
INTERNATIONAL JOURNAL OF © 2024 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 21, Number 5, Pages 764–792 doi: 10.4208/ijnam2024-1031

CHOICE OF INTERIOR PENALTY COEFFICIENT FOR

INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD

FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING

SANGHYUN LEE, TEERATORN KADEETHUM, AND HAMIDREZA M. NICK

Abstract. This paper uses neural networks and machine learning to study the optimal choice of
the interior penalty parameter of the discontinuous Galerkin finite element methods for both the

elliptic problems and Biot’s systems. It is crucial to choose the optimal interior penalty parameter,

which is not too small or too large for the stability, robustness, and efficiency of the approximat-
ed numerical solutions. Both linear regression and nonlinear artificial neural network methods

are employed and compared using several numerical experiments to illustrate the capability of

our proposed computational framework. This framework is integral to developing automated nu-
merical simulation because it can automatically identify the optimal interior penalty parameter.

Real-time feedback could also be implemented to update and improve model accuracy on the fly.

Key words. Discontinuous Galerkin, interior penalty, neural networks, machine learning, finite

element methods.

1. Introduction

Discontinuous Galerkin (DG) finite element method, which is also known as the
Interior Penalty method (IP), is one of the most popular non-conforming finite
elements employed for various realistic applications, especially with discontinuous
material properties [1, 2, 3, 4, 5]. The advantages of the IP-DG method include the
following. First, DG preserves the local flux conservation with highly varying mate-
rial properties [6, 7, 8, 9, 10]. In addition, DG can deal robustly with general partial
differential equations and equations whose type changes within the computational
domain, such as from advection dominated to diffusion dominated [11, 12, 13].

However, one of the disadvantages of DG is that the method’s stability and
accuracy depend on the interior penalty parameter in front of the jump term that
needs to be chosen. In other words, the performance of the DG methods highly
depends on the choice of the interior penalty parameter. For example, if the penalty
parameter is too small, the stability of the scheme is not guaranteed, and the
linear solver will not converge. If the penalty parameter is too large, DG schemes
might converge to the continuous Galerkin finite element methods and often suffer
from the linear solver. Thus, it is crucial to employ the optimal interior penalty
parameter. Several studies of the lower bounds for the penalty parameter have
been obtained in the past [14, 15, 16, 17, 18]. Moreover, weighted interior penalty
parameters for the cases where the diffusion coefficient is discontinuous were studied
in [19, 20]. Specific illustrations on the selection of the penalty parameters are
shown in [21].

This paper proposes a new procedure to find the optimal interior penalty parame-
ters for both elliptic problems and the poroelastic Biot’s system. Since the choice of
the optimal interior penalty parameters for multiphysics multiscale coupled prob-
lems or problems with discontinuous and heterogeneous material properties are

Received by the editors on April 17, 2023 and, accepted on January 14, 2024.

2000 Mathematics Subject Classification. 65N12, 65M60.

764

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 765

nontrivial by the traditional analytic approaches, we employ machine learning pro-
cesses to predict the optimal interior penalty parameters. Many machine learning
models have been a center of attention for decades because of their approxima-
tion power that could be practically applied to various applications [22, 23]. These
algorithms range from classic linear regression models [24, 25], spatial interpola-
tion techniques such as kriging [26] or maximum likelihood estimation [27], and
nonlinear approximation functions such nonlinear regression [28] or deep learning
[29].

Recently, deep learning has become more attractive with several advantages,
including that it is scalable [30], suitable for GPU functionality [31], and requires
less computational resources is less due to the mini-batch gradient descent approach
[32]. Deep learning has also been successfully applied to solve partial differential
equations, generally solved by classical numerical methods such as finite difference,
finite volume, or finite element methods [33, 34, 35, 36, 37, 38]. Moreover, this
technique has been used to assist the traditional numerical methods such as finite
elements to enhance their performance [39, 40, 41, 42, 43]. Hence, this paper aims
to apply this method to identify the optimal interior penalty parameters in complex
problems.

The proposed procedure benefits the simple elliptic problem or Biot’s equations
and any multiphysics multiscale coupled problems. Besides, in cases where many
simulations have to be performed with different settings, e.g., mesh size, material
properties, or various interior penalty schemes, our proposed framework can auto-
matically identify the optimal interior penalty parameter. Real-time feedback could
also be implemented to update and improve model accuracy.

The paper is organized as follows. Our governing system and finite element dis-
cretizations are in Section 2 and Section 3, respectively. Details about the machine
learning algorithm are discussed in Section 4. The numerical results are in Section
5; this section illustrates the effects of interior penalty parameters on both solution
quality and simulation behavior. Performance between linear and nonlinear ap-
proximation functions is also compared. Finally, the conclusions follow in Section
6.

2. Mathematical Model

In this section, we briefly recapitulate the Biot system for poroelasticity that we
will discuss in this paper. Let Ω ⊂ Rd (d ∈ {1, 2, 3}) be the computational domain,
which is bounded by the boundary, ∂Ω. The time domain is denoted by T = (0, T]
with T > 0. Then the coupling between the fluid flow and solid deformation can be
captured by applying Biot's equation of poroelasticity, which is composed of linear
momentum and mass balance equations [44].

First, the mass balance equation is given as [45]:

(1) ρ

(
φcf +

α− φ
Ks

)
∂

∂t
p+ ρα

∂

∂t
∇ · u−∇ · κ(∇p− ρg) = g in Ω× T,

where p(·, t) : Ω×(0;T]→ R is a scalar-valued fluid pressure, u(·, t) : Ω×(0;T]→ Rd
is a vector-valued displacement, ρ is a fluid density, φ is an initial porosity, cf is
a fluid compressibility, g is a gravitational vector, g is a sink/source. Here, ∇ · u
term represents the volumetric deformation and κ is defined as:

(2) κ :=
ρkm
µ

,

where km is a matrix permeability tensor and µ is a fluid viscosity.

766 S. LEE, T. KADEETHUM, AND H. NICK

The following boundary and initial conditions supplement the mass balance e-
quation (the fluid flow problem):

p = pD on ∂Ωp × T,(3)

−∇ · κ(∇p− ρg) · n = qD on ∂Ωq × T,(4)

p = p0 in Ω at t = 0,(5)

where pD and qD are specified pressure and flux, respectively, and ∂Ω is decomposed
to pressure and flux boundaries, ∂Ωp and ∂Ωq, respectively.

Secondly, the linear momentum balance equation can be written as follows:

(6) ∇ · σ(u, p) = f .

For simplicity, a body force f is neglected in this study. Here, σ is total stress,
which is defined as:

(7) σ := σ(u, p) = σ′(u)− αpI,
where I is the identity tensor and α is Biot's coefficient defined as [46]:

(8) α := 1− K

Ks
,

with the bulk modulus of a rock matrix K and the solid grains modulus Ks. In
addition, σ′ is an effective stress written as:

(9) σ′ := σ′(u) = 2µlε(u)− λl∇ · uI,

where λl and µl are Lamé constants. By assuming a small displacement, a strain
is defined as:

(10) ε(u) :=
1

2

(
∇u +∇uT

)
.

Thus, we can write the linear momentum balance supplemented by its boundary
and initial conditions as:

∇ · σ′(u) + α∇ · pI = f in Ω× T,(11)

u = uD on ∂Ωu × T,(12)

σ′ · n = σD on ∂Ωt × T,(13)

u = u0 in Ω at t = 0,(14)

where uD and σD are prescribed displacement and traction at boundaries, respec-
tively, and t is time. Here, ∂Ω can be decomposed to displacement and traction
boundaries, ∂Ωu and ∂Ωt, respectively, for the solid deformation problem.

3. Numerical Discretizations

This paper employs the discontinuous Galerkin (DG) finite element method for
spatial discretization. Let Th be the shape-regular (in the sense of Ciarlet) triangu-
lation by a family of partitions of Ω into d-simplices T (triangles/squares in d = 2
or tetrahedra/cubes in d = 3). We denote by hT the diameter of T and we set
h = maxT∈Th hT . Also, we denote by Eh the set of all edges and by EIh and E∂h the
collection of all interior and boundary edges, respectively. In the following nota-
tion, we assume edges for two dimensions, but the results hold analogously for faces
in a three-dimensional case. The space Hs(Th) (s ∈ R) is the set of element-wise
Hs functions on Th, and L2(Eh) refers to the set of functions whose traces on the
elements of Eh are square integrable. Let Ql(T) denote the space of polynomials of
partial degree at most l. Throughout the paper, we use the standard notation for

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 767

Sobolev spaces and their norms. For example, let E ⊆ Ω, then ‖ · ‖1,E and | · |1,E
denote the H1(E) norm and seminorm, respectively. For simplicity, we eliminate
the subscripts on the norms if E = Ω.

