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A LOCKING-FREE REDUCED-ORDER MODEL FOR SOLVING

THE ELASTIC WAVE EQUATION

LU WANG, YOUCAI XU, AND MINFU FENG*

Abstract. In this paper, a new locking-free mixed full-order model (FOM) for solving the
elastic wave equation is studied, and then a locking-free reduced-order model (ROM) based on
the proper orthogonal decomposition (POD) technique is constructed, which greatly improves
solving efficiency compared to FOM while maintaining the locking-free. Theoretical analysis of

semi discrete and fully discrete schemes for the FOM and the ROM are also presented. Some
numerical experiments verify the theoretical analysis results.
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1. Introduction

The elastic wave equation, also known as the elastodynamic equation, can be
used to simulate the propagation of waves in heterogeneous media and predict dam-
age patterns caused by earthquakes [1]. To solve the elastic wave equation, there
are many various numerical methods developed, such as the finite difference (FD)
method [2] and the finite element (FE) method. Owing to the advantages of dealing
with complex geometry and boundary conditions, the FE method is widely used
for solving the elastic wave equation. Various FE methods have been developed,
including conforming finite element methods [3, 4], spectral finite element methods
[5], non-conforming finite element methods [6], and discontinuous Galerkin (DG)
methods [7, 8, 9].

The elastic wave equation can be viewed as a nonstationary linear elasticity
problem. The classical FE method poses two challenges when solving it. One is low
computational efficiency, and the other is the locking phenomenon that occurs when
λ→ ∞. Developing algorithms that can simultaneously overcome and improve both
of the two problems is interesting.

In terms of improving computing efficiency, the ROM based on the POD method
(POD-ROM) [10, 11, 12, 13] is an effective way. This method provides an orthogonal
basis for describing a given dataset in the least-squares optimal sense, enabling us to
determine the best low-dimensional approximation for a particular data collection.
There have been successful attempts at POD-ROM for Navier-Stokes equation [14],
Stokes equation [15], parabolic equations [16], and many other problems [17]. The
results of such attempts have shown that ROM can significantly enhance computa-
tional efficiency while maintaining the accuracy of the models. Some research has
also been carried out on ROM for wave equations, such as [18, 19]. As far as we
know, there is little research on ROM for the elastic wave equation (1).

To make the ROM meet the locking-free property when solving (1), constructing
a locking-free FOM is necessary. There are some methods to be locking-free, in-
cluding the mixed finite element (MFE) method. Multiple types of MFE methods
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have been developed for (1), such as the MFE method based on ”stress displace-
ment” [20, 21] and ”stress velocity” [22, 23] mixed form. However, for the MFE
methods mentioned above, the construction of the MFE space needs to satisfy the
inf-sup condition and the construction of the stress space is complicated since the
symmetry of the stress must be satisfied; otherwise, a new variable with weakly
applied symmetry must be introduced.

In this paper, we construct an FOM using the MFE method of ”displacement
pseudo-pressure” by introducing pseudo-pressure p = λ∇ · u, and we employ an
unconditionally stable implicit scheme on time discretization. The constructed
mixed form is similar to the Stokes problem; as a result, some stable MFE spaces
that satisfy the inf-sup condition, applicable to the Stokes problem, can also be
applied to (1) [24]. Then we construct a ROM based on the FOM using the POD
technique and give analysis. The results show that the POD-ROM can improve
efficiency compared with the FOM and keep locking-free.

Compared to the work of [25], our method differs in the following points. Firstly,
the reference only considers the case µ = 0, which is the acoustic wave equation,
whereas we focus on the case µ ̸= 0. Secondly, the reference provides an error
estimate of p that is dependent on λ−1/2, we improved it in our analysis. Thirdly,
the reference uses an explicit, fully discrete scheme, and we use the implicit scheme.
Fourthly, we further propose a ROM to improve computational efficiency.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the elastic wave equation and the notions and conclusions used in the
subsequent theoretical analysis. Section 3 constructs the FOM by the MFE method.
In Section 4, we establish the POD-ROM and provide the algorithm. In Section
5, we validate the theoretical analysis of the FOM through some numerical tests.
Section 6 provides a summary of the whole paper.

2. Preliminaries

This section presents some preliminaries of the elastic wave equation.

2.1. The mixed form of the elastic wave equation. In this section, we will
discuss the mixed form of the elastic wave equation, along with some concepts and
lemmas that will be used in the subsequent analysis.

Specifically, this paper will focus on the elastic wave equation in either two or
three dimensions. Let Ω ⊂ Rd, (d = 2, 3) denotes an open, bounded, connect-
ed domain with a Lipschitz continuous boundary ∂Ω. We give a body exterior
force f , and the elastic wave model seeks a displacement vector field u(x, t) =
(ux(x, t), uy(x, t)) in two dimensions (or u(x, t) = (ux(x, t), uy(x, t), uz(x, t)) in
three dimensions) at time t that satisfies the following equation.

ρ
∂2u

∂t2
−∇ · σ(u) = f in Ω,(1)

where σ(u) is the symmetric stress tensor and ρ denotes the density for linear,
homogeneous, and isotropic materials. For simplicity, we assume that the density
ρ is a constant. The stress tensor σ(u) is related to the strain tensor by Hooke’s
law

σ(u) = 2µε(u) + λ(∇ · u)I,(2)

where the strain tensor ε(u) is

ε(u) =
1

2

(
∇u+∇uT

)
,(3)
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and the Lam constants λ and µ are given by

λ =
Eτ

(1 + τ)(1− 2τ)
, µ =

E

2(1 + τ)
,

where E is the elasticity modulus and τ is the Poisson’s ratio. Substituting (2) and
(3) into (1) and eliminating stress and strain, we have the following primal form of
the elastic wave equation

ρ
∂2u

∂t2
−∇((λ+ µ)∇ · u)−∇ · (µ∇u) = f .(4)

There are some kinds of mixed forms of the elastic wave equation, for example,
”displacement-stress” or ”velocity-stress” formulations. In this paper, we study
another ”displacement pseudo-pressure” mixed form of the elastic wave equation
by introducing a pseudo-pressure variable p = λ∇ · u, which is like a generalized
nonstationary Stokes system as follows:

(5)

 ρ
∂2u

∂t2
− 2µ∇ · (ε(u))−∇p = f ,

p = λ∇ · u.

The content of the following paper relies on (5).

2.2. Notions and notations. First, we define the L2 inner product over Ω as
usual: (u, v) =

∫
Ω
uvdΩ, and define ∥ · ∥L2 as the L2 norm over Ω, i.e., ∥u∥L2(Ω) =

(u, u)
1
2 . For a bounded domain Ω, we set Hm(Ω)(m ≥ 0) and L2(Ω) = H0(Ω) as

the usual Sobolev spaces equipped with the semi-norm | · |m,Ω and the norm ∥·∥m,Ω,
respectively. ∥ · ∥1 is equivalent to | · |1 in H1

0 (Ω), where the subspace H1
0 (Ω) of

H1(Ω) is denoted as

H1
0 (Ω) =

{
u ∈ H1(Ω); u|∂Ω = 0

}
.

In addition, it is essential to give the Sobolev spaces dependent on time t. Let
Φ be a Hilbert space. For all T > 0 and a integer n ≥ 0, Hn([0, T ]; Φ) is defined as

Hn([0, T ]; Φ) =

{
v(t) ∈ Φ;

∫ T

0

n∑
i=0

∥∥∥∥ di

dti
v(t)

∥∥∥∥2
Φ

dt <∞

}
∀t ∈ [0, T ],

equipped with the norm

∥u∥Hn([0,T ];Φ) =

[
n∑

i=0

∫ T

0

∥∥∥∥ di

dti
u(t)

∥∥∥∥2
Φ

dt

] 1
2

for u ∈ Hn([0, T ]; Φ),

where ∥ · ∥Φ is the norm of space Φ. Especially, if n = 0, the time-space norm
∥ · ∥L2([0,T ];L2(Ω)) is defined as

∥u∥L2([0,T ];L2(Ω)) = ∥u∥L2(L2) =

(∫ T

0

∥u∥2L2(Ω)

) 1
2

,

in addition, the time-space norm ∥ · ∥L∞(L2) is similarly defined as

L∞([0, T ]; Φ) =

{
v(t) ∈ Φ; esssup

0≤t≤T
∥v(t)∥Φ <∞

}
,

equipped with the norm

∥v∥L∞(Φ) = esssup
0≤t≤T

∥v(t)∥Φ.
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We also defined the discrete l∞-norm for time-discrete functions vn = v(tn) by

∥v∥l∞(Φ) = max
0≤n≤N

∥vn∥Φ,

where N is the number of time domain partitions, the l∞-norm will be used in the
analysis of the fully discrete scheme.

3. The FOM constructed by the MFE method

In this section, we are going to constrcut FOM by MFE method.

3.1. The weak form. The initial boundary value problem for the mixed form of
elastic wave equations (5) is as follows:

(6)



ρ
∂2u

∂t2
− 2µ∇ · (ε(u))−∇p = f in Ω× (0, T ],

p = λ∇ · u in Ω× (0, T ],

u(x, t) = 0 on ∂Ω× (0, T ],

u(x, 0) = u0 in Ω,

ut(x, 0) = u1 in Ω,

where u0 and u1 are initial values of u.

We first define the spaces U =
[
H1

0 (Ω)
]d

andM = L2(Ω). Then the weak form is
generated by multiplying the test function on both sides of (6) and utilizing Green’s
formula: find u ∈ H2([0, T ];U) and p ∈ L2([0, T ];M) such that for ∀t ∈ [0, T ]:

(7)



(ρ
∂2u

∂t2
,v) + 2(µε(u), ε(v)) + (∇ · v, p) = (f ,v) ∀v ∈ U,

(∇ · u, q)−
(
λ−1p, q

)
= 0 ∀q ∈M,

(u(x, 0),v) = (u0,v) ,

(ut(x, 0),v) = (u1,v) ,

(p(x, 0), q) = (p0, q).

Then the existence and uniqueness of the solution of (7) hold.

Lemma 3.1. The solution (u, p) of (7) exists and is unique.

