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HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR

LINEAR HYPERBOLIC INTEGRO-DIFFERENTIAL EQUATIONS

RIYA JAIN AND SANGITA YADAV∗

Abstract. This article introduces the hybridizable discontinuous Galerkin (HDG) approach to
numerically approximate the solution of a linear hyperbolic integro-differential equation. A priori

error estimates for semi-discrete and fully discrete schemes are developed. It is shown that the

optimal order of convergence is achieved for both scalar and flux variables. To achieve that,
an intermediate projection is introduced for the semi-discrete error analysis, and it also shows

that this projection achieves convergence of order hk+3/2 for k ≥ 1. Next, superconvergence is

achieved for the scalar variable using element-by-element post-processing. For the fully discrete

error analysis, the central difference scheme and the mid-point rule approximate the derivative
and the integral term, respectively. Hence, the second order of convergence is achieved in the

temporal direction. Finally, numerical experiments have been performed to validate the theory

developed in this article.

Key words. Hyperbolic integro-differential equation, hybridizable discontinuous Galerkin method,

Ritz-Volterra projection, a priori error bounds, post-processing.

1. Introduction

Throughout this paper, we have discussed HDG method for the following model
problem:

utt(x, t)−∇ ·
(
a(x)∇u(x, t) +

∫ t

0

b(x, t, s)∇u(x, s)ds
)

= f(x, t) in Ω× (0, T ],

(1a)

u(x, t) = 0 on ∂Ω× (0, T ],(1b)

u(x, 0) = u0(x) ∀ x ∈ Ω,(1c)

ut(x, 0) = u1(x) ∀ x ∈ Ω,(1d)

where utt(x, t) =
∂2u

∂t2
(x, t) and u : Ω×(0, T ] → R. The functions f : Ω×(0, T ] → R,

u0 : Ω → R and u1 : Ω → R are known. We have assumed the following properties
to be true on the domain Ω, it is convex, polygonal and bounded in R2 with smooth
boundary ∂Ω. The known functions a : Ω → R and b : Ω×(0, T ]×(0, T ] → R satisfy
the following properties: function a is positive and bounded. There exists α0 > 0,
M > 0 such that 0 < α0 ≤ a ≤ M , whereas, b is smooth and twice differentiable
with bounded derivatives and |b| ≤ M . Such classes of problems and nonlinear
versions, thereof arise naturally in many applications, such as in viscoelasticity, see
[28] and references therein.

In the literature, Pani et al. [2] have analyzed fully discrete schemes for time-
dependent partial integro-differential equations, using energy methods, paying at-
tention to the storage required during time-stepping. Further, errors are estimated
in L2 and H1 norms. In [13], Saedpanah has formulated a continuous space-time fi-
nite element method of degree one for an integro-differential equation of hyperbolic
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type with mixed boundary conditions. Further, a posteriori error estimates are also
established. Then, in [14], a first-order continuous space-time finite element method
for a hyperbolic integro-differential equation has been formulated. Moreover, the
theory is illustrated with the help of an example. In [12], Karaa et al. have applied
DG method to (1). A priori error estimates are derived for both scalar as well as
for vector variables, and the optimal rate of convergence is derived for the scalar
variable and suboptimal rate of convergence for vector variables. In [3], Karaa et al.
have discussed mixed finite element methods for the model problem (1). They have
derived L∞(L2) and L∞(L∞) error estimates and have shown to achieve optimal
and quasi-optimal order of convergence, respectively, with minimal smoothness on
the initial data. Later, in [15], Merad et al. proposed a Galerkin method based
on least squares for a two-dimensional hyperbolic integro-differential equation with
purely integral conditions. They have also discussed the existence and uniqueness
of the solution of the model problem under specific conditions. In [4], Chen et
al. have proposed a two-grid finite element scheme for a semi-linear hyperbolic
integro-differential equation, which uses two grids to deal with the semi-linearity of
the problem and achieves the same order of accuracy as that of the ordinary finite
element method. Recently, Tan et al. [16] have applied a fully discrete two-grid
finite element method on a hyperbolic integro-differential equation and achieved
optimal order of convergence. The scheme has reduced the computational cost
while maintaining numerical accuracy.

HDG method is a numerical technique for solving partial differential equations
(PDEs) that combines the accuracy of the discontinuous Galerkin (DG) method
with the computational efficiency of other finite element methods. HDG method
was first introduced by Cockburn [6, 5, 7, 8], and has since been applied to a wide
range of problems. In HDG method, the solution is approximated using piecewise
polynomial functions, similar to the DG method, but with additional degrees of
freedom that are defined at the element interfaces. These additional degrees of
freedom are used to enforce the continuity of the solution across the element inter-
faces, which leads to a more efficient and accurate method than the standard DG
method. HDG method has several advantages over other finite element methods,
including the ability to handle complex geometries and nonlinear equations and the
ability to achieve high-order accuracy with fewer degrees of freedom. HDG method
has been successfully applied to a variety of PDE, including the Navier-Stokes equa-
tions [17, 18], the Maxwell equations [19, 20], and the advection-diffusion equation
[21, 22], etc. In addition, the method has been extended to include time-dependent
problems, such as the heat equation [11, 23], the wave equation [24, 25] and para-
bolic integro-differential equation [26]. In [11], Chabaud et al. have extended the
analysis of HDG method and applied to second-order elliptic equations for the heat
equation. They have shown that the superconvergence results hold for the heat
equation when the HDG method is used to semi-discretize the equation. Further,
in [23], Moon et al. have analyzed the method for the heat equation with nonlinear
coefficients, which satisfy the Lipschitz condition. As far as the wave equations
are considered, in [24], Cockburn et al. have analyzed the error estimates of the
acoustic equation and have achieved optimal order of convergence for velocity as
well as its gradient. They have also discussed the superconvergence result for the
same. Stanglmeier et al. [25] has developed an explicit HDG method for acoustic
wave equation that yields optimal convergence rates for the approximation of all the
unknown variables and discussed some superconvergence properties. Recently, Jain
et al. [26] have analyzed the HDG method for linear parabolic integro-differential
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equations, along with superconvergence results. Overall, HDG method is a pow-
erful and versatile numerical method for solving PDEs, combining the accuracy of
the DG method with the computational efficiency of other finite element methods.
Its ability to handle complex geometries and nonlinear equations, and to achieve
high-order accuracy with fewer degrees of freedom, make it a promising approach
for a wide range of applications.

This paper analyzes HDG method for the model problem (1) and discusses a
priori error estimates. The most significant points of this article are as follows:

• In contrast to DG methods, optimal convergence rates have been obtained
for scalar as well as vector variables.

• For the semi-discrete error analysis, two intermediate projections, namely,
HDG projection and the Ritz-Volterra projection, have been used for the
model problem.

• For the scalar variable, a new post-processed approximation has been de-
fined, which achieves the superconvergence.

• Mid-point rule and central difference scheme are used to approximate the
integral and the derivative term, respectively, to achieve second order of
convergence in the temporal direction.

• The theoretical results are verified by implementing HDG method for prob-
lems in the 2-dimensional domain.

The organization of the article is as follows: In Section 2, a few important
assumptions and results are stated, which will be used throughout. Section 3 defines
HDG formulation for the model problem (1). Section 4 provides the highlights of
the paper by stating all the essential results of the article. In Section 5, a priori error
estimates are derived using a few crucial steps. In Section 6, the superconvergence
results for the scalar variable are analyzed. Section 7 is about discretizing the
scheme in temporal direction. Finally, in Section 8, some numerical results are
given to verify the theoretical findings. A few concluding remarks are made in
Section 9.

2. Preliminaries

Let us denote a finite element subset of the domain Ω with the shape regularity
by Th. For any K ∈ Th, K is a triangle or rectangle. Let the radius of the biggest
ball in K be ρK and the diameter of K is hK and ρ = min

K∈Th

ρK , h = max
K∈Th

hK . The

set of interior edges is denoted by ΓI , the set of boundary edges by Γ∂ , and the set
∂K : K ∈ Th is denoted by ∂Th. Lastly, we write Γ = ΓI ∪ Γ∂ .
We take into account the following sets of finite elements:

Vh = {v ∈ L2(Ω) : v|K ∈ Pk(K),∀K ∈ Th},
Wh = {w ∈ L2(Ω) : w|K ∈ Pk(K),∀K ∈ Th},
Mh = {µ ∈ L2(Γ) : µ|F ∈ Pk(F ),∀F ∈ Γ}.

