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ENERGY-CONSERVATIVE FINITE DIFFERENCE METHOD FOR

THE COUPLED NONLINEAR KLEIN-GORDON EQUATION IN

THE NONRELATIVISTIC LIMIT REGIME

MING CUI AND YANFEI LI∗

Abstract. In this paper, we propose an energy-conservative finite difference time domain (FDTD)

method for solving the coupled nonlinear Klein-Gordon equations (CNKGEs) in the nonrelativistic
limit regime, involving a small parameter 0 < ε ≪ 1 which is inversely proportional to the speed
of light. Employing cut-off technique, we analyze rigourously error estimates for the numerical
method. Numerical results are reported to confirm the energy-conservative property and the error

results in l2 norm and H1 norm under different values of ε.

Key words. Coupled nonlinear Klein-Gordon equations, finite difference time domain method,
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1. Introduction

The Klein-Gordon equations (KGEs), proposed in 1927 by physicists Oskar K-
lein and Walter Gordon, can be used to describe the motion of a spin-0 particle
with the mass m. It is a fundamental equation in relativistic quantum mechanics
and quantum field theory and can be regarded as the relativistic version of the
Schrödinger equation.

The following coupled nonlinear Klein-Gordon equations in d-dimensions (d =
1, 2, 3) can be used to describe the interaction of two fields (ϕ and ψ) with the mass
m1 and the mass m2, respectively,

1

c2
∂ttϕ−△ϕ+

m2
1c

2

~2
ϕ+ η1|ϕ|2ϕ+ η2|ψ|2ϕ = 0,(1a)

1

c2
∂ttψ −△ψ +

m2
2c

2

~2
ψ + η2|ϕ|2ψ + η3|ψ|2ψ = 0,(1b)

where t is time, x is the spatial coordinate, ϕ := ϕ(x, t) and ψ := ψ(x, t) are
functions representing electron-positron fields, m2 = αm1, 0 < α ≤ 1, ~ is Planck’s
constant, c is speed of light, and η1, η2, η3 are the interaction constants of electron-
positron fields. Introduce the notions

t̃ :=
t

ts
, x̃ :=

x

xs
, u(x̃, t̃) :=

ϕ(x, t)

ϕs
, v(x̃, t̃) :=

ψ(x, t)

ψs
,(2)

plugging (2) into (1a) - (1b), we have

x2
s

c2t2s
∂ttu−△u+

m2
1c

2x2
s

~2
u+ η1ϕ

2
sx

2
s|u|2u+ η22ψ

2
sx

2
s|v|2u = 0,(3a)

x2
s

c2t2s
∂ttv −△v + αm2

1c
2x2

s

~2
v + η2ϕ

2
sx

2
s|u|2v + η3ψ

2
sx

2
s|v|2v = 0,(3b)
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where ts,xs, ϕs, ψs are the dimensionless time unit, length unit, and filed unit.
Setting ε = ~

cm1xs
= xs

cts
= vs

c , β1 = η1ϕ
2
sx

2
s, β2 = η22ψ

2
sx

2
s = η22ϕ

2
sx

2
s, β3 =

η3ψ
2
sx

2
s, ϕs = ψs =

1
xs

√
η with η = min{η1, η2, η3}, the dimensionless CNKGEs are

obtained

ε2∂ttu−△u+
1

ε2
u+ β1|u|2u+ β2|v|2u = 0,(4a)

ε2∂ttv −△v + α

ε2
v + β2|u|2v + β3|v|2v = 0,(4b)

with initial conditions

u(x, 0) = ξ(x), ∂tu(x, 0) =
1

ε2
ζ(x),(4c)

v(x, 0) = ρ(x), ∂tv(x, 0) =
α

ε2
η(x).(4d)

Here u(x, t) and v(x, t) are unknown wave functions with temporal wavelength
of O(ε2), where ε ∈ (0, 1) is a constant inversely proportional to the light-speed
constant c. In addition, ξ(x), ρ(x), ζ(x) and η(x) are given functions that are
independent of ε. Fundamentally, nonlinear wave phenomena occur in various areas
of physical science. The KGEs, widely applied in quantum and particle physics,
have garnered significant attention in researching solitons and condensed matter
physics [12], the interaction of solitons in plasma collisions [13], the recurrence of
initial states [18], and lattice nonlinear dynamics [14]. Schiff [32] made efforts to
consider nuclear saturation and shell structure in terms of many-body forces which
were derived from mesons obeying a nonlinear wave equation.

The system (4) is time symmetric or time reversible. Additionally, under pe-
riodic or homogeneous Dirichlet boundary conditions, the system (4) is energy-
conservative in the sense that

E(t) ≡ E(0), t > 0,(5)

where E(t) is the total energy defined by

E(t) =

∫
Ω

[
ε2(∂tu)

2 + (∇u)2 + 1

ε2
u2 + ε2(∂tv)

2 + (∇v)2

+
α

ε2
v2 +

β1
2
u4 + β2u

2v2 +
β3
2
v4
]
dx.(6)

It is well-known that conservative numerical schemes consistently outperform
nonconservative ones. The crux of their superiority lies in their ability to preserve
important invariant properties, allowing for a more detailed representation of phys-
ical processes. From this perspective, the numerical simulation can be measured by
the extent to maintain the invariant properties of the original continuous model.
To achieve an appropriate numerical method that ensures energy conservation, the
classical approach involves constructing a fully implicit scheme, which always bring
significant challenges for convergence analysis. In this paper, we analyze rigourously
the unconditional convergence results for the energy-conservative implicit scheme.

In the regime of O(1)-speed of light, where the parameter ε > 0 is fixed, the
KGEs have garnered substantial interest, experiencing a notable surge in both an-
alytical and numerical research. Along the analytical front, Scott [30] outlined
several physical implementations and described the construction of analog models.
The global classical solutions of the KGEs were investigated in [20, 33]. Moreover,
the Cauchy problem for the KGEs were studied, we refer the readers to [19, 31] and
therein references. Researchers proposed and analyzed standard finite difference
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time domain (FDTD) methods for the KGEs in [2, 15, 21, 27, 28]. Bao et al. [9]
found the time-splitting Fourier pseudospectral numerical scheme and established
uniform error bounds of this numerical method. Wang et al. [35] used variational
method and finite element methods (FEMs) for the KGEs with Dirichlet bound-
ary condition. We also can learn about some research results involved in KGEs
coupled with other equations. For example, Benci et al. [5] analyzed the solitary
waves of the KGEs coupled with Maxwell equations. Li et al. [22, 23] studied the
conservative FEMs for the KGEs coupled with Schrödinger system.