Proof. By the similar argument of Lemma 3.1 in [25], we can draw conclusions.
�

3.2. Semi discrete scheme. Following that, we will show the finite element ap-
proximation of (7). Any finite element suitable for the Stokes problem would theo-
retically provide a solution to (7). For example, the Taylor-Hood element and Mini
element. The difference is that (7) solves a saddle-point problem with an additional
pseudo-pressure variable, and it is a kind of hyperbolic equation. For simplicity of
expression, first, we rewrite (7) as: find u ∈ H2([0, T ];U) and p ∈ L2([0, T ];M)
such that for almost all t ∈ [0, T ]:

(8)



(ρ
∂2u

∂t2
,v) + a(u,v) + b(p,v) = (f ,v) ∀v ∈ U,

b(u, q)− c(p, q) = 0 ∀q ∈M,

(u(0),v) = (u0,v) ,

(ut(0),v) = (u1,v) ,

(p(0), q) = (p0, q) ,



LOCKING-FREE REDUCED-ORDER MODEL 311

where a(u,v) = 2µ
∫
Ω
ε(u) : ε(v)dx, b(p,v) =

∫
Ω
∇·vpdx and c(p, q) = λ−1

∫
Ω
pqdx.

In addition, the bilinear forms a(·, ·) and c(·, ·) have the following properties of
conercivity and continuity[24]

a(v,v) ≥ 2µ∥v∥2U ∀v ∈ U,(9)

|a(u,v)| ≤ 2µ∥u∥U∥v∥U ∀u,v ∈ U,(10)

c(q, q) ≥ λ−1∥q∥2M ∀q ∈M,(11)

|c(p, q)| ≤ λ−1∥p∥M∥q∥M ∀p, q ∈M,(12)

and the following inf-sup condition[24]

sup
v∈U

b(q,v)

∥v∥U
≥ β∥q∥M ,(13)

where β is a positive constant.
Next, we give the semi discrete scheme of (8). Let {ℑh} be a uniformly reg-

ular family of triangulation or tetrahedron K of Ω̄, indexed by a parameter h =
maxK∈ℑh

{hK ;hK = diam(K)}. We introduce the mixed finite element subspaces
Uh ⊂ U and Mh ⊂M . In addition, we set Xh = Uh ×Mh.

More important, we assume that (Uh,Mh) satisfies the following discrete inf-sup
condition, i.e.,

sup
vh∈Uh

b (qh,vh)

∥∇vh∥0
≥ β ∥qh∥0 ∀qh ∈Mh,(14)

where β is a positive constant independent of h.
There are many finite spaces Uh and Mh that satisfy the discrete inf-sup condi-

tions. We set Pk as the function space of polynomials of degree ≤ k. For example,
if we take finite element space Uh ×Mh as Mini’s element space [27], i.e.,

Uh =
{
vh ∈ U ∩ C0(Ω)d; vh|K ∈ PK ∀K ∈ ℑh

}
,

Mh =
{
qh ∈M ∩ C0(Ω); qh|K ∈ P1(K) ∀K ∈ ℑh

}
,

where PK = P1(K)2⊕ span {λK1λK2λK3}2 in two dimensions and PK = P1(K)3⊕
span {λK1λK2λK3λK4}3 in three dimensions. In which λKi are the barycentric
coordinates corresponding to the vertex Ai(i = 1, 2, 3) of element K. For the
definition of other stable MFE spaces, we refer to [24].

By the MFE spaces, we give the semi discrete scheme of (8): Find uh ∈
H2([0, T ];Uh) and ph ∈ L2([0, T ];Mh).

(15)



(ρ
∂2uh

∂t2
,vh) + a(uh,vh) + b(ph,vh) = (f ,vh) ∀vh ∈ Uh,

b(uh, qh)− c(ph, qh) = 0 ∀qh ∈Mh,

(uh(0),v) = (Πu
hu0,v) ,

(uht(0),v) = (Πu
hu1,v) ,

(ph(0), q) = (Πp
hp0, q) .

In the following analysis, we need to use the Stokes projection. Let (u, p) be
the solution of (8), then the discrete Stokes projection is defined as (Πu

hu,Π
p
hp) ∈

Uh ×Mh such that

a (Πu
hu,vh) + b (vh,Π

p
hp) = a (u,vh) + b (vh, p) ∀vh ∈ Uh,(16)

b (Πu
hu, qh) = b (u, qh) ∀qh ∈Mh.(17)
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We have the following result of the Stokes projection by similar scaling argument
of [26].

Lemma 3.2. Let (u, p) ∈ (U ∩ [Hk+1(Ω)]d) × (M ∩ Hk(Ω)) satisfies (8) and
(Πu

hu,Π
p
hp) ∈ Uh ×Mh be the discrete Stokes projection defined above. Then the

following estimate hold:

∥u−Πu
hu∥0 + h |u−Πu

hu|1 ≤ Chk+1 (|u|k+1 + |p|k) ,

∥p−Πp
hp∥0 ≤ Chk (|u|k+1 + |p|k) .

Before the proof begins, we set vt = ∂v
∂t for any functions v. vtt, vttt and vtttt

are similarly defined. The following theorem gives estimates for the L2 norm of p
and the H1 norm of u.

Theorem 3.3. For t ≥ 0, let (u, p) be the solution of (8) and (uh, ph) be the
solution of (15). Assume that u ∈ L∞ ([Hk+1(Ω)]d

)
,ut ∈ L∞ ([Hk+1(Ω)]d

)
∩

L2
(
[Hk+1(Ω)]d

)
,utt ∈ L2

(
[Hk+1(Ω)]d

)
, p ∈ L∞ (L2(Ω)

)
, pt ∈ L∞ (Hk(Ω)

)
∩

L2
(
Hk(Ω)

)
and ptt ∈ L2

(
Hk(Ω)

)
. Then there are constants C1, C2 and C3 inde-

pendent on h, and C1 is dependent on the λ−
1
2 such that∥∥∥ρ 1

2 (u− uh)t

∥∥∥
L∞(L2)

+
∥∥∥λ− 1

2 (p− ph)
∥∥∥
L∞(L2)

+
∥∥∥(2µ) 1

2∇(u− uh)
∥∥∥
L∞(L2)

≤ C1h
k + C2h

k + C3h
k+1.

Proof. Using the previously defined Stokes projection (Πu
h,Π

p
h) and a similar

discussion process of Theorem 4.1 in [25], we can draw conclusions. �

To obtain the λ independent error estimate of pseudo-pressure, we give the
following error estimate of (u− uh)tt.

Theorem 3.4. For t ≥ 0, let (u, p) be the solution of (8) and (uh, ph) be the
solution of (15). Assume that ut ∈ L∞ ([Hk+1(Ω)]d

)
,utt ∈ L∞ ([Hk+1(Ω)]d

)
∩

L2
(
[Hk+1(Ω)]d

)
,uttt ∈ L2

(
[Hk+1(Ω)]d

)
, pt ∈ L∞ (L2(Ω)

)
, ptt ∈ L∞ (Hk(Ω)

)
∩

L2
(
Hk(Ω)

)
and pttt ∈ L2

(
Hk(Ω)

)
. Then there are constants C1,C2 and C3 inde-

pendent of h, and C1 is dependent on the λ−
1
2 such that∥∥∥ρ 1

2 (u− uh)tt

∥∥∥
L∞(L2)

≤ C1h
k + C2h

k + C3h
k+1.

Proof. Using the Stokes projection (Πu
h,Π

p
h), we denote χ = uh − Πu

hu, η =
u−Πu

hu, ξ = ph −Πp
hp and ζ = p−Πp

hp. Then beginning with the error equation

(ρχtt,vh) + a(χ,vh) + (ξ,∇ · vh)
= (ρηtt,vh) + a(η,vh) + (ζ,∇ · vh) ∀vh ∈ Uh,(18) (
λ−1ξ, qh

)
− (∇ · χ, qh) =

(
λ−1ζ, qh

)
− (∇ · η, qh) ∀qh ∈Mh,(19)

we differentiate (18) and (19) about t, then set vh = χtt and add two formulations,
we have

1

2

d

dt

∥∥∥ρ 1
2χtt

∥∥∥2
L2(Ω)

+
1

2

d

dt

∥∥∥λ− 1
2 ξt

∥∥∥2
L2(Ω)

+
1

2

d

dt

∥∥∥(2µ) 1
2 ε(χt)

∥∥∥2
L2(Ω)

= (ρηttt,χtt) +
(
λ−1ζtt, ξt

)
,(20)
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where we use the property of Stokes projections Πu
h and Πp

h. By Cauchy-Schwarz’s
inequality and Young’s inequality, we infer that

d

dt

∥∥∥ρ 1
2χtt

∥∥∥2
L2(Ω)

+
d

dt

∥∥∥λ− 1
2 ξt

∥∥∥2
L2(Ω)

+
d

dt

∥∥∥(2µ) 1
2 ε(χt)

∥∥∥2
L2(Ω)

≤
∥∥∥ρ 1

2χtt

∥∥∥2
L2(Ω)

+
∥∥∥ρ 1

2ηttt

∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2 ζtt

∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2 ξt

∥∥∥2
L2(Ω)

,(21)

applying the Gronwall’s inequality to (21) we obtain∥∥∥ρ 1
2χtt

∥∥∥2
L2(Ω)

(t) +
∥∥∥λ− 1

2 ξt

∥∥∥2
L2(Ω)

(t) +
∥∥∥(2µ) 1

2 ε(χt)
∥∥∥2
L2(Ω)

(t)

≤
∥∥∥ρ 1

2χtt(0)
∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2 ξt(0)
∥∥∥
L2(Ω)

+
∥∥∥(2µ) 1

2 ε(χt(0))
∥∥∥2
L2(Ω)

+

∫ t

0

(∥∥∥ρ 1
2ηttt

∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2 ζtt

∥∥∥2
L2(Ω)

)
.(22)

We take the maximum over all t and choose appropriate initial conditions such that
ε(χt(0)) = χtt(0) = ξt(0) = 0, then we have∥∥∥ρ 1

2χtt

∥∥∥2
L∞(L2)

+
∥∥∥λ− 1

2 ξt

∥∥∥2
L∞(L2)

+
∥∥∥(2µ) 1

2 ε(χt)
∥∥∥2
L∞(L2)

≤
∥∥∥ρ 1

2ηttt

∥∥∥2
L2(L2)

+
∥∥∥λ− 1

2 ζtt

∥∥∥2
L2(L2)

,(23)

By the triangle inequality and the Lemma 3.2, we complete the proof. �

Further, we can also estimate the L2 error of u.