In this case, Pk(K) = [Pk(K)]2, and the space of polynomials defined on K with a
maximum degree k is denoted by Pk(K).

Next, let u, v ∈ L2(D), define (u, v)D =

∫
D

uv, when the domain D is a subset of

Rn. If ∂D is in Rn−1, define ⟨u, v⟩∂D =

∫
∂D

uvds. Then, we introduce the following
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notations:

(u, v) =
∑

K∈Th

(u, v)K with norm ∥v∥2 =
∑

K∈Th

∥v∥2L2(K),

⟨u, v⟩∂Th
=
∑

K∈Th

⟨u, v⟩∂K with norm ∥µ∥2τ =
∑

K∈Th

τ∥µ∥2L2(∂K).

In addition, we use the following fragmented Sobolev spaces:

Hr(Th) =
{
v ∈ L2(Ω) :

∑
K∈Th

∥v∥2Hr(K) <∞
}
,

with norm

∥v∥Hr(Th) =

( ∑
K∈Th

∥v∥2Hr(K)

) 1
2

,

where Hr(K) is the Sobolev space of order r defined on K.

Lemma 2.1. (L2-projection) Let Ik
h denote the L2-projection. If w ∈ Hr+1(K)

and Ik
hw ∈ Pk(K), the subsequent approximation property holds:

∥w − Ik
hw∥L2(K) + h

1
2 ∥w − Ik

hw∥L2(∂K) ≤ Chmin(r,k)+1∥w∥Hr+1(K).

HDG Projection and related estimates.
The projection Πh into Vh × Wh, which was first introduced in [9], is defined as
follows:
Given (u, z) ∈ H1(Th)×Hdiv(Th), for k ≥ 0 and τ |∂K non negative, τ = max τ |∂K >
0, the function Πh(u, z) = (ΠV u,ΠW z) on an arbitrary simplex K ∈ Th is the el-
ement of Vh ×Wh which uniquely solves

(ΠV u, v)K = (u, v)K , ∀ v ∈ Pk−1(K)(2a)

(ΠW z,w)K = (z,w)K , ∀ w ∈ Pk−1(K)(2b)

⟨ΠW z · ν + τΠV u, µ⟩F = ⟨z · ν + τu, µ⟩F , ∀ µ ∈ Pk(F ),(2c)

for all faces F of the simplex K.
In addition, there exists a constant C that does not rely on K and τ , ∀ 1 ≤ α, β ≤
k + 1, then:

∥ΠW z − z∥K ≤ Chα∥z∥Hα(K) + Cτ∗Kh
β∥u∥Hβ(K),(3a)

∥ΠV u− u∥K ≤ Chβ∥u∥Hβ(K) + C
hα

τmax
K

∥∇ · z∥Hα−1(K).(3b)

Here, τ∗K := max τ|∂K\F∗ , where F ∗ is a face of K at which τ|∂K is maximum and
τmax
K := max τ|∂K > 0. For more details, please refer to [9].

3. HDG Scheme

Throughout this article, we have used the following auxiliary variable in Ω ×
(0, T ]:

σ = −∇u, z = aσ +

∫ t

0

b(t, s)σ(s)ds.
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Using these variables, (1) is rewritten as follows:

σ = −∇u in Ω× (0, T ],(4a)

z = aσ +

∫ t

0

b(t, s)σ(s)ds in Ω× (0, T ],(4b)

utt +∇ · z = f in Ω× (0, T ].(4c)

For each time t on the interval (0, T ], the method yields a scalar approximation
uh(t) to u(t), a vector approximation σh(t) to σ(t), zh(t) to z(t), and a scalar
approximation ûh(t) to the trace of u(t) on element boundaries, in the spaces Vh,
Wh, Wh and Mh, respectively.

With these spaces, HDG formulation seeks approximation (uh,σh, zh, ûh)(t) ∈
Vh ×Wh ×Wh ×Mh, for t ∈ (0, T ], that satisfy the following equations:

(σh,wh)− (uh,∇ ·wh) + ⟨ûh,wh · ν⟩∂Th
= 0,(5a)

(aσh, τh)− (zh, τh) +

∫ t

0

(b(t, s)σh(s), τh)ds = 0,(5b)

(uhtt
, vh)− (zh,∇vh) + ⟨ẑh · ν, vh⟩∂Th

= (f, vh),(5c)

⟨ûh, µh⟩∂Ω = 0,(5d)

⟨ẑh · ν,mh⟩∂Th\∂Ω = 0,(5e)

uh(0) = ΠV u0,(5f)

uht(0) = ΠV u1,(5g)

for any (vh,wh, τh, µh,mh) ∈ Vh ×Wh ×Wh ×Mh ×Mh, along with the following
relation:

ẑh · ν = zh · ν + τ(uh − ûh) on ∂Th,
where, τ ≥ 0 on Γ and piece-wise constant on the faces. Now, with the help of (4)
and (5), we have the following:

(σ − σh,wh)− (u− uh,∇ ·wh) + ⟨u− ûh,wh · ν⟩∂Th
= 0 ∀wh ∈ Wh,(6a)

(a(σ − σh), τh)− (z − zh, τh) +

∫ t

0

(b(t, s)(σ − σh)(s), τh)ds = 0 ∀τh ∈ Wh,

(6b)

(utt − uhtt
, vh)− (z − zh,∇vh) + ⟨(z − ẑh) · ν, vh⟩∂Th

= 0 ∀vh ∈ Vh,(6c)

⟨u− ûh, µh⟩∂Ω = 0 ∀µh ∈Mh,(6d)

⟨(z − ẑh) · ν,mh⟩∂Th\∂Ω = 0 ∀mh ∈Mh.(6e)

4. The Main Results

In this section, we state the main results of the paper in the form of the following
theorems:

Theorem 4.1. Let (u,σ, z) be the solution of (4) with u ∈ L∞(Hk+2(Th)) and
ut, utt ∈ L2(Hk+2(Th)), u0, u1 ∈ Hk+2(Th) for k ≥ 0. Additionally, let (uh,σh, zh,
ûh) ∈ Vh × Wh × Wh × Mh be the solution of (5) along with uh(0) = ΠV u0 ,
uht

(0) = Ikhu1, σh(0) = −Ik
h∇u0, zh(0) = ΠW (a∇u0) and ûh(0) = PMu0, where

PM is the L2 projection onto Mh. Consequently, the following estimations hold:

∥(u− uh)(t)∥+ ∥(σ − σh)(t)∥+ ∥(z − zh)(t)∥+ ∥(u− ûh)(t)∥τ ≤ Chk+1,

∥(ut − uht
)(t)∥ ≤ Chk+1.
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For the next result, we define the post- processed solution u∗h ∈ Pk+1(K) on the
element K, as

(7) u∗h = uph +
1

|K|

∫
K

uh, uph ∈ P 0
k+1

where uph satisfies

(8) (a∇uph,∇v) = −(aσh,∇v), ∀v ∈ P 0
k+1

where P 0
k+1(K) represents the collection of polynomials in Pk+1(K) with zero av-

erage. The next theorem gives the L2 estimates of u∗h.

Theorem 4.2. Under the conditions of Theorem 4.1, there exists a positive con-
stant C independent of h and k such that

∥u− u∗h∥ ≤ Chk+2.

Theorem 4.3. Let ∆t =
T

M
, for some positive integer M , and tn = n∆t, for

1 ≤ n ≤M . Let (Un,Sn,Zn) ∈ Vh×Wh×Wh be the fully discrete approximations

of u, σ and z and Ûn ∈Mh be the approximation of u on Γ, along with U0 = ΠV u0
, S0 = −Ik

h∇u0, Z0 = ΠW (a∇u0) and Û0 = PMu0, where PM is the L2 projection
onto Mh. Then, we have the following estimates:

∥∂tΥζnu∥+ ∥Υζn
σ∥+ ∥Υζn

z ∥+ ∥Υζ̂nu∥τ ≤ O(hk+1 +∆t2),(9a)

∥ζn+1
u ∥ ≤ O(hk+1 +∆t2).(9b)

where, ζ ′s are defined as: ζnu = uh(tn) − Un. Similarly, ζn
σ, ζn

z and ζ̂nu . Also,

ΥUn =
Un+1 + Un

2
and ∂tΥU

n =
Un+1 − Un

∆t
, see Section 7.

