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A DIRECT METHOD FOR SOLVING THREE-DIMENSIONAL

ELLIPTIC INTERFACE PROBLEMS

KUMUDU GAMAGE1,∗, YAN PENG2, AND ZHILIN LI3

Abstract. This paper presents a direct method for efficiently solving three-dimensional elliptic

interface problems featuring piecewise constant coefficients with a finite jump across the interface.

A key advantage of our approach lies in its avoidance of augmented variables, distinguishing
it from traditional methods. The computational framework relies on a finite difference scheme

implemented on a uniform Cartesian grid system. By utilizing a seven-point Laplacian for grid

points away from the interface, our method only requires coefficient modifications for grid points
located near or on the interface. Numerical experiments validate our method’s effectiveness.

Generally, it achieves second-order accuracy for both the solution and its gradient, measured in
the maximum norm, particularly effective in scenarios with moderate coefficient jumps. Extending

and building upon the recent work of [1] on 1D and 2D elliptic interfaces, our approach successfully

introduces a simpler method for extension into three dimensions. Notably, our proposed method
not only offers efficiency and accuracy but also enhances the simplicity of implementation, making

it accessible to non-experts in the field.

Key words. Piecewise constant coefficients with a finite jump, elliptic interface problems, finite

difference scheme.

1. Intrdoction

Interface problems have gained significant attention due to their extensive prac-
tical applications. Real-world examples of interface problems span diverse domains,
including fluid dynamics where phenomena such as bubble formation have been s-
tudied [2], electromigration of voids [3], glacier prediction [4], growth of internal
blood clots [5], and thermodynamics encompassing heat propagation in distinct
materials. Additionally, these problems extend to areas related to Stefan problems,
crystal growth [6], and various other applications.

In this paper, we consider the elliptic interface problem of the form,

∇ · (β(x)∇u(x)) = f(x), x ∈ Ω\Γ,(1)

[u](X) = w(X), X ∈ Γ,(2)

[βun ](X) = v(X), X ∈ Γ,(3)

with given boundary conditions on ∂Ω, where, Γ is a smooth interface in the domain
Ω and interface Γ divides the domain Ω into two subdomains Ω+ and Ω− and
therefore, Ω = Ω+ ∪ Ω− ∪ Γ. See Figure 1 for an illustration. X is a point on the
interface Γ, x is a point in Ω and n is the unit outward normal vector to the interface
at the point X. The superscript + or − denotes the limiting value of a function
from one side or the other of the interface. Here, [u] = [u](X) = u+(X) − u−(X)
is the jump in the solution at X and un = n .∇u = ∂u

∂n is the normal derivative
of the solution u. In many applications, the coefficient β often takes the form
of a piecewise constant value, while the source term f may have discontinuities
across the interface Γ. The jumps in the solution (2) and the flux (3), along with

Received by the editors on August 28, 2023 and, accepted on February 22, 2024.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.
∗Corresponding author.

353



354 K. GAMAGE, Y. PENG, AND Z. LI

Figure 1. A diagram of a cubic domain Ω with a smooth inter-
face Γ, where n represents the unit outward normal vector to the
interface Γ.

the boundary conditions on ∂Ω, are typically guided by the underlying physical
principles.

Over time, substantial progress has been made in the development of numerical
methods for solving interface problems [7, 8, 9, 10, 11, 12, 13, 14]. Strategies
encompass the use of body-fitted grids [15, 16, 17], or the more favored Cartesian
grids [12, 18, 19]. The latter choice gains prominence due to its simplified grid
generation process, which is especially crucial when interfaces undergo frequent
shape changes, often encountered in various physical phenomena. The preference for
Cartesian grids is also amplified by the availability of versatile software tools such as
fast Poisson solvers [20], Clawpack [21], Amrclawpack [22], the level set method [23,
24, 25], structured multigrid solvers [26, 27], and the immersed boundary method
[10], along with others [28].

In Cartesian grid systems, interfaces are often embedded within a rectangular
domain (in 2D) or a cube (in 3D). The immersed interface method (IIM), pioneered
by LeVeque and Li [29], has emerged as a popular approach among the numerical
community. Being the first second-order method for solving interface problems
[30], IIM has been successfully applied to diverse linear and nonlinear problems,
including hyperbolic elliptic systems [31], elasticity systems [32], [33], Hele-Shaw
flow [34], traffic flow [35], glacier prediction [4], simulations of porosity evolution in
chemical vapor infiltration [36], and shape identification in inverse problems [37].

