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WEAK GALERKIN FINITE ELEMENT METHOD BASED ON
POD FOR NONLINEAR PARABOLIC EQUATIONS

JIANGHONG ZHANG AND FUZHENG GAO* AND JINTAO CUI*

Abstract. In this paper, we establish a novel reduced-order weak Galerkin (ROWG) finite
element method for solving parabolic equation with nonlinear compression coefficient. We first
present the classical weak Galerkin finite element discretization scheme and derive the optimal
error estimates. Then we apply a proper orthogonal decomposition (POD) technique to develop
the ROWG method, which can effectively reduce degrees of freedom and CPU time. The optimal
order error estimates are also derived, and the algorithm flow is provided. Finally, some numerical
experiments illustrate the performance of the ROWG method. The numerical results show that
the proposed ROWG method is efficient for solving nonlinear parabolic equations.

Key words. Weak Galerkin finite element method, nonlinear parabolic equations, proper or-
thogonal decomposition.

1. Introduction

In this paper, we consider the following parabolic equations with nonlinear com-
pression coefficient:

(1a) g(w)uy — V- (DVu) = f, (z,t) € Qx J,
(1b) u=ug, (z,t)€Qx{t=0}
(1c) u=¢, (x,t) €N xJ,

where €2 is a polygonal region in R? with Lipschitz continuous boundary. Here D
is a symmetric positive definite matrix, g(u) is a sufficiently smooth function with
bounded derivatives up to the second-order, and there exist two constants g., g*
such that
0<g.<gu) <g"
And the assumptions that the solution of (1) satisfies can be found in the literature
[4].
The weak formulation of (1) is to find u € H'(£2) such that

(2) (9(w)ug,v) + (DVu, Vo) = (f,v), Yve€ H&(Q)

The weak Galerkin (WG) finite element method is first proposed in [14, 15, 12].
It can be viewed as an extension of the standard finite element method. The
key to WG method is the introduction of weak functions and weak gradients. In
comparison with conventional finite element method (FEM), the WG method has
higher robustness in boundary processing and is more suitable for grids with hang-
ing points. In recent years, the WG method has been widely used to solve the
Darcy-Stokes equation [3, 8], quasi-linear elliptic problems [18, 2], etc.

The proper orthogonal decomposition (POD) technique has been combined with
the finite element method since 2001 and successfully applied to solve parabolic e-
quations [7]. This method uses several layers of images to perform a low-dimensional
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approximation of the piecewise polynomial function space. In this way, a new finite
element function space is constructed. Within the allowed error range, POD can
effectively transform the original high-dimensional model into a low-dimensional
one, which significantly improves the computational efficiency. In recent years, re-
searchers have been actively exploring the combination of POD and different types
of numerical methods, including the finite difference method, the finite volume
method, and the hybrid finite element method [1, 5, 6, 9], etc. Very recently, Zhang
el at. in [16] considers the formulation and theoretical analysis of a reduced-order
numerical method constructed by POD for nonlocal diffusion problems. Zhao et al.
[17] first linked POD with weak Galerkin finite element method, but only gave the
algorithm flow without the corresponding theoretical analysis.

In this paper, we apply the POD technique to develop a novel reduced-order
weak Galerkin (ROWG) finite element method [17, 10, 13] for solving the nonlinear
parabolic problem (1). We construct a new correlation matrix and provide conver-
gence analysis under the L? and the discrete H' norms. The rest of the paper is
organized as follows: In Section 2, we first introduce the concepts of discrete weak
functions and weak derivatives for WG method. Then we establish the fully discrete
WG scheme for problem (1), and derive the optimal error estimates. In Section 3,
we construct the POD basis and build the fully discrete ROWG scheme. The opti-
mal error estimates for the ROWG scheme are presented, and the algorithm process
is shown. In Section 4, we give some numerical examples and compare the CPU
time of the ROWG scheme and the WG scheme for all examples. Conclusions are
given in Section 5.