5. Semi-Discrete Error Analysis

In this section, we provide detailed proofs of Theorem 4.1.
STEP I: Extended type Ritz-Voterra projection. For each t ∈ (0, T ],

(ũh, σ̃h, z̃h, ˆ̃uh) ∈ Vh ×Wh ×Wh ×Mh is defined as the Ritz-Volterra projection,
provided it satisfy the following equations:

(σ − σ̃h,wh)− (u− ũh,∇ ·wh) + ⟨u− ˆ̃uh,wh · ν⟩∂Th
= 0,(10a)

(a(σ − σ̃h), τh)− (z − z̃h, τh) +

∫ t

0

(b(t, s)(σ − σ̃h)(s), τh)ds = 0,(10b)

−(z − z̃h,∇vh) + ⟨(z − ˆ̃zh) · ν, vh⟩∂Th
= 0,(10c)

⟨u− ˆ̃uh, µh⟩∂Ω = 0,(10d)

⟨(z − ˆ̃zh) · ν,mh⟩∂Th\∂Ω = 0,(10e)

∀ vh ∈ Vh, wh, τh ∈ Wh and µh,mh ∈Mh, where

ˆ̃zh · ν = z̃h · ν + τ(ũh − ˆ̃uh) on ∂Th.
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In order to derive the estimates of the Ritz-Volterra projection, we disintegrate it
as follows:

ηu := u− ũh = (u−ΠV u)− (ũh −ΠV u) = θu − ρu,

ησ := σ − σ̃h = (σ − Ik
hσ)− (σ̃h − Ik

hσ) = θσ − ρσ,

ηz := z − z̃h = (z −ΠW z)− (z̃h −ΠW z) = θz − ρz,

η̂u := u− ˆ̃uh = (u− PMu)− (ˆ̃uh − PMu) = θ̂u − ρ̂u,

η̂z := z − ˆ̃zh = (z − PMz)− (ˆ̃zh − PMz) = θ̂z − ρ̂z,

where, PM is the L2 projection onto Mh.
Therefore, the system of equations (10) can be rewritten as

(ρσ,wh)− (ρu,∇ ·wh) + ⟨ρ̂u,wh · ν⟩∂Th
= 0,(11a)

(aρσ, τh)− (ρz, τh) +

∫ t

0

(b(t, s)ρσ(s), τh)ds = (aθσ, τh)− (θz, τh)

+

∫ t

0

(b(t, s)θσ(s), τh)ds,(11b)

−(ρz,∇vh) + ⟨ρ̂z · ν, vh⟩∂Th
= 0,(11c)

⟨ρ̂u, µh⟩∂Ω = 0,(11d)

⟨ρ̂z · ν,mh⟩∂Th\∂Ω = 0,(11e)

for all (vh,wh, τh, µh,mh) ∈ Vh ×Wh ×Wh ×Mh.

STEP II: Estimates of

∥∥∥∥∂lρz

∂tl

∥∥∥∥, ∥∥∥∥∂lρσ

∂tl

∥∥∥∥ and

∥∥∥∥∂lρu∂tl

∥∥∥∥ for l = 0, 1, 2.

Lemma 5.1. There exists a positive constant C which does not rely on h and k
such that ∀t ∈ (0, T ], the inequality below is valid for l = 0, 1, 2∥∥∥∥∂lρu∂tl

∥∥∥∥+ ∥∥∥∥∂lρσ

∂tl

∥∥∥∥+ ∥∥∥∥∂lρz

∂tl

∥∥∥∥ ≤ Chk+1.(12)

Proof. For l = 0, 1, see [26]. For l = 2, we begin by differentiating (11a)-(11e) twice
w.r.t. t, to obtain

(ρσtt ,wh)− (ρutt ,∇ ·wh) + ⟨ρ̂utt ,wh · ν⟩∂Th
= 0,(13a)

(aρσtt , τh)− (ρztt , τh) +
∂2

∂t2

(∫ t

0

(b(t, s)ρσ(s), τh)ds

)
= (aθσtt , τh)− (θztt , τh)

+
∂2

∂t2

(∫ t

0

(b(t, s)θσ(s), τh)ds

)
,(13b)

−(ρztt ,∇vh) + ⟨ρ̂ztt · ν, vh⟩∂Th
= 0,(13c)

⟨ρ̂utt , µh⟩∂Ω = 0,(13d)

⟨ρ̂ztt · ν,mh⟩∂Th\∂Th
= 0,(13e)

for all (vh,wh, τh, µh,mh) ∈ Vh ×Wh ×Wh ×Mh ×Mh.
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Using the Leibniz integral rule, (13b) can be rewritten as

(aρσtt , τh)− (ρztt , τh) + 2(bt(t, t)ρσ(t), τh) + (b(t, t)ρσt(t), τh)(14)

+

∫ t

0

(btt(t, s)ρσ(s), τh)ds = (aθσtt , τh)− (θztt , τh) + 2(bt(t, t)θσ(t), τh)

+ (b(t, t)θσt(t), τh) +

∫ t

0

(btt(t, s)θσ(s), τh)ds.

Now, adding (13a), (14), (13c)-(13e) after taking wh = ρztt , τh = ρσtt , vh = ρutt ,
µh = −ρ̂ztt

· ν and mh = −ρ̂utt
will yield the following inequality:

(aρσtt ,ρσtt) + ∥ρ̂utt
− ρutt

∥2τ = −2(bt(t, t)ρσ(t),ρσtt)− (b(t, t)ρσt(t),ρσtt)

−
∫ t

0

(btt(t, s)ρσ(s),ρσtt)ds+ (aθσtt ,ρσtt)− (θztt ,ρσtt) + 2(bt(t, t)θσ(t),ρσtt)

+ (b(t, t)θσt(t),ρσtt) +

∫ t

0

(btt(t, s)θσ(s),ρσtt)ds.

and simplifying using Cauchy Schwarz inequality and using the estimates of ∥ρσt∥
and ∥ρσ∥ along with the boundedness properties of a, b and its derivatives, will
yield the estimate of ∥ρσtt∥.

Next, we take τh = ρztt in (14). A use of Cauchy Schwarz inequality along with
the boundedness properties of a, b and its derivatives gives the following estimate
of ∥ρztt∥:

∥ρztt∥2 = C

(
∥ρσtt∥+ ∥ρσ(t)∥+ ∥ρσt(t)∥∥θσtt∥+ ∥θztt∥+ ∥θσ(t)∥+ ∥θσt(t)∥

+

∫ t

0

∥θσ(s)∥+ ∥ρσ(s)∥ds
)
∥ρztt∥.

For the estimate of ∥ρutt
∥, we begin by taking into account the following dual

problem in the domain Ω:

ϕ = −∇ψ,(15a)

p = aϕ,(15b)

∇ · p = ρutt ,(15c)

ψ = 0 on ∂Ω,(15d)

along with:

(16) ∥ψ∥H2(Ω) ≤ ∥ρutt∥.

Consider,

∥ρutt
∥2 = (ρutt

,∇ · p).

Use of the HDG projection yields

∥ρutt∥2 = (ρutt ,∇ ·ΠWp) + ⟨ρutt , τ(ΠV ψ − ψ)⟩∂Th
.

Next, a use of (13a),(13c)-(13e) and the definition of the HDG projection yield

∥ρutt
∥2 = (ρσtt ,ΠWp− p) + (aρσtt ,ϕ)− (ρztt ,ϕ− Ik

hϕ)− (ρztt , I
k
hϕ).
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Now, a use of (14) will yield the following equation

∥ρutt
∥2 = (ρσtt ,ΠWp− p) + (aρσtt ,ϕ− Ik

hϕ)− (ρztt ,ϕ− Ik
hϕ)

− 2(bt(t, t)ρσ(t), I
k
hϕ)− (b(t, t)ρσt(t), I

k
hϕ)−

∫ t

0

(btt(t, s)ρσ(s), I
k
hϕ)ds

+ (aθσtt , I
k
hϕ)− (θztt , I

k
hϕ) + 2(bt(t, t)θσ(t), I

k
hϕ) + (b(t, t)θσt(t), I

k
hϕ)

+

∫ t

0

(btt(t, s)θσ(s), I
k
hϕ)ds.