To elucidate the behavior of charged mesons in the presence of an electromagnetic
field, the CNKGEs were introduced by I. Segal for the first time in [29]. For
the Cauchy problem for the CNKGEs, Liu [24] analyzed the sharp criteria for
global existence and blow-up. With the help of variational argument, potential well
argument, and concavity method, Zhang [37] studied the existence and the sharp
criterion for blow-up of CNKGEs. T. Alagesa [3] et al. delved into the examination
of the bilinear form and one-soliton solutions of CNKGEs. In the numerical aspect,
multiple numerical schemes were put forward and analyzed in many literature. For
example, Tai [34] et al. and Xu [36] et al. introduced the numerical method under
Gautschi-type integrator sine spectral discretization. Doha [16] et al. proposed the
Jacobi-Gauss-Lobatto collocation method for the CNKGEs.

However, in the nonrelativistic limit regime, characterized by 0 < ε ≪ 1 or an
infinitely large speed of light, the analysis and efficient computation of the KGEs
or the CNKGEs are complicated issues. These challenges stem primarily from the
unbounded nature of the energy E(t) as ε approaches zero. Recently, Machihara
et al. [26] investigated the nonrelativistic limit of the Cauchy problem for the
KGEs and proved the convergence of finite energy solutions to the corresponding
solutions of the nonlinear Schrödinger equation in the energy space. Bao et al.
[6, 7, 8] studied the numerical methods and provided rigorous error estimates for
the KGEs in the nonrelativistic limit regime. In Bao’s research(such as [6]), the
nonlinear term f of the KGEs is assumed to satisfy certain conditions, such that
∥f ′∥L∞ + ∥f ′′∥L∞ + ∥f ′′′∥L∞ . 1. There exists no work focusing on the numerical
method for the CNKGEs in the nonrelativistic limit regime. The highly oscillatory
nature in the solution makes the computation in the nonrelativistic limit regime
extremely challenging.

The main contributions of this work include: (i) we accomplish the scaling of
the CNKGEs in the nonrelativistic limit regime by the dimensionless unit. (ii) An
energy-conservative FDTD method for the above proposed dimensionless CNKGEs
is established. Further, under some certain conditions and with the help of energy
conservation of the discrete system, the boundedness of the numerical solutions in
different norms are derived. (iii) The constructed scheme is fully implicit, which
increases the difficulty of the error analysis. In this work, with the help of the
cut-off technique, the error estimates are derived, without any time-space step
ratio restriction. Moreover, compared with the reference [6], the boundedness of
the numerical solutions in L∞-norm is no longer required in this work. For the
higher-dimensional cases, our results are also suitable.

The outline of the paper is as follows. In Section 2, we present a fully discrete
FDTD numerical scheme and the energy-conservative is proved in the nonrelativistic
limit regime. In Section 3, the rigorous error analysis are obtained by the cut-off
technology. In Section 4, several numerical simulation results are reported to verify
the theoretical analysis. Conclusions are given in the final section.
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2. FDTD method

The purpose of this section is to propose the FDTD method for the CNKGEs (4)
and to conduct a comprehensive analysis of the stability and convergence properties
of the numerical scheme in the nonrelativistic limit regime. For simplicity of nota-
tions, we consider the numerical analysis in the case of one dimension (1D). The
results can be generalized for the case of higher dimensions. In practical computa-
tion, we truncate the problem onto an interval Ω = (a, b) with periodic boundary
conditions. Then the CNKGEs (4) with periodic boundary conditions collapses to

ε2∂ttu− ∂xxu+
1

ε2
u+ β1|u|2u+ β2|v|2u = 0, x ∈ Ω, t > 0,(7a)

ε2∂ttv − ∂xxv +
α

ε2
v + β2|u|2v + β3|v|2v = 0, x ∈ Ω, t > 0,(7b)

with the boundary and initial conditions

u(a, t) = u(b, t), ∂tu(a, t) = ∂tu(b, t), t ≥ 0,(7c)

v(a, t) = v(b, t), ∂tv(a, t) = ∂tv(b, t), t ≥ 0,(7d)

u(x, 0) = ξ(x), ∂tu(x, 0) =
1

ε2
ζ(x), x ∈ Ω = [a, b],(7e)

v(x, 0) = ρ(x), ∂tv(x, 0) =
α

ε2
η(x), x ∈ Ω = [a, b],(7f)

where the initial-value functions satisfy

ξ(a) = ξ(b), ξ
′
(a) = ξ

′
(b), ζ(a) = ζ(b), ζ

′
(a) = ζ

′
(b),(8)

ρ(a) = ρ(b), ρ
′
(a) = ρ

′
(b), η(a) = η(b), η

′
(a) = η

′
(b).(9)

2.1. Energy-conservative property. We have the following theorem concern-
ing the property of energy-conservative of the system (7) under the conditions
u(·, t), v(·, t) ∈ H1(Ω) and ∂tu(·, t), ∂tv(·, t) ∈ L2(Ω).

Theorem 2.1. The energy, which is defined by

E =

∫
Ω

[
ε2(∂tu)

2 + (∂xu)
2 +

1

ε2
u2 + ε2(∂tv)

2 + (∂xv)
2

+
α

ε2
v2 +

β1
2
u4 + β2u

2v2 +
β3
2
v4
]
dx,(10)

is conservative.

Proof. Multiplying (7a) and (7b) by ∂tu and ∂tv respectively, and using the initial-
boundary conditions (7c)-(7f), we have

∂t

∫
Ω

[
ε2

2
(∂tu)

2 +
1

2
(∂xu)

2 +
1

2ε2
u2

]
dx

+ β1

∫
Ω

|u|2u∂tudx+ β2

∫
Ω

|v|2u∂tudx = 0,(11)

∂t

∫
Ω

[
ε2

2
(∂tv)

2 +
1

2
(∂xv)

2 +
α

2ε2
v2
]
dx

+ β2

∫
Ω

|u|2v∂tvdx+ β3

∫
Ω

|v|2v∂tvdx = 0.(12)

Noticing that

∂t

(
β1
4
u4 +

β2
2
u2v2 +

β3
4
v4
)

= β1|u|2u∂tu+ β2|v|2u∂tu+ β2|u|2v∂tv + β3|v|2v∂tv,
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from (11) and (12), we have

1

2
∂t

∫
Ω

[
ε2∂tu∂tu+ ∂xu∂xu+

1

ε2
uu+ ε2∂tv∂tv + ∂xv∂xv

+
α

ε2
vv +

β1
2
u4 + β2u

2v2 +
β3
2
v4
]
= 0.(13)

Namely,

∂tE = 0.

This proof is completed. �

2.2. Energy-conservative FDTD method. From Theorem 2.1, we obtain that
the continuous model is energy-conservative. In this subsection, we will construct an
energy-conservative numerical scheme for the model (7) and the energy conservation
property will be studied in detail.

The mesh size h and time size τ can be chosen as h := △x = (b−a)
M , τ := ∆t > 0,

where M is a positive integer. The grid points and times step can be denoted as

xj = a+ jh, j = 0, 1, · · · ,M,

tn := nτ, n = 0, 1, 2, · · · .

