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A VOIGT-REGULARIZATION OF THE THERMALLY COUPLED

INVISCID, RESISTIVE MAGNETOHYDRODYNAMIC
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Abstract. In this paper, we prove the existence of weak solution and the uniqueness of strong
solution to a Voigt-regularization of the three-dimensional thermally coupled inviscid, resistive
MHD equations. We also propose a fully discrete scheme for the considered problem, which is
proven to be stable and convergent. All computational results support the theoretical analysis

and demonstrate the effectiveness of the presented scheme.
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1. Introduction

The incompressible magnetohydrodynamic (MHD) describes the dynamic be-
havior of an electrically conducting fluid under the influence of a magnetic field,
and has a wide range of applications in scientific and engineering, such as elec-
tromagnetic pumping, liquid metal, electrolyte, and so on (see [1, 2, 3, 4, 5]). It
consists of a viscous, incompressible fluid which owns the property of electric cur-
rent conduction and interacting with electromagnetic induction. The MHD flow
has a multi-physics phenomenon: the magnetic field changes the momentum of the
fluid through the Lorenz force, and conversely, the conducting fluid influences the
magnetic field through electric currents. Additionally, if the buoyancy effect cannot
be neglected in the momentum equation due to temperature differences in the con-
ductive flow, then the incompressible MHD equations are usually coupled to the
heat equation. In this way, multiple physical fields (velocity, pressure, magnetic
and temperature) will be coupled in the MHD system.

Usually, the thermally coupled incompressible MHD system is given as follows
[6]:

ut − ν∆u+ (u · ∇)u+∇(p+
1

2
|B|2)− (B · ∇)B = f + βθ,(1a)

∇ · u = 0,(1b)

Bt − µ∆B + (u · ∇)B − (B · ∇)u+∇q = ∇× g,(1c)

∇ ·B = 0,(1d)

θt − κ∆θ + u · ∇θ = Ψ,(1e)

with appropriate boundary and initial conditions. Here, ν ≥ 0 is the fluid viscosity,
µ ≥ 0 is the magnetic resistivity, κ is the thermal conductivity, β is the thermal
expansion coefficient, and the unknowns are the fluid velocity field u(x, t), the fluid
pressure p(x, t), the magnetic field B(x, t), the magnetic pressure q(x, t), and the
temperature field θ(x, t). In fact, by a posteriori, one can drive that ∇q ≡ 0.
Besides, the given function f is the external force, g is the known applied current,
and Ψ is the heat source. Note that these equations contain the three dimensional
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Navier-Stokes equations as a special case (namely B ≡ 0 and θ ≡ 0), and the
mathematical theory is far from complete.

Denote by P := p + 1
2 |B|2 a modified pressure, in this paper we study the

following Voigt-regularization of (1) in inviscid and resistive case (i.e., ν = 0 and
µ ̸= 0).

ut − α2∆ut + (u · ∇)u+∇P − (B · ∇)B = βθ,(2a)

∇ · u = 0,(2b)

Bt − µ∆B + (u · ∇)B − (B · ∇)u+∇q = 0,(2c)

∇ ·B = 0,(2d)

θt − κ∆θ + u · ∇θ = 0,(2e)

(u,B, θ)|t=0 = (u0,B0, θ0),(2f)

where α2∆ut is the Voigt term and α > 0 is a regularization parameter. Moreover,
when α = 0, we formally retrieve (1) by adding forcing terms to (2a), (2c) and (2e),
and reintroducing a viscous term ν∆u to the right-hand side of (2a).

The Voigt (also written Voight) term was originally proposed by Voigt in [7] for
viscoelastic fluids. Viscoelasticity is the property of a material that, under stress
and deformation, exhibits both viscous and elastic characteristics. Unlike the Kelvin
stress-strain relation [8], Voigt has derived a system of equations that governs the
behavior of elastic solids with viscous properties, which is known today as the
Kelvin-Voigt equations [7]. In [9], the Navier-Stokes-Voigt (NSV) equations were
firstly introduced by Oskolkov as a model of Kelvin-Voigt fluids in which α denotes
a material parameter connected to a characteristic length of viscoelastic effects.
The authors also pointed out that the NSV equations have a real physical sense,
and describe the flow of a viscous incompressible Newtonian fluid which requires
α2

ν units of time in order to be set in motion under the action of a suddenly applied
force. The NSV equations were proposed by Cao et al. [10] as a regularizaion of the
Euler equations and Navier-Stokes equations which suggested a smaller resolution
requirement in large scale computations.

In the last several decades, many analyses and applications regarding the Voigt
regularization have been studied (see, e.g., [11, 12, 13, 14, 15, 16, 17]). The Voigt
regularization enjoys a feature that it is inviscid and does not require any artificial
boundary conditions to prove the global existence and uniqueness of strong solu-
tions [10]. It is also simpler than the nonlinear viscosity model of Ladyzhenskaya
[18] and Smagorinsky [19]. Due to these benefits, the ability to adapt an existing
CFD code to the Voigt regularization without intrusion has great interest. In [20],
Kuberry et al. proposed a Voigt regularization algorithm for the Navier-Stokes e-
quations. Numerical tests show that the Voigt regularization algorithm on a coarse
mesh produces good approximations to higher Reynolds number. Later on, Layton
and Rebholz [21] found that the regularization parameter α has effect of slowing the
temporal evolution; that is, compared to the usual solutions of the Navier-Stokes
equations, the NSV approximations have a longer relaxation time and damped ef-
fects decay more slowly. The statistical properties of the NSV model have also
been investigated computationally, using a phenomenological model of turbulence
known as the Sabra shell model [22]. The results indicate that the NSV model may
capture important statistical features of the Navier-Stokes equations, and therefore
give motivation for it to be investigated for use in numerical simulations. Further-
more, in the context of numerical computations, the NSV system appears to have



478 X. YANG, P. HUANG, AND Y. HE

less stiffness than the Navier-Stokes system (see, e.g., [23, 22]). For more discussion
of the NSV equations, the authors refer readers to [24, 25, 26, 27, 28, 29].

The MHD-Voigt model was introduced and studied [30], where the global well-
posedness was established for the three dimensional case, even with zero fluid vis-
cosity and zero magnetic resistivity. A similar model with Voigt regularization only
on the momentum equation, but with non-zero magnetic resistivity, was studied in
[31, 32]. Similar to the case of the NSV system, it has also been noted in [32] that
the three dimensional MHD-Voigt system (with non-zero viscosity and magnetic
resistivity) is globally well-posed under physical boundary conditions. Kuberry
et al. [20] proposed a second-order time discretization method and obtained un-
conditional stability and optimal convergence results for the MHD-Voigt model.
Additionally, Lu et al. [33] studied the MHD-Voigt equations with the finite el-
ement scheme for spatial discretization and the Crank-Nicolson-type scheme for
temporal discretization.

In this work, we consider a Voigt-regularization of the thermally coupled inviscid,
resistive MHD problem, and propose some theoretical analysis and numerical re-
sults. This paper is organized as follows. Section 2 introduces some basic notations
and mathematical preliminaries. In Section 3, we present the existence of weak
solution, and uniqueness of strong solution along with strong solution continuous
dependence on initial value. In the next section, we present a fully discrete scheme
of the considered thermally coupled MHD-Voigt problem and prove both stability
and convergence. Numerical results are exhibited in Section 5, which demonstrate
the effectiveness of the presented scheme.

2. Preliminaries

In this section, we introduce some preliminary material and notations which are
commonly used in the mathematical study of the considered fluid. We consider
the problem with periodic boundary conditions as [32]. Next, denote the function
space

V :=

{
ϕ ∈ F|∇ · ϕ = 0 and

∫
Ω

ϕ(x)dx = 0

}
,

where F is the set of all three dimensional vector-valued trigonometric polynomials
with periodic bounded domain Ω ⊂ Rd (d = 2 or 3). Here, we note that the restric-
tion to the region is only for the sake of simplifying the exposition, but essentially
the same computations in Section 3 can be carried out for an open bounded subset
of Rd with smooth boundary, as [34] for the Navier-Stokes equations.

We denote by Lp and W k
p the usual Lebesgue and Sobolev spaces over Ω,

Hk := W k
2 and define H and V to be the closures of V in L2 and H1, respec-

tively. Additionally, we denote by V ′ the dual space of V , and denote the action
of V ′ on V by ⟨·, ·⟩V ′ . Next, we introduce the usual L2 norm and its inner product
by ∥ · ∥ and (·, ·). The Hk norm and Lp (p ̸= 2) norm are denoted by ∥ · ∥k and
∥ · ∥Lp , respectively.

Now, we denote by Pσ : L2 → H the Leray-Helmholtz projection operator
and define the Stokes operator A := −Pσ∆. Notice that in the case of periodic
boundary condition, we have A = −∆ (see, e.g., [35]). It is known that A−1 : H →
D(A) := H2 ∩ V is a positive-definite, self-adjoint, compact operator, and there is
an orthonormal basis {wi}∞i=1 of H consisting of eigenvectors of A corresponding
to eigenvalues {λi}∞i=1 such that Awj = λiwj (see, e.g. [35, 36]). Next, let Hm :=
span{w1, . . . , wm} and Pm : H → Hm be the L2 orthogonal projection onto Hm

with respect to {wi}∞i=1.
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Moreover, it will use the following notation for the nonlinear term

(3) B(u,v) := Pσ((u · ∇)v),

for u,v ∈ V . The operator B defined in (3) is a bilinear form which can be extended
as a continuous map B : V × V → V ′. Furthermore, for all u,v,w ∈ V ,

(4) ⟨B(u,v),w⟩V ′ = −⟨B(u,w),v⟩V ′ and ⟨B(u,v),v⟩V ′ = 0.

Now, we give the following trilinear form b(·, ·, ·) : V × V × V → R by

b(u,v,w) := ⟨B(u,v),w⟩V ′ .

Throughout the paper, C is used to denote the generic constant different in
different occurrences and independent of mesh size, time step and the regularization
parameter α. The following lemmas, for instance see [37, 38] are largely used in
numerical analysis.

Lemma 2.1 (Differential Grönwall’s inequality). Let η(t) be a nonnegative, ab-
solutely continuous function on [0, T ], which satisfies for a.e. t the differential
inequality

η′(t) ≤ ϕ(t)η(t) + ψ(t) + C,

where ϕ(t) and ψ(t) are nonnegative, summable functions on [0, T ]. Then

(5) η(t) ≤ exp(

∫ t

0

ϕ(s)ds)

(
η(0) +

∫ t

0

ψ(s)ds+ C

)
,

for all 0 ≤ t ≤ T .

Lemma 2.2 (Discrete Grönwall’s inequality). Let ∆t, K and an, bn, cn, dn be non-
negative numbers such that for M ≥ 0

aM +∆t

M∑
n=0

bn ≤ ∆t

M∑
0

dnan +∆t

M∑
n=0

cn +K.