2. Classical WG method

In this section, we consider the following discrete weak Galerkin finite element
space WG (P,, P._1; P?_;). Let Tj, be a partition of Q that satisfies the conditions
n [11]. We denote

(3) Vi, = {v = {wo,vp} : vo|k € P-(K),vp|ec € Pr—1(e),e CIOK,K € Th},

and its subspace V}? as

(4) Vo = {vth:vb|aQ:0}.
For any v € Vj,, its weak gradient Vv satisfes that
(5) (VW’U,Q/))K = _(UOav'¢)K+<Ub7¢'n>aK V¢EP7'2—1(K)’

Let t, = nAt(n=1,2,---,N), At = T/N, and denote u™ = u(t,). The fully
discrete WG finite element scheme for (1) is to find U™ = {U}", U} € V, such that

n _ yrn—1
© (sG] a0 0 = () o= () €

with the initial value U® = Qpu". Here the bilinear form

as(u,v) = > (DVyt, Viuv) ¢ + hig (Quuo — tp, Qyvo — vb) ok

KeTh
1
We define [|vf| = v/as(v,v) and Jolls = (Cxer, IVoolz +hz' [Qovo — vbll3)*
on Vy, and ||-||| is equivalent to || - ||, (cf. [12]).

We give the estimate of the errors between WG solution and the analytical
solution. Denote 0; = Epu" — U™, 0 = u" — Qpu”, 77} = Qpu™ — Epu”, where
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local Lo projection operator Qn = {Qo, @} and elliptic projection operator Ej, are
defined as follows:

U, d))K = (Qouv d))Ka vd) € PT(K)a
(7) U, @)e,= (Qvu,@)e, Vo € Pr_q(e),
as(Epu,v) = (=V - (DVu),v), Yve V.

From [14], we have the following estimates of ;' and ;' .

Lemma 2.1. Suppose that T;, satisfies the conditions in [11]. If u(t) € H™ (),
we have

Skenlmhl® + Sxen bk IV |* < CRPUD |l 12,4,

Sxen 1T + Sxer b VR ? < CR2CHD a2,

(8)

Lemma 2.2. [11] Assume that Ty, satisfies some shape regularity, we have
(9) [oll < Cllvll, Vv € V.
Lemma 2.3. Take U° = Quu®. Letu™ and U™ (m = 1,2,--- , N) be the analytical

solution of (1) and the numerical solution of (6), respectively. Let At and h satisfy
At < Ch. Then there exists a constant C independent of h and At such that

10) 165112 < € (A8 + B2l grss sy + W22 el s )
Proof. First, we make the induction hypothesis
(11) U™ <C, n=0,1,---,N.
By Lemma 2.1 and the inverse inequality, we have
(12) U < [[6°[loe + u® = Qp’lloo < [[u’|oe +CR™H- A"+ <O,

and (11) hold for n = 0. Subtracting (6) from (2), observing (7) and choosing test
function v = 6}, we have

(9 (U™™1) 083, 67) + as (6}, 07)
(13) =~ (g (u") (u} = ™), 03) = ((9 (u") — g (u" 7)) Opu", O7)
— (g (") =g (U"™)) Q™. 6R) = (9 (U™) Bulniy + 74), 6%)

u” un—l

where dyu" = “—x—. Using the equality a (a —b) = @ + ‘122;1’2, we have

(9 (U"™") 06 67)
1

1 — n—1 pn—
(14) :TN(Q(U”)GKW)*TN(Q(UH Hoptept

At n— n n 1 n n— n n
+7(9(U 1)5t9h73t9h>—ﬂ((9(U)—9(U ") or, o).
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Multiply by 2At and sum over time, we can rewrite (13) as

m m

(g (U™ )07, 077) + (AD)* D (g (U"") 0163, 0:65) + 24 Y~ a0, 07)

n=1 n=1
=(g(U°)65,65) +>_ ((g g (U™1)) 65, 01)
n=1
(15) S n n ny - ny _ n—1 n on
>~ 0 07) (=00, 00) =3 (04— (1)) . 5)

[

7

3

m m

(g (u™) (
Yo (lg @) —g(Ur)) deum,67) Z (O™ 1) By + 11, 603)

n=1
=(g9(U°) 0,,65) + Th + To + Ts + Ty + T,

where Ty, To, T3, Ty, Ts represent the last five terms on the right-hand side of
equation (15).