Denote XM = {ι = (ι0, ι1, · · · , ιM ) | ι0 = ιM} ∈ RM+1, and ι0 = ιM , ιM−1 = ι−1.
We equip the spaces XM with the standard discrete l2 norm semi-H1 norm semi-H2

norm and l∞ norm, these norms are defined by

∥ιn∥2l2 = h
M−1∑
j=0

|ιnj |2, ∥δ+x ιn∥2l2 = h
M−1∑
j=0

|δ+x ιnj |2,

∥δ2xιn∥2l2 = h

M−1∑
j=0

|δ2xιnj |2, ∥ιn∥l∞ = max
0≤j≤M−1

|ιnj |.

Let ιnj be the numerical solution ι(xj , tn) (j = 0, 1, · · · ,M, n = 0, 1, 2, · · · ) and
introduce the finite difference discretization operators as

δ+t ι
n
j =

ιn+1
j − ιnj

τ
, δ−t ι

n
j =

ιnj − ιn−1
j

τ
, δ2t ι

n
j =

ιn+1
j − 2ιnj +−ιn−1

j

τ2
,

δ+x ι
n
j =

ιnj+1 − ιnj
h

, δ−x ι
n
j =

ιnj − ιnj−1

h
, δ2xι

n
j =

ιnj+1 − 2ιnj + ιnj−1

h2
.

Here, we consider the implicit energy-conservative FDTD method for the coupled
equation (7), which is to find (un+1, vn+1) ∈ XM ×XM for n = 1, 2, · · · , such that

ε2δ2t u
n
j − 1

2
δ2x(u

n+1
j + un−1

j )

+
1

2ε2
(un+1

j + un−1
j ) +G1(u

n+1
j , un−1

j , vnj ) = 0,(14a)

ε2δ2t v
n
j − 1

2
δ2x(v

n+1
j + vn−1

j )

+
α

2ε2
(vn+1

j + vn−1
j ) +G2(u

n
j , v

n+1
j , vn−1

j ) = 0,(14b)

with the initial and boundary conditions

un0 = unM , u
n
−1 = unM+1, n ≥ 0, u0j = ξ(xj),(14c)

vn0 = vnM , v
n
−1 = vnM+1, n ≥ 0, v0j = ρ(xj),(14d)
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u1j = ξ(xj) +
τ

ε2
ζ(xj) +

τ2

2ε2

[
δ2xξ(xj)−

1

ε2
ξ(xj) + f1(ξ(xj), ρ(xj))

]
,(14e)

v1j = ρ(xj) +
τα

ε2
η(xj) +

τ2

2ε2

[
δ2xρ(xj)−

α

ε2
ρ(xj) + f2(ξ(xj), ρ(xj))

]
,(14f)

where

G1(u1, u2, v) =

∫ 1

0

f1(θu1 + (1− θ)u2, v)dθ =
F (u1, v)− F (u2, v)

u1 − u2
,(15)

G2(u, v1, v2) =

∫ 1

0

f2(u, θv1 + (1− θ)v2)dθ =
F (u, v1)− F (u, v2)

v1 − v2
,(16)

f1(u, v) = β1|u|2u+ β2|v|2u, f2(u, v) = β2|u|2v + β3|v|2v,(17)

F (u, v) =
β1
4
|u|4 + β2

2
|u|2|v|2 + β3

4
|v|4.(18)

We have the following theorem about energy conservation of the numerical
scheme (14).

Theorem 2.2. (Energy conservation) Define numerical energy

En =ε2∥δ+t un∥2l2 +
1

2

(
∥δ+x un+1∥2l2 + ∥δ+x un∥2l2

)
+

1

2ε2
(
∥un+1∥2l2 + ∥un∥2l2

)
+ ε2∥δ+t vn∥2l2 +

1

2

(
∥δ+x vn+1∥2l2 + ∥δ+x vn∥2l2

)
+

α

2ε2
(
∥vn+1∥2l2 + ∥vn∥2l2

)
+ h

M−1∑
j=0

[
F (un+1

j , vnj ) + F (unj , v
n+1
j )

]
,(19)

we have En = En−1.

Proof. Multiplying both sides of equations (14a) - (14b) by h(un+1
j − un−1

j ) and

h(vn+1
j − vn−1

j ), respectively, then summing up for j = 1, · · · ,M − 1, we have

h
M−1∑
j=0

(δ+t u
n
j − δ+t u

n−1
j )(δ+t u

n
j + δ+t u

n−1
j )

+
h

2

M−1∑
j=0

(δ+x u
n+1
j − δ+x u

n−1
j )(δ+x u

n+1
j + δ+x u

n−1
j )

+
h

2ε2

M−1∑
j=0

(un+1
j + un−1

j )(un+1
j − un−1

j )

+ h
M−1∑
j=0

[
F (un+1

j , vnj )− F (un−1
j , vnj )

]
= 0,(20)

h
M−1∑
j=0

(δ+t v
n
j − δ+t v

n−1
j )(δ+t v

n
j + δ+t v

n−1
j )

+
h

2

M−1∑
j=0

(δ+x v
n+1
j − δ+x v

n−1
j )(δ+x v

n+1
j + δ+x v

n−1
j )

+
h

2ε2

M−1∑
j=0

(vn+1
j + vn−1

j )(vn+1
j − vn−1

j )
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+ h
M−1∑
j=0

[
F (unj , v

n+1
j )− F (unj , v

n−1
j )

]
= 0.(21)

From (20) - (21), we get

ε2∥δ+t un∥2l2 + ε2∥δ+t vn∥2l2

+
1

2

(
∥δ+x un+1∥2l2 + ∥δ+x un∥2l2

)
+

1

2ε2
(
∥un+1∥2l2 + ∥un∥2l2

)
+

1

2

(
∥δ+x vn+1∥2l2 + ∥δ+x vn∥2l2

)
+

α

2ε2
(
∥vn+1∥2l2 + ∥vn∥2l2

)
+ h

M−1∑
j=0

[
F (un+1

j , vnj ) + F (unj , v
n+1
j )

]
=ε2∥δ+t un−1∥2l2 + ε2∥δ+t vn−1∥2l2

+
1

2

(
∥δ+x un∥2l2 + ∥δ+x un−1∥2l2

)
+

1

2ε2
(
∥un∥2l2 + ∥un−1∥2l2

)
+

1

2

(
∥δ+x vn∥2l2 + ∥δ+x vn−1∥2l2

)
+

α

2ε2
(
∥vn∥2l2 + ∥vn−1∥2l2

)
+ h

M−1∑
j=0

[
F (unj , v

n−1
j ) + F (un−1

j , vnj )
]
.

Therefore, we have En = En−1. Hence, this proof is completed. �
Theorem 2.3. (Boundedness) Assume one of the following conditions holds

(a) min{β1, β2, β3} > 0;
(b) β1 > 0, β3 > 0, β1β3≤β2

2 .