Furthermore, suppose that the time step satisfies ∆tdn < 1 for each n. Then

(6) aM +∆t
M∑
n=0

bn ≤ exp(∆t
M∑
n=0

dn)

(
∆t

M∑
n=0

cn +K

)
.

3. Well-posedness of solutions

This section is devoted to stating and proving the well-posedness of (2). We
mainly show the the existence of weak solution and uniqueness of strong solution.
Noticing the Helmholtz-Weyl decomposition theorem [34], we can derive the unique

decomposition of the temperature βθ = βθ̃ + βθ̄, where θ̃ := Pσθ ∈ H and βθ̄ ∈
G := {s ∈ L2 : s = ∇g, ∀g ∈ H1}. Then, based on the de Rham theorem
[36, 39, 30], we have

(7) s = ∇g if and only if ⟨s,v⟩V′ = 0 ∀v ∈ V.

In the following part, assume u0 ∈ V and B0, θ̃0 ∈ H to show existence without
uniqueness of weak solution. Additionally, for strong solution, assume u0,B0, θ̃0 ∈
V to obtain existence, uniqueness, and continuous dependence on initial data.
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3.1. Existence of weak solution. Consider (2) in a functional form. Making Pσ

act on (2), we obtain the following system (8), which is equivalent to (2) (see, e.g.,
[36] for the Navier-Stokes equations). Recalling the Helmholtz-Weyl decomposition

of the temperature above, we consider θ̃.

d

dt
(u+ α2Au) = B(B,B)−B(u,u) + βθ̃,(8a)

d

dt
B + µAB = B(B,u)−B(u,B),(8b)

d

dt
θ̃ + κAθ̃ = −B(u, θ̃),(8c)

u(0) = u0,B(0) = B0, θ̃(0) = θ̃0.(8d)

Note that one can recover p, q and θ̄ by using de Rham’s theorem (7) (see, e.g.,
[36, 39] for the Navier-Stokes equations).

Definition 3.1. Let u0 ∈ V,B0, θ̃0 ∈ H. Then (u,B, θ̃) is called a weak solution
to (8), on the time interval [0, T ], if

u ∈ C([0, T ], V ), B, θ̃ ∈ L2((0, T ), V ) ∩ Cw([0, T ],H),

du

dt
∈ L4((0, T ),H),

dB

dt
,
dθ̃

dt
∈ L2((0, T ), V ′),

and furthermore (u,B, θ̃) satisfies (8a) in the sense of L
4
3 ([0, T ], V ′) and (8b), (8c)

in the sense of L2([0, T ], V ′).

Under definition of the weak solution, we are now ready to state and prove the
existence of weak solution.

Theorem 3.1. Let u0 ∈ V and B0, θ̃0 ∈ H. Then (8) has a weak solution (u,B, θ̃)
for arbitrary T > 0.

Proof. We consider the following finite dimensional Galerkin approximation of (8).

Find um,Bm, θ̃m ∈ C1(0, T ;Hm) by solving

d

dt
(um + α2Aum) = PmB(Bm,Bm)− PmB(um,um) + βθ̃m,(9a)

d

dt
Bm + µABm = PmB(Bm,um)− PmB(um,Bm),(9b)

d

dt
θ̃m + κAθ̃m = −PmB(um, θ̃m),(9c)

Bm(0) = PmB0,um(0) = Pmu0, θ̃m(0) = Pmθ̃0.(9d)

Applying the operator (I + α2A)−1 to (9a), we see that (9) is equivalent to an
ordinary differential equations ẏ = F (y). By the Picard-Lindelöf Theorem [40],
this system has a unique solution on [0, Tmax), which is the maximal interval for
the existence and uniqueness of solution.

Now, we prove Tmax = ∞ by contradiction. Supposing Tmax <∞, we have
(10)

lim
t→Tmax

∥um(t)∥ = ∞ or lim
t→Tmax

∥Bm(t)∥ = ∞ or lim
t→Tmax

∥θ̃m(t)∥ = ∞,

otherwise we could use the Picard-Lindelöf Theorem to extend the solution further
in time, contradicting the definition of Tmax. In fact, take the inner product of (9a)
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with um(t), (9b) with Bm(t) and (9c) with θ̃m(t) for t ∈ [0, Tmax), respectively.
Using (4) on the ensuing equations, we have

1

2

d

dt
(∥um∥2 + α2∥∇um∥2) = b(Bm,Bm,um) + (βθ̃m,um),(11a)

1

2

d

dt
∥Bm∥2 + µ∥∇Bm∥2 = −b(Bm,Bm,um),(11b)

1

2

d

dt
∥θ̃m∥2 + κ∥∇θ̃m∥2 = 0.(11c)

Integrating (11c) with respect to t from 0 to t yields

(12) ∥θ̃m(t)∥2 + 2κ

∫ t

0

∥∇θ̃m∥2dt = ∥θ̃m(0)∥2 ≤ ∥θ̃0∥2 <∞.

Next, adding (11a) and (11b), and utilizing (12) give

d

dt
(∥um∥2 + α2∥∇um∥2 + ∥Bm∥2) + 2µ∥∇Bm∥2 ≤ 2∥um∥2 + 2∥βθ̃0∥2.(13)

Apply the differential Grönwall’s inequality (5) on (13)

∥um∥2 ≤ exp(2Tmax)
(
∥u0∥2 + 2∥βθ̃0∥2

)
=: K1,(14)

and then, combining (13) and (4.3), we arrive at

(15)
d

dt
(∥um∥2 + α2∥∇um∥2 + ∥Bm∥2) + 2µ∥∇Bm∥2 ≤ 2K1 + 2∥βθ̃0∥2 =: K2.

Integrating (15) with respect to t from 0 to t leads to

∥um(t)∥2 + α2∥∇um(t)∥2 + ∥Bm(t)∥2 + 2µ

∫ t

0

∥∇Bm∥2ds

= K2t+ ∥um(0)∥2 + α2∥∇um(0)∥2 + ∥Bm(0)∥2

≤ (Kα
3 )

2 := K2T
max + ∥u0∥2 + α2∥∇u0∥2 + ∥B0∥2 <∞,(16)

which and (12) contradict (10). Hence, Tmax = ∞ and (9) has a unique solution

(um,Bm, θ̃m) for arbitrary T > 0.
Additionally, according to (12) and (16), for fixed but arbitrary T > 0, we gain

um is bounded in L∞([0, T ], V ),(17a)

Bm is bounded in L∞([0, T ],H) ∩ L2([0, T ], V ),(17b)

θ̃m is bounded in L∞([0, T ],H) ∩ L2([0, T ], V ),(17c)

uniformly with respect to m.
Moreover, we will extract subsequences of {um}, {Bm} and {θ̃m} which con-

verge in L2((0, T ),H) by using the Aubin compactness theorem (see, e.g., [41, 36]).

To satisfy the hypotheses of this theorem, we will show that
dum

dt
is uniformly

bounded in L4((0, T ),H) ↩→ L2((0, T ), V ′), and
dBm

dt
,
dθ̃m
dt

are uniformly bounded

in L2((0, T ), V ′), with respect to m.
In fact, from (9a) and (16), (12), (4), we arrive at

∥(I + α2A)
dum

dt
∥D(A)′

≤ ∥PmB(Bm,Bm)∥D(A)′ + ∥PmB(um,um)∥D(A)′ + ∥βθ̃m∥D(A)′
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= sup
v∈D(A)

|b(Bm,Bm, Pmv)|
∥v∥D(A)

+ sup
v∈D(A)

|b(um,um, Pmv)|
∥v∥D(A)

+ sup
v∈D(A)

∣∣∣(βθ̃m,v)∣∣∣
∥v∥D(A)

= sup
v∈D(A)

|b(Bm, Pmv,Bm)|
∥v∥D(A)

+ sup
v∈D(A)

|b(um, Pmv,um)|
∥v∥D(A)

+ sup
v∈D(A)

∣∣∣(βθ̃m,v)∣∣∣
∥v∥D(A)

≤ C(∥Bm∥ 3
2 ∥∇Bm∥ 1

2 + ∥um∥ 3
2 ∥∇um∥ 1

2 + ∥βθ̃m∥2)

≤ C((Kα
3 )

3
2 ∥∇Bm∥ 1

2 + (Kα
3 )

2α− 1
2 + ∥βθ̃0∥2),

(18)

as well as

∥(I + α2A)
dum

dt
∥V ′ ≤∥PmB(Bm,Bm)∥V ′ + ∥PmB(um,um)∥V ′ + ∥βθ̃m∥V ′

= sup
v∈V

|b(Bm,Bm, Pmv)|
∥v∥V

+ sup
v∈V

|b(um,um, Pmv)|
∥v∥V

+ sup
v∈V

∣∣∣(βθ̃m,v)∣∣∣
∥v∥V

≤C(∥Bm∥ 1
2 ∥∇Bm∥ 3

2 + ∥um∥ 1
2 ∥∇um∥ 3

2 + ∥βθ̃m∥2)

≤C((Kα
3 )

1
2 ∥∇Bm∥ 3

2 + (Kα
3 )

2α− 3
2 + ∥βθ̃0∥2),(19)

where we have applied the Poincaré inequality, and the Sobolev embeddings and
interpolation inequality. Hence, the right-hand side (RHS) of (18) and (19) is

uniformly bounded in L4(0, T ) and L
4
3 (0, T ), respectively. Then (I + α2A)

dum

dt
is uniformly bounded in L4([0, T ],D(A)′) ∩ L

4
3 ([0, T ], V ′) with respect to m. By

applying the operator (I + α2A)−1, we have

(20)
dum

dt
is bounded in L4([0, T ],H) ∩ L 4

3 ([0, T ], V ),

uniformly with respect to m.

Now, we consider
dBm

dt
and

dθ̃m
dt

. From (9b) and (9c) we discover

∥dBm

dt
∥V ′ ≤ ∥PmB(Bm,um)∥V ′ + ∥PmB(um,Bm)∥V ′ + µ∥ABm∥V ′

≤ C∥Bm∥ 1
2 ∥∇Bm∥ 1

2 ∥∇um∥+ µ∥∇Bm∥

≤ C(Kα
3 )

3
2α−1∥∇Bm∥ 1

2 + µ∥∇Bm∥,

and

∥dθ̃m
dt

∥V ′ ≤ ∥PmB(um, θ̃m)∥V ′ + κ∥Aθ̃m∥V ′

≤ sup
v∈V

∣∣∣b(um, θ̃m, Pmv)
∣∣∣

∥v∥V
+ κ∥∇θ̃m∥

≤ ∥∇um∥∥∇θ̃m∥+ κ∥∇θ̃m∥ ≤ ((Kα
3 )α

−1 + κ)∥∇θ̃m∥.