Since we consider the nonconforming DG methods, let

e = ∂T+ ∩ ∂T−, e ∈ EIh,
where T+ and T− be two neighboring elements and we denote by he the length of
the edge e. Let n+ and n− be the outward normal unit vectors to ∂T+ and ∂T−,
respectively (n± := n|T±). For any given function ξ and vector function ξ, defined

on the triangulation Th, we denote ξ± and ξ± by the restrictions of ξ and ξ to T±,
respectively.

Next, we define the weighted average operator {·}δe as follows: for ζ ∈ L2(Th)
and τ ∈ L2(Th)d,

(15) {ζ}δe = δeζ
+ + (1− δe) ζ−, and {τ}δe = δeτ

+ + (1− δe) τ−, on e ∈ EIh,
where δe is calculated by [47, 19].

(16) δe :=
κ−e

κ+
e + κ−e

.

Here,

(17) κ+
e :=

(
n+
)T · κ+ · n+, and κ−e :=

(
n−
)T · κ− · n−,

where κe is a harmonic average of κ+
e and κ−e read as:

(18) κe :=
2κ+

e κ
−
e(

κ+
e + κ−e

) .
On the other hand, for e ∈ E∂h , we set {ζ}δe := ζ and {τ}δe := τ . The jump across
the interior edge will be defined as

[[ζ]] = ζ+n+ + ζ−n− and [[τ]] = τ+ · n+ + τ− · n− on e ∈ EIh.

For e ∈ E∂h , we let [[ζ]] := ζn and [[τ]] := τ · n.
Finally, we introduce the finite element space for the discontinuous Galerkin

method, which is the space of piecewise discontinuous polynomials of degree k by

(19) V DG
h,k (Th) :=

{
ψ ∈ L2(Ω)| ψ|T ∈ Qk(T), ∀T ∈ Th

}
.

Moreover, we use the notation:

(v, w)Th :=
∑
T∈Th

∫
T

v wdx, ∀ v, w ∈ L2(Th),

〈v, w〉Eh :=
∑
e∈Eh

∫
e

v w dγ, ∀ v, w ∈ L2(Eh).

3.1. Pressure problem. First, we introduce the backward Euler DG approxima-
tion to (1). We define a partition of the time interval 0 =: t0 < t1 < · · · < tN := T
and denote the uniform time step size by δt := tn − tn−1. The DG finite elemen-
t space approximation of the pressure p(x, t) is denoted by P (x, t) ∈ V DG

h,k . Let

Pn := P (x, tn) for 0 ≤ n ≤ N . We set a given initial condition for the pressure as
P 0 and assume the displacement at time t, u(·, t) is given. For simplicity, the terms
gravity and source/sink are neglected. Then, the time-stepping algorithm reads as
follows: Given Pn−1,

(20) Find Pn ∈ V DG
h,k such that Sθ(Pn, w; u) = Fθ(w), ∀w ∈ V DG

h,k ,

768 S. LEE, T. KADEETHUM, AND H. NICK

where Sθ and Fθ are the bilinear form and linear functional as defined by

Sθ(v, w; u) :=
ρ

δt

(
φcf +

α− φ
Ks

)
(v, w)Th + (κ∇v,∇w)Th

(21)

−
〈
{κ∇v}δe , [[w]]

〉
E1h

+ ρα(
∂

∂t
∇ · u, w)Th − θ

〈
[[v]] , {κ∇w}δe

〉
E1h

+ β(k)〈h−1
e κe [[v]] , [[w]]〉E1h , ∀v, w ∈ V DG

h,k ,

and

Fθ(w) :=
1

δt
(Pn−1, w)Th − 〈qD, [[w]]〉EN,∂

h
− θ

〈
pD, {κ∇w}δe

〉
ED,∂
h

(22)

+ β(k)〈h−1
e κepD, [[w]]〉ED,∂

h
, ∀w ∈ V DG

h,k .

The choice of θ leads to different DG algorithms. For example, i) θ = 1 for
SIPG(β)−k methods [48, 49], which later has been extended to the advection-
diffusion problems in [50, 51], ii) θ = −1 for NIPG(β)−k methods [52], and iii)
θ = 0 for IIPG(β)−k method [53].

The interior penalty parameter, β(k), is a function of polynomial degree ap-
proximation, k. Here, he is a characteristic length of the edge e ∈ Eh calculated
as:

(23) he :=
meas (T+) + meas (T−)

2 meas(e)
,

where meas(.) represents a measurement operator, measuring length, area, or vol-
ume. Several analyses for the choice of the interior penalty parameter, β, are shown
in [14, 15, 16, 17, 18] and this β is the quantity that we investigate in this paper.
The study could be applicable not only for DG but also for other interior penalty
methods, such as enriched Galerkin methods [54, 55, 56, 57].

3.2. Displacement problem. For the displacement u, we employ the classical
continuous Galerkin (CG)finite element methods for the spatial discretizations as
in [55, 58] where the function space is defined as

(24) WCG
h,k(Th) :=

{
ψu ∈ C0(Ω;Rd) : ψu|T ∈ Qk(T ;Rd),∀T ∈ Th

}
,

where C0(Ω;Rd) denotes the space of vector-valued piecewise continuous polyno-
mials, Qk(T ;Rd) is the space of polynomials of degree at most k over each element
T .

The CG finite element space approximation of the displacement u(x, t) is denoted
by U(x, t) ∈ WCG

h,k. Let Un := U(x, tn) for 0 ≤ n ≤ N . We set a given initial

condition for the displacement as U0, and the pressure at time t, Pn is given from
the previous section. Then, the time-stepping algorithm reads as follows: Given
Pn,

(25) Find Un ∈WCG
h,k such that A(Un,w;Pn) = D(w), ∀w ∈WCG

h,k,

where A and D are the bilinear form and linear functional as defined as
(26)

A(v,w;Pn) :=
∑
T∈Th

∫
T

σ′ (v) : ε(w) dV +
∑
T∈Th

∫
T

α∇Pn∇w dV, ∀v,w ∈WCG
h,k,

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 769

and

(27) D(w) :=
∑
T∈Th

∫
T

fw dV +
∑
e∈ENh

∫
e

σDw dS, ∀w ∈WCG
h,k.

3.3. Poroelasticity problem. Finally, the resulting variational formulation for
solving the Biot’s poroelasticity system reads as follows: Given (Un−1, Pn−1) ∈
WCG
h,k × V DG

h,k with 0 ≤ n ≤ N − 1, find (Un, Pn) ∈WCG
h,k × V DG

h,k such that

Sθ(Pn, w; Un) = Fθ(w), ∀w ∈ V DG
h,k ,

A(Un,w;Pn) = D(w), ∀w ∈WCG
h,k.

Numerical analyses for the existence and uniqueness of the system and extensions
to consider different applications by utilizing the presented mix of continuous and
discontinuous Galerkin methods are discussed in [59, 60, 61, 62] and references cited
therein.

4. Machine Learning Algorithm

In this section, we present the details of the two machine learning algorithms
employed in this paper to seek the effect and optimal choice of the interior penalty
parameter. First, the linear approximation algorithm, which is so-called linear
regression or logistic regression, is shown depending on the output type. Then, the
nonlinear approximation algorithm, the artificial neural network (ANN) with a deep
learning algorithm, is described. See Figure 1 for the detailed outline. Then, the
next section compares the performance between linear and nonlinear approximation
algorithms for each given problem to find the optimal penalty parameters. The two

Figure 1. Illustration of the methods used in this study.

different algorithms (linear/nonlinear) will provide two types of predicted values;
one is a continuous predicted value referred to as a continuous regression model, and
the second is a binary predicted value referred to as a binary classification model.
Finding the optimal penalty parameter could be solved by continuous (regression
model) and binary (classification model) predictions.

First, we discuss the loss functions for each predicted value, continuous regres-
sion, and binary classification models. For the predicted value by employing the
continuous regression model, we use mean squared error (MSE) as a loss function,
which is defined as

(28) MSE :=
1

n

n∑
i=1

(
Yi − Ŷi

)2

,

where n represents a number of data points, Yi is a true or observed values at index
i, and Ŷi is a predicted value at index i.

770 S. LEE, T. KADEETHUM, AND H. NICK

To compare the performance of the linear regression and nonlinear ANN algo-
rithms, by using the continuous regression predicted values, we define R2 and the
explained variance score (EVS). Here, R2 is

(29) R2 := 1− SSres

SStot
,

where SSres is a residual sum of squares read as:

(30) SSres :=

n∑
i=1

(
Yi − Ŷi

)2

,

and SStot is a total sum of squares defined as:

(31) SStot :=

n∑
i=1

(
Yi − Ȳ

)2
,

where (̄·) is an arithmetic average operator and Ȳ is the arithmetic average of Yi.
Next, EVS is defined as

(32) EVS := 1− Var{Y − Ŷ }
Var{Y }

,

where Var{·} is a variance operator. Note that if Y − Ŷ = 0, then R2 = EVS or
we have unbiased estimator [63].