However, while the IIM capably captures the solution and its gradient in the
L∞ norm for elliptic interface problems featuring variable coefficient β in various
applications, it faces challenges when dealing with numerical examples characterized
by significant jump discontinuities in the coefficient β. In such cases, the resulting
linear system often becomes ill-conditioned, leading to potential non-convergence
or inaccurate outcomes [38].

To address the aforementioned convergence issues, a fast immersed interface
method (FIIM), also known as an augmented method, was introduced in [19]. This
method involves a preconditioning step for the elliptic equation before applying
the original IIM. Furthermore, it introduces an intermediate function to account
for the jump in the normal derivative across the interface, enhancing the utiliza-
tion of fast Poisson solvers. Although FIIM enhances accuracy, its implementation
comes with complexities, notably involving establishing a Schur complement sys-
tem, which adds computational overhead. Consequently, a novel direct IIM [1]
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emerged, addressing one and two-dimensional elliptic interface problems with vari-
able coefficients while eliminating the need for an augmented variable. This method
reformulates the PDE at irregular grid points, integrating gradient and second-order
derivative approximations at the interface into the finite difference scheme at these
points. Consequently, this method achieves second-order accuracy for both the
solution and its gradient.

In this paper, we extend the Direct IIM from [1] to three dimensions to address
elliptic interface problems characterized by piecewise constant coefficients without
introducing an augmented variable. This results in a method that is simpler to im-
plement compared to the augmented IIM approach. Similar to [1], we circumvent
the need for an augmented variable by incorporating gradient and second derivative
approximations at the interface into the finite difference scheme. The resulting fi-
nite difference scheme involves a standard seven-point stencil for regular grid points
and a twenty-seven compact scheme for irregular grid points. Convergence analysis
conducted through grid refinement experiments on various numerical examples val-
idates the effectiveness of our method. Generally, it achieves second-order accuracy
for both the solution and its gradient, measured in the maximum norm, particularly
effective in scenarios with moderate coefficient jumps. We have also noted that,
for large jump ratios, we can still expect second-order accuracy when the meshes
are fine enough. Furthermore, we establish the method’s stability by combining
eigenvalue analysis and condition number assessments. Our findings demonstrate
that the coefficient matrix of the linear system for the finite difference scheme has
exclusively negative real parts for its eigenvalues, and the condition number for an
underdetermined linear system for finding the correction terms to the finite differ-
ence scheme does not change drastically with alterations in the coefficient β, further
reinforcing the stability of our method. Moreover, we have conducted comprehen-
sive CPU performance analyses using an AMD Ryzen Threadripper PRO 5965WX
and verified the feasibility of these computations on a standard personal MacBook.

The paper is structured as follows: The next section delves into the algorithmic
description for solving three-dimensional interface problems. Section 3 presents ev-
idence of convergence and stability through numerical experiments. This section
also elaborates on potential improvements for error analysis and the method’s gen-
eral applicability to diverse surface geometries. The final section concludes with a
summary of key findings and contributions of our research while outlining future
areas for improvement and exploration.

2. Algorithm description

In the context of three-dimensional elliptic interface problems with piecewise
constant coefficients, we rephrase equation (1) as follows:

β(uxx + uyy + uzz) = f(x, y, z), (x, y, z) ∈ Ω\Γ,(4)

[u](X) = w(X), [βun ](X) = v(X).(5)

For simplicity, we consider the domain Ω as a solid cube, denoted by [a, b]× [a, b]×
[a, b] (refer to Figure 1). To discretize the domain, we utilize a uniform grid system
defined by:

xi = a+ ih, i = 0, 1, ..., N,

yj = a+ jh, j = 0, 1, ..., N,

zl = a+ lh, l = 0, 1, ..., N,

(6)
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Figure 2. A cross-sectional illustration of domain Ω featuring a
smooth interface Γ, where solid dots represent regular grid points,
solid triangles represent irregular grid points, and solid diamonds
represent the control points.

where h = (b − a)/N . Our objective is to develop a second-order accurate finite
difference scheme of the form:

(7)

ns∑
m

τmUi+im,j+jm,l+lm = Fijl,

at any grid point (xi, yj , zl), where the summation is taken over ns, the number
of grid points centered at (xi, yj , zl), and im, jm, and lm take the values from
−1, 0, 1. The goal is to determine suitable coefficients τm that maintain second-
order accuracy in both the solution and the gradient of the solution. We omit
the explicit dependency of m on i, j, and l for simplicity. Furthermore, we aim
to employ the standard seven-point stencil at regular grid points. A grid point
(xi, yj , zl) is classified as regular if the interface Γ does not intersect the grid lines
connecting points within the standard seven-point stencil. Conversely, it is deemed
irregular if such an intersection occurs (see Figure 2).

2.1. Finite difference scheme. For regular grid points (xi, yj , zl), we begin by
dividing equation (4) by β and apply a central difference scheme with a seven-point
stencil. This results in the finite difference scheme:

Ui−1,j,l − 2Ui,j,l + Ui+1,j,l

h2

+
Ui,j−1,l − 2Ui,j,l + Ui,j+1,l

h2

+
Ui,j,l−1 − 2Ui,j,l + Ui,j,l+1

h2
=
fi,j,l
βi,j,l

.

(8)

Here, fi,j,l = f(xi, yj , zl), βi,j,l = β(xi, yj , zl), and Ui,j,l represents the numerical
solution at u(xi, yj , zl).
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For irregular grid points, a Taylor expansion at a control point leads to the finite
difference scheme:

Ui−1,j,l − 2Ui,j,l + Ui+1,j,l

h2
+ Cxi,j,l

+
Ui,j−1,l − 2Ui,j,l + Ui,j+1,l

h2
+ Cyi,j,l

+
Ui,j,l−1 − 2Ui,j,l + Ui,j,l+1

h2
+ Czi,j,l =

fi,j,l
βi,j,l

.

(9)

Assuming the seven-point stencil of an irregular grid point (xi, yj , zk) intersects
the right arm at the control point x∗ = (x∗, y∗, z∗), the correction term Cxi,j,l is
expressed as:

(10) Cxi,j,l = ± [u]

h2
± [ux]

(xi+1 − x∗)
h2

± [uxx]
(xi+1 − x∗)2

2h2
.

Here, plus or minus is chosen depending on which side the irregular grid point
(xi, yj , zl) lies. The correction terms in the y and z directions will also be in the
same format.

The difference scheme for irregular points involves calculating jumps such as
[u], [ux], [uy], [uz], [uxx], [uyy], and [uzz]. These jumps can be determined by
differentiating the known jumps [u] = w and [βun ] at the interface. This is facili-
tated by performing a local coordinate transformation aligned with the normal and
tangential directions to the interface Γ at the control point x∗ = (x∗, y∗, z∗).

2.2. Local coordinate transformation. At a given point (x∗, y∗, z∗) ∈ Γ, let ξ
represent the normal direction of Γ, while η and ζ are two orthogonal directions
tangential to Γ. The local coordinates in these directions are given by:

(11)

ξ = (x− x∗)αxξ + (y − y∗)αyξ + (z − z∗)αzξ,
η = (x− x∗)αxη + (y − y∗)αyη + (z − z∗)αzη,
ζ = (x− x∗)αxζ + (y − y∗)αyζ + (z − z∗)αzζ ,

where αxξ is the directional cosine between the x-axis and ξ, and similarly for the
other coefficients (See Figure 3). This transformation can be expressed in matrix
form:

(12)

ξη
ζ

 = A

x− x∗y − y∗
z − z∗

 ,
with the matrix A given by:

(13) A =

αxξ αyξ αzξ
αxη αyη αzη
αxζ αyζ αzζ

 .
The first and second derivatives of any differentiable function q(x, y, z) can be ex-

pressed in local coordinates using this transformation. The local coordinate trans-
formation for the first derivative is given by:

(14)

qξqη
qζ

 = A

qxqy
qz

 .
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Figure 3. A sketch of a three-dimensional local coordinate trans-
formation.