Theorem 3.5. For t ≥ 0, let (u, p) be the solution of (8) and (uh, ph) be the solu-
tion of (15). Assume u ∈ L∞ ([Hk+1(Ω)]d

)
∩L2

(
[Hk+1(Ω)]d

)
,ut ∈ L2

(
[Hk+1(Ω)]d

)
, p ∈

L∞ (Hk(Ω)
)
∩L2

(
Hk(Ω)

)
and pt ∈ L2

(
Hk(Ω)

)
. Then there are constants C1 and

C2 independent on h, and C1 is dependent on the λ−
1
2 such that∥∥∥ρ 1

2 (u− uh)
∥∥∥
L∞(L2)

≤ C1h
k + C2h

k+1.

Proof. Using the similar argument of Theorem 4.2 in [25], we can complete the
proof. �

Remark 3.1. From Theorem 3.3 and Theorem 3.5, we note the MFE for the elastic
wave equation is locking-free when λ→ ∞.

Next, we give the error estimate of ∥p − ph∥ independent on λ−
1
2 by inf-sup

condition.

Theorem 3.6. Under the same assumptions of Theorem 3.3 and Theorem 3.4.
There exists a positive constant C depending on regularity of u,ut,utt,uttt, p, pt, ptt,
pttt such that the following estimate holds:

∥p− ph∥L∞(L2) ≤ Chk.



314 L. WANG, Y. XU, AND M. FENG

Proof. Let qh ∈ Mh be an arbitrary element. We can conclude the following
result from the discrete inf-sup condition:

β ∥ph(t)− qh∥ ≤ sup
vh∈Uh
vh ̸=0

b (vh, ph − qh)

∥vh∥1

= sup
vh∈Uh
vh ̸=0

b (vh, ph − p) + b (vh, p− qh)

∥vh∥1
,(24)

where β is a constant.
Replacing v by vh in (8) and subtracting (8) from (15), we have

b (vh, p− ph) = (ρ(uh)tt,vh)− (ρutt,vh)︸ ︷︷ ︸
=:H1

+ a (uh,vh)− a (u,vh)︸ ︷︷ ︸
=:H2

,

then we split the right term into two parts H1 and H2. Exploiting Cauchy-Schwarz
inequality, we estimate that

|H1| ≤ C ∥(uh)tt − utt∥ ∥vh∥ , |H2| ≤ C (|uh − u|1) |vh|1 ,

From Theorem 3.4 and Theorem 3.3. We deduce that

b (vh, p− ph)

∥vh∥1
≤ (C1h

k + C2h
k + C3h

k+1)h+ (C⋆
1h

k + C⋆
2h

k + C⋆
3h

k+1),(25)

where C1, C2, C3 are constants given in Theorem 3.4 and C⋆
1 , C

⋆
2 , C

⋆
3 are constants

given in Theorem 3.3. Then we get

b (vh, p− ph)

∥vh∥1
≤ Chk,(26)

where C is positive generic constant that depends on the regularity of u, ut, utt,
uttt, p, pt, ptt, pttt. Then substituting (26) into (24), we obtain

β ∥ph − qh∥ ≤ Chk + ∥p− qh∥ ,

by triangle inequality, we have

∥p− ph∥ ≤ C(∥p− qh∥+ ∥ph − qh∥) ≤ C
(
hk + ∥p− qh∥

)
,(27)

where qh is an arbitrary element of Mh. Hence, the equation (27) becomes

∥p− ph∥ ≤ Chk + inf
qh∈Mh

∥p− qh∥ ,(28)

Choosing qh = Πp
hp, using Lemma 3.2, and taking the maximum on the left. We

have the desired result of Theorem 3.6. �

3.3. Fully discrete scheme. In this section, we present the theoretical analysis
of the fully discrete scheme of (15). Let N be the number of time divisions in the
time domain, ∆t = T/N denotes the time step, and ti = i∆t, i = 1, · · ·N . For any
function g of time, let gn denotes g(tn). For convenience, we define the following
operator:

gn+
1
2 =

(
gn+1 + gn

)
2

, ∂tg
n+ 1

2 =
gn+1 − gn

∆t
, gn,

1
2 =

(
gn+1 + gn−1

)
2

,

∂2t g
n =

∂tg
n+ 1

2 − ∂tg
n− 1

2

∆t
=
gn+1 − 2gn + gn−1

∆t2
,

∂tg
n =

∂tg
n+ 1

2 + ∂tg
n− 1

2

2
=
gn+1 − gn−1

2∆t
.
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By using these operators, the implicit fully discrete scheme below can be obtained.
Find un+1

h and pn+1
h such that(

ρ∂2tu
n
h,vh

)
+ a

(
u
n, 12
h ,vh

)
+ b

(
p
n, 12
h ,vh

)
=
(
fn, 12 ,vh

)
,∀vh ∈ Uh,(29)

b
(
u
n+ 1

2

h , qh

)
− c

(
p
n+ 1

2

h , qh

)
= 0, ∀qh ∈Mh,(30) (

ρ∂tu
1
2

h ,vh

)
+

∆t2

2
a
(
∂tu

1
2

h ,vh

)
+

∆t

2
a
(
u0
h,vh

)
+

∆t2

2
b
(
vh, ∂tp

1
2

h

)
+

∆t

2
b
(
vh, p

0
h

)
=

∆t2

2

(
∂tf

1
2 ,vh

)
+

∆t

2

(
∂tf

0,vh
)
+ (ρΠu

hu1,vh) ,(31) (
u0,vh

)
= (Πu

hu0,vh) ,(32) (
p0h, qh

)
= (Πp

hp0, qh) ,(33)

where (31) is used to compute u1
h. Note that the fully discrete scheme is an implicit

method. Then by the similar argument of the explicit method in Theorem 5.1 of
[25], we know the fully discrete scheme is unconditionally stable. Here we only give
the error estimate for brevity.

Theorem 3.7. Under the assumption of Theorem 3.3 and Theorem 3.6, if u ∈
L∞([Hk+1(Ω)]d),uttt ∈ L∞ ([L2(Ω)]d

)
, pttt ∈ L∞ (L2(Ω)

)
,utttt ∈ L∞ ([L2(Ω)]d

)
,

p ∈ L∞ (Hk(Ω)
)
, then for (uh(t), ph(t)) defined by (29)-(33), there exists a constant

C independent on h and ∆t, and dependent on regularity of solution such that

∥ρ 1
2 (u(tn)− un

h)∥l∞(L2) + ∥(p(tn)− pnh)∥l∞(L2)

+ ∥∇(u(tn)− un
h)∥l∞(L2) ≤ C

(
hk +∆t2

)
.

Proof. Subtracting (29)-(30) from (8), combing with the properties of the Πu
h

and Πp
h we have:(

ρ∂2tχ
n,vh

)
+ a

(
χn, 12 ,vh

)
+ b

(
ξn,

1
2 ,vh

)
=
(
ρ∂2t η

n,vh
)
+ (rn,vh) ,(34) (

λ−1ξn+
1
2 , qh

)
− b

(
qh,χ

n+ 1
2

)
=
(
λ−1ζn+

1
2 , qh

)
,(35)

where rn = ρ
(
u
n,1/2
tt − ∂2tu

n
)
. The χ, η, ξ and ζ are same with the proof of

Theorem 3.4
We introduce some new variables here:

ϕn = ∆t

n−1∑
i=0

ξi+
1
2 , ϕ0 = 0, ψn = ∆t

n−1∑
i=0

χi+ 1
2 , ψ0 = 0,

noting that

ϕn+
1
2 =

∆t

2
ξ

1
2 +

∆t

2

n∑
i=1

(ξi+
1
2 + ξi−

1
2 ), ψn+ 1

2 =
∆t

2
χ

1
2 +

∆t

2

n∑
i=1

(χi+ 1
2 + χi− 1

2 ).

Then we consider (8) at n = 0 and n = 1, and use the Taylor expansion. We infer

(ρ∂t(u
1
2
tt),vh) + a(∂tu

1
2 ,vh) + b(∂tp

1
2 ,vh) = (∂tf

1
2 ,vh),

∂tu
1
2 = ut(0) +

∆t

2
u0
tt +

1

2∆t

∫ ∆t

0

(∆t− t)2
∂3u

∂t3
(t)dt.
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Hence,

(ρ∂tu
1
2 ,vh) +

∆t2

2
a(∂tu

1
2 ,vh) +

∆t2

2
b(∂tp

1
2 ,vh)

= (ρut(0),vh) +
∆tρ

2
(u0

tt,vh) +
1

2∆t

∫ ∆t

0

(∆t− t)2(ρ
∂3u

∂t3
,vh)dt

+
∆t2

2
(∂tf

1
2 ,vh)−

∆t2

2
(ρ∂t(u

1
2
tt),vh).