For the predicted value by employing the binary classification models, we use
binary cross entropy (BCE) as the loss function, which is defined as follows:

(33) BCE := − 1

n

n∑
i=1

(Yi · log (P (Yi)) + (1− Yi) · log (1− P (Yi))) ,

where P (·) is a probability function. Then, we use the accuracy function (ACC)
to compare the results from logistic regression and classification ANN, and it is
defined as

(34) ACC :=

∑
True positive +

∑
True negative

n
,

where ‘True positive’ and ‘True negative’ represent cases where the prediction agrees
with the observation. See Figure 2 for more details.

Moreover, we employ different optimization algorithms to minimize each loss
function for linear and nonlinear algorithms, and we describe these in the following
sections.

Figure 2. Illustration of a confusion matrix, where P denotes
positive and N denotes negative.

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 771

4.1. Linear approximation algorithm. Two types of linear approximation al-
gorithms are used in this work: (i) (multivariate) linear regression and (ii) (mul-
tivariate) logistic regression. These two models produce continuous and binary
predictive values, respectively, and can consider any number of input values. The
main idea of these models is to map the linear relationship between multiple in-
dependent variables (input) and one dependent variable (output). As discussed
previously, equations (28) and (33) are used as the loss function for multivariate
linear and logistic regressions, respectively. To minimize these functions, we fol-
low the classical stochastic gradient descent (SGD) [64] solver to minimize equation
(28), and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [65] solver
to minimize equation (33).

Finally, we split our available data points into two parts: training set and test set
using the Scikit-learn package, an open-source software machine learning library for
the Python programming language [64]. We use the same training set to train both
linear and nonlinear approximation functions. The test set compares performances
between the linear and nonlinear approximation algorithms. The splitting ratio of
the data sets used in this paper is 0.8 of the total available data for the training set
and 0.1 of the total available data for the test set. We note that we only utilize 90%
of the available data set for training and test set to be consistent with the number
of the data sets for the nonlinear algorithm. The nonlinear algorithm requires 10%
of the available data set for the validation set. Each variable input is transformed
into a numeric variable, and each continuous data is normalized by its mean and
variance using the prepossessing library of the Scikit-learn package [64].

4.2. Nonlinear approximation algorithm. Similar to the previous section, we
have two types of nonlinear approximation algorithms used in this work: (i) re-
gression ANN model and (ii) classification ANN model. These models map the
nonlinear relationship between input (features) to output by using nonlinear acti-
vation functions such as Sigmoid, Tanh, or rectified linear unit (ReLU) functions
[66, 67, 29]. The number of hidden layers also plays an important role in defining
whether the neural network has deep (number of hidden layers is greater than one)
or shallow (number of hidden layers is one) architecture. [68]. Moreover, the shal-
low and deep neural networks, called Wide and Deep Learning, can be combined
to optimize the performance and generalization [69]. Figure 3 presents the neural
network architecture used in this study. The number of output nodes is always
one, but the number of input nodes is determined by the nature of each problem,
which will be discussed later. Hyperparameters [29] are determined by the number
of hidden layers (Nhl) and the number of neurons (Nn).

The artificial neural network used in this study is built on the TensorFlow plat-
form with Keras wrapper [70, 71]. The ReLU is employed as the activation function
for each neuron in each hidden layer for both regression and classification ANN.
The output layer of the classification ANN is subjected to the Sigmoid activation
function, while the output layer of the regression ANN is not subjected to any
activation functions since the output values are continuous.

To minimize the loss functions, equations (28) (for the regression ANN mod-
el) and (33) (for the classification ANN model), the mini-batch gradient descent
method is used with a batch size of 10 [32, 72]. This method is effective since (i)
it requires less memory and becomes more effective when the size of data is sig-
nificant, and (ii) it helps to prevent gradient-decent optimizations trapped in the
local minimum [73, 74]. Then, adaptive moment estimation (ADAM) [75] solver is
employed.

772 S. LEE, T. KADEETHUM, AND H. NICK

...

...
...

I1

I2

I3

In

H1

Hn

O1

On

Input Layer Hidden Layer Output Layer

Figure 3. The general neural network architecture used in this
study. The input layer contains up to i input nodes, and the output
layer is composed of 1, ..., k output nodes. The number of hidden
layers we denote Nhl, and each hidden layer is composed of Nn
neurons.

Similar to the linear approximation algorithms, we split our available data points
into three parts (i) training set, (ii) validation set, and (iii) test set using Scikit-
learn package [64]. We note that the same training and test set data points are
applied for both linear and nonlinear algorithms, but the validation set is only for
the nonlinear algorithms. The validation set is used to tune hyperparameters. The
splitting ratio used in this paper is 0.8 of the total available data for the training set,
0.1 of the total available data for the validation set, and 0.1 of the total available
data for the test set. Some studies suggest that it may be possible to use only
training and test sets and neglect the validation set when we have limited data [76].
In that case, hyperparameters are tuned by the test set, where the test set is also
used to compare the performance. We do not prefer this case since the test set
should be kept separated for the last process, and the ANN algorithms should have
no prior knowledge before being tested [77, 78].

5. Numerical results

In this section, we present several numerical experiments to illustrate the capa-
bility of our proposed algorithm and computational framework. All the numerical
experiments are computed by the program built by employing Scikit [64] for linear
algorithms and TensorFlow with Keras wrapper [70, 71] for nonlinear algorithms.
Moreover, the presented results are also computed by the JMP platform (SAS) [24]
to verify our results. The continuous regression for the predicted values is mainly
used for Section 5.1 to find the optimal penalty parameter for the elliptic problem
in each case. Thus, the performance of the linear and nonlinear regression AN-
N are compared in this section. For Section 5.2, the binary classification for the
predicted values is used to find the optimal penalty parameter for Biot’s equation
in each case. Here, the performance of the linear logistic regression and nonlinear
classification ANN methods are compared.

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 773

5.1. Effect and optimal choice of interior penalty parameter for elliptic
equations. First, we study the effect and optimal choice of the interior penalty
parameter β by considering the simplified elliptic equation of the flow problem (1).
We obtain the following simplified elliptic equation by assuming that the pressure
does not depend on the time and u (α = 0).

(35) −∇ · (κ∇p) = g in Ω.

We note that gravity (g) is neglected for simplicity, and g is the source/sink term. In
each of the following problems, we compare the performance of the linear regression
and nonlinear regression ANN, where the predicted values are continuous.

5.1.1. The effect of a polynomial degree approximation (k). Before we em-
ploy the machine learning algorithm presented in Section 4, we investigate the effect
of the polynomial degree approximation on the penalty parameter. We illustrate
the effect of a polynomial degree approximation on the choice of optimal β using
different linear solvers (direct or iterative solvers) and discretization schemes. Here,
different discretization schemes indicate the options for choosing IIPG (θ = 0) or
SIPG (θ = 1).

For this case, we set the exact solution in Ω = [0, 1]
2

as

(36) p(x, y) := sin(x+ y),

and κ (κ := κI) has different values in a range of [1.0 × 10−18, 1.0]. Furthermore,
homogeneous boundary conditions are applied to all boundaries. In particular, we
study the five different k values (1, 2, 3, 4, and 5), and each case is tested by a
different combination of linear solvers and θ. The detailed algorithm is presented
in Algorithm 1.

Algorithm 1: Investigation procedure for the elliptic problem

Initialize the data set of κ that used in the investigation
for i < nκ, where nκ is the size of the specified data set κ, do

Assign κ := κ [i] I, β := β0, where β0 = 100.00, and h := h0, where
h0 = 6.25× 10−2

while error convergence rate is optimal do
Update β := 0.99× β {Except the first loop}
for j < nh, where nh = 6 do

Solve (35) and compute the error
Calculate error convergence rate
Update h := 0.5× h

end for
end while
return β, this β is the smallest, which the optimal error convergence rate
can be observed.

end for

The main idea of this algorithm is that we reduce the β values (1% by each test)
until the optimal error convergence rate is no longer guaranteed. Thus, in other
words, we focus on finding the smallest β that ensures the optimal convergence
rate. Here, the optimal convergence rate is obtained by six computation cycles on
uniform triangular meshes, where the mesh size h is divided by two for each cycle.
The behavior of the H1(Ω) semi-norm errors for the approximated solution versus
the mesh size h is checked.

774 S. LEE, T. KADEETHUM, AND H. NICK

The results presented in Table 1 show that the lowest (optimal) β values for
SIPG, (θ = 1) for each case, are higher than those for IIPG (θ = 0). Besides,
the smallest β values increase as k increases. However, the choice of linear solver,
either direct or iterative solver, did not influence the results. These computations
are implemented by using FEniCS [79], and the direct solver used in this problem
is the lower-upper decomposition (LU). In contrast, the conjugate gradient (CG)
method with the algebraic multigrid methods (AMG) method preconditioner [80]
are employed for an iterative scheme.