Combine the above results, to deduce

(21)
dBm

dt
is bounded in L2([0, T ], V ′),
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and

(22)
dθ̃m
dt

is bounded in L2([0, T ], V ′),

uniformly with respect to m.
Therefore, by the Aubin compactness theorem, there exists a subsequence of

(um,Bm, θ̃m) (relabel as (um,Bm, θ̃m)) and elements u,B, θ̃ ∈ L2([0, T ],H) such
that

um → u strongly in L2([0, T ],H),(23a)

Bm → B strongly in L2([0, T ],H),(23b)

θ̃m → θ̃ strongly in L2([0, T ],H).(23c)

Furthermore, in view of (17), (20), (21) and (22), then recalling the Banach-
Alaoglu theorem [42], we can pass to additional subsequence (we again relabel as

(um,Bm, θ̃m)), to show that u ∈ L∞([0, T ], V ), B ∈ L∞([0, T ],H) ∩ L2([0, T ], V ),

θ̃ ∈ L∞([0, T ],H)∩L2([0, T ], V ), ut ∈ L4([0, T ],H)∩L 4
3 ([0, T ], V ),Bt ∈ L2([0, T ], V ′),

θ̃t ∈ L2([0, T ], V ′), and

um ⇀ u,Bm ⇀ B, θ̃m ⇀ θ̃ weakly in L2([0, T ], V ), as m→ ∞.(24)

Now fix k and take m ≥ k. Let w ∈ C1([0, T ],Hk) with w(T ) = 0 be arbitrarily
given. Take the inner product of (9) with w. Integrating with respect to t from 0
to T , we deduce

− (um(0),w(0))− α2(∇um(0),∇w(0))

−
∫ T

0

(um,wt)dt+ α2

∫ T

0

(∇um,∇wt)dt

=

∫ T

0

b(Bm,Bm, Pmw)dt−
∫ T

0

b(um,um, Pmw)dt+

∫ T

0

(βθ̃m,w)dt,(25a)

− (Bm(0),w(0))−
∫ T

0

(Bm,wt)dt+ µ

∫ T

0

(∇Bm,∇wt)dt

=

∫ T

0

b(Bm,um, Pmw)dt−
∫ T

0

b(um,Bm, Pmw)dt,(25b) ∫ T

0

b(um, θ̃m, Pmw)dt+ κ

∫ T

0

(∇θ̃m,∇wt)dt

=(θ̃m(0), w(0)) +

∫ T

0

(θ̃m, wt)dt.(25c)

Note that (25) holds with (um,Bm, θ̃m, Pm) replaced by (u,B, θ̃, I), where I is
the identity operator. In fact, employ (24) to discover∫ T

0

(um,wt)dt→
∫ T

0

(u,wt)dt, α2

∫ T

0

(∇um,∇wt)dt→ α2

∫ T

0

(∇u(t),∇wt)dt,∫ T

0

(βθ̃m,w)dt→
∫ T

0

(βθ̃,w)dt,

∫ T

0

(Bm,wt)dt→
∫ T

0

(B,wt)dt,

µ

∫ T

0

(∇Bm,∇w)dt→ µ

∫ T

0

(∇B,∇w)dt,

∫ T

0

(θ̃m,wt)dt→
∫ T

0

(θ̃,wt)dt,

κ

∫ T

0

(∇θ̃m(t),∇w)dt→ κ

∫ T

0

(∇θ̃,∇w)dt.
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In addition, we will prove the convergence of the trilinear terms. Here, we only
consider the convergence in one case, i.e.,

I(m) :=

∫ T

0

b(um,um, Pmw)dt−
∫ T

0

b(u,u,w)dt→ 0, as m→ ∞.

The convergence of the rest trilinear terms can be obtained by similar arguments
as the Navier-Stokes equations (see, e.g., [36]). Note that w ∈ C1([0, T ],Hk) and
k ≤ m implies Pmw = w. Rewrite I(m) as

I(m) =

∫ T

0

b(um − u,um,w)dt+

∫ T

0

b(u,w,u− um)dt =: I1(m) + I2(m),

where we have used (4). In fact, I(m) → 0 for w ∈ C1([0, T ],Hk). Since by
standard estimate on the trilinear term, (17a), the Hölder inequality and (23a)
shows that I1(m) → 0 and I2(m) → 0.

Note that um(0) = Pmu0 → u0 in V , Bm(0) = PmB0 → B0 and θ̃m(0) =

Pmθ̃0 → θ̃0 in H. Thus, passing to limit as m → ∞ in (25), we gain for all
w ∈ C1([0, T ],Hk) with w(T ) = 0

− (u(0),w(0))− α2(∇u(0),∇w(0))

−
∫ T

0

(u,wt)dt+ α2

∫ T

0

(∇u,∇wt)dt

=

∫ T

0

b(B,B,w)dt−
∫ T

0

b(u,u,w)dt+

∫ T

0

(βθ̃,w)dt,(26a)

− (Bm(0),w(0))−
∫ T

0

(B,wt)dt+ µ

∫ T

0

(∇B,∇wt)dt

=

∫ T

0

b(B,u,w)dt−
∫ T

0

b(u,B,w)dt,(26b) ∫ T

0

b(u, θ̃, w)dt+ κ

∫ T

0

(∇θ̃,∇wt)dt

=(θ̃(0), w(0)) +

∫ T

0

(θ̃, wt)dt.(26c)

Moreover, utilize u ∈ L∞([0, T ], V ), B, θ̃ ∈ L∞((0, T ),H) ∩ L2((0, T ), V ) and a
standard estimate on the trilinear term, to get the fact that (26) holds for all
w ∈ C1([0, T ], V ) with w(T ) = 0 due that C1([0, T ],Hk) is dense in C1([0, T ], V ).
Acting (8a), (8b) and (8c) on w and comparing with (26), we discover u(0) +

α2Au(0) = u0+α
2Au0, B(0) = B0 and θ̃(0) = θ̃0. According to (I +α2A)−1, one

has u(0) = u0.

Finally, we prove that u, B and θ̃ satisfy the requirements for continuity in time
in Definition 3.1. Taking the action of (26b) and (26c) with v ∈ V and integrating
in time, we obtain, for a.e. t0, t1 ∈ [0, T ], we get

(B(t1)−B(t0),v) + µ

∫ t1

t0

(∇B,∇v)dt

=

∫ t1

t0

b(B,u,v)dt−
∫ t1

t0

b(u,B,v)dt,(27)

(θ̃(t1)− θ̃(t0),v) + κ

∫ t1

t0

(∇θ̃,∇v)dt = −
∫ t1

t0

b(u, θ̃,v)dt.(28)
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Observe that the integrands are in L1(0, T ). Then (27) and (28) implies B, θ̃ ∈
Cw([0, T ],V) by sending t1 → t0. Further, due to the density of V in H and the fact

that B, θ̃ ∈ L∞([0, T ],H), we deduce that B, θ̃ ∈ Cw([0, T ], H) with help of the

triangle inequality. On the other hand, recalling (20) implies
du

dt
∈ L4([0, T ],H) ↩→

L2([0, T ], V ′). Observe that u ∈ C([0, T ],H) due to u ∈ L2([0, T ], V ). �

Remark 3.1. We only proved the existence of θ̃ in Theorem 3.1. But the existence
of θ also holds. Indeed, as the approach to recovering the pressure term in [36], it
follows (7) that (βθ̄,w) = 0. Adding this term to the RHS of (26a), we get (βθ,w).
For (26c), we can argue almost exactly as (26a).

3.2. Existence and uniqueness of strong solution. In this subsection, we
consider existence and uniqueness of strong solution. For our purpose herein, we
firstly give definition of a strong solution in the following sense.

Definition 3.2. Let u0,B0, θ̃0 ∈ V . Then (u,B, θ̃) is called a strong solution to
(8) if it is a weak solution and

B, θ̃ ∈ L2((0, T ),D(A))∩C([0, T ], V ),
du

dt
∈ C([0, T ], V ),

dB

dt
,
dθ̃

dt
∈ L2((0, T ),H).

Next, we show in Theorem 3.2 that the strong solution exists globally.

Theorem 3.2. Let u0 and B0, θ̃0 ∈ V . Then (8) has a strong solution (u,B, θ̃)
for arbitrary T > 0.

Proof. Firstly, take the inner product of (9b) and (9c) with ABm and Aθ̃m, respec-
tively. Then employing (16) and the Young’s inequality, we find

1

2

d

dt
∥∇Bm∥2 + µ∥ABm∥2 = b(Bm,um, ABm)− b(um,Bm, ABm)

≤ C(∥∇um∥∥∇Bm∥ 1
2 ∥ABm∥ 1

2 ∥ABm∥+ ∥∇Bm∥ 1
2 ∥ABm∥ 1

2 ∥∇um∥∥ABm∥)

≤ CKα
3 α

−1∥∇Bm∥ 1
2 ∥ABm∥ 3

2 ≤ CKα
4 ∥∇Bm∥2 + µ

2
∥ABm∥2,

1

2

d

dt
∥∇θ̃m∥2 + κ∥Aθ̃m∥2 = −b(um, θ̃m, Aθ̃m) ≤ C∥∇um∥∥∇θ̃m∥ 1

2 ∥Aθ̃m∥ 3
2

≤ CKα
3 α

−1∥∇θ̃m∥ 1
2 ∥Aθ̃m∥ 3

2 ≤ CKα
4′∥∇θ̃m∥2 + κ

2
∥Aθ̃m∥2,

where Kα
4 := C(α−1Kα

3 )
4µ−3 and Kα

4′ := C(α−1Kα
3 )

4κ−3, thereby obtaining the
estimates

d

dt
∥∇Bm∥2 + µ∥ABm∥2 ≤ CKα

4 ∥∇Bm∥2,(29)

d

dt
∥∇θ̃m∥2 + κ∥Aθ̃m∥2 ≤ CKα

4′∥∇θ̃m∥2.(30)

Then, integrate (29) and (30) over [0, t] to give

∥∇Bm(t)∥2 + µ

∫ t

0

∥ABm(s)∥2ds ≤ ∥∇Bm(0)∥2 + CKα
4

∫ t

0

∥∇Bm(s)∥2ds

≤ ∥∇B0∥2 + Cµ−1Kα
4 (K

α
3 )

2 =: Kα
5 ,(31)

∥∇θ̃m(t)∥2 + κ

∫ t

0

∥Aθ̃m∥2ds ≤ ∥∇θ̃0∥2 + CKα
4′

∫ t

0

∥∇θ̃m∥2ds

≤ ∥∇θ̃0∥2 + CKα
4′
∥θ̃0∥2

κ
=: Kα

5′ .(32)
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Consequently (31) and (32) imply

(33) Bm, θ̃m ∈ L∞([0, T ], V ) ∩ L2([0, T ],D(A)),

uniformly with respect to m. Moreover, remembering (19), we deduce

dum

dt
∈ L∞([0, T ], V ),

uniformly with respect to m, with help of the improved bound (33).