A use of Cauchy Schwarz inequality along with the boundedness properties of a,
b and its derivatives gives the following estimate

∥ρutt
∥2 = C

[
∥ρσtt∥∥ΠWp− p∥+ ∥ρσtt∥∥ϕ− Ik

hϕ∥+ ∥ρztt∥∥ϕ− Ik
hϕ∥+

(
∥ρσ(t)∥

+ ∥ρσt(t)∥+ ∥θσtt∥+ ∥θztt∥+ ∥θσ(t)∥+ ∥θσt(t)∥

+

∫ t

0

(
∥ρσ(s)∥+ ∥θσ(s)∥

)
ds

)
∥Ik

hϕ∥H1(Ω)

]
.

Now, an application of the estimates of HDG projection and the fact that ∥ϕ∥H1(Ω) ≤
M∥p∥H1(Ω) and ∥p∥H1(Ω) ≤ ∥ψ∥H2(Ω) gives desired estimate. □

STEP III: Estimates of Ritz-Volterra projection.

Theorem 5.1. For t ∈ (0, T ], if u ∈ L∞(Hk+2(Th)), ut, utt ∈ L1(Hk+2(Th)) and
l = 0, 1, 2 then there exists a positive constant C independent of h and k such that∥∥∥∥∂lηu∂tl

∥∥∥∥+ ∥∥∥∥∂lησ

∂tl

∥∥∥∥+ ∥∥∥∥∂lηz

∂tl

∥∥∥∥ ≤ Chk+1,(17) ∥∥∥∥Ik−1
h

(
∂lηu
∂tl

)∥∥∥∥ ≤ Chk+2.(18)

Proof. The inequality (17) can be obtained with the help of (3), Lemma 5.1 and
the triangle inequality.
For the estimates of ∥Ik−1

h ηu∥, the following dual problem is considered in Ω×(0, T ]

ϕ = −∇ψ,
p = aϕ,

∇ · p = θ.

which satisfies the elliptic regularity

∥ψ∥H2(Ω) ≤ ∥θ∥.
Now, using (10a) and proceeding as in [27], concludes the proof.

(Ik−1
h ηu, θ) ≤ (Ik−1

h ηu,∇ · p)
≤ (ηu,∇ ·ΠRT

k−1p)

≤ (ησ,∇ ·ΠRT
k−1p− p)− (aησ,∇ψ)

≤ Chk+2∥θ∥.
A similar procedure can be followed for l = 1, 2. □

Remark: The order of convergence of ∥ρu∥ can be further increased to k + 3/2,
using dual norm estimates. This additional result is stated in the form of the
following lemma:



HDG FOR LINEAR HIDE 211

Lemma 5.2. For t ∈ (0, T ], a positive constant C that is unaffected by the values
of h and k ≥ 1 exists, such that it ensures the validity of the following inequality:

∥ρu(t)∥ ≤ Chk+3/2

[
∥u(t)∥Hk+2(Ω) +

∫ t

0

∥u(s)∥Hk+2(Ω)ds

]
.

Proof. We begin by defining the following dual norm:

∥v∥(H1(Ω))∗ = sup
w∈H1(Ω),w ̸=0

(v,w)

∥w∥H1(Ω)
.

Next, we consider a similar dual problem as (15) after replacing ρutt
by ρu, which

is written as follows

ϕ = −∇ψ,
p = aϕ,

∇ · p = ρu,

ψ = 0,

along with:

∥ψ∥H2(Ω) ≤ ∥ρu∥.
Next, we proceed as done in Theorem 3.3 of [26], to achieve the following inequality:

∥ρu∥2 ≤ ∥ρσ∥∥ΠWp− p∥+ C∥ρσ∥∥ϕ− Ik
hϕ∥+ C∥θσ∥H1(Ω)∗∥Ik

hϕ∥H1(Ω)

+ ∥θz∥H1(Ω)∗∥Ik
hϕ∥H1(Ω) + C

∫ t

0

(
∥θσ(s)∥H1(Ω)∗ + ∥ρσ(s)∥H1(Ω)∗

)
∥Ik

hϕ∥H1(Ω).

(19)

Hence, we require the estimates of ∥θσ∥H1(Ω)∗ , ∥θz∥H1(Ω)∗ and ∥ρσ∥H1(Ω)∗ . For
the estimates of ∥θσ∥H1(Ω)∗ , we will proceed as follows:

(θσ,w) = (θσ,w − Ik
hw) + (θσ, I

k
hw)

≤ ∥θσ∥∥w − Ik
hw∥

≤ Ch∥θσ∥∥w∥H1(Ω).

Therefore, we have

∥θσ∥H1(Ω)∗ ≤ Ch∥θσ∥.(20)

Now, for ∥θz∥H1(Ω)∗ , we have for k ≥ 1

(θz,w) = (θz,w − Ik−1
h w) + (θz, I

k−1
h w)

≤ ∥θz∥∥w − Ik−1
h w∥

≤ Ch∥θz∥∥w∥H1(Ω).

Therefore, we have

∥θz∥H1(Ω)∗ ≤ Ch∥θz∥.(21)

Finally, for the estimates of ∥ρσ∥H1(Ω)∗ , we have

(ρσ,w) = (ρσ,w − Ik
hw) + (ρσ, I

k
hw)

= (ρu,∇ ·wh)− ⟨ρ̂u,wh · ν⟩ by (11a)

= (ρu,∇ ·w) + ⟨ρu − ρ̂u, (I
k
hw −w) · ν⟩

≤ C(∥ρu∥+ h1/2∥ρu − ρ̂u∥)∥w∥H1(Ω).
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Therefore, we have

∥ρσ∥H1(Ω)∗ ≤ C(∥ρu∥+ h1/2∥ρu − ρ̂u∥).(22)

Use of (20), (21) and (22) in (19), will give the desired improved estimates of ∥ρu∥,
and hence, conclude the lemma. □

STEP IV: Estimates of ∥ξu∥, ∥ξσ∥ and ∥ξz∥
In order to derive the error estimates, we disintegrate them in the following form

eu = u− uh = (u− ũh)− (uh − ũh) = ηu − ξu.

Similarly for eσ, ez, êu and êz. Hence, (6) can be written as

(ξσ,wh)− (ξu,∇ ·wh) + ⟨ξ̂u,wh · ν⟩∂Th
= 0 ∀wh ∈ Wh,(23a)

(aξσ, τh)− (ξz, τh) +

∫ t

0

(b(t, s)ξσ(s), τh)ds = 0 ∀τh ∈ Wh,(23b)

(ξutt
, vh)− (ξz,∇vh) + ⟨ξ̂z · ν, vh⟩∂Th

= (ηutt
, vh) ∀vh ∈ Vh,(23c)

⟨ξ̂u, µh⟩∂Ω = 0 ∀µh ∈Mh,(23d)

⟨ξ̂z · ν,mh⟩∂Th\∂Ω = 0 ∀mh ∈Mh.(23e)

For any function w in [0, t], let us define w̄ as:

w̄(t) =

∫ t

0

w(s)ds.

Clearly, w̄t = w and w̄(0) = 0.

Lemma 5.3. There exists a positive constant C which does not rely on h and k
such that ∀t ∈ (0, T ], the inequality below is valid

∥ξu(t)∥2 + ∥ξ̄σ(t)∥2 + ∥( ¯̂ξu − ξ̄u)(t)∥2τ ≤ C

(
∥ξu(0)∥2 + ∥a1/2ξ̄σ(0)∥2

+ ∥ ¯̂ξu(0)− ξ̄u(0)∥2τ +

∫ T

0

∥ηut
(t)∥2dt

)
.

Proof. We integrate (23b), (23c) and (23e) from 0 to t to get the following equations:

(aξ̄σ, τh)− (ξ̄z, τh) +

∫ t

0

∫ s

0

(b(s, γ)ξσ(γ), τh)dγds = 0 ∀τh ∈ Wh,

(24a)

(ξut , vh)− (ξ̄z,∇vh) + ⟨¯̂ξz · ν, vh⟩∂Th
= (ηut

, vh)− (eut
(0), vh) ∀vh ∈ Vh,

(24b)

⟨¯̂ξz · ν,mh⟩∂Th\∂Ω = 0 ∀mh ∈Mh.