Then the solutions of system (14) are bounded in the sense that

ε2∥δ+t un∥2l2 +
1

2

(
∥δ+x un+1∥2l2 + ∥δ+x un∥2l2

)
+

1

2ε2
(
∥un+1∥2l2 + ∥un∥2l2

)(22)

+ ε2∥δ+t vn∥2l2 +
1

2

(
∥δ+x vn+1∥2l2 + ∥δ+x vn∥2l2

)
+

α

2ε2
(
∥vn+1∥2l2 + ∥vn∥2l2

)
. 1.

Proof. From Theorem 2.2, we have En = E0. Under the condition (a), and noticing
that

h

M−1∑
j=0

[
F (un+1

j , vnj ) + F (unj , v
n+1
j )

]
> 0,

we obtain

ε2∥δ+t un∥2l2 +
1

2

(
∥δ+x un+1∥2l2 + ∥δ+x un∥2l2

)
+

1

2ε2
(
∥un+1∥2l2 + ∥un∥2l2

)(23)

+ ε2∥δ+t vn∥2l2 +
1

2

(
∥δ+x vn+1∥2l2 + ∥δ+x vn∥2l2

)
+

α

2ε2
(
∥vn+1∥2l2 + ∥vn∥2l2

)
≤ε2∥δ+t u0∥2l2 +

1

2

(
∥δ+x u1∥2l2 + ∥δ+x u0∥2l2

)
+

1

2ε2
(
∥u1∥2l2 + ∥u0∥2l2

)
+ ε2∥δ+t v0∥2l2 +

1

2

(
∥δ+x v1∥2l2 + ∥δ+x v0∥2l2

)
+

α

2ε2
(
∥v1∥2l2 + ∥v0∥2l2

)
+ h

M−1∑
j=0

[
β1
4
|u1j |4 +

β2
2
|u1j |2|v0j |2 +

β3
4
|v0j |4 +

β1
4
|u0j |4 +

β2
2
|u0j |2|v1j |2 +

β3
4
|v1j |4

]
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.1.

Under |unj |2 ̸= 0, |vnj |2 ̸= 0, we get

ε2∥δ+t un∥2l2 +
1

2

(
∥δ+x un+1∥2l2 + ∥δ+x un∥2l2

)
+

1

2ε2
(
∥un+1∥2l2 + ∥un∥2l2

)
+ ε2∥δ+t vn∥2l2 +

1

2

(
∥δ+x vn+1∥2l2 + ∥δ+x vn∥2l2

)
+

α

2ε2
(
∥vn+1∥2l2 + ∥vn∥2l2

)
=E0 − h

M−1∑
j=0

[
β1
4

∣∣un+1
j

∣∣4 + β2
2

∣∣un+1
j

∣∣2 ∣∣vnj ∣∣2 + β3
4

∣∣vnj ∣∣4
+
β1
4

∣∣unj ∣∣4 + β2
2

∣∣unj ∣∣2 ∣∣vn+1
j

∣∣2 + β3
4

∣∣vn+1
j

∣∣4]

.1− h

M−1∑
j=0

β1
4

∣∣∣∣∣u
n+1
j

vnj

∣∣∣∣∣
4

+
β2
2

∣∣∣∣∣u
n+1
j

vnj

∣∣∣∣∣
2

+
β3
4


− h

M−1∑
j=0

β1
4

+
β2
2

∣∣∣∣∣v
n+1
j

unj

∣∣∣∣∣
2

+
β3
4

∣∣∣∣∣v
n+1
j

unj

∣∣∣∣∣
4
 .(24)

Under the condition (b), it follows from (24) that

ε2∥δ+t un∥2l2 +
1

2

(
∥δ+x un+1∥2l2 + ∥δ+x un∥2l2

)
+

1

2ε2
(
∥un+1∥2l2 + ∥un∥2l2

)
+ ε2∥δ+t vn∥2l2 +

1

2

(
∥δ+x vn+1∥2l2 + ∥δ+x vn∥2l2

)
+

α

2ε2
(
∥vn+1∥2l2 + ∥vn∥2l2

)
. 1 +

β1β3 − β2
2

−4β1
+
β1β3 − β2

2

−4β3
.

Note that the above process also holds when β1β3 = β2
2 .

The proof is completed. �
Remark 2.1. If the coefficients β1, β2, β3 satisfy that β1 < 0, β3 < 0, β1β3 > β2

2 ,
the boundedness of the numerical solutions cannot be obtained. Indeed, from (24),
we get

ε2∥δ+t un∥2l2 +
1

2

(
∥δ+x un+1∥2l2 + ∥δ+x un∥2l2

)
+

1

2ε2
(
∥un+1∥2l2 + ∥un∥2l2

)
+ ε2∥δ+t vn∥2l2 +

1

2

(
∥δ+x vn+1∥2l2 + ∥δ+x vn∥2l2

)
+

α

2ε2
(
∥vn+1∥2l2 + ∥vn∥2l2

)
>
β1β3 − β2

2

−4β1
+
β1β3 − β2

2

−4β3
.

In this case, the boundedness of the numerical solution in the L∞-norm directly
could not be obtained. Hence, the error estimates are difficult to derive. In next
section, the cut-off technique [10, 11, 25] will be adopted to get the error estimates
of the numerical scheme, and the analytical method can be directly applied to the
higher dimensional cases.

3. Error estimates

In this section, we will give the error analysis for the numerical method. We first
make the following assumptions on the exact solutions u and v of the system (7):

u ∈ C4([0, T ];W 1,∞) ∩ C3([0, T ];W 2,∞) ∩ C2([0, T ];W 3,∞) ∩ C([0, T ];W 5,∞
p ),

(25a)
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v ∈ C4([0, T ];W 1,∞) ∩ C3([0, T ];W 2,∞) ∩ C2([0, T ];W 3,∞) ∩ C([0, T ];W 5,∞
p ),

(25b)

∥∥∥∥ ∂r+s

∂tr∂xs
u(x, t)

∥∥∥∥
L∞(ΩT )

. 1

ε2r
, 0 ≤ r ≤ 4, 0 ≤ r + s ≤ 5,

(25c)

where Wm,∞
p is the Wm,∞ with periodic boundary condition, ΩT = Ω× [0, T ].

Denote the errors ue
n
j , ve

n
j and local truncation errors for the numerical scheme

(14) as

ue
n
j =u(xj , tn)− unj , ve

n
j = v(xj , tn)− vnj ,

A0
j =δ+t u(xj , 0)−

1

ε2
ζ(xj)−

τ

2ε2

[
δ2xξ(xj)−

1

ε2
ξ(xj)− f1(ξ(x1), ρ(xj))

]
,

B0
j =δ+t v(xj , 0)−

α

ε2
η(xj)−

τ

2ε2

[
δ2xρ(xj)−

α

ε2
ρ(xj)− f2(ξ(x1), ρ(xj))

]
,

An
j =ε2δ2t u(xj , tn)−

1

2

[
δ2xu(xj , tn+1) + δ2xu(xj , tn−1)

]
+

1

2ε2
[u(xj , tn+1) + u(xj , tn−1)] +G1 (u(xj , tn+1), u(xj , tn−1), v(xj , tn)) ,

Bn
j =ε2δ2t v(xj , tn)−

1

2

[
δ2xv(xj , tn+1) + δ2xv(xj , tn−1)

]
+

α

2ε2
[v(xj , tn+1) + v(xj , tn−1)] +G2 (u(xj , tn), v(xj , tn+1), v(xj , tn−1)) .