Table 1. The lowest β value that provides the optimal error con-
vergence rate solution with different k, θ, and linear solver.

k
SIPG (θ = 1) IIPG (θ = 0)

direct solver iterative solver direct solver iterative solver
1 1.11 1.11 0.83 0.83
2 2.80 2.80 2.74 2.74
3 5.79 5.79 5.68 5.68
4 9.99 9.99 9.79 9.79
5 14.97 14.97 14.67 14.67

5.1.2. Effect of interior penalty parameter for linear solvers and optimal
choice by employing machine learning algorithms. However, it is observed
that the choice of β values significantly impacts the number of iterations for the lin-
ear solver. Figures 4 and 5 illustrate the number of iterations of the linear solver for
SIPG and IIPG, respectively. In the beginning, the number of iterations decreases
when β decreases, but when β approaches zero, the number of iterations increases
dramatically. Subsequently, the solver becomes unstable and doesn’t converge to
the solution.

Thus, we confirmed that the linear solvers’ choice of β is essential. To be precise,
if β is too large, the iteration number is high, but also, the too-small value of β can
cause a high number of iterations and, more importantly, non-convergence.

To find the optimal β for the iterative solver, we need to consider β, which
requires a minimum of the linear solver iteration, provides stable solutions, and
ensures optimal error convergence rate. Hence, we first identify the parameters
that impact the number of iterations (dependent variables) by employing the chi-
squared test [64]. Table 2 illustrates the test results, and p-values for each variable
are presented. We note that θ, β, h, and k have a p-value of less than 0.025;
therefore, we include these variables as independent variables for further predictive
model development. The κ, however, does not affect the results since κ is included
in a coefficient of the penalty term as shown in (21).

Subsequently, from the results in Table 2, we employ the linear and nonlinear
machine learning algorithms that were presented in Section 4 to find the optimal
choice of β, which ensures both the minimum iteration number for the linear solver
and optimal convergence rate (stability). To elaborate, we want to find a range of β
that could guarantee stability, see Table 1, while utilizing the minimum number of
iterations. Figures 4 and 5 present the number of iterations with different β within
various range of κ. The number of iterations highly depends on the linear solver
with different κ values in the lower-order cases.

In this problem, we have a total of 182,881 data sets (all the values we plot
on Figures 4 and 5). As discussed in both sections 4.1 and 4.2, the data sets are

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 775

Figure 4. Number of linear iterative solver of SIPG for (a) k = 1,
(b) k = 2, (c) k = 3, (d) k = 4, and (e) k = 5. Note that each line
represents a different value of κ, and the error bar shows the mean
and standard deviation (± 1 SD) of each number of iterations; see
(d) for an explanation. We observe that each β variability arises
because we conducted runs with various values of κ for each β. The
linear solver significantly influences the number of iterations, espe-
cially in lower k cases, where different κ values play a crucial role.
However, the impact of κ becomes less prominent as k increases.

Table 2. p-value results for each explanatory variable for the el-
liptic equation.

Variable p-value
θ ≈ 0.00
κ ≈ 1.00
β ≈ 0.00
h ≈ 0.00
k ≈ 0.00

split by training, validation, and test sets using the splitting ratio [0.8, 0.1, 0.1].
Thus, the number of training sets, validation sets, and test sets are 0.8× 182, 881,
0.1 × 182, 881, and 0.1 × 1828, 81, respectively. We use the training set to train
the linear and nonlinear machine learning algorithms. The validation set is for
tuning the hyperparameters for the nonlinear ANN models, and the test set is for
comparing performances between the linear and nonlinear algorithms.

First, we begin with the linear algorithm by building the multi-variable regression
[64] as follows:

number of iteration = γ0 + γ1 × θ + γ2 × β + γ3 × h+ γ4 × k,(37)

776 S. LEE, T. KADEETHUM, AND H. NICK

Figure 5. Number of linear iterative solver of IIPG for (a) k = 1,
(b) k = 2, (c) k = 3, (d) k = 4, and (e) k = 5. Note that each line
represents a different value of κ, and the error bar shows the mean
and standard deviation (± 1 SD) of each number of iterations; see
(d) for an explanation. We observe that each β variability arises
because we conducted runs with various values of κ for each β. The
linear solver significantly influences the number of iterations, espe-
cially in lower k cases, where different κ values play a crucial role.
However, the impact of κ becomes less prominent as k increases.

where γ0 = 16.93, γ1 = −1.11, γ2 = 0.21, γ3 = −9.85, and γ4 = 0.02. These
parameters provide the minimum value (≤ 1× 10−4) of MSE value (28). Then, we
obtain the r2 and explained variance score (EVS) as

(38) r2 = 0.60 and EVS = 0.60,

by (29) and (32) as expalined in section 4.
Secondly, to compare the above linear algorithm with the nonlinear ANN algo-

rithm, we construct the nonlinear ANN algorithm by using four inputs (θ, β, h, and
k and one output (number of iteration) as presented in Figure 6. For simplicity,
we assume each hidden layer has the same number of neurons, and the Rectified
Linear Unit (ReLU) is used as an activation function for each hidden layer neuron.
ADAM [75] is used to minimize the loss function, which is MSE (28) in this case.

Table 3 illustrates that the MSE of the validation set is generally decreased as
Nhl and Nn are increased. Since we observe that the neural network performance
is not significantly improved when Nhl > 2 and Nn > 80, which shows the sign of
overfitting, we choose Nhl = 2 and Nn = 80 for the test set. Then, the final results
for the nonlinear ANN algorithm give

(39) r2 = 0.98 and EVS = 0.98.

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 777

...

θ

β

h

k

H1

Hn

number of iteration

Input Layer Hidden Layer Output Layer

Figure 6. Neural network architecture used for the elliptic prob-
lem with the exact continuous solution. The number of hidden
layers, Nhl, and the number of neurons for each hidden layer, Nn,
are used as the sensitivity analysis parameters. H1 and Hn repre-
sent the numbering of each neuron in each hidden layer.

Table 3. Elliptic equation with the exact continuous solution:
Mean squared error (MSE) values of the validation set for different
number of hidden layers Nhl and different number of neurons per
layer Nn.

Nhl

Nn 10 20 40 80

2 4.27 1.41 1.20 0.95
4 2.21 1.43 2.13 1.58
8 3.60 1.74 1.60 0.98

By comparing (38) and (39), we note that the results from the nonlinear ANN (39)
illustrate the significant improvement of the prediction performance as the r2 and
EVS are improved from the linear algorithm (multi-variable linear regression) (38)
significantly.

5.1.3. The effect of the continuity of the solutions and a heterogeneous
coefficient. Next, we investigate the effect on the choice of optimal β by the
continuity of the solutions, heterogeneity of κ, and θ values. In most realistic
scenarios, these material parameters are discontinuous, and the interior penalty
scheme will provide an accurate solution with locally conservative flux [81, 54].

For the continuous solution, we take the same exact solution (36) as used in
section 5.1.1. However, in this example, we choose the heterogeneous coefficient by
setting:

(40) κ := κ sin(x+ y)I.

778 S. LEE, T. KADEETHUM, AND H. NICK

Next, for the discontinuous solution, we set the exact solution in Ω = [0, 1]
1

as:

(41) p =

2.0x

κ1

κ0 + κ1
if x ≤ 0.5,

(2x− 1)κ0 + κ1

κ0 + κ1
if x > 0.5,

where κ1 and κ2 represent multiplied coefficients for the 0 ≤ x ≤ 0.5 and 1.0 ≥ x >
0.5 subdomains, respectively. Here, κ1 6= κ2, and κ1 and κ2 have the same range
of [1.0, 1.0× 10−18]. Then κ for the discontinuous solution is

(42) κ :=

{
κ1I if 0.0 ≤ x ≤ 0.5,

κ2I if 1.0 ≥ x > 0.5.

Subsequently, the boundary conditions are applied as follows:

(43) p =

{
0.0 at x = 0.0,

1.0 at x = 1.0.

To find the optimal β, which provides the optimal error convergence rate, we
employ the Algorithm 1. In this case, we set k = 1 but vary the choice of linear
solver, θ, and the exact solutions (continuous/discontinuous). The optimal β results
are shown in Table 4. The results of SIPG illustrate the similarity between the
continuous and discontinuous solutions. The results of IIPG, however, show a
discrepancy as to the lowest β values that provide the optimal convergence rate
solution, which are different between the continuous and discontinuous solutions.
The type of solver, direct and iterative solvers, does not influence the results.