(24c)

Note that with uht
(0) = Ikhu1, we have

(eut(0), vh) = 0 ∀ vh ∈ Vh

Next, we choose wh = ξ̄z in (23a), τh = ξσ in (24a), vh = ξu in (24b), µh = −¯̂
ξz ·ν

in (23d) and mh = −ξ̂u in (24c) and add them, to obtain

1

2

d

dt

(
∥a1/2ξ̄σ∥2 + ∥ξu∥2 + ∥ ¯̂ξu − ξ̄u∥2τ

)
= (ηut

, ξu)−
∫ t

0

∫ s

0

(b(s, γ)ξσ(γ), ξσ(s))dγds.



HDG FOR LINEAR HIDE 213

It follows by integrating the aforementioned equality

∥a1/2ξ̄σ∥2 + ∥ξu∥2 + ∥ ¯̂ξu − ξ̄u∥2τ

≤ ∥ξu(0)∥2 + ∥a1/2ξ̄σ(0)∥2 + ∥ ¯̂ξu(0)− ξ̄u(0)∥2τ + 2

∫ t

0

(ηus , ξu)ds

− 2

∫ t

0

∫ s

0

∫ γ

0

(b(γ, γ∗)ξσ(γ
∗), ξσ(γ))dγ

∗dγds.

Let the last term on the right-hand side of the above equation be denoted by I,
then we have

I = 2

∫ t

0

∫ s

0

(b(γ, γ)ξ̄σ(γ), ξσ(s))dγds− 2

∫ t

0

∫ s

0

∫ γ

0

(bγ∗(γ, γ∗)ξ̄σ(γ
∗), ξσ(s))dγ

∗dγds

= 2(I1 − I2).

Here,

I1 =

∫ t

0

∫ s

0

(b(γ, γ)ξ̄σ(γ), ξσ(s))dγds.

Using integration by parts, we will achieve the following:

I1 =

∫ t

0

(b(s, s)ξ̄σ(s), ξ̄σ(t))ds−
∫ t

0

d

ds

(∫ s

0

b(γ, γ)ξ̄σ(γ)dγ

)
ξ̄σ(s)ds.

Next, a use of Leibniz rule yields:

I1 =

∫ t

0

(b(s, s)ξ̄σ(s), ξ̄σ(t))ds−
∫ t

0

b(s, s)ξ̄σ(s), ξ̄σ(s)ds).

Finally, using of boundedness of b yields

|I1| ≤ C

(
∥ξ̄σ(t)∥

∫ t

0

∥ξ̄σ(s)∥ds+
∫ t

0

∥ξ̄σ(s)∥2ds
)
.

Similarly, simplifying I2, and combining the estimates of I1 and I2 will yield the
following inequality

|I| ≤ C

(
∥ξ̄σ(t)∥

∫ t

0

∥ξ̄σ(s)∥ds+
∫ t

0

∥ξ̄σ(s)∥2ds
)

Lastly, we use Young’s inequality and Gronwall’s lemma to finish the proof. □

Lemma 5.4. There exists a positive constant C which does not rely on h and k
such that ∀t ∈ (0, T ], the inequality below is valid

∥ξut
∥2 + ∥ξz(t)∥2 + ∥ξσ(t)∥2 + ∥ξ̂u − ξu∥2τ

≤ C

(
∥ξσ(0)∥2 + ∥ξut(0)∥2 + ∥ξ̂u(0)− ξu(0)∥2τ +

∫ T

0

∥ηutt(t)∥2dt
)
.

Proof. Firstly, we differentiate (23a) with respect to t and then select wh = ξz,
τh = ξσt

, vh = ξut
in (23a), (23b), (23c), respectively. Then, we differentiate (23d)

and select µh = −ξ̂z · ν and mh = −ξ̂ut
in (23d) and (23e), respectively. Finally,

by combining the ensuing equations, we have

(aξσ, ξσt) + (ξutt
, ξut

) +
1

2

d

dt
∥ξ̂u − ξu∥2τ +

∫ t

0

(b(t, s)ξσ(s), ξσt
(t))ds = (ηutt

, ξut
).
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An application of Leibnitz’s theorem shows,

1

2

d

dt

(
∥a1/2ξσ∥2 + ∥ξut∥2 + ∥ξ̂u − ξu∥2τ

)
= (ηutt , ξut) +

d

dt

∫ t

0

(b(t, s)ξσ(s), ξσ(t))ds− (b(t, t)ξσ(t), ξσ(t))

−
∫ t

0

(bt(t, s)ξσ(s), ξσ(t))ds.

Integrating the aforementioned inequality from 0 to t yields

∥a1/2ξσ∥2 + ∥ξut
∥2

≤ ∥a1/2ξσ(0)∥+ ∥ξut
(0)∥2 + ∥ξut

(0)∥2 + ∥ξ̂u(0)− ξu(0)∥2τ +

∫ t

0

(ηuss
, ξus

)ds

+

∫ t

0

(b(t, s)ξσ(s), ξσ(t))ds−
∫ t

0

(b(s, s)ξσ(s), ξσ(s))ds

−
∫ t

0

∫ s

0

(bs(s, γ)ξσ(γ), ξσ(s))dγds.

Using the boundedness condition of a, b and its derivative, we can rewrite the above
inequality as follows:

∥ξσ∥2 + ∥ξut∥2

≤ C

(
∥ξσ(0)∥+ ∥ξut

(0)∥2 + ∥ξut
(0)∥2 + ∥ξ̂u(0)− ξu(0)∥2τ +

∫ t

0

(ηuss
, ξus

)ds

+

∫ t

0

(ξσ(s), ξσ(t))ds−
∫ t

0

(ξσ(s), ξσ(s))ds−
∫ T

0

∫ t

0

(ξσ(s), ξσ(t))dsdt

)
.

which can be further written as

∥ξσ∥2 + ∥ξut∥2

≤ C

(
∥ξσ(0)∥+ ∥ξut

(0)∥2 + ∥ξut
(0)∥2 + ∥ξ̂u(0)− ξu(0)∥2τ +

∫ T

0

(
∥ηutt

(t)∥2

+ ∥ξus
∥2 + ∥ξσ(s)∥2

)
dt

)
.

Finally, the following estimate is obtained using Gronwall’s theorem:
(25)

∥ξσ∥2+∥ξut
∥2 ≤ C

(
∥ξσ(0)∥2 + ∥ξut

(0)∥2 + ∥ξ̂u(0)− ξu(0)∥2τ +

∫ T

0

∥ηutt
(t)∥2dt

)
.

Now, choosing τh = ξz in (23b) yields

(26) ∥ξz∥ ≤ C

(
∥ξσ∥+

∫ t

0

∥ξσ(s)∥ds
)
.

Combining (25) and (26) will finish the proof. □

Proof of Theorem 4.1: If we chose uh(0) = ũh(0) = Πvu0, σh(0) = σ̃h(0) =
−Ik

h∇u0 and zh(0) = z̃h(0) = ΠW(a∇u0), then triangle inequality, Lemma 5.1,
Lemma 5.3 along with Lemma 5.4 yields the desired result. □
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6. Post-processing

To begin with, we define the function ψ(s) ∈ H2(Ω) ∩ H1
0 (Ω), s ≤ t to be the

solution of the following problem:

(27) ψss −∇ ·
(
a(x)∇ψ +

∫ t

s

b(γ, s)∇ψ(γ)dγ
)

= 0,

with the following final and boundary conditions:

ψ(x, s) = 0 on ∂Ω, s ≤ t,

ψ(x, t) = 0 in x ∈ Ω,

ψs(x, t) = λ(x) in x ∈ Ω,

Lemma 6.1. (Regularity Results) There exists a constant C dependent on the data
of the above problem, such that it satisfies the following inequality:

∥ψ(s)∥L∞(H1) + ∥ψs(s)∥L∞(L2) ≤ C∥λ∥,(28a)

∥ψ(s)∥2 ≤ C∥λ∥,(28b)

where, ψ(s) =
∫ t

s
ψ(γ)dγ.