Denote the left-hand side terms of (15) by H;(i = 1,2, 3), we have the estimate

m

3
(16) D H = C07 + Y 100717 (Ar)? +le9 I7A¢8).
=1 n=1

m t
" (t—tay t—tn
szl(/g(mv' oy 0

For T}, we have

|T1| =2

m

tn t—tn1 n t—t, n—1 n gn
(17) Z / L v dt - 07, 67
Z||9"| At,

where ¢'(-) = 8—?. The term of T5 can be estimated directly as

T3] < (Z lup — O™ (|PAt+ IIHZHQN)

n=1 n=1
m 1 tn m
(18) < <Z HE/ (t =t )undt|2At + C > ||9g||2At>
n=1 tn—1 n=1

<C ((At)2 lwet || 202 (0)) + Z ||9ZL||2At> :

n=1

For T3 and Ty, by applying Cauchy mean value theorem, we obtain

|T3| -9 Z( /(¢n)(un _ un—l)ut(An) gn)At
(19) <C Z (@™ )ue (B )ur(N"), 07| (At)?

n=1

<C <At +Z||97$||2At>,
n=1
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T4 <22| €O T Du (), 0 At

(20) .
<C <Z ORI At + [90]| T o0 (12200 + 1Tl Fo0 (:22000) + ||92||2At> :
n=1
where
G = wput (L= g+ (= wp)e
A" = wit" + (1 — wy)t"~ v & =wiu" + (1 —wi)U",

7" = wgt" + (1 — wg)t"" 1»
and wf € [0,1](i = 1,2,3,4,5). For T5, we have

(21)  |Ts|<C <|77h,t||%2(J;L2(Q)) + 7,227,020 + Z ||9n||2At> .

n=1

The combination of (15)—(21) leads to

16517 + (A0)* Y 11207 1> + At Y 107117
n=1 n=1

(22) <C <||‘92||2 + (A0)? [fuse 220 + D I0R 1P At

n=1

+||"7h||%“(J;L2(Q)) + H7'h||2Loo(J;L2(Q))

+||77h,t||2L2(J;L2(Q)) + ”Th,tH%?(J;L?(Q))) .
It follows from Lemma 2.1 and the discrete Gronwall’s inequality that
(23) 167712 < € (A% + B2l sy + W22l o )
When At = O(h),r > 0, we have
(24) U™ [|oo < [l s + CR™H((AL) + A7HY) < C.
This complete the proof of the induction hypothesis. O

Theorem 2.4. Take U° = Quu®. Let u™ and U™ (m = 1,2,--- ,N) be the ana-
lytical solution of (1) and the numerical solution of (6), respectively. Let At and
h satisfy At < Ch. Then there exists a constant C independent of h and At such
that

(25) lu™ — U™|2 < C ((At)2 + h27"+2) .

Proof. By triangle inequality, Lemma 2.1 and Lemma 2.3, (25) is easy to obtain.
O

Lemma 2.5. Take U° = Quu®. Letu™ and U™ (m = 1,2,--- , N) be the analytical
solution of (1) and the numerical solution of (6), respectively. Let At and h satisfy
At < Ch. Then there exists a constant C independent of h and At such that

o FIESC (B2 Wl e 10y + (A0 el sz

+h2r+2”uH%w(J;HT“(Q)) + h2T+2||ut||%2(J;H7‘+1(Q))) :
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Proof. Subtracting (6) from (2), observing (7) and choosing the test function
v = 0:0}, we have

2ALY (g (U™Y) 0103, 0:63) + as (07, 077) + (A1)* > aq (9,07, 0:07)
n=1 n=1

m

—as (07,60) =2 (g (u™) (uff — dpu™), 07) At

23 () = () 2 )

-2 Z (g (U™Y) Oulnyt + 741), 0:07) At
=a, (09,00) + Ti + T2 + Tz + Ta,

where Ty, Tz, T3, T4 represent the last four terms on the right-hand side of equation
(27).
Denote the left-hand side terms of (27) by H; (i = 1,2, 3), we have the estimate

3 m m
(28) D M= CUOR IR+ D 1007 IPAt+ D 0:07117(AH)?).
i=1 n=1 n=1
By using (18) and the e-Cauchy inequality, we have
(29) ITi] < C (AL unll L2z +€ Y 1007 2AL.
n=1
Applying Cauchy mean value theorem and the e-Cauchy inequality, we have
m
(30) IT2] < C(AL? +2 ) 007 P At.
n=1

It follows from Lemma 2.2 and Cauchy mean value theorem that
(31)

m m
T3] < C <Z 1657 12 AL + 191117 o0 (.22 02y + ||Th||2Loo(J;L2(Q))> + 52 10:05 1> At

n=0 n=1

n|(2 n
<C <||77h||2Loo(J;L2(Q)) 170l oo (220 + E lox At) +e E [9:65 (> At.
n=0 n=1