Subtracting the above equation form (31), considering the initial condition and the
consistency we have

(ρ∂tχ
1
2 ,vh) +

∆t2

2
a(∂tχ

1
2 ,vh) +

∆t

2
a(χ0,vh)

+
∆t2

2
b(∂tξ

1
2 ,vh) +

∆t

2
b(ξ0,vh)

= (ρ∂tη
1
2 ,vh) + (ρ(Πu

hu1 − u1),vh)

− 1

2∆t

∫ ∆t

0

(∆t− t)2(ρ
∂3u

∂t3
,vh)dt+

∆t2

2
(ρ∂t(u

1
2
tt),vh).(36)

(34) can be rewritten as

(ρ∂2tχ
n,vh) +

1

2
a(χn+ 1

2 + χn− 1
2 ,vh) +

∆t2

4
a(∂2tχ

n,vh)

+
1

2
b(ξn+

1
2 + ξn−

1
2 ,vh) +

∆t2

4
b(∂2t ξ

n,vh)

= (ρ∂2t η
n,vh) + (∆t

n∑
i=1

ri,vh), n ≥ 1.(37)

Then summing over all time intervals of (37), we have

(ρ∂tχ
n+ 1

2 − ρ∂tχ
1
2 ,vh) +

∆t

2

n∑
i=1

a(χi+ 1
2 + χi− 1

2 ,vh)

+
∆t2

4
a(∂tχ

n+ 1
2 − ∂tχ

1
2 ,vh)

+
∆t

2

n∑
i=1

b(ξi+
1
2 + ξi−

1
2 ,vh) +

∆t2

4
b(∂tξ

n+ 1
2 − ∂tξ

1
2 ,vh)

= (ρ∂tη
n+ 1

2 − ρ∂tη
1
2 ,vh) + (∆t

n∑
i=1

ri,vh).(38)

Taking (36) into (38), using the initial condition χ0 = 0 and ξ0 = 0, noting ∂tχ
1
2 =

2
∆tχ

1
2 and ∂tξ

1
2 = 2

∆tξ
1
2 , combining with the definition of ϕ and ψ, we infer that

(ρ∂tχ
n+ 1

2 ,vh) +
∆t2

4
a(∂tχ

n+ 1
2 ,vh) + a(ψn+ 1

2 ,vh)

+
∆t2

4
b(∂tξ

n+ 1
2 ,vh) + b(ϕn+

1
2 ,vh)

= (ρ∂tη
n+ 1

2 ,vh) + (Rn,vh),(39)



LOCKING-FREE REDUCED-ORDER MODEL 317

where Rn is defined as

Rn = ∆t
n∑

i=1

ri + ρ (Πu
hu1 − u1)−

1

2∆t

∫ ∆t

0

ρ(∆t− t)2
∂3u

∂t3
(t)dt+

1

2
∆t2ρ∂t(u

1
2
tt).

In addition, we set vh = χn+ 1
2 in (39) and qh = ϕn+

1
2 in (35), note that ∂tϕ

n+ 1
2 =

ξn+
1
2 and ∂tψ

n+ 1
2 = χn+ 1

2 , adding (39) and (35) we have

(ρ∂tχ
n+ 1

2 ,χn+ 1
2 ) +

∆t2

4
a(∂tχ

n+ 1
2 ,χn+ 1

2 ) + a(ψn+ 1
2 , ∂tψ

n+ 1
2 )

+
∆t2

4
b(∂tξ

n+ 1
2 ,χn+ 1

2 ) + (λ−1∂tϕ
n+ 1

2 , ϕn+
1
2 )

= (ρ∂tη
n+ 1

2 ,χn+ 1
2 ) + (Rn,χn+ 1

2 ) + (λ−1ζn+
1
2 , ϕn+

1
2 ).(40)

We take qh = ∂tξ
n+ 1

2 in (35), note that the term b(∂tξ
n+ 1

2 ,χn+ 1
2 ) has the following

form

b(∂tξ
n+ 1

2 ,χn+ 1
2 ) = (λ−1ξn+

1
2 , ∂tξ

n+ 1
2 )− (λ−1ζn+

1
2 , ∂tξ

n+ 1
2 ).

Take the formula into (40) we obtain

(ρ∂tχ
n+ 1

2 ,χn+ 1
2 ) +

∆t2

4
a(∂tχ

n+ 1
2 ,χn+ 1

2 ) + a(ψn+ 1
2 , ∂tψ

n+ 1
2 )

+
∆t2

4
(λ−1ξn+

1
2 , ∂tξ

n+ 1
2 ) + (λ−1∂tϕ

n+ 1
2 , ϕn+

1
2 )

= (ρ∂tη
n+ 1

2 ,χn+ 1
2 ) + (Rn,χn+ 1

2 )

+
∆t2

4
(λ−1ζn+

1
2 , ϕn+

1
2 ) + (λ−1ζn+

1
2 , ∂tξ

n+ 1
2 ).(41)

Summing (41) over all the time intervals and multiplying 2∆t on the both side,
using the Cauchy-Schwarz’s inequality, we have

∥ρ 1
2χn+ 1

2 ∥2L2 − ∥ρ 1
2χ0∥2L2 +

∆t2

4
(∥∇χn+1∥2L2 − ∥∇χ0∥2L2) + ∥∇ψn+1∥2L2 − ∥∇ψ0∥2L2

+
∆t2

4
∥(λ− 1

2 ξn+1∥2L2 − ∥λ− 1
2 ξ0∥2L2) + ∥λ− 1

2ϕn+1∥2L2 − ∥λ− 1
2ϕ0∥2L2

≤ 1

2
∆t2

n∑
i=0

∥λ− 1
2 ζi+

1
2 ∥L2(∥λ− 1

2 ξi+1∥L2 + ∥λ− 1
2 ξi∥L2)

+ 2∆t
n∑

i=0

∥χi+ 1
2 ∥L2(∥ρ∂tηi+ 1

2 ∥L2 + ∥Ri∥L2) + 2∆t
n∑

i=0

∥λ− 1
2 ζi+

1
2 ∥L2∥λ− 1

2ϕi+
1
2 ∥L2 .

By the inequality ∥λ− 1
2 ξi∥L2 ≤ ∥λ− 1

2 ξ∥l∞(L2) and ∥λ− 1
2χi∥L2 ≤ ∥λ− 1

2χ∥l∞(L2),
using the initial condition, taking the maximum over time on the left side, noting
N∆t = T we infer

∥ρ 1
2χ∥2l∞(L2) + ∥λ− 1

2ϕ∥2l∞(L2) + ∥λ− 1
2ψ∥2l∞(H1)

≤ C

(
∥λ− 1

2 ζ∥2l∞(L2) +∆t2(

N−1∑
i=0

∥ρ∂tηi+ 1
2 ∥2L2) + ∆t2(

N−1∑
i=0

∥Ri∥L2)2

)
.(42)
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After applying the similar proof as in Theorem 5.2 in [28], we can derive an estimate
for the second term on the right-hand side of (42) combined with the Lemma 3.2

∆t

N−1∑
i=0

∥ρ∂tηi+ 1
2 ∥L2 ≤ C(h2∥u∥L∞(H2) + h2∥p∥L∞(H1)

+∆t2∥uttt∥L1(L2) +∆t2∥pttt∥L1(L2)),

For the third term, we can use the similar proof of Theorem 5.2 in [28] by Taylor
expansion

∆t
N−1∑
i=0

∥Ri∥L2 ≤ C(h2 +∆t2),

where C depends on the regularity of ∥utttt∥L1(L2) in the above inequality. For the

first term ∥λ− 1
2 ζ∥l∞(L2), we can use the Lemma 3.2 to bound it. Hence, we give

the following result for (42) combined with the triangle inequality:

∥ρ 1
2 (u(tn)− un

h)∥l∞(L2) + ∥λ− 1
2 (p(tn)− pnh)∥l∞(L2)

+ ∥∇(u(tn)− un
h)∥l∞(L2)

≤ Ch(∥u∥L∞(H2) + ∥p∥L∞(H1))

+ C∆t2(∥uttt∥L1(L2) + ∥pttt∥L1(L2)).(43)

We need to obtain the λ independent error estimate of p by the inf-sup condition.
First we rewrite (34) into the following form:

(ξn,
1
2 ,∇ · vh) = −(ρ∂2tχ

n,vh)− a(χn, 12 ,vh) + (ρ∂2t η
n,vh) + (rn,vh).

Then using the bound of (42)-(43), the inverse inequality and the continuity of
bilinear a, we derive that

| − (ρ∂2tχ
n,vh)− a(χn, 12 ,vh) + (ρ∂2t η

n,vh)|
≤ C(h+∆t2)h∥vh∥H1 + C(h+∆t2)∥vh∥H1 ≤ C(h+∆t2)∥vh∥H1 .

Next, we will obtain the following result by Taylor expansion

|(rn,vh)| ≤ C∆t2∥utttt∥L∞(L2)∥v∥.

Using the inf-sup condition we infer

β∥ξn, 12 ∥ ≤ sup
vh∈H1,vh ̸=0

| − (ρ∂2tχ
n,vh)− a(χn, 12 ,vh) + (ρ∂2t η

n,vh) + (rn,vh)|
∥vh∥H1

≤ C(h+∆t2).

Then taking the maximum on the left side, there exists a constant C independent
on h and ∆t such that

∥ξ∥l∞(L2) ≤ C(h+∆t2).

Combining with the triangle inequality and the approximation property of ∥ζ∥l∞(L2)

we complete the proof. �

4. The POD-ROM

In this section, we are going to give a reduced-order model using POD technique.
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4.1. The POD method. The POD method mainly provides a useful tool for
efficiently approximating a large amount of data. The method essentially provides
an orthogonal basis for representing the given data in a certain least squares optimal
sense.

For solutions U i(x, y) =
(
(uni

x )h, (u
ni
y )h, p

ni

h

)T
(i = 1, 2, . . . , L) obtained from

(29)-(33), we set

W = span {U1,U2, . . . ,UL} ,

as the ensemble of the snapshots {U i}Li=1. Let
{
ψj

}l
j=1

denote an orthonormal

basis of W with l = dimW. Then each member of W can be defined as

U i =

l∑
j=1

(
U i,ψj

)
Xh

ψj for i = 1, 2, . . . , L,(44)

where
(
U i,ψj

)
Xh
ψj =

((
∇uni

h ,∇ψuj

)
0
ψuj , (p

ni

h , ψpj)0 ψpj

)
, and (·, ·)0 denotes

L2-inner product, ψuj and ψpj are orthonormal basis corresponding to u and p,
respectively.

Definition 4.1 (POD method[17]). The method of POD consists in finding the
orthonormal basis such that for every d(1 ≤ d ≤ l) the mean square error between
the elements U i (1 ≤ i ≤ L) and the corresponding d-th partial sum of (44) is
minimized on average:

min
{ψj}d

j=1

1

L

L∑
i=1

∥∥∥∥∥∥U i −
d∑

j=1

(
U i,ψj

)
Xh
ψj

∥∥∥∥∥∥
2

Xh

,(45)

such that (
ψi,ψj

)
Xh

= δij , for 1 ≤ i ≤ d, 1 ≤ j ≤ i,

where

∥U i∥Xh
=
[
∥∇(uni

x )h∥20 +
∥∥∇(uni

y )h
∥∥2
0
+ ∥pni

h ∥2
0

] 1
2

in two dimensions or

∥U i∥Xh
=
[
∥∇(uni

x )h∥20 +
∥∥∇(uni

y )h
∥∥2
0
+ ∥∇(uni

z )h∥20 + ∥pni

h ∥2
0

] 1
2

in three dimensions. A solution
{
ψj

}d
j=1

=
{
ψuj , ψpj

}d
j=1

of (45) is known as a

POD basis of rank d.