Table 4. The lowest β value that provides the optimal conver-
gence rate solution with a different type of exact solution (con-
tinuous or discontinuous), θ, and linear solver. Note that κ is
heterogeneous, and k = 1.

exact solution
SIPG IIPG

direct solver iterative solver direct solver iterative solver
continuous (36) 1.11 1.11 0.83 0.83

discontinuous (41) 1.11 1.11 0.89 0.89

5.1.4. Effect of interior penalty parameter for linear solvers and optimal
choice by employing machine learning algorithms. Similar to the results
for the continuous solution presented in the previous section 5.1.2, the choice of
β influences the number of linear iterative solvers significantly, as illustrated in
Figure 7. In short, when β is increased, the number of iterations increases, while
the number of iterations increases sharply before the solution becomes unstable.

To predict the optimal β for the iterative solver, we employ a similar approach
that was used for the continuous solution in section 5.1.2. First, we evaluate each
independent variable using the chi-squared test. In this example, we have a total
of 57,835 data points. The result for the chi-squared test is provided in Table 5. It
is observed that θ, β, and h have a p-value of less than 0.025. Hence, we include
these variables as independent variables for further predictive model development.
Then, the developed multi-variable regression [64] reads:

number of iteration = α+ γ1 × θ + γ2 × β + γ3 × h,(44)

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 779

0 25 50 75 100
β [-]

10

15

20

25

30

35

40

45

nu
m

be
ro

fi
te

ra
tio

n
[-

]

(a)

0 25 50 75 100
β [-]

10

20

30

40

50

nu
m

be
ro

fi
te

ra
tio

n
[-

]

(b)

0 25 50 75 100
β [-]

10

20

30

40

50

60

nu
m

be
ro

fi
te

ra
tio

n
[-

]

(c)

0 25 50 75 100
β [-]

10

20

30

40

50

60

70

nu
m

be
ro

fi
te

ra
tio

n
[-

]

(d) mean + 1SD

mean - 1SD

mean

Figure 7. Number of iterations for linear iterative solver with
heterogeneous κ. (a) and (b) are the results for the continuous
solution (36) by using SIPG and IIPG, respectivley. (c) and (d)
are the results for the discontinuous solution (41) by using SIPG
and IIPG, respectivley. Note that each line represents a different
value of κ for the continuous solution, and κ1 and κ2 for the dis-
continuous solution. The error bar shows the mean and standard
deviation (± 1 SD) of each number of iterations; see (d) for an
explanation. We observe that the variability in each β arises be-
cause we conducted runs with various values of κ for each β. The
linear solver significantly influences the number of iterations, espe-
cially in lower k cases, where different κ values play a crucial role.
However, the impact of κ becomes less prominent as k increases.

Table 5. Elliptic equation with the exact discontinuous solution:
p-value results for each explanatory variable.

Variable p-value
θ ≈ 0.00
κ0 ≈ 1.00
κ1 ≈ 1.00
β ≈ 0.00
h ≈ 0.00

where α = 19.59, γ1 = −0.86, γ2 = 0.42, and γ3 = −19.51. Similar to the previous
equation (37), these parameters provide the minimum value (≤ 1× 10−4) of MSE
value (28). Other processes, including the splitting technique and optimization
solvers, are the same as those utilized in the previous model. Finally, the r2 and
EVS obtained for this method is

(45) r2 = 0.84, and EVS = 0.84.

780 S. LEE, T. KADEETHUM, AND H. NICK

Next, to compare the above results by the nonlinear ANN algorithm, we con-
struct the ANN model using three inputs (θ, β, and h) and one output (number
of iterations) as shown in Figure 8. The number of hidden layers (Nhl) and the
number of neurons (Nn) are used for tuning the hyperparameters. ReLU is used
as an activation function for each hidden layer neuron. ADAM and MSE (28) are
employed for the minimization method and loss function, respectively.

...

θ

β

h

H1

Hn

number of iteration

Input
layer

Hidden
layer

Output
layer

Figure 8. Neural network architecture used for the elliptic prob-
lem with the exact discontinuous solution. The number of hidden
layers, Nhl, and the number of neurons for each hidden layer, Nn,
are used as the sensitivity analysis parameters. H1 and Hn repre-
sent the numbering of each neuron in each hidden layer.

Table 6 presents that the MSE of the validation set is decreased as Nhl and Nn
are increased until Nhl = 8 and Nn = 40. Hence, we select Nhl = 8 and Nn = 40
for the test set. Then, we obtain the following final results

(46) r2 = 0.98, and EVS = 0.98.

The above results from the nonlinear ANN algorithms outperform the linear multi-
variable regression (45). From the results of the section 5.1, we can infer that
the performance of the nonlinear approximation algorithm is better than the linear
one; as a result, the relationship between the number of iterations and its dependent
variables is nonlinear.

Table 6. Elliptic equation with the exact discontinuous solution:
Mean squared error of the validation set for different number of
hidden layers Nhl and different number of neurons per layer Nn.

Nhl

Nn 10 20 40 80

2 5.49 1.57 3.16 1.67
4 1.93 1.53 1.71 1.63
8 1.44 2.34 1.43 1.56

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 781

5.2. Effect and optimal choice of interior penalty parameter for Biot’s
equations. In this example, we aim to investigate the effect of the interior penalty
β on the solution quality of Biot’s equations, where the elliptic flow equation is
coupled with the solid mechanics as described in Section 3.2. However, employing
DG approximation for the flow equation eliminates any spurious oscillations that
are observed when the continuous Galerkin (CG) is used (especially at material
interfaces where a large conductivity (κ) contrast is located) as presented in [55,
58], the quality of DG solutions may be influenced by the choice of β. Thus, we
employ the machine learning algorithm to find the optimal choice of β to avoid any
instabilities upon the given physical and numerical parameters. In the following
problems, we compare the performance of the linear logistic regression and nonlinear
classification ANN, where the predicted values are binaries.

In the computational domain Ω = [0, 1]
1
, the geometry and boundary conditions

are shown in Figure 9a. Here, κ is defined as:

(47) κ :=

{
κ1I if 0.0 ≤ x ≤ 0.5,

κ2I if 1.0 ≥ x > 0.5,

and we define the ratio between κ2 and κ1 as

(48) κmult :=
κ2

κ1
.

5.2.1. Effect and optimal choice of interior penalty parameter for Biot’s
system. In this section, we study the optimal choice of interior penalty parameter
β on the solution for Biot’s system. The physical parameters are set as µ = 10−6

kPa.s, ρ = 1000 kg/m3, K = 1000 kPa, Ks ≈ ∞ kPa, which leads to α ≈ 1, and
v = 0.25. In addition, we note that κ1 = 10−12m2 and κ2 = 10−16m2, and Lamé
coefficients λl and µl are calculated by the following equations:

(49) λl =
3Kv

1 + v
, and µl =

3K(1− 2v)

2(1 + v)
.

The numerical parameters are given as h = 0.05 m and ∆tn = 1.0 sec and the
boundary conditions are set to σD = [0, 1] kPa and pD = 0 Pa. In addition, LU
direct solver and SIPG (θ = 1) are used to solve the discretized system.

To motivate our work, for example, the numerical simulation results by com-
paring β = 1.1 and β = 50.0 are presented in Figure 9b. Figure 9b illustrates
that the choice of β can lead to different results in pressure solution, i.e., in the
case of β = 1.1, the pressure solution exhibits no spurious pressure oscillations. In
contrast, the oscillations appear when β = 50.0. Note that when β is too small,
the solution may also become unstable, as illustrated in the previous section for
the elliptic problem and discussed in [55] for Biot’s equations. Thus, seeking the
optimal penalty coefficient is crucial to obtain an accurate solution.

Next, we investigate the optimal choice of β by varying the physical parameters
using the procedure illustrated in Algorithm 2. The ranges of the input values
for all the test cases are given as; κ1 = [1.0 × 10−14, 1.0 × 10−8], κ2 = [1.0 ×
10−17, 1.0 × 10−14], κmult = [1.0 × 10−8, 1.0 × 101], β = [4.5 × 10−2, 2.0 × 10−8],
and h = [7.8× 10−3, 6.25× 10−2].

To determine the quality of the numerical solution, if the approximated solution
is stable and smooth with no spurious pressure oscillations, we denote it as ‘good.’
On the other hand, if we observe any spurious pressure oscillations from the non-
stable approximated solution, we denote it as ‘bad.’ Thus, in this case, we utilize

782 S. LEE, T. KADEETHUM, AND H. NICK

κ1

κ2

(a)

q = qD

p = pD

u.n = 0 0 500 1000
pressure [Pa]

0.0

0.2

0.4

0.6

0.8

1.0

di
st

an
ce

 [m
]

(b)

non-optimal β

optimal β

Figure 9. (a) Geometry and boundary conditions used in Biot’s
equations study and (b) pressure results for an example of the
effect of β on the solution quality.

the bool type variable Bool Quality for binary classification in which 1 indicates
‘good’ and 0 indicates ‘bad.’