Secondly, we consider
dBm

dt
and

dθ̃m
dt

. Combining (9b), (9c) and (16), we have

∥dBm

dt
∥ ≤ ∥PmB(Bm,um)∥+ ∥PmB(um,Bm)∥+ µ∥ABm∥

= sup
w∈H

|b(Bm,um, Pmw)|
∥w∥

+ sup
w∈H

|b(um,Bm, Pmw)|
∥w∥

+ µ∥ABm∥

≤ C∥∇Bm∥ 1
2 ∥ABm∥ 1

2 ∥∇um∥+ C∥∇um∥∥ABm∥+ µ∥ABm∥
≤ C(Kα

3 α
−1 + µ)∥ABm∥,

∥dθ̃m
dt

∥ ≤ ∥B(um, θ̃m)∥+ κ∥Aθ̃m∥ = sup
w∈H

∣∣∣b(um, θ̃m,w)
∣∣∣

∥w∥
+ κ∥Aθ̃m∥

≤ C∥um∥ 1
2 ∥∇um∥ 1

2 ∥Aθ̃m∥+ κ∥Aθ̃m∥

≤ C(Kα
3 α

−1 + κ)∥Aθ̃m∥,

which and (33) yields

(34)
dBm

dt
,
dθ̃m
dt

∈ L2([0, T ],H),

uniformly with respect to m.
Finally, according to the proof of Theorem 3.1, we find that there exists a weak

solution (u,B, θ̃) to (8) such thatBm → B, θ̃m → θ̃ in L∞([0, T ], H)∩L2([0, T ], V )

for subsequence {Bm, θ̃m}. Next, using (33) and (34) and applying the Aubin

compactness theorem to extract a subsequence (relabeled as (Bm, θ̃m)) such that

Bm → B, θ̃m → θ̃ strongly in L2([0, T ], V ).

By the Banach-Alaoglu Theorem, (33) and the uniqueness of limit, it follows that

B, θ̃ ∈ L∞([0, T ], V ) ∩ L2([0, T ],D(A)). It is easy to find from (34) that
dB

dt
,
dθ̃

dt
∈

L2([0, T ],H), which implies that B, θ̃ ∈ C([0, T ], V ). Because of u, B, θ̃ ∈
C([0, T ], V ), we deduce that the RHS of (8a) belongs to C([0, T ], V ′). Inverting

I + α2A gives
du

dt
∈ C([0, T ], V ). �

In the last part of this subsection, we show the uniqueness of strong solution.
We first recall a lemma that will be used later.

Lemma 3.1. [32] Let v ∈ C((0, T ),H) and
dv

dt
∈ Lp((0, T ),H) for some p ∈ [1,∞].

Then the following equality holds on (0, T ),

d

dt
∥v∥2 = 2

(
dv

dt
,v

)
.

Moreover, ∥v∥2 is absolutely continuous.
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We now turn to show the uniqueness of strong solution and its continuous de-
pendence on initial data.

Theorem 3.3. Let (ui,Bi, θ̃i) (i = 1, 2) be two strong solutions to (8) with initial

data ui
0,B

i
0, θ̃

i
0 ∈ V . Then one gets

∥δu(t)∥2 + α2∥∇δu(t)∥2 + ∥δB(t)∥2 + ∥δθ̃(t)∥2

≤ (∥δu0∥2 + α2∥∇δu0∥2 + ∥δB0∥2 + ∥δθ̃0∥) exp(Kα
6 t),(35)

where δv := v1 − v2 and Kα
6 (K

α
3 ,K

α
5 ,K

α
5′ , α, ν, µ, κ) > 0 is a constant. Especially,

if u1
0 = u2

0, B
1
0 = B2

0 and θ̃10 = θ̃20, then δu = 0, δB = 0 and δθ̃ = 0.

Proof. We show that from (8a) we have

(I + α2A)
dδu

dt
= B(B1,B1)−B(u1,u1)−B(B2,B2) +B(u2,u2) + βδθ̃.(36)

Multiply both sides of (36) with (I + α2A)−
1
2 .

(I + α2A)
1
2
dδu

dt
=(I + α2A)−

1
2

(
B(B1,B1)

−B(u1,u1)−B(B2,B2) +B(u2,u2) + βδθ̃
)
.(37)

Since δu ∈ C([0, T ], V ) and
dδu

dt
∈ L

4
3 ([0, T ], V ), we have (I + α2A)

1
2
d

dt
δu ∈

L
4
3 ([0, T ],H). Then, taking the inner product with (I + α2A)

1
2 δu ∈ C([0, T ],H),

we get from (37)(
(I + α2A)

1
2
dδu

dt
, (I + α2A)

1
2 δu

)
=

1

2

d

dt
∥(I + α2A)

1
2 δu∥2

= b(δB,B1, δu) + b(B2, δB, δu)− b(δu,u1, δu) + (βδθ̃, δu),(38)

where we have used Lemma 3.1 and (4). Arguing in a similar way to (38), from
(8b) and (8b), we gain

1

2

d

dt
∥δB∥2 + µ∥∇δB∥2 = b(δB,u1, δB) + b(B2, δu, δB)− b(δu,B1, δB),

1

2

d

dt
∥δθ̃∥2 + κ∥∇δθ̃∥2 = −b(δu, θ̃2, δθ̃).

Moreover, together these equations lead to

1

2

d

dt
(∥(I + α2A)

1
2 δu∥2 + ∥δB∥2 + ∥δθ̃∥2) + µ∥∇δB∥2 + κ∥∇δθ̃∥2

= b(δB,B1, δu)− b(δu,u1, δu) + b(δB,u1, δB)

− b(δu,B1, δB)− b(δu, θ̃2, δθ̃) + (βδθ̃, δu)

≤ C∥∇δB∥∥∇B1∥∥∇δu∥+ C∥δu∥ 1
2 ∥∇δu∥ 3

2 ∥∇u1∥

+ C∥δB∥ 1
2 ∥∇δB∥ 3

2 ∥∇u1∥+ C∥∇δu∥∥∇B1∥∥δB∥ 1
2 ∥∇δB∥ 1

2

+ C∥∇δu∥∥∇θ̃2∥∥δθ̃∥
1
2 ∥∇δθ̃∥ 1

2 + ∥βδθ̃∥∥δu∥

≤ CKα
5 ∥∇δB∥∥∇δu∥+ CKα

3 ∥δu∥
1
2 ∥∇δu∥ 3

2 + CKα
3 ∥δB∥ 1

2 ∥∇δB∥ 3
2

+ CKα
5 ∥∇δu∥∥δB∥ 1

2 ∥∇δB∥ 1
2 + CKα

5′∥∇δu∥∥δθ̃∥
1
2 ∥∇δθ̃∥ 1

2 + ∥βδθ̃∥∥δu∥

≤ CKα
6 (∥δu∥2 + α2∥∇δu∥2 + ∥δB∥2 + ∥δθ̃∥2) + µ

2
∥∇δB∥2 + κ

2
∥∇δθ̃∥2,
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where Kα
6 = Kα

6 (K
α
3 ,K

α
5 ,K

α
5′ , α, ν, µ, κ) is a positive constant. Here, we used

standard estimates on the trilinear term, the Young inequality, (16), (31) and (32)

(hold in the limit as m→ ∞ for ui,Bi, θ̃i).
Therefore, one deduces that

d

dt
(∥(I + α2A)

1
2 δu∥2 + ∥δB∥2 + ∥δθ̃∥2) + µ∥∇δB∥2 + κ∥∇δθ̃∥2

≤CKα
6 (∥δu∥2 + α2∥∇δu∥2 + ∥δB∥2 + ∥δθ̃∥2).

Using the differential Grönwall’s inequality (5) together with the identity

∥(I + α2A)
1
2 δu∥2 = ∥δu∥2 + α2∥∇δu∥2,

we finishes the proof. �

4. A fully discrete approximation

In this section, we will design a fully discrete scheme for the Voigt-regularization
of the thermally coupled inviscid, resistive MHD equations (2).

Denote by τh a regular, conforming mesh of a polygon Ω with maximum el-
ement diameter h. Let Pk be the set of continuous piecewise polynomials those
are of degree k on each element, and P dc

k−1 be the set of discontinuous piece-
wise polynomials those are of degree k − 1 on each element, respectively. The
finite element spaces used throughout will be the Scott-Vogelius (SV) pair [43],
(Xh, Qh) = ((Pk)

d, P dc
k−1), which enforces strong (pointwise) divergence free, and

will approximate velocity and pressure, as well as the magnetic field and corre-
sponding Lagrange multiplier. The temperature will be approximated by Xh = Pk.
The mesh will be built from a barycenter refinement of a regular mesh if k ≥ d,
and if k = d − 1, the mesh will be the Powell-Sabin mesh for the inf-sup stability
[44, 45].

The numerical scheme is now derived with a Galerkin finite element method for
spatial discretization and the Crank-Nicolson scheme for temporal discretization.
For simplicity, we require the discrete initial conditions u0

h = u0, B
0
h = B0 and

θ0h = θ0. Define u−1
h := u0

h, B
−1
h := B0

h, θ
−1
h := θ0h, and s

n+ 1
2

h := 1
2 (s

n
h + sn+1

h ) with
s = u, B, P, q and θ.

The resulting scheme reads: for all (vh,χh, λh, rh, ϕh) ∈ (Xh,Xh, Qh, Qh, Xh),

find (un+1
h ,Bn+1

h , P
n+ 1

2

h , q
n+ 1

2

h , θn+1
h ) ∈ (Xh,Xh, Qh, Qh, Xh), for n = 0, 1, 2, · · · ,

M − 1, with M = T
∆t ,

1

∆t
(un+1

h − un
h,vh) +

α2

∆t
(∇(un+1

h − un
h),∇vh) + ((u

n+ 1
2

h · ∇)u
n+ 1

2

h ,vh)

− ((B
n+ 1

2

h · ∇)B
n+ 1

2

h ,vh)−
(
P

n+ 1
2

h ,∇ · vh
)
= (βθ

n+ 1
2

h ,vh),(39a)

(∇ · un+1
h , λh) = 0,(39b)

1

∆t
(Bn+1

h −Bn
h ,χh) + µ

(
∇Bn+ 1

2

h ,∇χh

)
− ((B

n+ 1
2

h · ∇)u
n+ 1

2

h ,χh)

+ ((u
n+ 1

2

h · ∇)B
n+ 1

2

h ,χh)−
(
q
n+ 1

2

h ,∇ · χh

)
= 0,(39c)

(∇ ·Bn+1
h , rh) = 0,(39d)

1

∆t
(θn+1

h − θnh , ϕh) + κ
(
∇θn+

1
2

h ,∇ϕh
)
+ (u

n+ 1
2

h · ∇θn+
1
2

h , ϕh) = 0.(39e)
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For the existence of the above scheme, we will prove it by using a simple conse-
quence of Brouwer’s fixed point theorem [46], see an application in Lemma 5.3 of
[47].