Proof. The first inequality is a direct consequence of the conservation of energy. To
prove the second inequality, we begin by integrating (27) from s to t, noting that
−ψs(s) = ψ

ss
(s) and using the boundary condition, to obtain

ψ
ss
(s)−∇ ·

(
a(x)∇ψ +

∫ t

s

∫ t

γ

b(γ∗, γ)∇ψ(γ∗)dγ∗dγ
)

= −λ.

Next, we assume the following elliptic regularity on ψ [24], and use (28a) to get

∥ψ∥2 ≤ C
∥∥∇ ·

(
a(x)∇ψ

)∥∥
≤ C

(
∥ψ

ss
(s)∥+ ∥λ∥+

∥∥∥∥∫ t

s

∫ t

γ

b(γ∗, γ)∇ψ(γ∗)dγ∗dγ
∥∥∥∥)

≤ C

(
∥ψs(s)∥+ ∥λ∥+

∥∥∥∥∫ t

s

∫ t

γ

b(γ∗, γ)∇ψ(γ∗)dγ∗dγ
∥∥∥∥)

≤ C ∥λ∥ .

□

Lemma 6.2. For the method of the form (5), There exists a positive constant C
which does not rely on h and k such that ∀t ∈ (0, T ], the inequality below is valid

(29) ∥Ik−1
h eu∥L2(K) ≤ Chk+2,

where, Ik−1
h is L2-projection onto the space of polynomial for degree at most k− 1.

Proof. Since, eu = ηu − ξu, therefore, ∥Ik−1
h eu∥ ≤ ∥Ik−1

h ηu∥+ ∥Ik−1
h ξu∥.

For the estimates of ∥Ik−1
h ξu∥, we start by rewriting (27) in the following mixed
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form:

ϕ(s) = ∇ψ(s),(30a)

p(s) = aϕ(s) +

∫ t

s

b(γ, s)ϕ(γ)dγ,(30b)

ψss(s)−∇ · p(s) = 0,(30c)

ψ(s) = 0 on ∂Ω,(30d)

ψ(t) = 0,(30e)

ψs(t) = Ik−1
h ξu(t).(30f)

we begin by taking the inner product of (30c) with Ik−1
h ξu(s), to obtain

(ψss(s), I
k−1
h ξu(s))− (∇ · p(s), Ik−1

h ξu(s)) = 0.

Now,

d

ds

[
(ψs(s), I

k−1
h ξu(s))− (ψ(s), Ik−1

h ξus
(s))

]
= (ψss(s), I

k−1
h ξu(s))− (ψ(s), Ik−1

h ξuss
(s))

= −(ψ(s), Ik−1
h ξuss(s)) + (∇ · p(s), Ik−1

h ξu(s)).

Use of (23) and intermediate projections, see [10], yields the following equality

d

ds

[
(ψs(s), I

k−1
h ξu(s))− (ψ(s), Ik−1

h ξus(s))
]
= (ξuss(s), I

k
hψ(s)− ψ(s))

− (ξuss
(s), Ik−1

h ψ(s)− ψ(s)) + (ξσ(s),Π
RT
k−1p(s)− p(s)) + (aξσ(s),ϕ(s)− Ik

hϕ(s))

+ (ξz(s), I
k
hϕ(s)− ϕ(s)) + (ξz(s),∇(ψ − Ikhψ)(s)) + ⟨ξ̂z · ν, Ikhψ⟩ − (ηuss

, Ikhψ)

−
∫ s

0

(b(s, γ)ξσ(γ), I
k
hϕ(s))dγ +

∫ t

s

(b(γ, s)ϕ(γ), ξσ(s))dγ.

Taking ξu(0) = ξus(0) = 0 and integrating the equation from 0 to t followed by a
change of order of integration of the last term, we obtain

∥Ik−1
h ξu∥2 =

∫ t

0

[
(ξuss(s), I

k
hψ(s)− ψ(s))− (ξuss(s), I

k−1
h ψ(s)− ψ(s)) + (ξσ(s),

ΠRT
k−1p(s)− p(s)) + (aξσ(s),ϕ(s)− Ik

hϕ(s)) + (ξz(s), I
k
hϕ(s)− ϕ(s))

+ (ξz(s),∇(ψ − Ikhψ)(s)) + ⟨ξ̂z · ν, Ikhψ⟩ − (ηuss , I
k
hψ)

]
ds

−
∫ t

0

∫ t

s

(b(γ, s)ξσ(s),ϕ(γ)− Ik
hϕ(γ))dγds

=

∫ t

0

[E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8] ds+ E9.(31)

Cauchy Schwarz’s inequality and (28a) shows

E1 + E2 ≤ Chk+2∥Ik−1
h ξu(s)∥

Next, a use of identity

∫ t

0

f(r)g(r)dr = f(0)ḡ(0)+

∫ t

0

fr(r)ḡ(r)dr along with (28b),

yields

|E3 + E4 + E5 + E6| ≤ Chk+2∥Ik−1
h ξu∥
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Use of (6e), properties of the projection Ih and (28a) gives

|E7| ≤ ∥ξ̂z · ν∥∂K∥Ikhψ − ψ∥∂K ≤ Chk+2∥Ik−1
h ξu∥

We rewrite E8 as follows

(ηuss , I
k
hψ) = (ηuss , I

k
hψ − Ik−1

h ψ) + (ηuss , I
k−1
h ψ)

= (ηuss
, Ikhψ − Ik−1

h ψ) + (Ik−1
h ηuss

, Ik−1
h ψ)

≤ ∥ηuss∥∥Ikhψ − Ik−1
h ψ∥+ ∥Ik−1

h ηuss∥∥Ik−1
h ψ∥

≤ Chk+2∥Ik−1
h ξu∥.

Finally, a use of boundedness of b shows

|E9| ≤M

∣∣∣∣∫ t

0

(∫ t

s

ϕ(γ)− Ik
hϕ(γ)

)
dγ, ξσ(s)ds

∣∣∣∣
=M

∣∣∣∣∫ t

0

ϕ̄(γ)− Ik
hϕ̄(γ), ξσ(s)ds

∣∣∣∣
≤ Chk+2∥ψ̄(s)∥2
≤ Chk+2∥Ik−1

h ξu∥ (by(28b)).

Substituting in (31), we get

∥Ik−1
h ξu(t)∥2 ≤ Chk+2

∫ t

0

∥Ik−1
h ξu(s)∥ds.

Using Young’s inequality and Gronwall’s Lemma, the following estimate is obtained:

(32) ∥Ik−1
h ξu(t)∥ ≤ Chk+2.

Finally, (32) and (18) conclude the proof of the theorem.
□

Lemma 6.3. There exists a positive constant C which does not rely on h and k
such that ∀t ∈ (0, T ], the inequality below is valid

(33) ∥up − uph∥ ≤ Chk+2,

where, up = u− 1

|K|

∫
K

udx.

Proof. See [26] (Lemma 5.2). □

Proof of Theorem 4.2: By the definition of u∗h from (7), on any K ∈ T h, we
obtain

∥u− u∗h∥L2(K) ≤
∥∥∥∥u− uph − 1

|K|

∫
K

uhdx

∥∥∥∥
L2(K)

≤
∥∥∥∥up − uph +

1

|K|

∫
K

(u− uh)dx

∥∥∥∥
L2(K)

≤ ∥I0h(u− uh)∥L2(K) + ∥up − uph∥L2(K)

≤ ∥Ik−1
h eu∥L2(K) + ∥up − uph∥L2(K),(34)

where I0h is L2-projection onto the space of polynomials of total degree 0. A sub-
stitution of (29) and (33) in (34) finishes the proof. □
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7. Fully discrete scheme

Here, we present a completely discrete method for approximating the solution
to (1). To accomplish this, we discretize equation (5) in the time direction using a
central difference scheme and the midpoint rule. First, we split [0, T ] into M parts
with equal spacing using the following points:

0 = t0 < t1 < ... < tM = T,

with tn = n∆t where, ∆t = T/M .
We begin by defining the following notations,

ΥUn =
Un+1 + Un

2
, ΦUn =

Un+1 + 2Un + Un−1

4
=

ΥUn +ΥUn−1

2
,

∂tΥU
n =

Un+1 − Un

∆t
, ∂2tU

n =
Un+1 − 2Un + Un−1

∆t2
, δtU

n =
∂tΥU

n + ∂tΥU
n−1

2
,

En
h (S) = ∆t

n−1∑
j=0

b(tn, tj+1/2)ΥSj , ΥEn
h (S) =

En+1
h (S) + En

h (S)

2
.