We also introduce the correlation matrix K = (Kij)L×L ∈ RL×L here corre-

sponding to the snapshots {U i}Li=1 by

Kij =
1

L
(U i,U j)Xh

.(46)

The matrix K is positive semi discrete and has rank l ≤ L. Then the solutions of
(46) can be found in the following proposition.

Proposition 4.1 (Formula of POD basis[17]). Let λ1 ≥ λ2 ≥ · · · ≥ λl > 0
denote the positive eigenvalues of K and v1,v2, . . . ,vl the associated orthonormal
eigenvectors. Then a POD basis of rank d ≤ l is given by

ψi =
1√
λi

L∑
j=1

(vi)j U j ,(47)
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where (vi)j denotes the jth component of the eigenvector vi. Furthermore, the
following error equation holds:

1

L

L∑
i=1

∥∥∥∥∥∥U i −
d∑

j=1

(
U i,ψj

)
Xh
ψj

∥∥∥∥∥∥
2

Xh

=
l∑

j=d+1

λj .(48)

Let Xd = span {ψ1,ψ2, . . . ,ψd} = Ud×Md with Ud ⊂ Uh ⊂ U andMd ⊂Mh ⊂
M . Set the projection operator Ph : U → Uh (if Ph is restricted to projection from
Uh to Ud, it is written as Pd ) and L2-projection Qh :M →Mu (if Qh is restricted
to projection from Mh to Md, it is written as Qd ), respectively. They satisfy

a (Pdu,vd) = a (u,vd) ∀vd ∈ Ud,(49)

and

(Qdp, qd)0 = (p, qd)0 ∀qd ∈Md,(50)

where u ∈ Uh and p ∈ Mh. Due to (49) and (50) the linear operators Pd and Qd

are well-defined and bounded:

∥∇(Pdu)∥0 ≤ ∥∇u∥0, ∀u ∈ Uh,(51)

∥Qdp∥0 ≤ ∥p∥0, ∀p ∈Mh.(52)

The P d and Qd defined above have the following properties:

Lemma 4.2 (Approximation properties of Pd and Qd). For every d(1 ≤ d ≤ l) the
projection operators Pd and Qd satisfy

1

L

L∑
i=1

∥∇ (uni

h − Pdu
ni

h )∥2
0
≤

l∑
j=d+1

λj ,(53)

1

L

L∑
i=1

∥∇ · (uni

h − Pdu
ni

h )∥2
0
≤

l∑
j=d+1

λj ,(54)

1

L

L∑
i=1

∥uni

h − Pdu
ni

h ∥2
0
≤ Ch2

l∑
j=d+1

λj ,(55)

and

1

L

L∑
i=1

∥pni

h −Qdp
ni

h ∥2
0
≤

l∑
j=d+1

λj .(56)

Proof. We can get the conclusion according to the proof of [14] by Korn’s in-
equality. �

Thus, we give the following semi discrete POD-ROM scheme through reduced
space Xd = Ud ×Md for (8). Find (un

d , p
n
d ) ∈ Xd such that

(un
d , p

n
d ) = (Rdu

n
h, Qdp

n
h)

=
d∑

j=1

((
∇ψuj ,∇un

h

)
ψuj , (ψpj , p

n
h)ψpj

)
, 0 6 n 6 L,(57)

(ρ
∂2un

d

∂t2
,vd) + a(un

d ,vd) + b(pnd ,vd) = (fn,vd), ∀vd ∈ Ud, n ≥ L+ 1,(58)

b(un
d , qd)− c(pnd , qd) = 0, ∀qd ∈Md, n ≥ L+ 1,(59)
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where the POD-ROM solution (un
d , p

n
d ) ∈ Xd is the projection of (un

h, p
n
h) ∈ Xh

when 0 6 n 6 L. Here Rd is the classical Ritz projection operator defined in [14].

Remark 4.1. (57)-(59) are formulas of POD-ROM. The number of total degrees of
freedom of (15) is Nh, whereas the number of total degrees of freedom of (58)-(59)
is d, and d≪ l 6 L≪ Nh.

4.2. Error estimate of the semi discrete POD-ROM. We see that Xd =
Ud ×Md ⊂ Xh = Uh ×Mh ⊂ X = U ×M . Then it is obvious that the existence
and uniqueness of (57)-(59). Now we derive the estimates of the semi discrete
POD-ROM by the projection Pd and Qd.

Theorem 4.3. For t ≥ 0, let (u, p) be the solution of the (8) and (ud, pd) be the
solution of POD-ROM (57)-(59). Assume that the solutions are smooth enough
under the assumption of Theorem 3.3 and 3.4. Then there are constants C1, C2,
C3 and C4 are independent on h, and C1, C4 are dependent on the λ−

1
2 such that∥∥∥ρ 1

2 (u− ud)t

∥∥∥
L∞(L2)

+
∥∥∥λ− 1

2 (p− pd)
∥∥∥
L∞(L2)

+
∥∥∥(2µ) 1

2∇(u− ud)
∥∥∥
L∞(L2)

≤ C1h
k + C2h

k + C3h
k+1 + C4

L l∑
j=d+1

λj

1/2

.

Proof. For simplicity, we denote θ = ud−Pduh, e = pd−Qdph,σ = uh−Pduh,
and E = ph −Qdph, where Pd and Qd have been defined above. These definitions
hold throughout the paper.

For n ≤ L. Because ud = Rduh and pd = Qdph. By the definition of strain
operator ε, it can be seen as a linear combination of gradient operators. Hence we
have ud = Pduh and pd = Qdph when n = 1 · · ·L. Using the results (53)-(56) we
can deduce that ∥∥∥ρ 1

2 (un
h − un

d )t

∥∥∥
L∞(L2)

+
∥∥∥λ− 1

2 (pnh − pnd )
∥∥∥
L∞(L2)

+
∥∥∥(2µ) 1

2∇(un
h − un

d )
∥∥∥
L∞(L2)

≤ C

L l∑
j=d+1

λj

1/2

, n = 1, 2, . . . , L.(60)

For n ≥ L. We use a similar argument of Theorem 3.5. First we subtract
(58)-(59) from (15), and take vh = vd, qh = qd, we have

(ρθtt,vd) + a(θ,vd) + (e,∇ · vd)
= (ρσtt,vd) + a(σ,vd) + (E,∇ · vd) ∀vd ∈ Ud,(61) (
λ−1e, qd

)
− (∇ · θ, qd) =

(
λ−1E, qd

)
− (∇ · σ, qd) ∀qd ∈Md,(62)

then we set vd = θt, differentiate (62) about t, and take qd = e. Adding two
equations and combining with the definition of Pd and Qd we infer

1

2
(
d

dt

∥∥∥ρ 1
2 θt

∥∥∥2
L2(Ω)

+
d

dt

∥∥∥λ− 1
2 e
∥∥∥2
L2(Ω)

+
d

dt

∥∥∥(2µ) 1
2 ε(θ)

∥∥∥2
L2(Ω)

)

= (ρσtt,θt) +
(
λ−1Et, e

)
− (∇ · σt, e) .(63)
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Then we use Cauchy-Schwarz’s inequality and Young’s inequality to bound the
right side of (63)

d

dt

∥∥∥ρ 1
2 θt

∥∥∥2
L2(Ω)

+
d

dt

∥∥∥λ− 1
2 e
∥∥∥2
L2(Ω)

+
d

dt

∥∥∥(2µ) 1
2 ε(θ)

∥∥∥2
L2(Ω)

≤
∥∥∥ρ 1

2 θt

∥∥∥2
L2(Ω)

+
∥∥∥ρ 1

2σtt

∥∥∥2
L2(Ω)

+ C

(∥∥∥λ− 1
2Et

∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2∇ · σt

∥∥∥2
L2(Ω)

)
+
∥∥∥λ− 1

2 e
∥∥∥2
L2(Ω)

,(64)

integrating two sides of (64) form L to t and applying the Gronwall’s inequality,
by suitable initial values such that θt(L) = θ(L) = e(L) = 0, we infer∥∥∥ρ 1

2 θt

∥∥∥2
L2(Ω)

(t) +
∥∥∥λ− 1

2 e
∥∥∥2
L2(Ω)

(t) +
∥∥∥(2µ) 1

2 ε(θ)
∥∥∥2
L2(Ω)

(t)

≤ C

∫ t

L

(∥∥∥ρ 1
2σtt

∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2Et

∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2∇ · σt

∥∥∥2
L2(Ω)

)
,(65)

then we bound the first term on the right side by using the properties of projection
operators (53)-(56):

(66)



∥∥∥ρ 1
2σtt

∥∥∥2
L2(Ω)

≤ C1h
2

L l∑
j=d+1

λj


∥∥∥λ− 1

2Et

∥∥∥2
L2(Ω)

≤ C2

L l∑
j=d+1

λj


∥∥∥λ− 1

2∇ · σt

∥∥∥2
L2(Ω)

≤ C3

L l∑
j=d+1

λj


,

where C1, C2 and C3 are independent on h, and C2, C3 are dependent on λ−1.
Taking the maximum over all time levels of (65), using the approximation prop-

erties of σt, E and ε(σ), we infer∥∥∥ρ 1
2 (uh − ud)t

∥∥∥2
L∞(L2)

+
∥∥∥λ− 1

2 (ph − pd)
∥∥∥2
L∞(L2)

+
∥∥∥(2µ) 1

2 ε(uh − ud)
∥∥∥2
L∞(L2)

≤ C

L l∑
j=d+1

λj

 ,(67)

where C is dependent on λ−1. Finally, we obtain the error estimate between (u, p)
and (ud, pd) by using the Theorem 3.3 and triangle inequality. �

Next, we give the L2 error estimate between u and ud by the similar argument
of Theorem 3.5.