Moreover, it is easy to see that

(32) |Tal < CUlmmellZ2(rip2c0y) + 17htll72cr L2 (0)) + € Z 10:07 |12 At

n=1



WGM BASED ON POD FOR NONLINEAR PARABOLIC EQUATIONS 163

When ¢ is sufficiently small, the combination of (27) — (32) leads to
(33)

16512 + S 106 12At + S 1|0.83112 (At)?

n=1 n=1

2
<C (||92||12z + (At)? lweellz2(s.220)) + |\77h,t||%2(J;L2(Q)) + ||Th,t||%2(J;L2(Q))

JrH77h||2L<><>(J;LZ(Q)) + ”ThH%C’O(J;LQ(Q)) + Z ||92||%At> :

n=1
Finally, by applying Lemma 2.1 and the discrete Gronwall’s inequality, we get
(34)
m T 2
1657117 < C* ([T oo (goprmrr () + (OO Nlusel 2 sin2 ) +

r+2 2 2r 2
W2 2l R (gprrragay) + P el T g pr gy

O

By triangle inequality, Lemma 2.1 and Lemma 2.5, we arrive at the following
theorem.

Theorem 2.6. Take U° = Quu®. Let u™ and U™ (m = 1,2,--- ,N) be the ana-
lytical solution of (1) and the numerical solution of (6), respectively. Let At and
h satisfy At < Ch. Then there ezists a constant C' independent of h and At such
that

(35) |Quu™ — U™ |2 < € ((At)2 + ) .
3. Reduced-order WG scheme based on POD

In this section, we apply the ROWG scheme (cf. [17, 10, 13]) to solve problem
(1), and give the corresponding theoretical analysis. A complete ROWG algorithm
flow is given in Algorithm 1 in Section 4.

The POD method consists in finding a set of standard orthogonal bases {1},
that satisfies a minimization problem. With the initial L layers of the discrete WG
scheme (6) as snapshots {U™}£_,, for a positive integer 1 < d < [, we can establish
the corresponding minimization problem and the POD basis.

Definition 3.1. Define the following minimization problem

L d
: 1 T e
(36a) {$1;:1fn§:1 UL—]E:l as (U™, 95)¢;
(36b) st as(i, ) =05, 1<i<j<d.

leq For U™ (1 <n < L), we have U™ = 22:1 as(U™, ;).

Definition 3.2. Define the correlation matriz A € R**% such that

1 ‘ ‘ B ; ; _ _
(67 Ay=1 Y (VU Vol)x + hi (QuUG = Ug, QuUS — U )oxe)-

KeTy

It is easy to see from definition that A is a symmetric positive definite matrix, and
there exist positive eigenvalues and corresponding standard orthogonal eigenvectors

{)‘i’ v'i}iLzl'
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Definition 3.3. [10, 17] Assuming \y > Ao > A3 > -+ A, > 0, the POD basis is
formed by

(38)

L
Zvl Ul i=1,2,....d,

L
j
E v;); U7,

where (v;);(1 < j < L) represents the j-th component of the standard orthogonal
etgenvector v;.

Denote by Vg = Va0 @ Vg, where Vg = span{y§, 43, - , ¥},
Vap = span{ep}, 92, -+ 4}, One can observe that V; C Vj,. The fully discrete
ROWG scheme for (1) is: Find U} = {U},, U} } € Vg such that
(39)
(g(Ug_l)atU(?avd) + as(UglrLa vd) = (fnavd)a VUd S Vd07n =L+ ]-7 L+ 23 e 7N'

d
with UdL = Z GS(UL7’(/)]')'Q/JJ'.
j=1
Denote the Ly projection operator Qq = {Qao, Qap} : Vi, — Vy and the elliptic
projection operator Eq : Vj, — Vj such that for any v, = {vg, v} € V3, K € Th,

e € 0K, there holds

ag (vha ¢) = Qs (Edvha ¢) V¢ € Vd?
(40) (U07 (b)K = (Qd0U07 ¢>K V¢ € Vd;
<Uba ¢>e = <de’l]b, ¢>@ V(b € Vd-

In fact, we can define Ep¢ = Eg¢ and Qn¢ = Qq¢ when ¢ € V.

Then, we give the estimates of the errors between the fully discrete WG scheme
(6) and the fully discrete ROWG scheme (39). Denote 7] = U™ — E4U", and
0 = EqU™ — U}. In order to estimate 7, we need the following lemmas.