The error estimate of the numerical scheme (14) can be obtained as follows.

Theorem 3.1. Under assumptions (25), there exist sufficiently small, positive con-
stants τ0, h0 independent of ε such that for any 0 < ε ≤ 1, we have the following
error estimate, for τ ∈ (0, τ0], h ∈ (0, h0],

∥uenj ∥l2 + α∥venj ∥l2 + ∥δ+x ue
n
j ∥l2 + α∥δ+x ve

n
j ∥l2 . τ2

ε6
+ h2.(26)

To prove the convergence of this discrete problem, we need the following lemmas.

Lemma 3.1. (Local truncation errors) Under the assumption (25), we have

|A0
j | .

τ2

ε6
+ h2, |δ+x A0

j | .
τ2

ε6
+ h2, |δ2xA0

j | .
τ2

ε6
+ h2,(27)

|An
j | . h2 +

τ2

ε6
, |δ+x An

j | . h2 +
τ2

ε6
,(28)

|B0
j | .

τ2

ε6
+ h2, |δ+x B0

j | .
τ2

ε6
+ h2, |δ2xB0

j | .
τ2

ε6
+ h2,(29)

|Bn
j | . h2 +

τ2

ε6
, |δ+x Bn

j | . h2 +
τ2

ε6
.(30)

Proof. Noticing that

ε2∂ttu(xj , 0)− ∂xxu(xj , 0) = − 1

ε2
u(xj , 0)− f1(u(xj , 0), v(xj , 0)),

ε2∂ttv(xj , 0)− ∂xxv(xj , 0) = − α

ε2
v(xj , 0)− f2(u(xj , 0), v(xj , 0)),

and using Taylor’s expansion, we obtain

A0
j =

u(xj , t1)− u(xj , 0)

τ
− ∂tu(xj , 0)−

τ

2
∂ttu(xj , 0)
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− τ

2ε2
[
δ2xu(xj , 0)− ∂xxu(xj , 0)

]
=

1

2τ

∫ t1

0

(t1 − s)2ds− τ

2ε2

[
1

2h2

∫ xj

xj+1

(xj+1 − s)2∂xxxu(s, 0)ds

+
1

2h2

∫ xj

xj−1

(xj−1 − s)2∂xxxu(s, 0)ds

]
.(31)

By Young’s inequality, we get

|A0
j | ≤

τ2

6
∥∂tttu∥L∞ +

τh

6ε2
∥∂xxxu∥L∞ ≤ τ2

6ε6
+
τh

6ε2
. τ2

ε6
+ h2,(32)

|δ+x A0
j | ≤

τ2

6
∥∂tttxu∥L∞ +

τh

6ε2
∥∂xxxxu∥L∞ . τ2

ε6
+ h2,(33)

|δ2xA0
j | ≤

τ2

6
∥∂tttxxu∥L∞ +

τh

6ε2
∥∂xxxxxu∥L∞ . τ2

ε6
+ h2.(34)

For the term An
j , we have

An
j =ε2δ2t u(xj , tn)− ε2∂ttu(xj , tn) + ∂xxu(xj , tn)−

1

ε2
u(xj , tn)

− 1

2

[
δ2xu(xj , tn+1) + δ2xu(xj , tn−1)

]
+

1

2ε2
[u(xj , tn+1) + u(xj , tn−1)]

+G1 (u(xj , tn+1), u(xj , tn−1), v(xj , tn))− f1 (u(xj , tn), v(xj , tn)) .(35)

By Taylor’s expansion, it yields that

G1 (u(xj , tn+1), u(xj , tn−1), v(xj , tn))− f1 (u(xj , tn), v(xj , tn))

=

∫ 1

0

f1 (θu(xj , tn+1) + (1− θ)u(xj , tn−1), v(xj , tn)) dθ

− f1 (u(xj , tn), v(xj , tn))

=

[
1

2
u(xj , tn+1) +

1

2
u(xj , tn−1)− u(xj , tn)

]
∂uf1 (u(xj , tn), v(xj , tn))

+

[
1

3
u2(xj , tn+1)

1

3
u2(xj , tn−1) +

1

3
u(xj , tn+1)u(xj , tn−1) + u2(xj , tn)

− u(xj , tn+1)u(xj , tn)− u(xj , tn)u(xj , tn−1)

]
∂uuf1 (u(xj , tn), v(xj , tn))

+Rn.(36)

Therefore, we have

|G1(u(xj , tn+1), u(xj , tn−1), v(xj , tn))− f1(u(xj , tn), v(xj , tn))|

≤τ
2

2
∥∂ttu∥L∞ + τ2∥∂tu∥L∞ .(37)

For the other term of An
j , we obtain

ε2|δ2t u(xj , tn)− ∂ttu(xj , tn)| ≤
ε2τ2

12
∥∂ttttu∥L∞ ,(38) ∣∣∣∣−1

2

[
δ2xu(xj , tn+1) + δ2xu(xj , tn−1)

]
+ ∂xxu(xj , tn)

∣∣∣∣
≤τ

2

2
∥∂xxttu∥L∞ +

h2

12
∥∂xxxxu∥L∞ ,(39)
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1

ε2

[
1

2
(u(xj , tn+1) + u(xj , tn−1))− u(xj , tn)

]
≤ τ2

2ε2
∥∂ttu∥L∞ .(40)

We can get

|An
j | ≤

ε2τ2

12
∥∂ttttu∥L∞ +

τ2

2
∥∂xxttu∥L∞ +

h2

12
∥∂xxxxu∥L∞

+
τ2

2ε2
∥∂ttu∥L∞ +

τ2

2
∥∂ttu∥L∞∥∂uf1∥L∞ + τ2∥∂tu∥2L∞∥∂uuf1∥L∞

≤ε
2τ2

12

1

ε8
+
τ2

2

1

ε4
+
h2

12
+

τ2

2ε2
1

ε4
+

τ2

2ε4
+
τ2

ε4

.h2 + τ2

ε6
.(41)

Similarly, we have

|δ+x An
j | . h2 +

τ2

ε6
.(42)

Also, we can obtain

|B0
j | .

τ2

ε6
+ h2, |δ+x B0

j | .
τ2

ε6
+ h2, |δ2xB0

j | .
τ2

ε6
+ h2,

|Bn
j | .