Theorem 4.4. For t ≥ 0, let (u, p) be the solution of (8) and (ud, pd) be the
solution of (58)-(59). Assume that solutions are smooth enough. Under the same
assumption of Theorem 3.5. Then there are constants C1, C2 and C3 independent
of h, and C1, C3 are dependent on λ−

1
2 such that

∥∥∥ρ 1
2 (u− ud)

∥∥∥
L∞(L2)

≤ C1h
k + C2h

k+1 + C3

L l∑
j=d+1

λj

1/2

.
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Proof. For n ≤ L, we have

∥∥∥ρ 1
2 (un

h − un
d )
∥∥∥
L∞(L2)

≤ Ch

L l∑
j=d+1

λj

1/2

, n = 1, 2, . . . , L,(68)

according to (55). For n ≥ L, we begin with the following error equation

(ρθtt,vd) + a(θ,vd) + (e,∇ · vd) = (ρσtt,vd) ∀vd ∈ Ud,(69) (
λ−1e, qd

)
− (∇ · θ, qd) =

(
λ−1E, qd

)
− (∇ · σ, qd) ∀qd ∈Md,(70)

If we integrate (69) from L to t, with initial conditions θt(L) = 0. Then we set

vd = θ, ϕ =
∫ t

L
e(s)ds and take qd = ϕ in (70). We have

(ρθt,θ) +

(∫ t

L

ε(θ), ε(θ)

)
+ (ϕ,∇ · θ) = (ρσt,θ)− (ρσt(L),θ) ,(71) (

λ−1e, ϕ
)
− (∇ · θ, ϕ) =

(
λ−1E, ϕ

)
− (∇ · σ, ϕ),(72)

adding (71) and (72) gives

(ρθt,θ) +

(∫ t

L

ε(θ), ε(θ)

)
+
(
λ−1e, ϕ

)
= (ρσt,θ)− (ρσt(L),θ) +

(
λ−1E, ϕ

)
− (∇ · σ, ϕ).(73)

Then we set N =
∫ t

L
ε(θ(s))ds and suitable initial conditions ε(θ(L)) = 0 and

e(L) = 0.

(ρθt,θ) + (N ,Nt) +
(
λ−1ϕt, ϕ

)
= (ρσt,θ)− (ρσt(L),θ) +

(
λ−1E, ϕ

)
− (∇ · σ, ϕ),(74)

using Cauchy-Schwarz’s inequality and Young’s inequality gives

d

dt

∥∥∥ρ 1
2 θ
∥∥∥2
L2(Ω)

+
d

dt

∥∥∥λ− 1
2ϕ
∥∥∥2
L2(Ω)

+
d

dt

∥∥∥(2µ) 1
2N
∥∥∥2
L2(Ω)

≤
∥∥∥ρ 1

2 θ
∥∥∥2
L2(Ω)

+ C(
∥∥∥ρ 1

2σt

∥∥∥2
L2(Ω)

+
∥∥∥ρ 1

2σt(L)
∥∥∥2
L2(Ω)

)

+ C

(∥∥∥λ− 1
2E
∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2∇ · σ
∥∥∥2
L2(Ω)

)
+
∥∥∥λ− 1

2ϕ
∥∥∥2
L2(Ω)

.(75)

We integrate both sides of the equation (75) from L to t and apply Gronwall’s
inequality, noting that ϕ(L) = 0 and θ(L) = 0. Then we obtain∥∥∥ρ 1

2 θ
∥∥∥2
L2(Ω)

(t) +
∥∥∥λ− 1

2ϕ
∥∥∥2
L2(Ω)

(t) +
∥∥∥(2µ) 1

2N
∥∥∥2
L2(Ω)

(t)

≤ C

∫ t

L

(
∥∥∥ρ 1

2σs

∥∥∥2
L2(Ω)

+
∥∥∥ρ 1

2σs(L)
∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2E
∥∥∥2
L2(Ω)

+
∥∥∥λ− 1

2∇ · σ
∥∥∥2
L2(Ω)

)ds,(76)



324 L. WANG, Y. XU, AND M. FENG

then we take the maximum over all t, by the similar argument in Theorem 3.4 we
infer ∥∥∥ρ 1

2 θ
∥∥∥2
L2(Ω)

(t) +
∥∥∥λ− 1

2ϕ
∥∥∥2
L2(Ω)

(t) +
∥∥∥(2µ) 1

2N
∥∥∥2
L2(Ω)

(t)

≤ C
∥∥∥ρ 1

2σt

∥∥∥2
L2(L2)

+ Ct
∥∥∥ρ 1

2σt(L)
∥∥∥2
L2(Ω)

+ C
∥∥∥λ− 1

2E
∥∥∥2
L2(L2)

+ C
∥∥∥λ− 1

2∇ · σ
∥∥∥2
L2(L2)

.(77)

We estimate the right side of (77) by using properties of projection Pd and Qd

(53)-(56). The final result is obtained by Theorem 3.5 and triangle inequality. �
4.3. Error estimate of the fully discrete POD-ROM. In this section, we
give the fully discrete POD-ROM as follows: Find un+1

d and pn+1
d such that

(78)



(
ρ∂2tu

n
d ,vd

)
+ a

(
u
n, 12
h ,vd

)
+ b

(
p
n, 12
d ,vd

)
=
(
fn, 12 ,vd

)
,∀vd ∈ Ud, n > L,

b
(
u
n+ 1

2

d , qd

)
− c

(
p
n+ 1

2

d , qd

)
= 0, ∀qd ∈Md, n > L,

(un
d ,vd) = (Pdu

n
h,vd) , n ≤ L,

(pnd , qd) = (Qdp
n
h, qd) , n ≤ L,

The scheme is unconditionally stable, and the error estimate is as follows:

Theorem 4.5. Assume (u, p) are the solution of (8), (un
d , p

n
d ) are the solution of

(78), under the assumption of Theorem 3.7, we have the following result:

∥ρ 1
2 (u(tn)− un

d )∥l∞(L2) + ∥λ− 1
2 (p(tn)− pnd )∥l∞(L2) + ∥∇(u(tn)− un

d )∥l∞(L2)

≤ C(hk +∆t2 + (L
l∑

j=d+1

λj)
1/2),

where C is independent on h and ∆t, and is dependent on λ−
1
2 .

Proof. For n ≤ L, we directly have

∥ρ 1
2 (un

h − un
d )∥l∞(L2) + ∥λ− 1

2 (pnh − pnd )∥l∞(L2)

+ ∥∇(un
h − un

d )∥l∞(L2) ≤ C

L l∑
j=d+1

λj

1/2

.

For n ≥ L, subtracting (29)-(30) from (78), we infer(
ρ∂2t θ

n,vd
)
+ a(θn,

1
2 ,vd) + b(en,

1
2 ,vd) =

(
ρ∂2tσ,vd

)
∀vd ∈ Ud,(79) (

λ−1en+
1
2 , qd

)
− b(qd,θ

n+ 1
2 ) =

(
λ−1En+ 1

2 , qd

)
− b(qd,σ

n+ 1
2 ) ∀qd ∈Md,(80)

using the technique the proof of the Theorem 3.7, we introduce the following vari-
ables:

ϕnd = ∆t

n−1∑
i=L

ei+
1
2 , ϕLd = 0, ψn

d = ∆t

n−1∑
i=L

θi+
1
2 , ψL

d = 0,

noting that

ϕ
n+ 1

2

d =
∆t

2
eL+ 1

2 +
∆t

2

n∑
i=L+1

(ei+
1
2 + ei−

1
2 ),
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ψ
n+ 1

2

d =
∆t

2
θL+ 1

2 +
∆t

2

n∑
i=L+1

(θi+
1
2 + θi−

1
2 ).

Rewriting (79) as

(ρ∂2t θ
n,vd) +

1

2
a(θn+

1
2 + θn−

1
2 ,vd) +

∆t2

4
a(∂2t θ

n,vd)

+
1

2
b(en+

1
2 + en−

1
2 ,vd) +

∆t2

4
b(∂2t e

n,vd)

= (ρ∂2tσ
2,vd).(81)

Summing over time levels from L+ 1 to n we infer that:

(ρ∂tθ
n+ 1

2 − ρ∂tθ
L+ 1

2 ,vd) +
∆t

2

n∑
i=L+1

a(θi+
1
2 + θi−

1
2 ,vd)

+
∆t2

4
a(∂tθ

n+ 1
2 − ∂tθ

L+ 1
2 ,vd)

+
∆t

2

n∑
i=L+1

b(ei+
1
2 + ei−

1
2 ,vd) +

∆t2

4
b(∂te

n+ 1
2 − ∂te

L+ 1
2 ,vd)

= (ρ∂tσ
n+ 1

2 − ρ∂tσ
L+ 1

2 ,vd).(82)

In addition, we take n = L in (79). Combing with the initial condition we infer
that

(ρ
θL+1

∆t2
,vd) + a(

θL+1

2
,vd) + b(

eL+1

2
,vd) = (ρ

σL+1

∆t2
,vd).(83)

Multiplying both sides by ∆t, noting θL+1

∆t = ∂tθ
L+ 1

2 , σ
L+1

∆t = ∂tσ
L+ 1

2 , ∆t
2 θ

L+1 =
∆t2

2 ∂tθ
L+1, ∆t

2 e
L+1 = ∆t2

2 ∂te
L+1, we obtain

(−ρ∂tθL+ 1
2 ,vd)

= a(
∆t2

2
∂tθ

L+1,vd) + b(
∆t2

2
∂te

L+1,vd)− (ρ∂tσ
L+ 1

2 ,vd).(84)

Taking (84) into (82), noting that ∆t2

4 ∂tθ
L+ 1

2 = ∆t
2 θ

L+ 1
2 , ∆t2

4 ∂te
L+ 1

2 = ∆t
2 e

L+ 1
2

and the definitions of ϕ
n+ 1

2

d , ψ
n+ 1

2

d , we have the result

(ρ∂tθ
n+ 1

2 ,vd) +
∆t2

4
a(∂tθ

n+ 1
2 ,vd) + a(ψ

n+ 1
2

d ,vd)

+
∆t2

4
b(∂te

n+ 1
2 ,vd) + b(ϕ

n+ 1
2

d ,vd) = (ρ∂tσ
n+ 1

2 ,vd),(85)

The following proof process is similar to (41)-(43), so we obtain

∥ρ 1
2 θ∥2l∞(L2) + ∥λ− 1

2ϕd∥2l∞(L2) + ∥λ− 1
2ψd∥2l∞(H1)

≤ C

(
∥λ− 1

2E∥2l∞(L2) +∆t2(

N−1∑
i=0

∥ρ∂tσi+ 1
2 ∥2L2)

)
.(86)



326 L. WANG, Y. XU, AND M. FENG

Using the approximation property of E and σ and the same technique as proved
(43), we get the following result:

∥ρ 1
2 (uh(t

n)− un
d )∥l∞(L2) + ∥λ− 1

2 (ph(t
n)− pnd )∥l∞(L2)

+ ∥∇(uh(t
n)− un

d )∥l∞(L2) ≤ C(∆t2 + (L
l∑

j=d+1

λj)
1/2).

