomerAMG solver are invoked in its ‘best practices’ scenario [13], which is
commonly recommended by the hypre developers and consists of the following com-
ponents:

• in the SETUP phase, a strength-of-connection measure of 0.25, the hybrid
modified independent set coarsening strategy (coarsen type = 10), the ag-
gressive coarsening scheme on the finest level (agg num levels = 1), the
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‘extended+i’ distance-two interpolation strategy (interp type = 6) followed
by a truncation to no more than four nonzero entries per row (P max elmts
= 4), the coarse-grid operator calculated algebraically via the Galerkin ap-
proach (i.e., the triple sparse matrix product where restriction is given by
the transpose of interpolation) and the coarsening process terminated when
the coarse-grid size is less than 100 (max coarse size = 100);

• in the CYCLE phase, the Gaussian elimination smoother (grid relax type[3]
= 9) put into use at the coarsest grid level, while, at the other grid levels,
one sweep of the hybrid ℓ1 Gauss-Seidel smoothing in the ‘Coarse-Fine’
forward ordering on the down cycle (relax type = 13) and in the ‘Fine-
Coarse’ backward ordering on the up cycle (relax type = 14).

Furthermore, in regard to the preconditioned FGMRES(m) solver, we make a choice
of the restart parameter m = 30, make use of a relative tolerance of 10−8 between
Euclidean norms of the current residual vector and the right-hand side vector (since
the initial guess vector is set to zero) and the maximum number of outer iterations
itermax = 200 as our stopping criterion, and report the realistic number of iteration
steps iternp and the total elapsed time-to-solution timetotnp in seconds (averaged over
20 test runs to avoid disturbance and measured via the MPI function ‘MPI Wtime’)
required to converge while our MPI-parallel C codes are executed across np MPI
parallel tasks. Besides, the parallel strong or weak efficiency efcykp , respectively

evaluated by timetotp / (k · timetotkp ) or timetotp / timetotkp [38], is also provided.

4.2. Convergence and efficiency comparisons. Of particularly practical inter-
est are the dependence of convergence factor on the computational mesh refinement
(i.e., M0 and M1, with 6,149,682 and 49,197,456 unknown quantities, respectively,
because there are 66 degrees of freedom per grid cell) and the physical parameter
variation (i.e., seven real-world flux-limited sixty-four-group linear systems in dif-
ferent physical parameter settings, e.g., the radiative free paths of potentially quite
different scales) and the concrete computational efficiency on one processor core.

We tabulate in Table 1 the specific numerical performance, from which we can
observe that

• the convergence of the FGMRES(30) solvers right-preconditioned by the

relaxed APSS preconditioner P̃ and the APSS-SR preconditioner P is both
achieved with almost unchanged iteration counts regardless of the problem
size and numeration, i.e., an overall similar but good enough robustness
and a very low convergence factor are obtained;

• the FGMRES(30) solver right-preconditioned by BoomerAMG does not
iterate robustly in regard to the spatial mesh sizes and physical parameters
and exhibits a low convergence rate for U88-1, U94-2, U110-1 and U169-2;

• there are two test cases (i.e., U97-2 and U110-1) which cannot be solvable
via the FGMRES(30) solver right-preconditioned by PCTL, while it solves
the other test cases with a moderately lower convergence rate than that of
P̃ and P, however, also in a robust manner;

• the fastest reduction in relative residual norms (i.e., the best precondition-
ing behavior) is achieved by P, which results in an average of 16.57 and

1.31 times faster than BoomerAMG and P̃ on M0, respectively, while, on
the refined grid M1, the corresponding speedup ratios are 24.03 and 1.26;

• for those five test problems which can be tackled by PCTL (i.e., U26-2, U88-
1, U42-3, U39-3 and U169-2), the FGMRES(30) solver right-preconditioned
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Table 1. The iteration counts and elapsed time-to-solutions of
four types of right-preconditioned FGMRES(30) solvers applied
to solve seven sixty-four-group linear systems over M0 (top) and
M1 (bottom). Dashed entries (-) manifest the numerical solutions
failed to converge after 200 iteration steps while values in paren-
theses signify the order of magnitude of the final relative residual
norm.

M0

BoomerAMG PCTL relaxed APSS APSS-SR
iter1 timetot1 iter1 timetot1 iter1 timetot1 iter1 timetot1

U26-2 23 53.84 13 10.77 6 6.54 4 5.24

U88-1 62 107.33 15 11.61 9 8.25 6 6.37

U42-3 29 62.09 14 11.19 8 7.68 4 5.22

U97-2 81 133.38 - (10−4) - 10 8.82 6 6.31

U39-3 27 59.37 14 11.23 7 7.11 4 5.28

U110-1 96 153.95 - (10−4) - 9 8.23 7 6.85

U169-2 84 137.51 17 12.45 11 9.40 8 7.42

M1

BoomerAMG PCTL relaxed APSS APSS-SR

iter1 timetot1 iter1 timetot1 iter1 timetot1 iter1 timetot1

U26-2 35 697.72 14 107.09 7 57.03 4 44.52

U88-1 93 1383.11 18 119.92 10 68.44 6 51.69

U42-3 44 804.06 16 113.53 8 60.87 5 48.10

U97-2 106 1536.75 - (10−4) - 9 64.62 6 51.64

U39-3 41 768.64 17 116.75 7 57.08 5 48.13

U110-1 129 1808.42 - (10−3) - 10 68.49 7 55.27

U169-2 112 1607.58 19 123.11 12 76.05 8 58.81

byP runs averagely 1.94 and 2.31 times faster than that right-preconditioned
by PCTL on M0 and M1, respectively.