τ2

ε6
+ h2, |δ+x Bn

j | .
τ2

ε6
+ h2.

This proof is completed. �

Next, we introduce the cut-off technique to truncate the nonlinearity into a global
Lipschitz function with compact support.

Define M0 = max{∥u(x, t)∥L∞ , ∥v(x, t)∥L∞}, B =M0 + 1 and

ρ(s) = s


1, 0 ≤ |s| ≤ 1,

∈ [0, 1], 1 ≤ |s| ≤ 2,

0, |s| ≥ 2.

(43)

Define

f1B(s, v) = f1(s, v)ρ
( s
B

)
, f2B(u, s) = f2(u, s)ρ(

s

B
),(44)

and

F1B(s, v) =

∫ s

0

f1B(σ, v)dσ, F2B(u, s) =

∫ s

0

f2B(u, σ)dσ.(45)

Setting û0 = u0, û1 = u1, v̂0 = v0, v̂1 = v1, then we construct the following
numerical scheme, which is to find ûn+1 ∈ XM and v̂n+1 ∈ XM , such that

ε2δ2t û
n
j − 1

2
δ2x(û

n+1
j + ûn−1

j ) +
1

2ε2
(ûn+1

j + ûn−1
j ) + Ĝ1(û

n+1
j , ûn−1

j , v̂nj ) = 0,(46)

ε2δ2t v̂
n
j − 1

2
δ2x(v̂

n+1
j + v̂n−1

j ) +
α

2ε2
(v̂n+1

j + v̂n−1
j ) + Ĝ2(û

n
j , v̂

n+1
j , v̂n−1

j ) = 0,(47)

where

Ĝ1(u1, u2, v) =

∫ 1

0

f1B(θu1 + (1− θ)u2, v)dθ =
F1B(u1, v)− F1B(u2, v)

u1 − u2
,

Ĝ2(u, v1, v2) =

∫ 1

0

f2B(u, θv1 + (1− θ)v2)dθ =
F2B(u, v1)− F2B(u, v2)

v1 − v2
.
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By the definitions of Ĝ1 and Ĝ2, we have

G1 (u(xj , tn+1), u(xj , tn−1), v(xj , tn)) = Ĝ1 (u(xj , tn+1), u(xj , tn−1), v(xj , tn)) ,

G2 (u(xj , tn), v(xj , tn+1), v(xj , tn−1)) = Ĝ2 (u(xj , tn), v(xj , tn+1), v(xj , tn−1)) .

Define

uê
n
j = u(xj , tn)− ûnj ,

v ê
n
j = v(xj , tn)− v̂nj ,

ηn1j = Ĝ1 (u(xj , tn+1), u(xj , tn−1), v(xj , tn))− Ĝ1(û
n+1
j , ûn−1

j , v̂nj ),

ηn2j = Ĝ2 (u(xj , tn), v(xj , tn+1), v(xj , tn−1))− Ĝ2(û
n
j , v̂

n+1
j , ûn−1

j ).

We can get the following error equations

ε2δ2t uê
n
j − 1

2
δ2x(uê

n+1
j + uê

n−1
j ) +

1

2ε2
(uê

n+1
j + uê

n−1
j ) = An

j − ηn1j ,(48a)

ε2δ2t v ê
n
j − 1

2
δ2x(v ê

n+1
j + v ê

n−1
j ) +

α

2ε2
(v ê

n+1
j + v ê

n−1
j ) = Bn

j − ηn2j ,(48b)

uê
0
j = 0, uê

1
j = τA0

j ,(48c)

v ê
0
j = 0, v ê

1
j = τB0

j .(48d)

Lemma 3.2. For ηn1j and ηn2j, there holds

∥ηn1 ∥2l2 ≤∥uên+1∥2l2 + ∥uên−1∥2l2 + ∥v ên∥2l2 ,(49a)

∥δ+x ηn1 ∥2l2 ≤∥uên+1∥2l2 + ∥δ+x uê
n+1∥2l2 + ∥uên−1∥2l2

+ ∥δ+x uê
n−1∥2l2 + ∥v ên∥2l2 + ∥δ+x v ê

n∥2l2 ,(49b)

∥ηn2 ∥2l2 ≤∥v ên+1∥2l2 + ∥v ên−1∥2l2 + ∥uên∥2l2 ,(49c)

∥δ+x ηn2 ∥2l2 ≤∥v ên+1∥2l2 + ∥δ+x v ê
n+1∥2l2 + ∥v ên−1∥2l2

+ ∥δ+x v ê
n−1∥2l2 + ∥uên∥2l2 + ∥δ+x uê

n∥2l2 .(49d)

Proof. A direct calculation gives

|ηn1j | =
∣∣∣Ĝ1(u(xj , tn+1), u(xj , tn−1), v(xj , tn))− Ĝ1(û

n+1
j , ûn−1

j , v̂nj )
∣∣∣

=

∣∣∣∣∫ 1

0

f1B(θu(xj , tn+1) + (1− θ)u(xj , tn−1), v(xj , tn))

−f1B(θûn+1
j + (1− θ)ûn−1

j , v̂nj )dθ
∣∣

.|uên+1|+ |uên−1|+ |v ên|.

Then, (49a)-(49d) hold obviously. Thus, this proof is completed. �

Lemma 3.3. For the error equations (48), there holds

∥uên∥2l2 + α∥v ên∥2l2 + ∥δ+x uê
n∥2l2 + α∥δ+x v ê

n∥2l2 .
(
τ2

ε6
+ h2

)2

.(50)

Proof. Define the ‘energy’ for the error

En =ε2∥δ+t uê
n∥2l2 +

1

2

(
∥δ+x uê

n+1∥2l2 + ∥δ+x uê
n∥2l2

)
+

1

2ε2
(
∥uên+1∥2l2 + ∥uên∥2l2

)
+ ε2∥δ+t v ê

n∥2l2 +
1

2

(
∥δ+x v ê

n+1∥2l2 + ∥δ+x v ê
n∥2l2

)
+

α

2ε2
(
∥v ên+1∥2l2 + ∥v ên∥2l2

)
.