Then using the result of (43) and triangle inequality, combining with similar proof
of Theorem 3.7, we complete the proof. �

4.4. Algorithm. The algorithm of the POD-ROM for the elastic wave equation
is as follows:

Algorithm 1 POD-ROM algorithm

Step 1. Using the MFE method to obtain the L solution (uh, ph) of
snapshot.
Computing (29)-(33) yields solutions un

h(n = 1, 2, · · · , L).
Step 2. Assemble the snapshot matrix A

The snapshot matrixA = (Aij)L×L, where Aij =
[(

∇ui
h,∇u

j
h

)
+
(
pih, p

j
h

)]
/L.

Step 3. Calculating eigenvalues and eigenvectors of A
Obtaining the eigenvalues λ1 > λ2 > · · · > λl > 0 (l = dim {unh : 1 6 n 6 L}) of

A and the corresponding eigenvectors vj =
(
aj1, a

j
2, · · · , a

j
L

)T
(j = 1, 2, · · · , l).

Step 4. Obtain the number of POD basis
We set the error δ = O

(
∆t2, hk

)
needed, then we decide the optimal number d

of POD bases by
(
L
∑l

j=d+1 λj

)1/2
6 δ.

Step 5. Calculating the POD basis

The POD basis calculated by
(
ψuj(x, y), ψpj(x, y)

)
=
∑L

i=1 a
j
i

(
ui
h, p

i
h

)
/
√
Lλj(j =

1, 2, · · · , d).
Step 6. Using the POD-ROM to obtain the reduced solution ud

Using (78) to compute.
Step 7. Decide whether to update the POD basis
If
∥∥un−1

d − und
∥∥
0
>
∥∥und − un+1

d

∥∥
0
and

∥∥pn−1
d − pnd

∥∥
0
>
∥∥pnd − pn+1

d

∥∥
0
(n = L,L+

1, · · · , N − 1);
Then (un

d , p
n
d ) (n = 1, 2, · · · , N) are the solutions to the POD-ROM method that

satisfy the accuracy requirement.
Else if

∥∥un−1
d − und

∥∥
0
<
∥∥und − un+1

d

∥∥
0
or
∥∥pn−1

d − pnd
∥∥
0
<
∥∥pnd − pn+1

d

∥∥
0
(n =

L,L+ 1, · · · , N − 1)
let
(
ui
h, p

i
h

)
=
(
ui
d, p

i
d

)
(i = n− L, n− L− 1, · · · , n− 1), return to Step 2.

5. Numerical experiments

In this section, we test the FOM and the POD-ROM of the elastic wave equation
to validate the theoretical analysis. That is, testing based on FOM (29)-(33) and
POD-ROM (78). In addition, we solve the discrete systems of equations with a
direct solver. Th is taken as uniform triangulation in 2D or uniform tetrahedron in
3D. We use the approximation space as the Mini’s element space for calculation.

5.1. Locking-free. In this part, we test POD-ROM’s locking-free ability. For the
2D example, the computational domain is Ω = (0, 1)2 with a partition of triangles.
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Table 1. 2D example, λ = 1.

(a) The FOM

h ∥u− uh∥0 Rate |u− uh|1 Rate

1/2 1.5530e-02 0 1.2443e-01 0
1/4 3.6977e-03 2.07 6.3403e-02 0.97
1/8 9.0460e-04 2.03 3.1800e-02 1.00
1/16 2.2369e-04 2.02 1.5898e-02 1.00
1/32 5.5495e-05 2.01 7.9453e-03 1.00
1/64 1.3584e-05 2.03 3.9714e-03 1.00

(b) The POD-ROM

h ∥u− ud∥0 Rate |u− ud|1 Rate

1/2 1.5445e-02 0 1.2433e-01 0
1/4 3.8091e-03 2.02 6.3245e-02 0.98
1/8 9.4096e-04 2.02 3.1786e-02 0.99
1/16 2.3656e-04 1.99 1.5895e-02 1.00
1/32 5.9322e-05 2.00 7.9451e-03 1.00
1/64 1.4790e-05 2.00 3.9714e-03 1.00

The exact solution of displacement is given by

u =

[
sinx sin y + 1

λx
cosx cos y + 1

λy

]
sin t.

For the 3D example, the computational domain is Ω = (0, 1)3 with a partition of
tetrahedrons. The exact solution of displacement is given by

u =

2 sinx sin y sin z + 1
λx

cosx cos y sin z + 1
λy

cos z + 1
λz

 sin t.

We notice ∇ · u → 0 as λ → ∞. The corresponding source term can be given by
(1). We find the two solutions are sensitive to volumetric locking for a large λ. The
following parameters are set for the test: ρ = 1, µ = 1, the total time is 10s, the
time step is 0.01s, and the mesh size is h = 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 in the 2D
test and h = 1/2, 1/4, 1/8, 1/16 in the 3D test. The number of snapshots is L = 20,
L = 30 and L = 50 under λ = 1, 103, 106 in the 2D test. The number of snapshots
is L = 50, L = 70 and L = 100 under λ = 1, 103, 106 in the 3D test.

The convergence rate of the two-dimensional test of the POD-ROM under dif-
ferent λ is demonstrated in Table 1-Table 3. The convergence rate of the three-
dimensional test of the POD-ROM under different λ is demonstrated in Table
4-Table 6. The results showed that the POD-ROM is able to reach the convergence
order of theoretical analysis and is locking-free when λ→ ∞.

5.2. Computational efficiency. In this part, we compare the computational
efficiency of POD-ROM and FOM. The two-dimensional area is Ω = [0, 1/4] ×
[0, 1/4] and the three-dimensional area is Ω = [0, 1/4] × [0, 1/4] × [0, 1/4]. The
two-dimensional exact solution is

u =

[
−4x(x− 1)y(y − 1)
4x(x− 1)y(y − 1)

]
sin(t),
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Table 2. 2D example, λ = 103.

(a) The FOM

h ∥u− uh∥0 Rate |u− uh|1 Rate

1/2 1.4250e-02 0 1.2978e-01 0
1/4 3.2820e-03 2.12 6.5085e-02 1.00
1/8 7.5909e-04 2.11 3.2178e-02 1.02
1/16 1.8667e-04 2.02 1.5984e-02 1.01
1/32 4.6394e-05 2.01 7.9653e-03 1.00
1/64 1.1537e-05 2.01 3.9761e-03 1.00

(b) The POD-ROM

h ∥u− ud∥0 Rate |u− ud|1 Rate

1/2 3.3769e-01 0 3.8813e-01 0
1/4 3.5758e-02 3.24 8.1616e-02 2.25
1/8 1.0928e-03 5.03 3.2161e-02 1.34
1/16 2.0345e-04 2.43 1.5985e-02 1.01
1/32 4.9845e-05 2.03 7.9658e-03 1.00
1/64 1.1778e-05 2.08 3.9763e-03 1.00

Table 3. 2D example, λ = 106.

(a) The FOM

h ∥u− uh∥0 Rate |u− uh|1 Rate

1/2 1.4360e-02 0 1.2950e-01 0
1/4 3.2800e-03 2.13 6.4995e-02 0.99
1/8 7.6541e-04 2.10 3.2169e-02 1.01
1/16 1.8675e-04 2.03 1.5985e-02 1.01
1/32 4.6537e-05 2.00 7.9654e-03 1.00
1/64 1.1548e-05 2.01 3.9761e-03 1.00

(b) The POD-ROM

h ∥u− ud∥0 Rate |u− ud|1 Rate

1/2 1.3962e-02 0 1.3171e-01 0
1/4 3.1809e-03 2.13 6.5027e-02 1.02
1/8 7.3533e-04 2.11 3.2179e-02 1.01
1/16 1.7913e-04 2.04 1.5986e-02 1.01
1/32 4.7497e-05 1.92 7.9659e-03 1.00
1/64 1.1144e-05 2.09 3.9763e-03 1.00

the three-dimensional exact solution is

u =

cos(πz) sin(πx) sin(πy) sin(πz)cos(πx) sin(πx) sin(πy) sin(πz)
cos(πy) sin(πx) sin(πy) sin(πz)

 sin(t),
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Table 4. 3D example, λ = 1.

(a) The FOM

h ∥u− uh∥0 Rate |u− uh|1 Rate

1/2 3.3775e-02 0 2.7267e-01 0
1/4 8.3384e-03 2.02 1.3762e-01 0.99
1/8 2.0316e-03 2.04 6.8966e-02 1.00
1/16 5.0774e-04 2.00 3.4485e-02 1.00

(b) The POD-ROM

h ∥u− ud∥0 Rate |u− ud|1 Rate

1/2 3.3779e-02 0 2.7266e-01 0
1/4 8.3816e-03 2.01 1.3761e-01 0.99
1/8 2.0568e-03 2.03 6.8958e-02 1.00
1/16 5.0779e-04 2.02 3.4485e-02 1.00

Table 5. 3D example, λ = 103.