Theorem 4.1. The scheme (39) has a solution for ∆t ≤ Cexist, where Cexist :=
κ(|β|2C2

Ω)
−1 and CΩ is the Pioncaré constant depending only on Ω.

Proof. Notice that the existence of un+1
h is equivalent to the existence of u

n+ 1
2

h , for

given un
h. Besides B

n+1 and θn+1
h have similar equivalence. We define an operator

Gh : Fh −→ Fh, where Fh =Xh ×Xh ×Qh by

(Gh(F ),wh) =
2

∆t

3∑
i=1

(Fi − Fn
i,h,wi,h) +

2α2

∆t
(∇(F1 − un

h),∇vh) + ((F1 · ∇)F1,vh)

− ((F2 · ∇)F2,vh)− (βF3,vh) + µ (∇F2,∇χh)− ((F2 · ∇)F1,χh)

+ ((F1 · ∇)F2,χh) + κ (∇F3,∇ϕh) + (F1 · ∇F3, ϕh),(40)

where F = (F1, F2, F3) := (u
n+ 1

2

h ,B
n+ 1

2

h , θ
n+ 1

2

h ), F n
h := (un

h,B
n
h , θ

n
h), and wh :=

(vh,χh, ϕh). It is easy to prove that Gh is continuous for given F n
h .

Next, we define a convex, finite dimensional and closed set

Sh = {F ∈ Fh, ∥F ∥F ≤ CF},

with CF > (
3∑

i=1

∥Fn
i,h∥2 + α2∥∇un

h∥2)
1
2 and the norm

∥F ∥F =

(
3∑

i=2

∥Fi∥2 + α2∥∇F1∥2 + µ∆t∥∇F2∥2 +∆t(κ− ∆t|β|2C2
Ω

4
)∥∇F3∥2

) 1
2

.

Now, in order to prove that the equation Gh(F ) = 0 has a solution, i.e., the scheme
(39) has a solution, all we need to show is that Gh(F ,F ) > 0 for ∥F ∥F = CF [46].
In fact, let wh = ∆tF in (40) we have

(Gh(F ),F ) =2
3∑

i=1

(Fi − Fn
i,h, Fi) + 2α2(∇(F1 − un

h),∇F1)−∆t(βF3, F1)

+ µ∆t∥∇F2∥2 + κ∆t∥∇F3∥2

≥
3∑

i=2

∥Fi∥2 −
3∑

i=1

∥Fn
i,h∥2 + α2∥∇F1∥2 − α2∥∇un

h∥2

+∆t(κ− ∆t|β|2C2
Ω

4
)∥∇F3∥2 + µ∆t∥∇F2∥2

=∥F ∥2F −
3∑

i=1

∥Fn
i,h∥2 − α2∥∇un

h∥2.

Thus, if ∥F ∥F = CF , we have (Gh(F ),F ) > 0. Since the SV elements are a

stable finite element pair under corresponding mesh restrictions, p
n+ 1

2

h and q
n+ 1

2

h

exist if un+1
h ,Bn+1

h , θn+1
h are given. �

We prove here that the numerical solution is stable.

Theorem 4.2. Under assumption of Theorem 4.1, suppose that u0 ∈ H1(Ω)d,
B0 ∈ L2(Ω)d and θ0 ∈ L2(Ω). Then there exists a positive constant Cg = max{|β|, 1}
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such that when Cg∆t < 1, the solution (39a)-(39e) is stable, that is

∥uM
h ∥2 + α2∥∇uM

h ∥2 + ∥BM
h ∥2 + ∥θMh ∥2

+∆t
M−1∑
n=0

(
µ∥∇Bn+ 1

2

h ∥2 + κ∥∇θn+
1
2

h ∥2
)

≤ exp(CgT )(∥u0
h∥2 + α2∥∇u0

h∥+ ∥B0
h∥2 + ∥θ0h∥2).(41)

Proof. Select vh = u
n+ 1

2

h , χh = B
n+ 1

2

h and ϕh = θ
n+ 1

2

h in (39a), (39c) and (39e),
respectively. Next, adding the ensuing equations, multiplying through by ∆t and
summing from n = 0 to M − 1 yield

1

2

(
∥uM

h ∥2 + α2∥∇uM
h ∥2 + ∥BM

h ∥2 + ∥θMh ∥2
)

+∆t
M−1∑
n=0

(
µ∥∇Bn+ 1

2

h ∥2 + κ∥∇θn+
1
2

h ∥2
)

=
1

2

(
∥u0

h∥2 + α2∥∇u0
h∥+ ∥B0

h∥2 + ∥θ0h∥2
)
+∆t

M−1∑
n=0

(βθ
n+ 1

2

h ,u
n+ 1

2

h ),

which and the Cauchy-Schwarz-Young inequality imply

∥uM
h ∥2 + α2∥∇uM

h ∥2 + ∥BM
h ∥2 + ∥θMh ∥2

+∆t

M−1∑
n=0

(
µ∥∇Bn+ 1

2

h ∥2 + κ∥∇θn+
1
2

h ∥2
)

≤∆t

M−1∑
n=0

Cg

(
∥un+1

h ∥2 + α2∥∇un+1
h ∥2 + ∥θn+1

h ∥2 + ∥Bn+1
h ∥2

)
+ ∥u0

h∥2 + α2∥∇u0
h∥+ ∥B0

h∥2 + ∥θ0h∥2.

Using Grönwall’s inequality (6) completes the proof.
�

Now we prove the uniqueness of the solution to the scheme (39).

Theorem 4.3. Under assumption of Theorem 4.2, let that 2α2−C(µ−1+κ−1) > 0

and ∆t < Cunique where Cunique := min{2, 8
|β|2 ,

2α2

Cα−2+1 , Cα
2(2α2−C(µ−1+κ−1))}.

Then the scheme (39) has a unique solution.

Proof. Let un+1
1,h ,Bn+1

1,h , θn+1
1,h and un+1

2,h ,Bn+1
2,h , θn+1

2,h be two solutions to the scheme

(39), and es = s
n+ 1

2

1,h − s
n+ 1

2

2,h , where s = u,B, θ. Then we have

2

∆t

(
(eu,vh) + (eB, χh) + (eθ, ϕh)

)
+

2α2

∆t
(∇eu,∇vh) + µ(∇eB,∇χh)

+ κ(∇eθ,∇ϕh) +
(
(u

n+ 1
2

1,h · ∇)u
n+ 1

2

1,h − (u
n+ 1

2

2,h · ∇)u
n+ 1

2

2,h ,vh

)
−
(
(B

n+ 1
2

1,h · ∇)B
n+ 1

2

1,h − (B
n+ 1

2

2,h · ∇)B
n+ 1

2

2,h ,vh

)
−
(
(B

n+ 1
2

1,h · ∇)u
n+ 1

2

1,h − (B
n+ 1

2

2,h · ∇)u
n+ 1

2

2,h ,χh

)
+
(
(u

n+ 1
2

1,h · ∇)B
n+ 1

2

1,h − (u
n+ 1

2

2,h · ∇)B
n+ 1

2

2,h ,χh

)
+
(
(u

n+ 1
2

1,h · ∇)θ
n+ 1

2

1,h − (u
n+ 1

2

2,h · ∇)θ
n+ 1

2

2,h , ϕh

)
− (βeθ,vh)
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=
2

∆t

(
(eu,vh) + (eB, χh) + (eθ, ϕh)

)
+

2α2

∆t
(∇eu,∇vh)

+ µ(∇eB,∇χh) + κ(∇eθ,∇ϕh)

+
(
(u

n+ 1
2

1,h · ∇)eu + (eu · ∇)u
n+ 1

2

2,h ,vh

)
−
(
(B

n+ 1
2

1,h · ∇)eB + (eB · ∇)B
n+ 1

2

2,h ,vh

)
−
(
(B

n+ 1
2

1,h · ∇)eu + (eB · ∇)u
n+ 1

2

2,h ,χh

)
+
(
(u

n+ 1
2

1,h · ∇)eB + (eu · ∇)B
n+ 1

2

2,h ,χh

)
+
(
(u

n+ 1
2

1,h · ∇)eθ + (eu · ∇)θ
n+ 1

2

2,h , ϕh

)
− (βeθ,vh) = 0.

Selecting vh = eu,χh = eB, and ϕh = eθ, we have

2

∆t

(
∥eu∥2 + ∥eB∥2 + ∥eθ∥2

)
+

2α2

∆t
∥∇eu∥2 + µ∥∇eB∥2 + κ∥∇eθ∥2

+
(
(eu · ∇)u

n+ 1
2

2,h , eu

)
−
(
(eB · ∇)B

n+ 1
2

2,h , eu

)
−
(
(eB · ∇)u

n+ 1
2

2,h , eB

)
+
(
(eu · ∇)B

n+ 1
2

2,h , eB

)
+
(
(eu · ∇)θ

n+ 1
2

2,h , eθ

)
− (βeθ, eu) = 0,

which leads to

2

∆t

(
∥eu∥2 + ∥eB∥2 + ∥eθ∥2

)
+

2α2

∆t
∥∇eu∥2 + µ∥∇eB∥2 + κ∥∇eθ∥2

≤ C
[
∥∇un+ 1

2

2,h ∥2∥∇eu∥2 + ∥∇Bn+ 1
2

2,h ∥2∥∇eu∥2 + ∥∇un+ 1
2

2,h ∥2∥∇eB∥2

+ ∥∇θn+
1
2

2,h ∥2∥∇eu∥2
]
+ ϵ1∥∇eB∥2 + ϵ2∥∇eθ∥2 +

|β|2

4
∥eθ∥2 + ∥eu∥2,

≤ C
[Cstab

α2
∥∇eu∥2 +

Cstab

µ∆t
∥∇eu∥2 +

Cstab

α2
∥∇eu∥2

+
Cstab

κ∆t
∥∇eu∥2

]
+ ϵ1∥∇eB∥2 + ϵ2∥∇eθ∥2 +

|β|2

4
∥eθ∥2 + ∥eu∥2,

where Cstab = exp(CgT )(∥u0
h∥2 + α2∥∇u0

h∥ + ∥B0
h∥2 + ∥θ0h∥2) and 0 < ϵ1 ≤ µ,

0 < ϵ2 ≤ κ from Young’s inequality. Then

(2−∆t)∥eu∥2 + ∥eB∥2 +
(
2− ∆t|β|2

4

)
∥eθ∥2

+
(
2α2 − Cα−2∆t− C(µ−1 + κ−1)

)
∥∇eu∥2

+∆t
(
µ− ϵ1

)
∥∇eB∥2 +∆t(κ− ϵ2)∥∇eθ∥2 ≤ 0.