Lemma 3.4. For every n(1 <n <L), ifr >0, n} satisfies
(41a) Ingll < Chllnglln,

and if r > 1, 7} satisfies

(42a) g —n < CR* [0}l

(uo0,v0)

where |Jul|_p = sup, ¢y, for any u € Vj,.

Proof. Consider the dual problem that seeks w € HJ (Q2) satisfying
(43) -V - (DVw) =nj.

If the dual problem has the usual H"t2-regularity, then there exists a constant C
such that ||w|,42 < C|n}|l-. With the definition of the elliptic projection Ej,, we
have

(44) as(Bpw,v) = (ng,v), Vv e V).
Taking v = 1}, it then follows from (40) that
173 11* = as(Bnw, 1)

(45) - as(Ehw - Qd(Ehw)v 773)
< Ol|Epw — Qa(Erw) | nllng I n-
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By applying the triangle inequality and Lemma 2.1, we have

[ Erw — Qa(Epw)|[n <[|[Erw — Quwl|n + |Qn(w — Erw)||n
+ 1 Qn(Epw) — Qa(Epw)]ln
(46) <[ Erw — Quwlln + Cllw — Epw]|n
<C([Erw — Qnwlln + lw — Qrw][n)
SChTHHwsz

When r > 0, in view of the regularity assumption, (41a) holds.
For any ¢ € V},, consider the dual problem that seeks w € H}(Q) satisfying

(47) —V - (DVw) = ¢.

165

Similarly, there exists a constant C' such that ||w||;+2 < C||¢||» when it has the

usual H™+2 - regularity. Moreover, we have
(48) as(Epw,v) = (¢,v), Yve VL.
Taking v = 1)} and applying (40), we have
(¢,m2) = as(Enw,ng)
= as(Enw — Qa(Enw), )
< W wllrs2llng I
< Ch" Yol g I

(49)

When r > 1, we have

n 2 n
(50) I = sup (2) o CHEIOlimn

< < CR?|[n |,
oevi lI¢ln 16]ln !

and then (42a) holds.

]

Lemma 3.5. For every d(1 < d <) and r > 0, there exists a constant C' inde-

pendent of h such that

L L
1 n N
(5D Sl + B3I < crt 3
n=1 i=d+1

|

Proof. In fact, U™ = Zle as(U™, ;)i (n=1,2,---, L) holds. So we have

>

n=1

d 2

U™ = a (U, i)

=1

| =
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From (40), for any vy, € Vj, and vg € Vy, it satisfies
v — Equn |7, < Cas(vn — Equp, v, — Equy,)
(53) < CCLS (Uh — Ed’Uh, Vp — Ud)

< Cllon = Eqvnllnllvn — valln-

Taking vy, = U™ and vg = Z?:l(UZ» ¥;)n;, we have

d

L L

1 e

7 Z A= T Z ;" — Z(U”J/ﬁ)hiﬁini
n=1 n=1

i=1

(54) .
i=d+1
which together with Lemma 3.4 implies (51). O

Lemma 3.6. For everyn(L+1<n < N), and r > 0, there exists a constant C
independent of h such that

(55) I 12 + B2 il3 < € (A0 + 2 +2) .

Proof. Note that E,U™ = E,U™. 1t follows from Lemma 2.1 and Lemma 2.6 that
(56)
gl < U™ = a7 + u® = Epu |7 + | B (u = U™) |7 + | ERU™ = EaU™ |

< O(|lu” = Quu™ ([}, + |Qnu™ — Enu |, + | Enu™ — U |7)

< C((At)* +n*).
Combining (56) and Lemma 3.4, one can derive (55). O
Lemma 3.7. Ifr > 1 and At < Ch. . Let U™ € V3 (n = 1,2,--- ,N) be the
numerical solution of (6), then there exist constants Ky and Ks such that

N

(57a) D UM At < Ky,
n=1
N

(57b) > U2 At < K.
n=1

Proof. Using the triangle inequality and inverse inequality, we have

N N
Do loU™ 2 At <> (10607115 + 1073113 + 10emit 13 + 119w [|3) At
1

n=1 n=

(58) -
<C(n 21003 12At + R 73220
n=1

e,y + el )

If r > 1 and At = O(h), it follows from (8) and (33) that

N
(59) DU %A < C (B2((AL? + 127) + [luel3o o) < Ko

n=1
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Moreover, (57a) can be estimated directly as

N N
1
"o AL < = "2 At + NAt) < K.
(60) 300 e < 532 10U [+ NO) < I
So (57a) and (57b) hold. O

Theorem 3.8. If At < Ch, andletU™ € V}, and U" € Vg(m =1,2,--- ,N) be the
solutions of (6) and (39), respectively. Then there exists a constant C' independent
of h and At such that

L
(61) ||Um—UC7L2§C<K(m)+h2 > )\i>, 1<m<N,
i=d+1

where K(m) =0 for 1 <m < L and K(m) = (14 (m — L)At) ((At)? + h**2) for
L+1<m<N.