(51)
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Multiplying (48a) and (48b) by h(uê
n+1−uê

n−1) and h(v ê
n+1−v ê

n−1), respectively,
and summing up for j = 0, · · · ,M − 1, we have

ε2h

M−1∑
j=0

δ2t uê
n
j (uê

n+1 − uê
n−1)

− h

2

M−1∑
j=0

δ2x(uê
n+1
j + uê

n−1
j )(uê

n+1 − uê
n−1)

+
h

2ε2

M−1∑
j=0

(uê
n+1
j + uê

n−1
j )(uê

n+1 − uê
n−1)

=h

M−1∑
j=0

(An
j − ηn1j)(uê

n+1 − uê
n−1),(52)

and

ε2h
M−1∑
j=0

δ2t v ê
n
j (v ê

n+1 − v ê
n−1)

− h

2

M−1∑
j=0

δ2x(v ê
n+1
j + v ê

n−1
j )(v ê

n+1 − v ê
n−1)

+
αh

2ε2

M−1∑
j=0

(v ê
n+1
j + v ê

n−1
j )(v ê

n+1 − v ê
n−1)

=h

M−1∑
j=0

(Bn
j − ηn2j)(v ê

n+1 − v ê
n−1).(53)

From (52) and (53), we have

En − En−1 = h

M−1∑
j=0

(An
j − ηn1j)(uê

n+1 − uê
n−1) + h

M−1∑
j=0

(Bn
j − ηn2j)(v ê

n+1 − v ê
n−1)

:= A1 + A2.(54)

For the term A1,

A1 = h

M−1∑
j=0

(An
j − ηn1j)(uê

n+1 − uê
n−1)

≤ h
M−1∑
j=0

(
|An

j |+ |ηn1j |
) ∣∣

uê
n+1 − uê

n−1
∣∣

= τh
M−1∑
j=0

(
|An

j |+ |ηn1j |
) ∣∣δ+t uê

n + δ+t uê
n−1

∣∣
≤ τ

[
1

ε2
(∥An∥2l2 + ∥ηn1 ∥2l2) + ε2(∥δ+t uê

n∥2l2 + ∥δ+t uê
n−1∥2l2)

]
.(55)

Similarly, we have

A2 ≤ τ

[
1

ε2
(∥Bn∥2l2 + ∥ηn2 ∥2l2) + ε2(∥δ+t v ê

n∥2l2 + ∥δ+t v ê
n−1∥2l2)

]
.(56)
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Plugging (55) and (56) into (54), and using (49a) and (49c), we obtain

En − En−1

≤τ
[ 1
ε2

(∥An∥2l2 + ∥Bn∥2l2)

+ ε2(∥δ+t uê
n∥2l2 + ∥δ+t uê

n−1∥2l2 + ∥δ+t v ê
n∥2l2 + ∥δ+t v ê

n−1∥2l2)
]

+
τ

ε2
(
∥uên+1∥2l2 + ∥uên−1∥2l2 + ∥v ên∥2l2

+∥v ên+1∥2l2 + ∥v ên−1∥2l2 + ∥uên∥2l2
)

≤τ(En + En−1) +
τ

ε2

(
h2 +

τ2

ε2

)2

.(57)

There exists a positive constant τ0 independent on ε and h, such that for τ ∈ (0, τ0),

En − En−1 ≤ τEn−1 +
τ

ε2

(
h2 +

τ2

ε2

)2

.(58)

Form (58), we have

En − E0 ≤ τ
n−1∑
m=0

Em +
T

ε2

(
h2 +

τ2

ε2

)2

.(59)

By Gronwall’s inequality in (59), we get

En ≤ E0 +
T

ε2

(
h2 +

τ2

ε2

)2

.(60)

For n = 0, we have

E0 =ε2∥δ+t uê
0∥2l2 +

1

2
(∥δ+x uê

1∥2l2 + ∥δ+x uê
0∥2l2) +

1

2ε2
(∥uê1∥2l2 + ∥uê0∥2l2)

+ ε2∥δ+t v ê
0∥2l2 +

1

2
(∥δ+x v ê

1∥2l2 + ∥δ+x v ê
0∥2l2) +

α

2ε2
(∥v ê1∥2l2 + ∥v ê0∥2l2)

=ε2∥A0∥2l2 +
τ2

2
∥δ+x A0∥2l2 +

τ2

2ε2
∥A0∥2l2

+ ε2∥B0∥2l2 +
τ2

2
∥δ+x B0∥2l2 +

ατ2

2ε2
∥B0∥2l2

.
[
1 +

(1 + α)τ2

ε2

](
τ2

ε6
+ h2

)2

.(61)

From (60) and (61), we get

En . 1

ε2

(
τ2

ε6
+ h2

)2

.(62)

In addition, define another ‘energy’ for the error as

Ẽn =ε2∥δ+x δ+t uê
n∥2l2 +

1

2
(∥δ2xuê

n+1∥2l2 + ∥δ2xuê
n∥2l2)

+
1

2ε2
(∥δ+x uê

n+1∥2l2 + ∥δ+x uê
n∥2l2) + ε2∥δ+x δ+t v ê

n∥2l2x

+
1

2
(∥δ2xv ê

n+1∥2l2 + ∥δ2xv ê
n∥2l2) +

α

2ε2
(∥δ+x v ê

n+1∥2l2 + ∥δ+x v ê
n∥2l2).(63)



260 M. CUI AND Y. LI

Multiplying (48a) and (48b) by h(δ2xuê
n+1 − δ2xuê

n−1) and h(δ2xv ê
n+1 − δ2xv ê

n−1),
respectively, and similar to the above procedure, we have

Ẽn . 1

ε2

(
τ2

ε6
+ h2

)2

.(64)

Noticing that

(∥uên+1∥2l2 + ∥uên∥2l2) + α(∥v ên+1∥2l2 + ∥v ên∥2l2) ≤ 2ε2En

and

(∥δ+x uê
n+1∥2l2 + ∥δ+x uê

n∥2l2) + α(∥δ+x v ê
n+1∥2l2 + ∥δ+x v ê

n∥2l2) ≤ 2ε2Ẽn,

we obtain the error estimate

∥uên∥2l2 + α∥v ên∥2l2 + ∥δ+x uê
n∥2l2 + α∥δ+x v ê

n∥2l2 .
(
τ2

ε6
+ h2

)2

.(65)

From (65), we have

∥uên∥l∞ + ∥v ên∥l∞ ≤ ∥δ+x uê
n∥l2 + ∥δ+x v ê

n∥l2 ≤ 1,(66)

provided that h ≤ h0 with a positive constant h0, and τ = o(ε3). Hence, it follows
that

∥ûn∥l∞ + ∥v̂n∥l∞ ≤ ∥u(·, tn)∥l∞ + ∥v(·, tn)∥l∞ + ∥uên∥l∞ + ∥v ên∥l∞
≤M0 + 1,(67)

This proof is completed. �

Based on the above analysis, we can get the result given in Theorem 3.1.

Table 1 The discrete energy and relative error at different times with
ε = 0.05, h = 1/64, τ = 1/100.

t Eh(t) ∆Eh(t)
0 3.234473587834926E+04 0
5 3.234473587833564E+04 4.213318872851796E-13
8 3.234473587832729E+04 6.792373911679658E-13
11 3.234473587831894E+04 9.375927956244681E-13
14 3.234473587831049E+04 1.198647603523267E-12
18 3.234473587829935E+04 1.543046492702984E-12

Table 2 The discrete energy and relative error at different times with
ε = 0.1, h = 1/64, τ = 1/100.

t Eh(t) ∆Eh(t)
0 2.366525815162189E+02 0
5 2.366525815161711E+02 1.985955040633904E-12
8 2.366525815154697E+02 3.165926513434345E-12
11 2.366525815152006E+02 4.302902588040124E-12
14 2.366525815149426E+02 5.393040100366803E-12
18 2.366525815146064E+02 6.813809822832881E-12
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Figure 1 The discrete energy with different ε. Here h = 1/64, τ = 1/100.