Therefore, the uniqueness of scheme (39) holds with uniqueness condition. �

We now prove convergence of the scheme. In order to obtain the error equations,
we first multiply (2a), (2c) and (2e) at tn+

1
2 by vh ∈ Xh, χh ∈ Xh and ϕh ∈ Xh,

respectively. Then integrate the ensuing equations over the domain. For simplicity,
we denote eku = uk

h − u(tk), ekB = Bk
h −B(tk) and ekθ = θkh − θ(tk). Additionally,

sn+
1
2 := s(tn)+s(tn+1)

2 with s = u, B and θ.

(ut(t
n+ 1

2 ),vh) + α2(∇ut(t
n+ 1

2 ),∇vh) + ((u(tn+
1
2 ) · ∇)u(tn+

1
2 ),vh)

− ((B(tn+
1
2 ) · ∇)B(tn+

1
2 ),vh) = (βθ(tn+

1
2 ),vh),(42)

(Bt(t
n+ 1

2 ),χh) + µ(∇B(tn+
1
2 ),∇χh)− ((B(tn+

1
2 ) · ∇)u(tn+

1
2 ),χh)

+ ((u(tn+
1
2 ) · ∇)B(tn+

1
2 ),χh) = 0,(43)

(θt(t
n+ 1

2 ), ϕh) + κ(∇θ(tn+ 1
2 ),∇ϕh) + (u(tn+

1
2 ) · ∇θ(tn+ 1

2 ), ϕh) = 0.(44)
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Subtract (42) from (39a)

1

∆t
(en+1

u − enu,vh) +
α2

∆t
(∇(en+1

u − enu),∇vh) + ((u
n+ 1

2

h · ∇)e
n+ 1

2
u ,vh)

+ ((e
n+ 1

2
u · ∇)un+ 1

2 ,vh)− ((B
n+ 1

2

h · ∇)e
n+ 1

2

B ,vh)− ((e
n+ 1

2

B · ∇)Bn+ 1
2 ,vh)

=

(
ut(t

n+ 1
2 )− u(tn+1)− u(tn)

∆t
,vh

)
+ α2

(
∇(ut(t

n+ 1
2 )− u(tn+1)− u(tn)

∆t
),∇vh

)
+ ((u(tn+

1
2 ) · ∇)(u(tn+

1
2 )− un+ 1

2 ),vh)

+ (((u(tn+
1
2 )− un+ 1

2 ) · ∇)un+ 1
2 ,vh)

+ ((Bn+ 1
2 · ∇)(Bn+ 1

2 −B(tn+
1
2 )),vh)

+ (((Bn+ 1
2 −B(tn+

1
2 )) · ∇)B(tn+

1
2 ),vh)

− β(θ(tn+ 1
2 )− θn+

1
2 ,vh) + (β

en+1
θ + enθ

2
,vh)

=:G1(t,B,u, θ,vh) + (βe
n+ 1

2

θ ,vh).(45)

Note that G1 represents terms associated only with the true solution. Furthermore,
one easily gets

G1(t,B,u, θ,vh)

≤ C∆t
3
2

(
(

∫ tn+1

tn

∥uttt∥2dt)
1
2 + (

∫ tn+1

tn

∥∇utt∥2dt)
1
2 + (

∫ tn+1

tn

∥utt∥2dt)
1
2

+ (

∫ tn+1

tn

∥Btt∥2dt)
1
2 + (

∫ tn+1

tn

∥∇Btt∥2dt)
1
2 + (

∫ tn+1

tn

∥θtt∥2dt)
1
2

)
∥vh∥

+ Cα2∆t3/2(

∫ tn+1

tn
∥∇uttt∥2dt)

1
2 ∥∇vh∥

≤ C∆t3
∫ tn+1

tn

(
∥uttt∥2 + ∥∇utt∥2 + ∥utt∥2 + ∥Btt∥2 + ∥∇Btt∥2 + ∥θtt∥2

)
dt

+ ∥vh∥2 + α2∥∇vh∥2 + Cα2∆t3
∫ tn+1

tn
∥∇uttt∥2dt.

(46)

By a similar argument for the magnetic and thermal equations, we have

1

∆t
(en+1

B − enB,χh) + µ(∇en+
1
2

B ,∇χh)− ((B
n+ 1

2

h · ∇)e
n+ 1

2
u ,χh)

− ((e
n+ 1

2

B · ∇)un+ 1
2 ,χh) + ((u

n+ 1
2

h · ∇)e
n+ 1

2

B ,χh) + ((e
n+ 1

2
u · ∇)Bn+ 1

2 ,χh)

=(Bt(t
n+ 1

2 )− B(tn+1)−B(tn)

∆t
,χh) + µ(∇(B(tn+

1
2 )−Bn+ 1

2 ),∇χh)

+ ((B(tn+
1
2 ) · ∇)(un+ 1

2 − u(tn+ 1
2 )),χh) + (((Bn+ 1

2 −B(tn+
1
2 )) · ∇)un+ 1

2 ,χh)

+ ((u(tn+
1
2 ) · ∇)(B(tn+

1
2 )−Bn+ 1

2 ),χh) + (((u(tn+
1
2 )− un+ 1

2 ) · ∇)Bn+ 1
2 ,χh)

=:G2(t,B,u,χh),

(47)
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and

1

∆t
(en+1

θ − enθ , ϕh) + κ(∇en+
1
2

θ ,∇ϕh) + (u
n+ 1

2

h · ∇en+
1
2

θ , ϕh) + (e
n+ 1

2
u · ∇θn+ 1

2 , ϕh)

=(θt(t
n+ 1

2 )− θ(tn+1)− θ(tn)

∆t
, ϕh) + κ(∇(θ(tn+

1
2 )− θn+

1
2 ),∇ϕh)

+ (u(tn+
1
2 ) · ∇(θ(tn+

1
2 )− θn+

1
2 ), ϕh) + ((u(tn+

1
2 )− un+ 1

2 ) · ∇θn+ 1
2 , ϕh)

=:G3(t,u, θ, ϕh).

(48)

Moreover we bound G2 and G3 by

G2(t,B,u,χh)

≤ C∆t
3
2

(
(

∫ tn+1

tn

∥Bttt∥2dt)
1
2 + (

∫ tn+1

tn

∥∇utt∥2dt)
1
2 + (

∫ tn+1

tn

∥Btt∥2dt)
1
2

+ (

∫ tn+1

tn

∥∇Btt∥2dt)
1
2 + (

∫ tn+1

tn

∥utt∥2dt)
1
2

)
∥χh∥

+ C∆t
3
2 ∥∇χh∥(

∫ tn+1

tn

∥∇Btt∥2dt)
1
2

≤ C∆t3
∫ tn+1

tn

(
∥Bttt∥2 + ∥Btt∥2 + ∥∇utt∥2 + ∥utt∥2 + ∥∇Btt∥2

)
dt

+ ∥χh∥2 +
µ

8
∥∇χh∥2 + C∆t3

∫ tn+1

tn

∥∇Btt∥2dt,(49)

as well as

G3(t,u, θ, ϕh) ≤ C∆t
3
2

(
(

∫ tn+1

tn

∥θttt∥2dt)
1
2 + (

∫ tn+1

tn

∥∇θtt∥2dt)
1
2

+ (

∫ tn+1

tn

∥utt∥2dt)
1
2

)
∥ϕh∥+ C∆t

3
2 (

∫ tn+1

tn

∥∇θtt∥2dt)
1
2 ∥∇ϕh∥

≤ C∆t3
∫ tn+1

tn

(∥θttt∥2 + ∥∇θtt∥2 + ∥utt∥2)dt+ ∥ϕh∥2 +
κ

8
∥∇ϕh∥2

+ C∆t3
∫ tn+1

tn

∥∇θtt∥2dt.(50)

Furthermore, we spilt the error as eku = ξkh − ηk
u where ξkh = (uk

h − U k) and
ηk = (u(tk)−U k). Analogously, ekB = (Bk

h−Bk)+(Bk−B(tk)) =: ψk
h−ηk

B, and
ekθ = (θkh −Θk)+ (Θk − θ(tk)) =: ωk

h − ηkθ where U k ∈Xh, Bk ∈Xh and Θk ∈ Xh

are the finite element approximations of u, B and θ. Substituting into (45), (47)
and (48) results in

1

∆t
(ξn+1

h − ξnh ,vh) +
α2

∆t
(∇(ξn+1

h − ξnh),∇vh) + ((u
n+ 1

2

h · ∇)ξ
n+ 1

2

h ,vh)

+ ((ξ
n+ 1

2

h · ∇un+ 1
2 ,vh)− ((B

n+ 1
2

h · ∇)ψ
n+ 1

2

h ,vh)− ((ψ
n+ 1

2

h · ∇)Bn+ 1
2 ,vh)

=
1

∆t
(ηn+1

u − ηn
u,vh) +

α2

∆t
(∇(ηn+1

u − ηn
u),∇vh) + ((u

n+ 1
2

h · ∇)η
n+ 1

2
u ,vh)

+ ((η
n+ 1

2
u · ∇)un+ 1

2 ,vh)− ((B
n+ 1

2

h · ∇)η
n+ 1

2

B ,vh)− ((η
n+ 1

2

B · ∇)Bn+ 1
2 ,vh)
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+ (βe
n+ 1

2

θ ,vh) +G1(t,u,B, θ,vh),(51)

as well as
1

∆t
(ψn+1

h −ψn
h ,χh) + µ(∇ψn+ 1

2

h ,∇χh)− ((B
n+ 1

2

h · ∇)ξ
n+ 1

2

h ,χh)

− ((ψ
n+ 1

2

h · ∇)un+ 1
2 ,χh) + ((u

n+ 1
2

h · ∇)ψ
n+ 1

2

h ,χh) + ((ξ
n+ 1

2

h · ∇)Bn+ 1
2 ,χh)

=
1

∆t
(ηn+1

B − ηn
B,χh) + µ(∇ηn+ 1

2

B ,∇χh)− ((B
n+ 1

2

h · ∇)η
n+ 1

2
u ,χh)

− ((η
n+ 1

2

B · ∇)un+ 1
2 ,χh)

+ ((u
n+ 1

2

h · ∇)η
n+ 1

2

B ,χh) + ((η
n+ 1

2
u · ∇)Bn+ 1

2 ,χh) +G2(t,u,B,χh),(52)

and
1

∆t
(ωn+1

h − ωn
h , ϕh) + κ(∇ωn+ 1

2

h ,∇ϕh)

+ (u
n+ 1

2

h · ∇ωn+ 1
2

h , ϕh) + (ξ
n+ 1

2

h · ∇θn+ 1
2 , ϕh)

=
1

∆t
(ηn+1

θ − ηnθ , ϕh) + κ(∇ηn+
1
2

θ ,∇ϕh) + (u
n+ 1

2

h · ∇ηn+
1
2

θ , ϕh)

+ (η
n+ 1

2
u · ∇θn+ 1

2 , ϕh) +G3(t,u, θ, ϕh).(53)

Theorem 4.4. Under assumption of Theorem 4.3, assume that (u,B, θ) solves (2)
and satisfies regularity conditions:

u ∈ L∞(0, T,W k+2
3 (Ω)d), B, θ ∈ L∞(0, T,W k+1

3 (Ω)s), uttt ∈ L2(0, T,H1(Ω)d),

Btt, θtt ∈ L2(0, T,H1(Ω)s), Bttt, θttt ∈ L2(0, T, L2(Ω)s),

where s = 1 or d. Then the solution to (39) converges to the true solution with rate

∥u(tM )− uM
h ∥2 + α2∥∇(u(tM )− uM

h )∥2 + ∥B(tM )−BM
h ∥2 + ∥θ(tM )− θMh ∥2

+∆t

M−1∑
n=0

(∥∇(B(tn+
1
2 )−Bn+ 1

2

h )∥2 + ∥∇(θ(tn+
1
2 )− θ

n+ 1
2

h )∥2
)

≤ C(α2 + 1)(∆t4 + h2k).