Proof. We make an induction hypothesis
(62) U3 <C, n=01,-- N.

In fact, for every 1 < n < L, 7 = 0. Using the triangle inequality and Lemma
3.5, we have

L
(63) U™ = UZ 1 < [lnglI* + 16311* < Ch® Y~ A
i=d+1
By (11), we have
L
(64) U7 lloo < N1U™ oo + I llow + 10100 < NU™ oo +CRTH 02 Y N < C.
i=d+1

We can choose d that is sufficiently large and satisfies Zf:dﬂ i < (At)? + 22,

Subtracting (39) from (6), observing (40) and choosing test function v = 07}, we

get

(g(U:ilil)atggaeg) + as(ega 03)

(65) n—1 n—1 n gn n—1 n gn
=—((gU"") —g(U; )0 U",05) — (g(Ug™")Inq,04)-
By using a(a + b) = # + (a;b)2, we have
(66)
n—1 n on 1 n\ogn on 1 n—1ypgn—1 pgn—1
(g(Uy™")0:04,07) = TAt(g(Ud )04, 04) — E(Q(Ud )07 ,0,7)
At 1

+ 7(9([];71)@93731593) T OAL ((Q(U;) - Q(Ugil)) 93793) .
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Multiplying by 2At and summing over time (from L+ 1 to m, m > L+ 1), we can
rewrite (65) as
(67)

m

(g(UF0,00) + At > [2a4(0),05) + At(g(UF~")0u05, 0,07)]
n=L+1

= (9UNOL 0D + Y ((9UF) —gUF™)) 63, 0%)
n=L+1

— > 209U = g(UFT)AU™, AL =2 > (g(UF )y, 0) At
n=L-+1 n=L+1

= (g(u)03,09) + PL + P2 + P,

where P;, P, P3 represent the last three terms on the right-hand side of equation
(67).
Denote the left-hand side terms of (67) by L; (i = 1,2, 3), we have the estimate

3 m m
(68) ZLiZC<II9?IIQ+ > leilrat+ > o ZIIQ(At)2>7

i=1 n=L+1 n=L+1

Following (17), we have

DS (/ g

n=L+1 n—1

L—th n L=ty n— n gn

<C Y log)PAt.

n=L+1

(69)

We can rewrite P, as follows:

m

Py=—2At Y ((9(U") = g(EaU"1)OU™, 0)
n=L+1
(70) - n—1 n—1 n gn
=20t > ((g(EU™Y) = g(UF )0 U™, 0)
n=L+1
=P+ P

If r > 1 and At = O(h), it follows from (11), (62), Lemma 3.4 and Lemma 3.7 that

m m
<C Y U g2 At +e Y ll6d AL

| P>1
n=L+1 n=L+1
<C Y mFlIZaAn T +e > lloglnA
n=L+1 n=L+1
(71) <CR? > nplrAt+e > 05 AL,
n=L+1 n=L+1

1P| <C Y 0mil|ZaAt+ €Y |07 ]RA
n=L+1 L+1

<CRE  miliat+e > [07]7 AL

n=L L+1
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Suppose there exist sequences {a;}; and {b;}",(a;,b; > 0,i = 1,2,--- ,m)
such that
m m C m m
< < —
(72) Z anb, < max,a, Z b, < m(z an)(z bn)
n=L+1 n=1 n=1 n=1

and % = O(At). Combining Lemma 3.7 and 6 = 0 for n = 1,2,--- , L, we can
obtain

(73)
[Pop| <C Y7 10U sllOFPA < CC Y 110U [AD( Y 10717 At)
n=L+1 n=L+1 n=L+1

<C Y |og)PAt.
n=L+1
When ¢ is sufficiently small, the combination of (67) - (73) leads to

m

1617+ Y 6gllnAt+ > 1064117 (At)?