Algorithm 2: Investigation procedure for Biot’s equations

Initialize sets of each variable; Bool Quality, κ, κmult, h, and β
for i < nκ1

, where nκ1
is the size of the specified κ1 list do

Assign κ1 := κ1 [i] I
for j < nκmult

, where nκmult
is the size of the specified κmult list do

Assign κ2 := κmult [j]× κ1

for k < nh, where nh is the size of the specified h list do
Assign h := h [k]
for l < nβ , where nβ is the size of the specified β list do

Assign β := β [l]
Solve the coupled Biot’s system: (20) and (25).
if linear solver converges then

if spurious nonphysical oscillation is detected then
Bool Quality = 0

else
Bool Quality = 1

end if
else
Bool Quality = 0

end if
end for

end for
end for

end for

Like the previous sections, we begin with the chi-squared test to find the statisti-
cally significant explanatory variables. In total, we have 14,141 cases (data points)
with 3,927 ‘good’(Bool Quality = 1) solutions and 10,214 ‘bad’(Bool Quality
= 0) solutions. The chi-squared test result is presented in Table 7, and it shows
that all variables, κ1, κ2, κmult, and h, have p-value less than 0.025. Therefore,

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 783

these variables are included as independent variables to develop the following pre-
dictive models. As discussed in both sections 4.1 and 4.2, the data sets are split by

Table 7. Biot’s equations: p-value results for each explanatory variable.

Variable p-value
κ1 ≈ 0.00
κ2 ≈ 0.00

κmult ≈ 0.00
β ≈ 0.00
h ≈ 0.01

training, validation, and test sets using the splitting ratio [0.8, 0.1, 0.1]. We employ
the training set to train the linear and nonlinear machine learning algorithms. The
validation set is for tuning the hyper-parameters for the nonlinear ANN models,
and the test set is for comparing performances between the linear and nonlinear
algorithms.

First, the multi-variable logistic regression [64] is defined as:

log

(
P(O = 1)

1− (P(O = 1))

)
= γ0 + γ1 × κ1 + γ2 × κ2 + γ3 × κmult + γ4 × β + γ5 × h,

(50)

where

(51) O =

{
1, if P(O = 1) ≥ 0.5

0, if P(O = 1) < 0.5.

Here, γ0 = −1.19, γ1 = −0.06, γ2 = 0.68, γ3 = 5.55, γ4 = −5.49, and γ5 = 0.32.
These parameters provide the minimum value (≤ 1× 10−4) of BCE value (33).

After applying the algorithm explained in the section 4 and 4.1, the computed
accuracy (34) of the logistic regression model is

ACC = 0.80,

and the confusion matrix is presented in Table 8. In table 8, we observe that the
number of ‘false positives’ is much higher than that of ‘false negatives,’ which may
result in the bad solution obtained from the finite element model. When our model
creates a ’false positive,’ we expect the simulation results to be stable and contain
no oscillation; however, the solution quality is bad.

Table 8. Biot’s equations: Confusion matrix of the logistic re-
gression for the test set.

total test set = 1415
Test set values

Good (1) Bad (0)

Predicted values
Good (1) 172 210
Bad (0) 74 959

Secondly, we develop the classification ANN model utilizing five inputs (κ1,κ2,
κmult, β, and h) and one output (Bool Quality)as shown in Figure 10 for this
problem. Table 9 illustrates the result for hyperparameters tuning, and it illustrates
that the ANN predictive performance is improved as Nhl and Nn are increased
up until Nhl = 4 and Nn = 80. Hence, we use Nhl = 4 and Nn = 80 to set the

784 S. LEE, T. KADEETHUM, AND H. NICK

Table 9. Biot’s equations: Accuracy of the validation set for dif-
ferent number of hidden layers Nhl and different number of neurons
per layer Nn.

Nhl

Nn 10 20 40 80 120

2 0.89 0.93 0.93 0.93 0.92
4 0.89 0.93 0.93 0.93 0.93
8 0.88 0.92 0.93 0.93 0.93
16 0.73 0.73 0.73 0.27 0.27
32 0.73 0.73 0.73 0.73 0.73

...

κ1

κ2

κmult

β

h

H1

Hn

Bool Quality

Input
layer

Hidden
layer

Ouput
layer

Figure 10. Neural network architecture used for Biot’s equation.
The number of hidden layers, Nhl, and the number of neurons for
each hidden layer, Nn, are used as the sensitivity analysis param-
eters. H1 and Hn represent the numbering of each neuron in each
hidden layer.

hyperparameters, and we compare the nonlinear classification ANN and the logistic
regression models’ performance. Here, ReLU is used as an activation function for
each neuron of the hidden layer, and the Sigmoid activation function is used for
the output layer. ADAM and BCE (33) are employed for the minimization method
and loss function, respectively.

Finally, the computed accuracy value (34) of the nonlinear classification ANN
using the above test set is

ACC = 0.93.

We note that this value is much higher than that of the logistic regression model.
Furthermore, the number of ‘false positive’ cases presented in Table 10 is much

lower than that of the linear logistic regression algorithm. This characteristic helps
to prevent the finite element model from producing bad-quality simulation results,
as discussed previously.

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 785

Table 10. Biot’s equations: Confusion matrix of the artificial
neural network (ANN) for the test set.

total test set = 1415
Test set values

Good (1) Bad (0)

Predicted values
Good (1) 367 15
Bad (0) 72 961

We note that one can leverage input features, including parameters like κ and/or
k, or any other pertinent parameters inherent in our system, to deduce optimal val-
ues for β. This capability stems from the inherent flexibility of neural networks
as versatile non-linear mapping tools. In this context, we have demonstrated this
proficiency by showcasing the neural network’s capacity to infer two distinct types
of quantities. Firstly, it can predict the number of iterations, a continuous variable,
emphasizing the network’s adaptability to capture nuanced relationships. Addi-
tionally, it excels in predicting a boolean quantity, representing solution quality
as either good or bad, thereby underscoring its effectiveness in handling discrete
variables associated with solution evaluation.

5.2.2. Application of the optimal choice obtained from the trained model
with different settings of the material parameters. In this final section, we
test the optimal choice of β obtained from the trained ANN model in the previous
section with the different settings of the material parameters. Thus, the objective
is to illustrate the capabilities of our computational framework by applying the
trained model (see Figure 10) to different settings, which is often required in realistic
scenarios with the uncertainty of the data.

We derive an optimal β from a model previously trained in Section 5.2.1. This
exemplifies the potential of extending the trained model to diverse settings. To ex-
pound on this, our input features remain consistent with those employed in Section
5.2.1, encompassing κ1, κ2, the ratio between κ1 and κ2, β, and h. The output of
interest is the Boolean Quality, denoting whether the solutions are categorized as
good or bad.

In essence, determining an optimal β hinges on the resultant Bool Quality; if a
specific β yields a Bool Quality of ’good,’ we classify that particular β as optimal
in this context. This approach allows us to identify and emphasize the effectiveness
of certain β values in producing desirable outcomes, contributing to a nuanced
understanding of the model’s performance across

Here, we assume that we have a new and different heterogeneity in the per-
meability value κ2 and the Biot’s coefficient α, and our trained ANN model has
no prior knowledge. The geometry of the domain and the boundary condition-
s used in this example are shown in Figure 11. In this example, κ2 values are
[9.36×10−14, 9.57×10−15] and α = [0.4, 0.6, 0.8, 1.0]. Other parameters are similar
to those of the previous example.

The results (pressure values) are shown in Figures 12 and 13 for t = 20 and
t = 120, respectively. Each time has a total of eight cases (with the choice of α and
κ2). Using the optimal β values from the trained ANN model from the previous
section with different heterogeneity still provides good predictions for the pressure
values without any spurious oscillations. We note that some oscillations in these
figures are due to interpolation from unstructured mesh to structured mesh for
plotting purposes.

786 S. LEE, T. KADEETHUM, AND H. NICK

Figure 11. Geometry used to test an application of the optimal
choice obtained from the trained model with different settings of
the material parameters.

log(2) = -30.0, = 0.4 log(2) = -30.0, = 0.6 log(2) = -30.0, = 0.8 log(2) = -30.0, = 1.0

log(2) = -32.28, = 0.4 log(2) = -32.28, = 0.6 log(2) = -32.28, = 0.8 log(2) = -32.28, = 1.0

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Figure 12. Pressure values for the eight different cases with dif-
ferent κ2 and α values at t = 20s.

When confronted with applying the framework to a problem devoid of a known
true solution, two avenues exist to explore this challenge. Notably, both approaches
necessitate users to construct a training set for the initial training of NN models.

The first approach aligns with our existing methodology, involving the utiliza-
tion of input featuresnamely, κ1, κ2, the ratio between κ1 and κ2, β, and h to
predict Bool Quality. This maintains consistency with our established framework,

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 787

log(2) = -30.0, = 0.4 log(2) = -30.0, = 0.6 log(2) = -30.0, = 0.8 log(2) = -30.0, = 1.0

log(2) = -32.28, = 0.4 log(2) = -32.28, = 0.6 log(2) = -32.28, = 0.8 log(2) = -32.28, = 1.0

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Figure 13. Pressure values for the eight different cases with dif-
ferent κ2 and α values at t = 120s.

wherein the NN model is trained to anticipate the qualitative outcome of solutions,
categorized as either ’good’ or ’bad.’