Proof. Choose vh = ξ
n+ 1

2

h , χh = ψ
n+ 1

2

h and ϕh = ω
n+ 1

2

h in (51), (52) and (53),
respectively. Rewrite the ensuing equations

1

2∆t
(∥ξn+1

h ∥2 − ∥ξnh∥2) +
α2

2∆t
(∥∇ξn+1

h ∥2 − ∥∇ξnh∥2) + ((ξ
n+ 1

2

h · ∇)un+ 1
2 , ξ

n+ 1
2

h )

− ((B
n+ 1

2

h · ∇)ψ
n+ 1

2

h , ξ
n+ 1

2

h )− ((ψ
n+ 1

2

h · ∇)Bn+ 1
2 , ξ

n+ 1
2

h )

=
1

∆t
(ηn+1

u − ηn
u, ξ

n+ 1
2

h ) +
α2

∆t
(∇ηn+1

u −∇ηn
u,∇ξ

n+ 1
2

h )

+ ((u
n+ 1

2

h · ∇)η
n+ 1

2
u , ξ

n+ 1
2

h ) + ((η
n+ 1

2
u · ∇)un+ 1

2 , ξ
n+ 1

2

h )

− ((B
n+ 1

2

h · ∇)η
n+ 1

2

B , ξ
n+ 1

2

h )− ((η
n+ 1

2

B · ∇)Bn+ 1
2 , ξ

n+ 1
2

h )

+ (β(ω
n+ 1

2

h − η
n+ 1

2

θ ), ξ
n+ 1

2

h ) +G1(t,u,B, θ, ξ
n+ 1

2

h ),(54)

as well as
1

2∆t
(∥ψn

h∥2 − ∥ψn
h∥2) + µ∥∇ψn+ 1

2

h ∥2 − ((B
n+ 1

2

h · ∇)ξ
n+ 1

2

h ,ψ
n+ 1

2

h )

− ((ψ
n+ 1

2

h · ∇)un+ 1
2 ,ψ

n+ 1
2

h ) + ((ξ
n+ 1

2

h · ∇)Bn+ 1
2 ,ψ

n+ 1
2

h )
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=
1

∆t
(ηn+1

B − ηn
B,ψ

n+ 1
2

h ) + µ(∇ηn+ 1
2

B ,∇ψn+ 1
2

h )− ((B
n+ 1

2

h · ∇)η
n+ 1

2
u ,ψ

n+ 1
2

h )

− ((η
n+ 1

2

B · ∇)un+ 1
2 ,ψ

n+ 1
2

h ) + ((u
n+ 1

2

h · ∇)η
n+ 1

2

B ,ψ
n+ 1

2

h )

+ ((η
n+ 1

2
u · ∇)Bn+ 1

2 ,ψ
n+ 1

2

h ) +G2(t,u,B,ψ
n+ 1

2

h ),(55)

and

1

2∆t
(∥ωn+1

h ∥2 − ∥ωn
h∥2) + κ∥∇ωn+ 1

2

h ∥2 + (ξ
n+ 1

2

h · ∇θn+ 1
2 , ω

n+ 1
2

h )

=
1

∆t
(ηn+1

θ − ηnθ , ω
n+ 1

2

h ) + κ(∇ηn+
1
2

θ ,∇ωn+ 1
2

h ) + (u
n+ 1

2

h · ∇ηn+
1
2

θ , ω
n+ 1

2

h )

+ (η
n+ 1

2
u · ∇θn+ 1

2 , ω
n+ 1

2

h ) +G3(t,u, θ, ω
n+ 1

2

h ).(56)

For (54), apply the Cauchy-Schwarz-Young inequality to get

1

∆t
(ηn+1

u − ηn
u, ξ

n+ 1
2

h ) ≤ 1

2∆t

∫ tn+1

tn
∥∂t(ηu)∥2dt+

1

2
∥ξn+

1
2

h ∥2,

α2

∆t
(∇ηn+1

u −∇ηn
u,∇ξ

n+ 1
2

h ) ≤ α2

2∆t

∫ tn+1

tn
∥∂t(∇ηu)∥2dt+

α2

2
∥∇ξn+

1
2

h ∥2.

Next, with the help of Hölder’s inequality, we rewrite (54) as

1

2∆t
(∥ξn+1

h ∥2 − ∥ξnh∥2) +
α2

2∆t
(∥∇ξn+1

h ∥2 − ∥∇ξnh∥2)

≤ 1

∆t

∫ tn+1

tn
(∥∂t(ηu)∥2 + α2∥∂t(∇ηu)∥2)dt+

1

2
∥ξn+

1
2

h ∥2 + α2

2
∥∇ξn+

1
2

h ∥2

+ ∥∇un+ 1
2 ∥L∞∥ξn+

1
2

h ∥2 + ((B
n+ 1

2

h · ∇)ψ
n+ 1

2

h , ξ
n+ 1

2

h )

+ ∥∇Bn+ 1
2 ∥L∞∥ψn+ 1

2

h ∥∥ξn+
1
2

h ∥

+ ∥un+ 1
2

h ∥∥∇ηn+ 1
2

u ∥L∞∥ξn+
1
2

h ∥+ ∥∇un+ 1
2 ∥L∞∥ηn+ 1

2
u ∥∥ξn+

1
2

h ∥

+ C∥∇Bn+ 1
2

h ∥∥∇ηn+ 1
2

B ∥L3∥ξn+
1
2

h ∥+ ∥∇Bn+ 1
2 ∥L∞∥ηn+ 1

2

B ∥∥ξn+
1
2

h ∥

+ (β(ω
n+ 1

2

h − η
n+ 1

2

θ ), ξ
n+ 1

2

h ) +G1(t,u,B, θ, ξ
n+ 1

2

h ).

Then, according to the Cauchy-Schwarz-Young, Poincaré’s inequalities and the
assumption of the regularity of the solution, we discover

1

2∆t
(∥ξn+1

h ∥2 − ∥ξnh∥2) +
α2

2∆t
(∥∇ξn+1

h ∥2 − ∥∇ξnh∥2)

≤ 1

2∆t

∫ tn+1

tn
(∥∂t(ηu)∥2 + α2∥∇∂t(ηu)∥2)dt+

α2

2
∥∇ξn+

1
2

h ∥2

+ ((B
n+ 1

2

h · ∇)ψ
n+ 1

2

h , ξ
n+ 1

2

h ) + C
(
∥ξn+

1
2

h ∥2 + ∥ψn+ 1
2

h ∥2

+ ∥un+ 1
2

h ∥2∥∇ηn+ 1
2

u ∥2L∞ + ∥ηn+ 1
2

u ∥2 + ∥∇Bn+ 1
2

h ∥2∥∇ηn+ 1
2

B ∥2L3

+ ∥ηn+ 1
2

B ∥2 + ∥ωn+ 1
2

h ∥2 + ∥ηn+
1
2

θ ∥2
)
+G1(t,u,B, θ, ξ

n+ 1
2

h ).(57)

We now suspend (57) and return to (55) and (56), which can be estimated by
proceeding as the momentum system, yielding

1

2∆t
(∥ψn+1

h ∥2 − ∥ψn
h∥2) +

µ

4
∥∇ψn+ 1

2

h ∥2
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≤ 1

2∆t

∫ tn+1

tn
∥∂t(ηB)∥2dt+ ((B

n+ 1
2

h · ∇)ξ
n+ 1

2

h ,ψ
n+ 1

2

h )

+ C
(
∥∇ηn+ 1

2

B ∥2 + ∥ψn+ 1
2

h ∥2 + ∥ξn+
1
2

h ∥2 + ∥∇Bn+ 1
2

h ∥2∥∇ηn+ 1
2

u ∥2

+ ∥ηn+ 1
2

B ∥2 + ∥un+ 1
2

h ∥2∥∇ηn+ 1
2

B ∥2L3 + ∥ηn+ 1
2

u ∥2
)
+G2(t, u,B,ψ

n+ 1
2

h ),(58)

and

1

2∆t
(∥ωn+1

h ∥2 − ∥ωn
h∥2) +

κ

4
∥∇ωn+ 1

2

h ∥2

≤ 1

2∆t

∫ tn+1

tn
∥∂t(ηθ)∥2dt+ C

(
∥ωn+ 1

2

h ∥2 + ∥ξn+
1
2

h ∥2 + ∥∇ηn+
1
2

θ ∥2

+ ∥un+ 1
2

h ∥2∥∇ηn+
1
2

θ ∥2L3 + ∥ηn+ 1
2

u ∥2
)
+G3(t,u, θ, ω

n+ 1
2

h ).(59)

Moreover, combining (58), (59) and (57) and then noticing the fact that

((B
n+ 1

2

h · ∇)ξ
n+ 1

2

h ,ψ
n+ 1

2

h ) = −((B
n+ 1

2

h · ∇)ψ
n+ 1

2

h , ξ
n+ 1

2

h ),

we gain

1

2∆t
(∥ξn+1

h ∥2 − ∥ξnh∥2) +
1

2∆t
(∥ψn+1

h ∥2 − ∥ψn
h∥2) +

1

2∆t
(∥ωn+1

h ∥2 − ∥ωn
h∥2)

+
α2

2∆t
(∥∇ξn+1

h ∥2 − ∥∇ξnh∥2) +
µ

4
∥∇ψn+ 1

2

h ∥2 + κ

4
∥∇ωn+ 1

2

h ∥2

≤ 1

2∆t

∫ tn+1

tn
(∥∂t(ηu)∥2 + α2∥∇∂t(ηu)∥2 + ∥∂t(ηB)∥2 + ∥∂t(ηθ)∥2)dt

+
α2

2
∥∇ξn+

1
2

h ∥2 + C
(
∥ξn+

1
2

h ∥2 + ∥ψn+ 1
2

h ∥2 + ∥ωn+ 1
2

h ∥2 + ∥ηn+ 1
2

u ∥2 + ∥∇ηn+ 1
2

B ∥2

+ ∥∇ηn+
1
2

θ ∥2 + ∥un+ 1
2

h ∥2∥∇ηn+ 1
2

u ∥2L∞ + ∥∇Bn+ 1
2

h ∥2∥∇ηn+ 1
2

B ∥2L3

+ ∥∇Bn+ 1
2

h ∥2∥∇ηn+ 1
2

u ∥2 + ∥un+ 1
2

h ∥2∥∇ηn+ 1
2

B ∥2L3 + ∥un+ 1
2

h ∥2∥∇ηn+
1
2

θ ∥2L3

)
+G1(t,u,B, θ, ξ

n+ 1
2

h ) +G2(t,u,B,ψ
n+ 1

2

h ) +G3(t,u, θ, ω
n+ 1

2

h ).