n=L+1 n=L+1

<C <h2||775|iAt+ Y llegiPat+n® Y- InZZII%At)

n=L+1 n=L+1

(74)

It then follows from Lemma 3.5, Lemma 3.6 and the discrete Gronwalls inequality
that

m
163 11* < Ch? <||n5||iﬁt+ > ||n3||iﬁt>
(75) n=L+1 i
<C <(m — L)At((AL)? + W T2) + Ath® > /\> :
i=d+1
In other words, for every L +1 < m < N, we have
U™ = U < (g I* + 1163117

(76) y s L
<C [ (1+ (m—L)AY((A)? + B2+ Ath? Y~ N .

i=d+1
Hence (61) can be obtained from (63) and (76). Finally, we need to complete the
induction hypothesis (62). If r > 0 and At = O(h), from (11), (76), we have
(77) UG llse < NU™[loo + U™ = U'llos < U™ oo + ChTH- (At + ") < C,

which completes the proof. ([

Theorem 3.9. If At < Ch. Let U™ € V}, and UJ* € Vy be the solutions of (6) and
(39), respectively. There exists a constant C' independent of h and At such that

L
(79) ||U'”U;"||igc<f<m> )3 mF(m)), L<m<N,
i=d+1
where I(m) =1 for 1 <m < L and I(m) = At for L+1 <m < N, F(m) =0
for1 <m < L and F(m) = (m — L — 1)((At)? + h?"*2)At + (At)2 + h?" for
L+1<m<N.
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Proof. For every 1 < n < L, we have

L
(79) o™ = Uzl < Ingll7 + 163115 < C Y i
i=d+1
Subtracting (39) from (6), observing(40) and choosing test function v = 9,07, we
have

a (0, 07) + 20t Y (g(Up~1)0ib, 000%) + (A1) > al(0,05,0,67)
n=L+1 n=L+1
—as(07,07) — 28 Y~ (gU™™) = g(UF~))dU™, 0,0%)
(80) n=L+1
=28t Y (g(UG ), 0:67)
n=L+1

=a,(0%,0%) + Py + P,.

where Py, Ps represent the last two terms on the right-hand side of equation (80).
Denote the left-hand side terms of (80) by £;(i = 1,2, 3), and we have

3 m m
81) > Li=cC <II9?Ii DD A NE |5t93||%(At)2> :
i=1 n=L+1 n=L+1

The term P; on the right-hand side of (80) can be rewritten as
Pr=—2At Y ((9U"") = g(BaU"1)0,U™, 0,6%)
n=L+1

(82) “ _
—2At > ((g(EU™Y) = g(UF~ )0 U™, 0,03
n=L+1
=P11+ P12

From (73), we have

Pral <C Y 10U 5 llmg HPAt+e Y 110647 At

n=L+1 n=L+1
(83) <SCCY N0Um %A Y g HIPAt) +e Y [067]°At
n=L+1 n=L+4+1 n=L+1
<C Y mpTMPAt+e > (a0 At.
n=L+1 n=L+1

By Lemma 2.2 and the fact that % = 0, we have

Pral SCC Y 10U AN Y 1637 RA) +2 Y (10077 At
n=L+1 n=L+1 n=L+1

(84) o m
<C Y AL+ > (005 At

n=L+1 n=L+1
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From (62), we have

(85) Pl <C D lomglPAt+e Y [0:07]° At
n=L+1 n=L+1

When ¢ is sufficiently small, the combination of (80) - (85) leads to

m

[ S X N N X N
(86) n=L+1 n=L+1

m

<C <|95||h+ Do g HPACE Y o PAr+ Y IQSIZN)

n=L+1 n=L+1 n=L+1
Note that
10emg || <[0:(U™ = w™)[| + (|0 (u™ — Enu”)|
(87) +[0:(En(u" = UM)|| + [10:(ERU™ — EaU™)|
<C|0:0R 1| + 110wz 1l + 10er3 11,
which together with (8), (33) implies

m

> lomlrat < O o0 PAt + > lomi1” + > loer )
(88) n=L+1 n=1 n=1 n=1

< C((AH)* + r*r).