4.3. Scalability tests on the Tianhe-2A supercomputer. Simulation time is
a matter of considerable interest in thermal radiation transport applications. A
parallel scalable preconditioned FGMRES(30) solver is able to cut down the sim-
ulation time by aggrandizing the number of parallel processor cores used in the
simulation, which corresponds to the so-called strong scaling test. Without doubt,
the weak scaling property is another important parallel performance measurement
indicator of the preconditioned FGMRES(30) solver. Notice that the PCTL algo-
rithm is not considered here because of its insensible convergence behavior when
solving U97-2 and U110-1.

A strong scaling analysis is carried out to deal with the seven test problems on
M1 using the FGMRES(30) solvers right-preconditioned by BoomerAMG, P̃ and
P. The number of parallel processor cores used is altered from 132 to 1,056 (dou-
bling every time), which means that 372,708, 186,354, 93,177 and 46589 or 46588
degrees of freedom are distributed on each physical processor core, respectively.

As shown in Table 2, we can deduce that the FGMRES(30) solvers right -

preconditioned by BoomerAMG, P̃ and P, in the strong sense, all make clear their
remarkable numerical and parallel scaling properties, i.e., their iteration counts and
elapsed time-to-solutions required for convergence persist essentially unchanged and
adequately shortened as for the increase on the number of parallel processor cores:
their average strong parallel efficiencies are 93.3%, 86.5% and 76.3% for Boomer-
AMG, 84.2%, 79.2% and 72.6% for the relaxed APSS preconditioner P̃ while 79.6%,
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Table 2. A strong scalability investigation on the iteration
counts, elapsed time-to-solutions and parallel efficiencies of three
right-preconditioned FGMRES(30) solvers.

M1

BoomerAMG
np=132 np=264 np=528 np=1,056

iter132 timetot132 iter264 timetot264 efcy2
132 iter528 timetot528 efcy2

264 iter1056 timetot1056 efcy2
528

U26-2 39 78.57 41 43.81 89.7% 37 24.25 90.3% 46 17.57 69.0%
U88-1 98 152.08 96 78.67 96.6% 102 46.54 84.5% 101 29.21 79.7%
U42-3 51 93.52 49 48.86 95.7% 55 30.43 80.3% 57 19.89 76.5%
U97-2 114 172.04 118 92.63 92.9% 113 50.31 92.0% 122 33.65 74.7%
U39-3 48 89.79 53 51.42 87.3% 56 30.77 83.5% 54 19.26 79.9%
U110-1 140 204.35 147 110.95 92.1% 144 60.92 91.1% 151 39.78 76.6%
U169-2 117 175.71 112 88.79 98.9% 121 53.04 83.7% 125 34.24 77.4%

M1

relaxed APSS
np=132 np=264 np=528 np=1,056

iter132 timetot132 iter264 timetot264 efcy2
132 iter528 timetot528 efcy2

264 iter1056 timetot1056 efcy2
528

U26-2 7 6.47 7 3.83 84.6% 7 2.38 80.2% 8 1.68 71.1%
U88-1 11 8.19 11 4.72 86.9% 12 3.01 78.4% 12 1.97 75.6%
U42-3 8 6.88 9 4.29 80.8% 9 2.65 81.1% 10 1.82 71.8%
U97-2 9 7.32 9 4.26 85.8% 10 2.76 77.4% 12 2.01 69.3%
U39-3 8 6.91 8 4.05 85.2% 9 2.62 76.8% 10 1.85 71.8%
U110-1 10 7.76 11 4.69 82.3% 12 2.99 78.4% 12 1.99 75.6%
U169-2 12 8.63 13 5.14 83.5% 13 3.14 82.3% 14 2.15 73.0%

M1

APSS-SR
np=132 np=264 np=528 np=1,056

iter132 timetot132 iter264 timetot264 efcy2
132 iter528 timetot528 efcy2

264 iter1056 timetot1056 efcy2
528

U26-2 4 4.53 5 3.01 75.3% 5 1.92 78.3% 5 1.34 71.5%
U88-1 6 5.36 6 3.24 82.8% 7 2.20 73.5% 7 1.52 71.3%
U42-3 5 4.95 6 3.27 76.4% 8 2.34 69.1% 8 1.67 71.2%
U97-2 7 5.78 7 3.46 83.4% 7 2.18 78.7% 8 1.63 67.0%
U39-3 5 4.92 6 3.25 75.7% 6 2.06 78.5% 7 1.55 66.8%
U110-1 7 5.81 7 3.43 84.7% 8 2.37 74.0% 9 1.76 67.3%
U169-2 8 6.19 9 3.92 79.0% 9 2.48 78.9% 9 1.73 71.7%