(60)

Multiply (60) by 2∆t, then recall (46), (49) and (50), and finally sum the ensuing
inequality over time steps.

∥ξMh ∥2 + α2∥∇ξMh ∥2 + ∥ψM
h ∥2 + ∥ωM

h ∥2 + ∆t

4

M−1∑
n=0

(µ∥∇ψn+ 1
2

h ∥2 + κ∥∇ωn+ 1
2

h ∥2)

≤
∫ T

0

(∥∂t(ηu)∥2 + α2∥∇∂t(ηu)∥2 + ∥∂t(ηB)∥2 + ∥∂t(ηθ)∥2)dt

+ C∆t

M−1∑
n=0

(
∥ηn+ 1

2
u ∥2 + ∥un+ 1

2

h ∥2
(
∥∇ηn+ 1

2
u ∥2L∞ + ∥∇ηn+ 1

2

B ∥2L3 + ∥∇ηn+
1
2

θ ∥2L3

)
+ ∥∇Bn+ 1

2

h ∥2(∥∇ηn+ 1
2

u ∥2 + ∥∇ηn+ 1
2

B ∥2L3) + ∥∇ηn+ 1
2

B ∥2 + ∥∇ηn+
1
2

θ ∥2
)

+ C∆t
M−1∑
n=0

(
∥ξn+

1
2

h ∥2 + α2∥∇ξn+
1
2

h ∥2 + ∥ψn+ 1
2

h ∥2 + ∥ωn+ 1
2

h ∥2
)

+ C(∆t4 + α2∆t4).
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Finally, based on the finite element approximation (see, e.g., p.108 in [48]) and
Theorem 4.2, we deduce that

∥ξMh ∥2 + α2∥∇ξMh ∥2 + ∥ψM
h ∥2 + ∥ωM

h ∥2 + ∆t

4

M−1∑
n=0

(µ∥∇ψn+ 1
2

h ∥2 + κ∥∇ωn+ 1
2

h ∥2)

≤C∆t
M−1∑
n=0

(∥ξn+1
h ∥2 + α2∥∇ξn+1

h ∥2 + ∥ψn+1
h ∥2 + ∥ωn+1

h ∥2)

+ C(∆t4 + α2∆t4 + α2h2k + h2k).

Applying Grönwall’s inequality (6) completes the proof with the help of the triangle
inequality. �

5. Numerical experience

In this section, we present some numerical examples to test the established theo-
retical findings, and show the performances of the fully discrete scheme (39) for the
Voigt-regularization of the thermally coupled inviscid, resistive MHD equations (2).
A linearization of (39a)-(39e) is derived by using explicit second-order extrapolation
of the five nonlinear terms via the substitution

((u
n+ 1

2

h · ∇)u
n+ 1

2

h ,vh) → (((
3

2
un
h − 1

2
un−1
h ) · ∇)u

n+ 1
2

h ,vh).

In all tests, the SV element ((P2)
2, P dc

1 ) is used for the velocity-pressure, magnetic
field-Lagrange multiplier systems and P2 element is applied for the temperature.

5.1. Stability test. In order to demonstrate the stability of the presented scheme
showed in Theorem 4.2, we test it with different time step for the considered problem
(2) in the unit cube [0, 1]2. Set the parameters µ = 1, κ = 1.0, β = (0,−1)⊤,
α = 0.2 and the final time T = 5.0. The initial values are taken as follows:

u0(x, y) = (10x2(x− 1)2y(y − 1)(2y − 1), −10y2(y − 1)2x(x− 1)(2x− 1))⊤,

B0(x, y) = (sin(πx) cos(πy),− sin(πy) cos(πx))⊤, p0(x, y) = 0,

θ0(x, y) = 10x2(x− 1)2y(y − 1)(2y − 1)− 10y2(y − 1)2x(x− 1)(2x− 1).

Due to the zero source functions and the homogeneous boundary conditions in
the considered domain, the numerical solutions are expected to remain bounded
over time.

We denote En
h = ∥un

h∥2 + α2∥∇un
h∥2 + ∥Bn

h∥2 + ∥θnh∥2 and fix mesh size h = 1
8 .

Figure 1 shows the values of En
h versus time evolution with different time steps

∆t = 0.1, 0.05 and 0.02. We observe that it is monotonic decay for all time steps,
which shows that the proposed scheme is stable.

5.2. Convergence test. This example is to test the convergence rate for the pre-
sented scheme showed in Theorem 4.4. The RHSs f , g,Ψ and boundary conditions
are chosen such that the exact solution in the domain Ω = [0, 1]2 is given as

u = (kπ sin2(πx) sin(πy) cos(πy) cos(t),−kπ sin(πx) sin2(πy) cos(πx) cos(t))⊤,

B = (k sin(πx) cos(πy) cos(t),−k cos(πx) sin(πy) cos(t))⊤,
θ = kπ sin2(πx) sin(πy) cos(πy) cos(t)− kπ sin(πx) sin2(πy) cos(πx) cos(t)

p = (1− x)(1− y)(1− z) sin(t),

where k = 0.01. Set µ = 1, κ = 1, β = (0,−1)⊤, and α = 0.2. On the one hand,
when studying the convergence order with respect to the spatial mesh size h, we
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Figure 1. The values of En
h with different time steps.

fix a small ∆t = 0.001 to reduce impact of the time step on spatial convergence
order. The errors and convergence rates for corresponding norms at the final time
T = 0.01 with varying h are displayed in Table 1. On the other hand, when it
comes to the convergence order with respect to ∆t, we select ∆t = h and T = 1.
The corresponding results are listed in Table 2. From these tables we can see that
both of them are approximately 2. Hence, the proposed scheme works well and
keeps the convergence rates just like the theoretical analysis.

Table 1. Errors and convergence rates with respect to h.

h ∥∇eNu ∥ Rate ∥∇eNB∥ Rate ∥∇eNθ ∥ Rate

1/4 1.803E − 02 − 4.246E − 03 − 4.206E − 03 −
1/8 6.184E − 03 1.54 1.216E − 03 1.80 1.131E − 03 1.89
1/16 1.892E − 03 1.71 3.271E − 04 1.89 3.123E − 04 1.86
1/32 5.170E − 04 1.87 8.394E − 05 1.96 9.047E − 05 1.79
1/40 3.353E − 04 1.94 5.392E − 05 1.98 5.962E − 04 1.87

Table 2. Errors and convergence order with respect to ∆t.

∆t ∥∇eNu ∥ Rate ∥∇eNB∥ Rate ∥∇eNθ ∥ Rate

1/5 6.984E − 03 − 1.540E − 03 − 3.186E − 03 −
1/10 2.314E − 03 1.59 4.335E − 04 1.83 7.900E − 04 2.01
1/20 6.801E − 04 1.77 1.145E − 04 1.92 1.968E − 04 2.00
1/40 1.811E − 04 1.91 2.914E − 05 1.97 4.916E − 05 2.00

5.3. Driven cavity flow. The following numerical simulations are carried out
with the 2D lid-driven flow as the experimental model [49]. The external body
force is zero for this problem and the computational domain is Ω = [0, 1]2. The
initial values are given byB0 = u0 = 0, and θ0 = x. Then, the boundary conditions
are given as follows:

u = (1, 0)⊤ on the top wall,

u = 0, on the rest of the wall,

B × n = (1, 0)⊤ × n, θ = θ0, on ∂Ω,
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where n is the outer normal vector on ∂Ω. Define Ern+1
h := ∥un+1

h − un
h∥2 +

∥Bn+1
h −Bn

h∥2 + ∥θn+1
h − θnh∥2, and set µ = 1, κ = 1 and ∆t = 0.01.
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Figure 2. The evolution of Ern+1
h .
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Figure 3. The streamlines of velocity and magnetic field, and the
contours of temperature (from top to bottom) with different α and
h.
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Figure 4. The evolution of ∥∇ · un+1
h ∥ and ∥∇ ·Bn+1

h ∥.
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Figure 5. The streamlines of velocity and magnetic field, and the
contours of temperature (from left to right).

We first compute the problem with α = 0 at h = 1/40 as a reference solution.
Then we compare the numerical results of (39) with α = 0.01 and (39) with α = 0
(the usual thermally coupled inviscid, resistive MHD) on a coarse mesh h = 1/16.
Figure 2 gives the evolution of Ern+1

h versus time for different cases. We can
see that all cases get almost the same results.Further, we plot the streamlines of
velocity, magnetic field and the contours of the temperature in Figure 3. Based on
the reference solution, we find that the case of (39) with α = 0.01 (using Voigt-
regularization) has a better approximation in the streamline of velocity than that
of (39) with α = 0.

Furthermore, we compare the computational divergence values, which are shown
in Figure 4. It is clear that the evolution of ∥∇ ·un+1

h ∥ is almost the same for (39)
with α = 0.01 and the reference solution. Besides, (39) with α = 0.01 has the least
value of ∥∇ ·Bn+1

h ∥ among these three cases.
Finally, we simulate the problem (2) with α = 0.2 and h = 1/16, and the problem

(1) ν = 1 and h = 1/40 (the thermally coupled viscid, resistive MHD). Figure 5
plots the computational results of both cases, which show almost the same results.
To further explain it, let us take a closer look at the form of the Voigt-regularization
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and the viscosity term in the numerical scheme as follows:

α2

∆t
(∇(un+1

h − un
h),∇vh) and ν(∇un+ 1

2

h ,∇vh).

Clearly, both terms contribute to the main diagonal of the stiffness matrix and
the right-hand side term of the linear system. Therefore, for this experiment,
with appropriate parameters, the Voigt-regularization acts as a viscous term in the
momentum equation.
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