(Un,Sn,Zn, Ûn) ∈ Vh × Wh × Wh ×Mh when 1 ≤ n ≤ M , such that, for any
(vh,wh, τh, µh,mh) ∈ Vh ×Wh ×Wh ×Mh ×Mh, we require

2

∆t
(∂tΥU

0, vh)− (ΥZ0,∇vh) + ⟨ΥẐ0 · ν, vh⟩∂Th
= (Υf0 +

2

∆t
u1, vh),

(35a)

⟨ΥẐ0 · ν, µ⟩∂Th\∂Ω = 0,(35b)

(ΥSn,wh)− (ΥUn,∇ ·wh) + ⟨ΥÛn,wh · ν⟩∂Th
= 0 n ≥ 0,

(35c)

(aΥSn, τh)− (ΥZn, τh) + (ΥEn
h (S), τh) = 0 n ≥ 0,(35d)

(∂2tU
n, vh)− (ΦZn,∇vh) + ⟨ΦẐn · ν, vh⟩∂Th

= (Φfn, vh) n ≥ 1,(35e)

⟨ΥÛn, µh⟩∂Ω = 0 n ≥ 0,(35f)

⟨ΦẐn · ν,mh⟩∂Th\∂Ω = 0 n ≥ 1,(35g)

Proof of Theorem 4.3: We begin by writing ∥u(tn)−Un∥ ≤ ∥u(tn)−uh(tn)∥+
∥uh(tn) − Un∥. We only need to derive the estimate ∥uh(tn) − Un∥. We will use

ζnu to denote uh(tn)− Un. Similarly, ζn
σ, ζ

n
z and ζ̂nu .

Now, using (5) and (35), we have the following

2

∆t
(∂tΥζ

0
u, vh)− (Υζ0

z,∇vh) + ⟨Υζ̂0
z · ν, vh⟩∂Th

=

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

, vh

)
,

(36a)

⟨Υζ̂0
z · ν, µ⟩∂Th\∂Ω = 0,(36b)

(Υζn
σ,wh)− (Υζnu ,∇ ·wh)+⟨Υζ̂nu ,wh · ν⟩∂Th

= 0,(36c)

(aΥζn
σ, τh)− (Υζn

z , τh)+(ΥIn(σh), τh) = (ΥEn
h (S), τh) ,(36d)

(∂2t ζ
n
u , vh)− (Φζn

z ,∇vh)+⟨Φζ̂n
z · ν, vh⟩∂Th

=
(
∂2t u

n
h − Φunhtt

, vh
)
,(36e)

⟨Υζ̂nu , µh⟩∂Ω = 0,(36f)

⟨Φζ̂n
z · ν,mh⟩∂Th\∂Ω = 0,(36g)
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for all (vh,wh, τh, µh,mh) ∈ Vh ×Wh ×Wh ×Mh ×Mh. Here,

In(σh) =

∫ tn

0

b(tn, s)σh(s)ds,

We begin with the proof of (9a). Let n ≥ 1; then, we start by subtracting (36c)
from itself after replacing n by n − 1 and then, dividing the resulting equation by
2∆t. Secondly, we will perform the same operations in (36f). Next, in (36d), we
will replace n by n − 1 and take the average of the resulting equation with itself.

Now, take wh = Φζn
z , τh = δtζ

n
σ, vh = δtζ

n
u , µh = −Φζ̂n

z · ν and mh = −δtζ̂nu in
(36c), (36d), (36e), (36f) and (36g), respectively and then, add (36c)-(36e), (36f)
and (36g) to obtain

(aΦζn
σ, δtζ

n
σ) +

(
∂2t ζ

n
u , δtζ

n
u

)
+
〈
Φζ̂nu − Φζnu , τ(δtζ̂

n
u − δtζ

n
u )
〉
= (ΦEn

h (S), δtζ
n
σ)

− (ΦIn(σh), δtζ
n
σ) +

(
Φunhtt

− ∂2t u
n
h, δtζ

n
σ

)
.

Now, we can write (aΦζn
σ, δtζ

n
σ) as

(aΦζn
σ, δtζ

n
σ) =

(
a

(
Υζn

σ +Υζn−1
σ

2

)
,
Υζn

σ −Υζn−1
σ

∆t

)
=

1

2∆t

[
(aΥζn

σ,Υζn
σ)− (aΥζn−1

σ ,Υζn−1
σ )

]
.

Using a similar approach for other terms, the equation can be further written as

1

2∆t

[
Υ∥∂tΥζnu∥2 − ∥∂tΥζn−1

u ∥2 + (aΥζn
σ,Υζn

σ)− (aΥζn−1
σ ,Υζn−1

σ )

+ ∥Υζ̂nu −Υζnu∥2τ − ∥Υζ̂n−1
u −Υζn−1

u ∥2τ
]

= (ΦEn
h (σh), δtζ

n
σ)− (ΦIn(σh), δtζ

n
σ) + (ΦEn

h (ζσ), δtζ
n
σ) +

(
Φunhtt

− ∂2t u
n
h, δtζ

n
σ

)
,

Now, multiplying the equation by 2∆t and adding from n = 1 to n = m, we obtain
the following inequality

∥∂tΥζmu ∥2 + ∥Υζm
σ ∥2 + ∥Υζ̂mu −Υζmu ∥2τ ≤ ∥∂tΥζ0u∥2 + ∥Υζ0

σ∥2 + ∥Υζ̂0u −Υζ0u∥2τ

+ 2∆t

m∑
n=1

(Jn
1 + Jn

2 + Jn
3 ),(37)

where

Jn
1 = (ΦEn

h (σh), δtζ
n
σ)− (ΦIn(σh), δtζ

n
σ), J

n
2 = (ΦEn

h (ζσ), δtζ
n
σ) ,

Jn
3 =

(
Φunhtt

− ∂2t u
n
h, δtζ

n
σ

)
.

For the estimates of ∥∂tΥζ0u∥2+ ∥Υζ0
σ∥2+ ∥Υζ̂0u−Υζ0u∥2τ , we consider the following

equations

2

∆t
(∂tΥζ

0
u, vh)− (Υζ0

z,∇vh) + ⟨Υζ̂0
z · ν, vh⟩∂Th

=

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

, vh

)
,

(38a)

(Υζ0
σ,wh)− (Υζ0u,∇ ·wh)+⟨Υζ̂0u,wh · ν⟩∂Th

= 0,(38b)

(aΥζ0
σ, τh)− (Υζ0

z, τh) +
(
I01 , τh

)
ds =

(
ΥE0

h(S), τh
)
,(38c)

⟨Υζ̂0u, µh⟩∂Ω = 0,(38d)

⟨Υζ̂0
z · ν,mh⟩∂Th\∂Ω = 0,(38e)
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for all (vh,wh, τh, µh,mh) ∈ Vh × Wh × Wh × Mh × Mh. We take vh = Υζ0u,

wh = Υz0, τh = Υζ0
σ, µh = −Υζ̂0

z · ν and mh = −Υδtζ̂
0
u in (38a), (38b), (38c),

(38d) and (38e), respectively and add the resulting equations, to get the following
inequality

∥∂tΥζ0u∥2 + ∥Υζ0
σ∥2 + ∥Υζ̂0u −Υζ0u∥2τ

≤ 1

2

(
ΥE0

h(S),Υζ0
σ

)
− 1

2

∫ t1

0

(
b(t1, s)σh(s),Υζ0

σ

)
ds

+

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

,Υζ0u

)
.

Now, proceeding in the similar way as to obtain (37) will prove that

∥∂tΥζ0u∥2 + ∥Υζ0
σ∥2 + ∥Υζ̂0u −Υζ0u∥2τ ≤ C(h2(k+1) +∆t4).

Next, for Jn
1 , a use of theorem 4.1 along with quadrature error yields

∥ΦEn
h (σh)− ΦIn(σh)∥ ≤ ∥ΦEn

h (σ)− ΦIn(σ)− ΦEn
h (eσ) + ΦIn(eσ)∥

≤ C(hk+1 +∆t2).