Then by Lemma 3.6 and the discrete Gronwall’s inequality, we obtain

07117 + At > (1007117 + (A2 D (005
(89) n=L+1 n=L+1

<C ((m — L)((At)* + K T2 At + (At)? + h*7),

In other words, for every L +1 < m < N, we have
(90)
o™ = U5 < 107115 + 017

L
<C (At Z N +(m—L—1)((At)? + AT AL + (A1) + h”) ,

i=d+1
Finally, (78) can be obtained from (79) and (90). O

YA DDA NN TN
PP PP P!
YA AR AT AT
YA AR AT AT
SRR AT AT
SRR AT AT
YA TN TN
SESSEEEEEEEEEE
PP PP P!

FIGURE 1. 16 x 16 meshes for all examples, left: Voronoi mesh,
right: Nonconv mesh.
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Algorithm 1: ROWG algorithm

Step 1 : Generate the snapshots U™ = {U{",U;"},m =1,2,--- ,L by
solving the WG scheme (6).

Step 2 : Calculate the correlation matrix A = (A4;;)x 1 according to (37).
Step 3 : Find the positive eigenvalues \;y > Ay > A3 > ---Ap > 0 of A and
the corresponding standard orthonormal eigenvectors

vi= (v, v, )T 1 <i<L.

Step 4 : Determine the number of POD bases d such that

S ia M < (A2 4 hF 2,

Step 5 : Construct the POD basis 1b; = {10, %} by (38) and denote the
POD space by Vg = span{, ¥, -4}

Step 6 : Solve the ROWG scheme (39), and then the numerical solution
U} € V4 for each time layer is obtained.

Step 7: If UL — ULl < UG, —UZG l,m=L,L+1,---N — 1, then
Uj(m=L+1,---,N) are the ROWG solutions satisfying the desirable
accuracy. Else extract the new snapshots U™*7~L j =1,2... L and return to
Step 2.

4. Numerical experiments

In this section, we show three numerical examples to verify the accuracy and effi-
ciency of the POD weak finite element method. We perform numerical simulations
on domain Q = [0,1] x [0,1], T = 1. We take r = 1 and r = 2 for the discrete weak
finite element function space WG(P,, P._1; P2 ;). When r = 1, we take At = 500
and L = 20; when r = 2, we take At = 1000 and L = 30.

006 006
005 005
o004 o004
o0 o0
o002 o002
oo oo
o o

006

005

o004

oo

o002

oo

o

FicUrReE 2. Comparison of analytic solution, numerical solution
of WG scheme, and numerical solution of the ROWG scheme for
Example 4.2 at ¢ = 1 on Voronoi mesh.
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Example 4.1. In equation (1), let the nonlinear capacity term g(u) = exp (0.1u),

2 41 0
and D = 0 V241
, and the right-hand side term can be calculated accordingly.

. The exact solution is u(x,t) = exp(—t) sin(mz) sin(7y)

Example 4.2. In equation (1), let the nonlinear capacity term g(u) = u®+ 1, and
D= (I —(i)_ 1 y 3 1). The exact solution is u(x,t) = tx(x — 1)y(y — 1), and the
right-hand term can be calculated accordingly.

Example 4.3. In equation (1), let the nonlinear capacity term g (u,z,y) = cos(m?t)

cos(m?t) +2  cos(m?t) + 1 .
cos(r2t) + 1 cos(n2t) +2)" The exact solution
is u(z,t) = exp(—t) sin(wz) sin(wy), and the right-hand term can be calculated ac-
cordingly.

-cos(mx) cos(my)u+ 1, and D = <

In order to illustrate the robustness of numerical schemes, we perform numerical
simulations on two types of meshes—Voronoi and nonconv meshes (see Fig. 1). Note
that there are hanging points in the latter one. Both the WG and ROWG schemes
perform well on both meshes, reaching desired error rates under L2 norm and the
discrete H' norm. A comparison of the numerical solutions of WG, ROWG methods
and the exact solution for Example 4.2 on Voronoi mesh are shown in Fig. 2.

From Table 1-Table 6, one can observe that for all three examples, the errors
of the ROWG algorithm are roughly the same order of magnitude as that of WG
scheme, while the ROWG scheme greatly reduces the CPU time without affecting
the error accuracy. Moreover, the effectiveness of ROWG algorithm becomes more
obvious as the size of algebraic equation gets larger. The convergence orders are
consistent with the theoretical results given in previous sections. More precisely,
when r = 1, the convergence orders under the L? norm and the discrete H' norm
are 2 and 1, respectively; when r = 2, the convergence orders under the L? norm
and the discrete H' norm are 3 and 2, respectively.
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