Conversely, the second approach deviates by employing input features that ex-
clude β but instead focuses on predicting β such that the finite element method
(FEM) solution remains stable, devoid of spurious oscillations. This alternative
strategy underscores the framework’s flexibility, showcasing its adaptability to d-
ifferent problem settings and objectives. By shifting the focus to the stability of
the FEM solution, users can gain insights into the behavior of β values that con-
tribute to stable outcomes, even in the absence of a ground truth solution for direct
comparison.

We aim to emphasize that beyond utilizing β as an input feature, we can harness
the broader spectrum of input features available, including parameters such as κ
and/or k, or any other relevant parameters inherent in our system. This expanded
set of inputs empowers us to deduce optimal values for β, showcasing the remarkable
adaptability of neural networks as versatile non-linear mapping tools.

The inherent flexibility of neural networks is manifested in their ability to seam-
lessly incorporate various input parameters, allowing for a more comprehensive
exploration of the solution space. In our current study, we have illustrated this
adaptability by exemplifying the neural network’s proficiency in inferring two dis-
tinct types of quantities. Firstly, it can predict the number of iterations, a con-
tinuous variable. This highlights the network’s adaptability and underscores its
capacity to capture nuanced relationships within the data.

Furthermore, the neural network excels in predicting a boolean quantity, discern-
ing solution quality as either good or bad. This success underscores its effectiveness
in handling discrete variables associated with solution evaluation. The framework

788 S. LEE, T. KADEETHUM, AND H. NICK

thus lays a solid foundation for further extension, demonstrating its applicability
to a wide range of problems. By leveraging a diverse set of input features, our
approach provides a robust and flexible solution, paving the way for addressing
complex challenges across various domains.

6. Conclusions

This paper presents the effect of choosing the interior penalty parameter of the
discontinuous Galerkin finite element methods for the elliptic problems and Biots
systems. The optimal choice of the interior penalty parameter results in stable
solutions, an optimum error convergence rate, and fewer iterations for the iterative
solver, eliminating any spurious numerical oscillation in the approximated solution-
s. We propose nonlinear approximation algorithms, regression, and classification
to predict the optimal choice of the interior penalty parameter. These nonlinear
approximation algorithms outperform the classic linear approximation algorithms.
Our proposed framework can benefit sensitivity analysis, uncertainty quantification,
or data assimilation modeling, where many simulations have to be performed with
different settings, e.g., mesh size, material properties, or different interior penalty
schemes. Moreover, it can be extended to any multiscale multiphysics problems.

Acknowledgments

SL is supported by National Science Foundation under Grant No. NSF DMS-
2208402. TK and HM have received funding from the Danish Hydrocarbon Re-
search and Technology Centre under the Advanced Water Flooding program. We
acknowledge developers and contributors of TensorFlow [70], Keras [71], Scikit-learn
[64], FEniCS [79], and Multiphenics [82] libraries.

References

[1] J. Nitsche, Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung

von teilräumen, die keinen randbedingungen unterworfen sind, in: Abhandlungen aus dem

mathematischen Seminar der Universität Hamburg, Vol. 36, Springer, 1971, pp. 9–15.
[2] J. Douglas, T. Dupont, Interior penalty procedures for elliptic and parabolic galerkin meth-

ods, in: Computing methods in applied sciences, Springer, 1976, pp. 207–216.

[3] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM
Journal on Numerical Analysis 15 (1) (1978) 152–161.

[4] P. Percell, M. F. Wheeler, A local residual finite element procedure for elliptic equations,

SIAM Journal on Numerical Analysis 15 (4) (1978) 705–714.
[5] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM

journal on Numerical Analysis 19 (4) (1982) 742–760.
[6] B. Rivière, M. F. Wheeler, Coupling locally conservative methods for single phase flow,

Computational Geosciences 6 (3) 269–284.

[7] B. Rivière, M. F. Wheeler, A discontinuous galerkin method applied to nonlinear parabolic
equations, in: Discontinuous Galerkin methods, Springer, 2000, pp. 231–244.

[8] B. Rivière, M. F. Wheeler, Discontinuous galerkin methods for flow and transport problems

in porous media, Communications in Numerical Methods in Engineering 18 (1) (2002) 63–68.
[9] B. Cockburn, C. Dawson, Some extensions of the local discontinuous galerkin method for

convection-diffusion equations in multidimensions, Mathematics of Finite Elements and Ap-

plications, 1999.
[10] B. Cockburn, C.-W. Shu, The local discontinuous galerkin method for time-dependent

convection-diffusion systems, SIAM Journal on Numerical Analysis 35 (6) (1998) 2440–2463.

[11] S. Sun, M. F. Wheeler, Discontinuous galerkin methods for coupled flow and reactive trans-
port problems, Applied Numerical Mathematics 52 (2) (2005) 273–298.

[12] S. Sun, M. F. Wheeler, Anisotropic and dynamic mesh adaptation for discontinuous galerkin
methods applied to reactive transport, Computer Methods in Applied Mechanics and Engi-

neering 195 (25-28) (2006) 3382 – 3405.

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 789

[13] I. Babuška, C. E. Baumann, J. T. Oden, A discontinuous hp finite element method for

diffusion problems: 1-d analysis, Computers & Mathematics with Applications 37 (9) (1999)
103–122.

[14] M. Ainsworth, A posteriori error estimation for discontinuous galerkin finite element approx-

imation, SIAM Journal on Numerical Analysis 45 (4) (2007) 1777–1798.
[15] M. Ainsworth, R. Rankin, Fully computable error bounds for discontinuous galerkin finite

element approximations on meshes with an arbitrary number of levels of hanging nodes, SIAM

Journal on Numerical Analysis 47 (6) (2010) 4112–4141.
[16] M. Ainsworth, R. Rankin, Constant free error bounds for nonuniform order discontinuous

galerkin finite-element approximation on locally refined meshes with hanging nodes, IMA
Journal of Numerical Analysis 31 (1) (2009) 254–280.

[17] Y. Epshteyn, B. Rivière, Estimation of penalty parameters for symmetric interior penalty

galerkin methods, Journal of Computational and Applied Mathematics 206 (2) (2007) 843–
872.

[18] K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method,

Journal of Computational Physics 205 (2) (2005) 401–407.
[19] A. Ern, A. F. Stephansen, A posteriori energy-norm error estimates for advection-diffusion

equations approximated by weighted interior penalty methods, Journal of Computational

Mathematics (2008) 488–510.
[20] A. Ern, A. F. Stephansen, P. Zunino, A discontinuous galerkin method with weighted averages

for advection–diffusion equations with locally small and anisotropic diffusivity, IMA Journal

of Numerical Analysis 29 (2) (2009) 235–256.
[21] M. Ainsworth, R. Rankin, A note on the selection of the penalty parameter for discontinuous

galerkin finite element schemes, Numerical Methods for Partial Differential Equations 28 (3)
(2012) 1099–1104.

[22] M. W. Libbrecht, W. S. Noble, Machine learning applications in genetics and genomics,

Nature Reviews Genetics 16 (6) (2015) 321.
[23] H. Brink, J. Richards, M. Fetherolf, Real-world machine learning, Manning Publications Co.,

2016.

[24] L. Thomas, Jmp start statistics: a guide to statistics and data analysis using jmp and jmp
in software, Biometrics 55 (4) (1999) 1319.

[25] G. A. Seber, A. J. Lee, Linear regression analysis, Vol. 329, John Wiley & Sons, 2012.

[26] N. Cressie, Spatial prediction and ordinary kriging, Mathematical Geology 20 (4) (1988)
405–421.

[27] I. J. Myung, Tutorial on maximum likelihood estimation, Journal of Mathematical Psychology

47 (1) (2003) 90–100.
[28] J. Y. Park, P. C. Phillips, Nonlinear regressions with integrated time series, Econometrica

69 (1) (2001) 117–161.

[29] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[30] T. Chilimbi, Y. Suzue, J. Apacible, K. Kalyanaraman, Project adam: Building an efficient

and scalable deep learning training system, in: 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), 2014, pp. 571–582.

[31] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, E. P. Xing, Geeps: Scalable deep learning

on distributed gpus with a gpu-specialized parameter server, in: Proceedings of the Eleventh
European Conference on Computer Systems, ACM, 2016, p. 4.