75.9% and 69.6% for the APSS-SR preconditioner P, respectively. In addition, the
FGMRES(30) solver right-preconditioned by P achieves an average speedup of 17.3
and 1.2 over those FGMRES(30) solvers right-preconditioned by BoomerAMG and

P̃ when using 1,056 MPI ranks.
A weak scalability investigation is proceeded to compare BoomerAMG, P̃ and P

by exploiting 66, 528 and 4,224 parallel processor cores (octupling every time) with
93,177 degrees of freedom per physical processor core. It signifies that the three
particular cases np = 66, np = 528 and np = 4, 224 are associated with the coarsest,
intermediate and finest computational meshes M0, M1 and M2, respectively.

By inspecting the elapsed wall-clock time of three right-preconditioned FGM-
RES(30) solvers against the number of parallel processor cores in Table 3, it can
be noticed that the average parallel efficiencies in this weak scaling examination for
BoomerAMG, P̃ and P are 76.6%, 70.6% and 66.4%, respectively, when using 4,224
MPI ranks, in which case we further observe 16.4 and 1.2 times higher computa-
tional performance for P than for BoomerAMG and P̃. It is obvious that the two
preconditioners P̃ and P both weakly scale well from the viewpoint of numerical
and parallel scalabilities (with respect to the number of iterations and the elapsed
wall-clock time, respectively) and have the same desirable weak scaling property.

5. Conclusions and perspectives

An adaptive backward Eulerian scheme and a cell-centered finite volume method
are applied to discretize the three-dimensional flux-limited multi-group radiation d-
iffusion equations in the temporal and spatial directions, respectively. We then take
advantage of a parallel FGMRES(m) solver with the proposed selectively relaxed
alternating positive semidefinite splitting preconditioner to accelerate the timeli-
ness of the thermal radiation transport simulation. We also present its parallel
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Table 3. The number of iterations, elapsed wall-clock time and
parallel efficiencies of three right-preconditioned FGMRES(30)
solvers in a weak scalability investigation.

BoomerAMG

np=66, M0 np=528, M1 np=4,224, M2

iter66 timetot66 iter528 timetot528 efcy866 iter4,224 timetot4,224 efcy8528
U26-2 35 18.48 37 24.25 76.3% 51 35.60 68.1%

U88-1 94 40.21 102 46.54 86.4% 107 57.82 80.5%

U42-3 47 22.90 55 30.43 75.3% 62 40.01 76.1%

U97-2 109 45.73 113 50.31 90.9% 123 64.15 78.4%

U39-3 43 21.42 56 30.77 69.7% 64 40.83 75.3%

U110-1 132 54.19 144 60.92 89.0% 156 77.47 78.6%

U169-2 111 46.47 121 53.04 87.6% 130 67.12 79.0%

relaxed APSS

np=66, M0 np=528, M1 np=4,224, M2

iter66 timetot66 iter528 timetot528 efcy866 iter4,224 timetot4,224 efcy8528
U26-2 7 1.92 7 2.38 80.8% 8 3.34 71.3%

U88-1 11 2.39 12 3.01 79.8% 14 4.43 68.1%

U42-3 9 2.14 9 2.65 81.5% 10 3.70 71.6%

U97-2 9 2.16 10 2.76 78.3% 10 3.72 74.3%

U39-3 8 2.04 9 2.62 77.9% 10 3.71 70.7%

U110-1 12 2.52 12 2.99 84.3% 13 4.27 70.0%

U169-2 12 2.55 13 3.14 81.2% 15 4.62 67.9%

APSS-SR
np=66, M0 np=528, M1 np=4,224, M2

iter66 timetot66 iter528 timetot528 efcy866 iter4,224 timetot4,224 efcy8528
U26-2 5 1.49 5 1.92 77.5% 6 3.06 62.7%

U88-1 7 1.72 7 2.20 78.0% 7 3.24 68.0%

U42-3 7 1.71 8 2.34 73.2% 8 3.43 68.1%

U97-2 6 1.59 7 2.18 73.4% 8 3.45 63.5%

U39-3 6 1.61 6 2.06 77.7% 6 3.08 67.3%

U110-1 8 1.82 8 2.37 77.1% 9 3.59 66.1%

U169-2 8 1.83 9 2.48 73.8% 9 3.57 69.2%

performance on the Tianhe-2A supercomputer, and the results on seven real-world
representative linear systems show that the proposed preconditioner achieves, av-
eragely, 69.6% and 66.4% parallel strong and weak efficiency with 1,056 and 4,224
parallel processor cores, respectively. In line with current trends, for such kind of
problem, it is quite likely that the future will see many parallel-in-time algorithms
utilizing mixed-precision arithmetic operations [52] and mixed-precision precondi-
tioning and solution algorithms [1, 20].
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