Figure 2 The relative error of energy with different ε. Here h =
1/64, τ = 1/100.

4. Numerical experiments

In this section, we present the numerical results to confirm the energy-conservative
property in Section 2 and the error estimation in Section 3. Choose a computation-
al interval [a, b] large enough that periodic boundary conditions do not introduce
significant aliasing errors relative to the problem in the entire space. In the numer-
ical experiment, we take a = −8, b = 8, α = 1, β1 = β2 = β3 = 1 and choose the
initial conditions as

u(x, 0) = sech(x2 − 1), ∂tu(x, 0) = 0,(68)

v(x, 0) = sech(x2 + 1), ∂tv(x, 0) = 0.(69)

Table 3 Spatial discretization errors of FDTD method at time T = 0.5
in the case with ε = 0.1, τ = 1e− 3.

h 1/32 1/64 1/128
∥eu∥l2 9.768E-04 2.445E-04 6.114E-05
∥δ+x eu∥l2 6.731E-03 1.689E-03 4.227E-04
∥ev∥l2 1.031E-04 2.579E-05 6.448E-06
∥δ+x ev∥l2 4.259E-04 1.065E-04 2.662E-05
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Table 4 Temporal discretization errors of FDTD method at time T =
0.5 in the case with ε = 0.1, h = 1

128
.

τ 1/1000 1/2000 1/4000
∥eu∥l2 3.476E-02 8.419E-03 2.096E-03
∥δ+x eu∥l2 9.175E-02 2.289E-02 5.723E-03
∥ev∥l2 1.790E-02 4.647E-03 1.176E-03
∥δ+x ev∥l2 3.547E-02 9.265E-03 2.342E-03

Table 5 Spatial discretization errors of FDTD method at time T = 0.5
in the case with ε = 0.05, τ = 1

8000
.

h 1/32 1/64 1/128
∥eu∥l2 1.159E-03 2.902E-04 7.259E-05
∥δ+x eu∥l2 8.146E-03 2.047E-03 5.123E-04
∥ev∥l2 9.650E-05 2.412E-05 6.031E-06
∥δ+x ev∥l2 4.740E-04 1.185E-04 2.963E-05

Table 6 Temporal discretization errors of FDTD method at time T =
0.5 in the case with ε = 0.05, h = 1

128
.

τ 1/8000 1/16000 1/32000
∥eu∥l2 8.742E-02 2.110E-02 5.227E-03
∥δ+x eu∥l2 9.078E-02 2.256E-02 5.633E-03
∥ev∥l2 4.132E-02 9.897E-03 2.446E-03
∥δ+x ev∥l2 3.122E-02 7.558E-03 1.875E-03

Figure 3 Convergence rates of spatial discretization errors under ε =
0.1, T = 0.5.

For different ε (0 < ε≪ 1), we present the discrete energy Eh(t) and its relative
error ∆Eh(t) at different times in Tables 1-2, where ∆Eh(t) is defined by

∆Eh(t) =
|Eh(t)− Eh(0)|

Eh(0)
.

Eh(t) and ∆Eh(t) are plotted in Figs.1-2. The numerical results are coinsistent
with Theorem 2.2.

In order to quantify the convergence, we choose different ε and τ under ε−
scalability τ = O(ε3). Denote {uNj (τ, h)|0 ≤ j ≤M − 1}, {vNj (τ, h)|0 ≤ j ≤M − 1}
as the numerical solutions of time grid τ and space grid h at time tN . Then, define
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Figure 4 Convergence rates of temporal discretization errors under
ε = 0.1, T = 0.5.

Figure 5 Convergence rates of spatial discretization errors under ε =
0.05, T = 0.5.

Figure 6 Convergence rates of temporal discretization errors under
ε = 0.05, T = 0.5.

the errors in the spatial direction with sufficiently small τ by

∥eu(h)∥2l2 = h
M−1∑
j=0

|uNj (τ, h)− uNj (τ,
h

2
)|2,

∥ev(h)∥2l2 = h

M−1∑
j=0

|vNj (τ, h)− vNj (τ,
h

2
)|2,
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Figure 7 Convergence rates of spatial discretization errors under ε =
0.1, T = 0.5.

Figure 8 Convergence rates of spatial discretization errors under ε =
0.05, T = 0.5.

Figure 9 Convergence rates of spatial discretization errors under ε =
0.025, T = 0.5.

∥δ+x eu(h)∥2l2 = h
M−1∑
j=0

|δ+x uNj (τ, h)− δ+x u
N
j (τ,

h

2
)|2,

∥δ+x ev(h)∥2l2 = h
M−1∑
j=0

|δ+x vNj (τ, h)− δ+x v
N
j (τ,

h

2
)|2,
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Figure 10 Convergence rates of spatial discretization errors under ε =
0.0125, T = 0.5.

and the errors in the temporal direction with sufficiently small h by

∥eu(τ)∥2l2 = h
M−1∑
j=0

|uNj (τ, h)− uNj (
τ

2
, h)|2,

∥ev(τ)∥2l2 = h

M−1∑
j=0

|vNj (τ, h)− vNj (
τ

2
, h)|2,

∥δ+x eu(τ)∥2l2 = h
M−1∑
j=0

|δ+x uNj (τ, h)− δ+x u
N
j (
τ

2
, h)|2,

∥δ+x ev(h)∥2l2 = h
M−1∑
j=0

|δ+x vNj (τ, h)− δ+x v
N
j (

τ

2
, h)|2.

Table 3 and Table 4 show the errors of FDTD method at t = 0.5 in the case with
ε = 0.1 under τ = O(ε3). Fig.3 and Fig.4 show the errors behaves with O(h2+ τ2

ε6 ).
For the case with ε = 0.05, we can draw the following observations: (1) in Table

5 and Fig.5, the spatial error is second-order accurate. (2) The convergence order
of temporal errors, under τ = O(ε3), can be found from Table 6 and Fig.6.

We choose the different ε (ε = 0.1, 0.05, 0.025, 0.0125) and τ = 2e − 5 at time
T is fixed. Figs.7-10 show the convergence rates of spatial discretization errors of
FDTD method at t = 0.5 in the case with h = 1/4, 1/8, 1/16, 1/32.

5. Conclusions

In this paper, we have developed and analyzed the energy-conservative FDTD
method for CNKGEs in the nonrelativistic limit regime. We analyzed the energy-
conservative property of the numerical schemes. With the help of the cut-off tech-
nique, we exhibit a rigorous analysis of error estimates and obtain the convergence

result O(h2+ τ2

ε6 ). Numerical experiments are carried out to support the theoretical
claims.
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