Further, use of Young’s inequality yields

∆t

m∑
n=1

|Jn
1 | ≤ C

(
h2(k+1) +∆t4

)
+

∆t

2

m∑
n=1

∥∥∥∥Υζn
σ −Υζn−1

σ

∆t

∥∥∥∥2 .(39)

Use of Taylor’s series expansion, along with Young’s inequality, yields

(40) ∆t

m∑
n=1

|Jn
3 | ≤ C

(
h2(k+1) +∆t4

)
+

1

2

m∑
n=1

∥∥∥∥∂tΥζnu + ∂tΥζ
n−1
u

2

∥∥∥∥2 .
Use of (39) and (40) in (37) along with discrete Gronwall’s lemma yields

∥∂tΥζmu ∥2 + ∥Υζm
σ ∥2 + ∥Υζ̂mu −Υζmu ∥2τ ≤ C

(
h2(k+1) +∆t4

)
.

Finally, use of Triangle inequality and theorem 4.1, finishes the proof of (9a).
Now, for the proof of (9b), we introduce the following notations:

ϕ˜
0 = 0, ϕ˜

n = ∆t

n−1∑
j=0

Υϕj , ∂tΥϕ˜
n = Υϕn, ∆t

n∑
j=0

Φϕj = Υϕ˜
n − ∆t

2
Υϕ0.
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Next, we multiply (36d), (36e) and (36g) by k, take summation over n and use
(36a) and (36b) to get the following system of equation

(Υζn
σ,wh)− (Υζnu ,∇ ·wh) + ⟨Υζ̂nu ,wh · ν⟩∂Th

= 0,

(41a)

(aΥζσ˜
n, τh)− (Υζz˜

n, τh) +

(
ΥEh˜ n(ζn

σ), τh

)
=

(
ΥFh˜ n(σh), τh

)
,

(41b)

(∂tΥζ
n
u , vh)− (Υζz˜

n,∇vh) + ⟨Υζ̂z˜
n
· ν, vh⟩∂Th

=

∆t

n∑
j=0

(
∂2t u

n
h − Φunhtt

)
, vh

 ,

(41c)

⟨Υζ̂nu , µh⟩∂Ω = 0,(41d)

⟨Υζ̂z˜
n
· ν,mh⟩∂Th\∂Ω = 0.(41e)

Choose wh = Υζ̂z˜
n
, τh = Υζn

σ, vh = Υζnu , µh = −Υζ̂z˜
n
· ν and mh = −Υζ̂nu in

(41a), (41b), (41c), (41d) and (41e), respectively, and add the resulting equations.
After simplifying as above, we attain the desired estimate. For further details, see
[12].

□

8. Numerical Results

The performance of the suggested HDG approach for the hyperbolic integro dif-
ferential equations (1a)-(1c) is discussed in this section. Figure 1 shows the domain
discretization used for different mesh sizes. The problem has been discretized us-
ing the central difference technique, and the integral term has been approximated
using the mid-point rule. For the sake of simplicity, the function a is chosen to be
1 throughout, with the problem domain being Ω = (0, 1)× (0, 1).

We demonstrate the order of convergence for the L2-norm of the error in u, the
gradient σ = −∇u, and post-processed solution u∗h. We see that the superconver-
gence for u∗h and the optimal convergence for u and σ are realized as anticipated
by our derived results.

Example 1. Let u(x, y, t) = t2etx(1 − x)y(1 − y) represent the precise solution
with b(x, t, s) = et−s. Table 1 displays the computed order of convergence and L2

error estimates for u and σ, while Table 3 displays the computed order of conver-

gence and L2 error estimates for u∗h at t =
1

2
for k = 1, k = 2, and k = 3 for a

variety of h values. We observe that the convergence rates for ∥eu∥, ∥eσ∥ and ∥e∗u∥
are on the order of O(hk+1), O(hk+1) and O(hk+2), respectively.

Example 2. Let u(x, y, t) = t sin(πt) sin(πx) sin(πy) represent the precise so-
lution with b(x, t, s) = sin(πt) cos(πs). Table 2 displays the computed order of
convergence and L2 error estimates for u and σ, while Table 3 displays the com-

puted order of convergence and L2 error estimates for u∗h at t =
1

2
for k = 1, k = 2,

and k = 3 for a variety of h values. We observe that the convergence rates for ∥eu∥,
∥eσ∥ and ∥e∗u∥ are on the order of O(hk+1), O(hk+1) and O(hk+2), respectively.
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(a) h =
1

2
(b) h =

1

4

(c) h =
1

8
(d) h =

1

16

Figure 1. domain discretization for different values of h

Table 1. Order of convergence and L2 error estimates for
Example 1

uh σh

k h ∥uM − UM∥ Order ∥σM − SM∥ Order

1

1/2 3.1116e-02 - 1.1484e-01 -
1/4 6.9328e-03 2.1662 2.2498e-02 2.3518
1/8 1.8259e-03 1.9248 5.5337e-03 2.0235
1/16 4.7854e-04 1.9319 1.3897e-03 1.9934

2

1/2 7.1740e-03 - 2.5155e-02 -
1/4 6.8389e-04 3.3909 1.9663e-03 3.6773
1/8 8.3343e-05 3.0366 2.0802e-04 3.2407
1/16 1.9478e-06 3.0635 3.6215e-06 3.3576

3

1/2 2.2952e-03 - 1.0145e-02 -
1/4 7.1660e-05 5.0013 3.0543e-04 5.0538
1/8 2.5553e-06 4.8096 9.6065e-06 4.9907
1/16 1.3766e-08 4.5306 3.7858e-08 4.8432

9. Conclusion

This paper proposes and analyses HDGmethod for a hyperbolic integro-differential
equation. Error estimates have been derived using HDG and by introducing Ritz-
Volterra projections for the model problem. It is also shown that the Ritz-Volterra
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Table 2. Order of convergence and L2 error estimates for
Example 2

uh σh

k h ∥uM − UM∥ Order ∥σM − SM∥ Order

1

1/2 1.6315e-01 - 6.1879e-01 -
1/4 2.2194e-02 2.8780 8.9694e-02 2.7864
1/8 2.5502e-03 3.1215 1.1478e-02 2.9661
1/16 2.9320e-04 3.1206 1.3000e-03 3.1424

2

1/2 1.6115e-02 - 6.6283e-02 -
1/4 1.0174e-03 3.9855 4.4295e-03 3.9034
1/8 6.4802e-05 3.9726 2.6761e-04 4.0489
1/16 6.0993e-07 3.9564 2.3337e-06 4.0931

3

1/2 7.8359e-03 - 3.4452e-02 -
1/4 2.2730e-04 5.1075 1.0040e-03 5.1007
1/8 6.8771e-07 4.9264 4.3293e-06 4.8241
1/16 2.5063e-09 4.9214 1.8006e-08 4.7892

Table 3. Order of convergence and L2 error estimates for u∗h

Example 1 Example 2

k h ∥uM − u∗M
h ∥ Order ∥uM − u∗M

h ∥ Order

1

1/2 9.0267e-03 - 1.3336e-01 -
1/4 8.3514e-04 3.4341 1.9980e-02 2.7387
1/8 9.9647e-05 3.0671 2.5594e-03 2.9646
1/16 1.2100e-05 3.0417 2.8749e-04 3.1543

2

1/2 4.6657e-03 - 1.4340e-02 -
1/4 2.7192e-04 4.1009 9.8668e-04 3.8614
1/8 1.6997e-05 3.9998 5.8242e-05 4.0825
1/16 1.5014e-07 4.0361 4.9113e-07 4.1347

3

1/2 2.2604e-03 - 7.7002e-03 -
1/4 6.7900e-05 5.0570 2.2518e-04 5.0957
1/8 2.1192e-06 5.0018 6.5609e-07 5.1452
1/16 7.1367e-09 5.0004 1.8317e-09 5.1879

projection achieves convergence of order hk+3/2, for k ≥ 1. In addition, the element-
by-element post-processing of the numerical solution was accomplished by utilizing
the dual of the problem. The findings demonstrate that all the three variables,
namely, u, σ and z attain convergence of order k + 1, for non-negative k in h,
which is the discretizing parameter of the space domain. In contrast, the post-
processed solution attains superconvergence; that is, it converges with order k+ 2,
for k ≥ 1. The analysis of this article provides better accuracy results compared
to [12]. Finally, numerical results are reviewed. This study may be carried over to
the three-dimensional domain by making the appropriate adjustments.
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