[32] G. Hinton, N. Srivastava, K. Swersky, Neural networks for machine learning lecture 6a

overview of mini-batch gradient descent, Cited on 14 (2012) 8.
[33] J.-X. Wang, J.-L. Wu, H. Xiao, Physics-informed machine learning approach for reconstruct-

ing reynolds stress modeling discrepancies based on dns data, Physical Review Fluids 2 (3)

(2017) 034603.
[34] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learn-

ing framework for solving forward and inverse problems involving nonlinear partial differential

equations, Journal of Computational Physics 378 (2019) 686–707.
[35] L. Swiler, M. Gulian, A. Frankel, C. Safta, J. Jakeman, A survey of constrained Gaussian

process regression: approaches and implementation challenges, Journal of Machine Learning
for Modeling and Computing 1 (2) (2020) 119–156.

[36] S. Lee, T. Kadeethum, Physics-informed neural networks for solving coupled flow and trans-

port system., in: AAAI Spring Symposium: MLPS, 2021.

790 S. LEE, T. KADEETHUM, AND H. NICK

[37] S. Goswami, K. Kontolati, M. Shields, G. Karniadakis, Deep transfer learning for partial

differential equations under conditional shift with deeponet, arXiv preprint arXiv:2204.09810
(2022).

[38] V. Oommen, K. Shukla, S. Goswami, R. Dingreville, G. Karniadakis, Learning two-phase mi-

crostructure evolution using neural operators and autoencoder architectures, arXiv preprint
arXiv:2204.07230 (2022).

[39] A. Oishi, G. Yagawa, Computational mechanics enhanced by deep learning, Computer Meth-

ods in Applied Mechanics and Engineering 327 (2017) 327–351.
[40] P. Antonietti, M. Caldana, L. Dede, Accelerating algebraic multigrid methods via artificial

neural networks, arXiv preprint arXiv:2111.01629 (2021).
[41] V. Silva, P. Salinas, M. Jackson, C. Pain, Machine learning acceleration for nonlinear solvers

applied to multiphase porous media flow, Computer Methods in Applied Mechanics and

Engineering 384 (2021) 113989.
[42] P. Antonietti, E. Manuzzi, Refinement of polygonal grids using convolutional neural networks

with applications to polygonal discontinuous galerkin and virtual element methods, Journal

of Computational Physics 452 (2022) 110900.
[43] T. Kadeethum, D. O’Malley, F. Ballarin, I. Ang, J. Fuhg, N. Bouklas, V. Silva, P. Salinas,

C. Heaney, C. Pain, S. Lee, H. Viswanathan, H. Yoon, Enhancing high-fidelity nonlinear

solver with reduced order model, Scientific Report 12 (1) (2022c) 20229.
[44] M. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics 12 (2)

(1941) 155–164.

[45] O. Coussy, Poromechanics, John Wiley & Sons, 2004.
[46] J. Jaeger, N. Cook, R. Zimmerman, Fundamentals of Rock Mechanics, 4th Edition, Wiley-

Blackwell, 2010.
[47] A. Ern, A. F. Stephansen, P. Zunino, A discontinuous Galerkin method with weighted av-

erages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA

Journal of Numerical Analysis 29 (2) (2009) 235–256.
[48] R. Stenberg, Mortaring by a method of J. A. Nitsche, in: Computational mechanics (Buenos

Aires, 1998), Centro Internac. Métodos Numér. Ing., Barcelona, 1998, pp. CD–ROM file.

[49] M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coef-
ficients, Computational Methods in Applied Mathematics 3 (1) (2003) 76–85.

[50] E. Burman, P. Zunino, A domain decomposition method based on weighted interior penalties

for advection-diffusion-reaction problems, SIAM Journal on Numerical Analysis 44 (4) (2006)
1612–1638.

[51] D. A. Di Pietro, A. Ern, J.-L. Guermond, Discontinuous Galerkin methods for anisotropic

semidefinite diffusion with advection, SIAM Journal on Numerical Analysis 46 (2) (2008)
805–831.

[52] P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-

diffusion-reaction problems, SIAM Journal on Numerical Analysis 39 (6) (2002) 2133–2163
(electronic).

[53] C. Dawson, S. Sun, M. F. Wheeler, Compatible algorithms for coupled flow and transport,
Computed Methods Applied Mechanics and Engineering. 193 (23-26) (2004) 2565–2580.

[54] S. Lee, Y.-J. Lee, M. F. Wheeler, A locally conservative enriched galerkin approximation and

efficient solver for elliptic and parabolic problems, SIAM Journal on Scientific Computing
38 (3) (2016) A1404–A1429.

[55] J. Choo, S. Lee, Enriched Galerkin finite elements for coupled poromechanics with local mass

conservation, Computer Methods in Applied Mechanics and Engineering 341 (2018) 311–332.
[56] S. Lee, S.-Y. Yi, Locking-free and locally-conservative enriched galerkin method for poroe-

lasticity, Journal of Scientific Computing 94 (1) (2023) 26.

[57] S.-Y. Yi, S. Lee, L. Zikatanov, Locking-free enriched galerkin method for linear elasticity,
SIAM Journal on Numerical Analysis 60 (1) (2022) 52–75.

[58] T. Kadeethum, H. Nick, S. Lee, C. Richardson, S. Salimzadeh, F. Ballarin, A Novel Enriched

Galerkin Method for Modelling Coupled Flow and Mechanical Deformation in Heterogeneous
Porous Media, in: 53rd US Rock Mechanics/Geomechanics Symposium, American Rock Me-

chanics Association, New York, NY, USA, 2019.
[59] Y. Chen, Y. Luo, M. Feng, Analysis of a discontinuous galerkin method for the biots consol-

idation problem, Applied Mathematics and Computation 219 (17) (2013) 9043–9056.

[60] P. J. Phillips, M. F. Wheeler, A coupling of mixed and continuous galerkin finite element
methods for poroelasticity i: the continuous in time case, Computational Geosciences 11

(2007) 131–144.

IPDG METHOD FOR BIOT’S SYSTEM BY EMPLOYING MACHINE LEARNING 791

[61] T. Kadeethum, S. Lee, H. Nick, Finite element solvers for biots poroelasticity equations in

porous media, Mathematical Geosciences 52 (2020) 977–1015.
[62] T. Kadeethum, H. M. Nick, S. Lee, F. Ballarin, Enriched galerkin discretization for mod-

eling poroelasticity and permeability alteration in heterogeneous porous media, Journal of

Computational Physics 427 (2021) 110030.
[63] R. E. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probability and statistics for engineers and

scientists, Vol. 5, Macmillan New York, 1993.

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[65] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python,

[Online; accessed <today>] (2001–). URL http://www.scipy.org/

[66] L. Deng, D. Yu, et al., Deep learning: methods and applications, Foundations and Trends®
in Signal Processing 7 (3–4) (2014) 197–387.

[67] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553) (2015) 436.
[68] H. N. Mhaskar, T. Poggio, Deep vs. shallow networks: An approximation theory perspective,

Analysis and Applications 14 (06) (2016) 829–848.

[69] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Cor-
rado, W. Chai, M. Ispir, et al., Wide & deep learning for recommender systems, in: Pro-

ceedings of the 1st workshop on deep learning for recommender systems, ACM, 2016, pp.

7–10.
[70] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous systems, software available from

tensorflow.org (2015). URL https://www.tensorflow.org/

[71] F. Chollet, et al., Keras, https://keras.io (2015).
[72] S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint arX-

iv:1609.04747 (2016).

[73] L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of
COMPSTAT’2010, Springer, 2010, pp. 177–186.

[74] R. Ge, F. Huang, C. Jin, Y. Yuan, Escaping from saddle pointsonline stochastic gradient for

tensor decomposition, in: Conference on Learning Theory, 2015, pp. 797–842.
[75] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arX-

iv:1412.6980 (2014).

[76] G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical learning, Vol.
112, Springer, 2013.

[77] M. Kuhn, K. Johnson, Applied predictive modeling, Vol. 26, Springer, 2013.
[78] S. J. Russell, P. Norvig, Artificial intelligence: a modern approach, Malaysia; Pearson Edu-

cation Limited,, 2016.

[79] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M. E. Rognes, G. N. Wells, The FEniCS Project Version 1.5, Archive of Numerical Software

3 (100) (2015).

[80] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener,
V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, D. May, L. C. McInnes, R. T. Mills,

T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Users

Manual, Tech. Rep. ANL-95/11 - Revision 3.10, Argonne National Laboratory (2018).
[81] G. Scovazzi, M. Wheeler, A. Mikelic, S. Lee, Analytical and variational numerical methods

for unstable miscible displacement flows in porous media, Journal of Computational Physics

335 (2017) 444–496.
[82] F. Ballarin, G. Rozza, Multiphenics-easy prototyping of multiphysics problems in FEniCS

(2019).

792 S. LEE, T. KADEETHUM, AND H. NICK

Department of Mathematics, Florida State University

E-mail : lee@math.fsu.edu

Sandia National Laboratories, New Mexico, USA

E-mail : tkadeet@sandia.gov

Danish Offshore Technology Centre, Technical University of Denmark

E-mail : hamid@dtu.dk