(a) The FOM

h ∥u− uh∥0 Rate |u− uh|1 Rate

1/2 3.2819e-02 0 2.7365e-01 0
1/4 9.5460e-03 1.78 1.5943e-01 0.78
1/8 2.2776e-03 2.08 7.8412e-02 1.02
1/16 5.2022e-04 2.13 3.7627e-02 1.06

(b) The POD-ROM

h ∥u− ud∥0 Rate |u− ud|1 Rate

1/2 3.0350e-02 0 2.7841e-01 0
1/4 9.5007e-03 1.68 1.5905e-01 0.81
1/8 2.3166e-03 2.04 7.9009e-02 1.00
1/16 5.2051e-04 2.15 3.7679e-02 1.07

We set ρ = 1, λ = 1, µ = 1. The number of snapshots L = 20 in the two-dimensional
case and L = 50 in the three-dimensional case. The record time T = 1s and the time
step ∆t = 0.001s. Tables 7-8 show the comparison of computing efficiency between
POD-ROM and FOM under different grid sizes. In addition, we set T = 1− 5s. In
two dimensions, the grid scale is h = 1/32, and in three dimensions, the grid-scale is
h = 1/8. Tables 9-10 show the CPU time required for ROM and FOM at different
recording times.

It can be seen that ROM can effectively improve computing efficiency while
maintaining accuracy. If the grid is finer and the time calculation time is longer,
the effect will be more obvious.

5.3. Point source problem. In this section, we investigate a point source prob-
lem inspired by [29] where the analytical solution is not easily obtainable. The
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Table 6. 3D example, λ = 106.

(a) The FOM

h ∥u− uh∥0 Rate |u− uh|1 Rate

1/2 3.1154e-02 0 3.0422e-01 0
1/4 1.0143e-02 1.62 1.7427e-01 0.80
1/8 2.4997e-03 2.02 8.4743e-02 1.04
1/16 6.2287e-04 2.00 4.1377e-02 1.03

(b) The POD-ROM

h ∥u− ud∥0 Rate |u− ud|1 Rate

1/2 3.4110e-02 0 3.0111e-01 0
1/4 1.0228e-02 1.74 1.7527e-01 0.78
1/8 2.5351e-03 2.01 8.5201e-02 1.04
1/16 6.2420e-04 2.02 4.1596e-02 1.03

Table 7. The CPU time under different grid size in the two-
dimensional case.

h |p− ph|0 Rate CPU time |p− pd|0 Rate CPU time

1/2 3.6152e-02 0 0.53 3.3752e-02 0 0.27
1/4 1.2567e-02 1.52 2.06 1.1755e-02 1.52 0.40
1/8 4.4187e-03 1.51 9.82 4.1394e-03 1.50 1.01
1/16 1.5558e-03 1.51 57.68 1.4548e-03 1.51 6.32
1/32 5.4862e-04 1.50 353.42 5.1208e-04 1.51 32.68
1/64 1.9345e-04 1.50 3184.57 1.8012e-04 1.51 125.33

Table 8. The CPU time under different grid size in the three-
dimensional case.

h |p− ph|0 Rate CPU time |p− pd|0 Rate CPU time

1/2 2.1696e-01 0 1.00 2.1696e-01 0 1.05
1/4 7.1250e-02 1.60 2.28 4.1141e-02 2.40 4.48
1/8 2.0851e-02 1.77 84.58 1.2623e-02 1.70 26.63
1/16 6.4503e-03 1.69 2311.35 3.7604e-03 1.75 312.05

source functions are expressed as follows in two dimensions:

f =

[
−(x− 6)e−7

√
(x−6)2+(y−6)2

−(y − 6)e−7
√

(x−6)2+(y−6)2

]
g(t),
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Table 9. The CPU time under different record time with h =
1/32 in the two-dimensional case.

Record time (s) ∥u− uh∥0 CPU time ∥u− ud∥0 CPU time

1 2.3226e-06 353.42 2.1912e-06 32.68
2 2.5111e-06 591.20 2.3376e-06 76.73
3 2.9776e-07 1072.47 2.6511e-07 130.69
4 2.0809e-06 1393.61 1.9765e-06 195.17
5 2.6840e-06 1919.23 2.4332e-06 280.32

Table 10. The CPU time under different record time with h =
1/8 in the three-dimensional case.

Record time (s) ∥u− uh∥0 CPU time ∥u− ud∥0 CPU time

1 8.90201e-04 52.64 8.79000e-04 17.36
2 9.62345e-04 137.21 9.55745e-04 68.97
3 1.48971e-04 248.36 1.46846e-04 101.55
4 8.02991e-04 394.06 8.00694e-04 165.03
5 5.85106e-04 568.07 5.64295e-04 318.45

and expressed as follows in three dimensions:

f =

−(x− 6)e−7
√

(x−6)2+(y−6)2+(z−6)2

−(y − 6)e−7
√

(x−6)2+(y−6)2+(z−6)2

−(z − 6)e−7
√

(x−6)2+(y−6)2+(z−6)2

 g(t),
where g(t) = 2a(2a(t−b)2−1)e−a(t−b)2 , a = ( π

1.31 )
2 and b = 1.35. The computation

area in two dimensions is [12× 12], and the computation area in three dimensions
is [12× 12× 12]. The mesh size is h = 6/25 in two dimensions, and the mesh size
is h = 3/5 in three dimensions. The time step is ∆t = 0.001s, and the record time
is T = 1s. In addition, λ = 1, µ = 1, ρ = 1 and L = 500.

We compare the graphs of the two methods in Figures 1-2, and the results show
that the solutions obtained by the POD-ROM are not significantly different from
those obtained by the FOM. Furthermore, in the three-dimensional example, we
intercepted the waveform diagram of the plane at x = 6, as shown in Figure 3. The
waveform diagram of the POD-ROM matches well with that of the FOM. At the
same time, we recorded the time required for the POD-ROM and the FOM and the
number of POD bases d selected in Table 11. It can be seen that the calculation
time of the POD-ROM is significantly less than that of the FOM while maintaining
accuracy.

5.4. Wave propagation. To further investigate the FOM and the POD-ROM,
we simulated the propagation of two-dimensional wave in this subsection. The
computational area is [0, 100] × [0, 100] and the space step is h = 1. The time
step is ∆t = 0.001s, and the record time is T = 1s. The source term is located
at (50, 100), and it has form f = sin(2πf0)exp(−π2f20 t

2/4) where f0 = 30. In
addition, the initial value and the boundary value are zero.
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(a) Displacement Ux

(b) Displacement Uy

(c) Pseudo-pressure P

Figure 1. Comparison of surface graphs of the FOM and the
POD-ROM method at T = 1s in 2D numerical test.

We tested and simulated the propagation of waves in a homogeneous medium
model and a two-layer model. The parameters of the homogeneous medium model
are λ = 10000, µ = 10000, and ρ = 1. In the two-layer model, the interface is set
at y = 50, the parameters of the upper layer are λ = 10000, µ = 10000 and ρ = 1,
the parameters of the lower layer are λ = 1000, µ = 1000 and ρ = 1. We record the
snapshots at different time, as shown in Figure 4-5. In the POD model reduction
algorithm, we set the number of sample snapshots L = 600.
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(a) Displacement Ux

(b) Displacement Uy

(c) Displacement Uz

(d) Pseudo-pressure P

Figure 2. Comparison of surface graphs of the FOM and the
POD-ROM method at T = 1s in 3D numerical test.

Figure 4 shows that the MFE method simulates wave propagation very well, and
the POD method is also effective. Figure 5 shows that the wave is reflected at the
interface. Moreover, when we compare the computational time of the FOM and
the POD-ROM in Table 12, the results show that the computational efficiency of
the POD-ROM is slightly higher.
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(a) Displacement Ux

(b) Displacement Uy

(c) Displacement Uz

(d) Pseudo-pressure P

Figure 3. Comparison of the waveforms of the FOM and the
POD-ROM method at tangent plane x = 6.

6. Conclusions

In this paper, we give a locking-free ROM to solve the elastic wave equation.
First, we use the locking-free mixed finite element method to construct an FOM,
and then we use the POD technique to construct a ROM called POD-ROM. In
this way, the POD-ROM can greatly improve the computing efficiency compared
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(a) Displacement Ux of FOM

(b) Displacement Ux of POD-ROM

(c) Displacement Uy of FOM

(d) Displacement Uy of POD-ROM

(e) Pseudo-pressure P of FOM

(f) Pseudo-pressure P of POD-ROM

Figure 4. Snapshots of the homogeneous medium model obtained
using FOM and POD-ROM methods recorded at different times
T = 0.2s, 0.4s, 0.6s, 0.8s, 1.0s.
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(a) Displacement Ux of FOM

(b) Displacement Ux of POD-ROM

(c) Displacement Uy of FOM

(d) Displacement Uy of POD-ROM

(e) Pseudo-pressure P of FOM

(f) Pseudo-pressure P of POD-ROM

Figure 5. Snapshots of the two-layer model obtained using
FOM and POD-ROM methods recorded at different times T =
0.2s, 0.4s, 0.6s, 0.8s, 1.0s.
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Table 11. Comparison of CPU Time.

Dimension CPU Time (s) using FOM CPU Time (s) using POD-ROM d

2 1453 351 5
3 7340 1432 6

Table 12. Comparison of CPU Time.

Dimension CPU Time (s) using FOM CPU Time (s) using POD-ROM

2 3658 2218

with the FOM while maintaining the characteristics of numerical accuracy and
locking-free. In addition, the solution of parameterized partial differential equations
(PDEs) plays a crucial role in various fields of scientific and engineering computa-
tion. These problems are often encountered in the modeling of complex physical
systems, where multiple parameters (such as material properties or external forces)
significantly affect the system’s behavior. However, solving such systems in full
can be computationally expensive, especially when simulations need to be repeated
for a large number of different parameter values. Model reduction methods have
become widely used in these contexts due to their ability to significantly reduce
computational complexity while maintaining a high level of accuracy. Among these
methods, Proper Orthogonal Decomposition (POD) is a popular technique that
generates a low-dimensional approximation of the system by extracting the most
relevant features from a set of simulation snapshots. In the future, we will fur-
ther use the POD-ROM for practical engineering problems and study the model
reduction methods for solving parameterized PDEs.
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