Similarly, the local coordinate transformation for the second derivative is:

(15)

qξξ qξη qξζ
qηξ qηη qηζ
qζξ qζη qζζ

 = A

qxx qxy qxz
qyx qyy qyz
qzx qzy qzz

AT ,
where AT is the transpose of the matrix A. It is important to note that during the
local coordinate transformation, the partial differential equation (PDE), equation
(4) retains the same. Therefore, we drop the bars for simplicity.

2.3. Local coordinate transformation in terms of level set function. At a
given point (x∗, y∗, z∗) on the interface, let ξ be aligned with the outward normal
direction of the interface, given by:

(16) ξ =
5φ
| 5 φ|

=
(φx, φy, φz)

T√
φ2
x + φ2

y + φ2
z

,

where ∇φ = (φx, φy, φz)
T is the gradient of the level set function φ.

For the first tangential direction η, we have:

if φ2
x + φ2

y 6= 0; η =
(φy, −φx, 0)T√

φ2
x + φ2

y

,

otherwise η =
(φz, 0, −φx)T√

φ2
x + φ2

z

.

(17)

For the second tangential direction ζ, we have:

if φ2
x + φ2

y 6= 0; ζ =
s

|s|
, where s = (φxφz, φyφz, −φ2

x − φ2
y)T ,

otherwise ζ =
t

|t|
where t = (−φxφy, φ2

x + φ2
z, −φyφz)T .

(18)

2.4. Computing principal curvatures using the level set function. In the
vicinity of a control point x∗ = (x∗, y∗, z∗), the interface can be parametrized as:

(19) ξ = χ(η, ζ), with χ(0, 0) = 0, χη(0, 0) = 0, χζ(0, 0) = 0.
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To calculate the derivatives of jumps at the interface, we require the second-order
tangential derivatives χηη, χζζ , and χηζ of χ at x∗.

On the interface, we have the relation φ(χ(η, ζ), η, ζ) = 0. Starting with implicit
differentiation, consider the derivatives of φ with respect to η and ζ:

φη + φξχη = 0,(20)

φζ + φξχζ = 0.(21)

Next, differentiate equations (20) and (21) with respect to η and ζ, resulting in:

φηη + φηξχη + (φξη + φξξχη)χη + φξχηη = 0,

φηζ + φηξχζ + (φξζ + φξξχζ)χη + φξχηζ = 0,

φζζ + φζξχζ + (φξζ + φξξχζ)χζ + φξχζζ = 0.

(22)

Since, χη(0, 0) = 0 and χζ(0, 0) = 0 on the interface, the following relationships
emerge:

χηη = −φηη/φξ,
χζζ = −φζζ/φξ,
χηζ = −φηζ/φξ,

(23)

where,

(24)

φξφη
φζ

 = A

φxφy
φz

 .
2.5. Local coordinate transformation of jump conditions. In order to de-
termine the jump conditions [u], [ux], [uy], [uz], [uxx], [uyy], and [uzz] at a control
point x∗ = (x∗, y∗, z∗), we find it convenient to differentiate the jump condition-
s [u] = w and [βun ] = v along the interface and then proceed with coordinate
transformation.

Let’s begin by differentiating [u] = w with respect to η and ζ:

[uξ]χη + [uη] = wη,(25)

[uξ]χζ + [uζ ] = wζ .(26)

Differentiating equation (25) with respect to η gives:

(27) χη
∂[uξ]

∂η
+ χηη[uξ] + χη[uηξ] + [uηη] = wηη.

Differentiating equation (25) with respect to ζ yields:

(28) χη
∂[uξ]

∂ζ
+ χηζ [uξ] + χζ [uηξ] + [uηζ ] = wηζ .

Similarly, differentiating equation (26) with respect to ζ results in:

(29) χζ
∂[uξ]

∂ζ
+ χζζ [uξ] + χζ [uζξ] + [uζζ ] = wζζ .

Next, we express the unit normal vector of the interface in terms of χ:

(30) n =
(1,−χη,−χζ)√

1 + χ2
η + χ2

ζ

,
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and rewrite the flux jump condition [βun ] = v using local coordinate transforma-
tions:

(31) [β(uξ − uηχη − uζχζ)] = v(η, ζ)
√

1 + χ2
η + χ2

ζ .

Differentiating equation (31) with respect to η, we get,

[β(uξξχη + uξη − χη
∂uη
∂η
− χζ

∂uζ
∂η
− uηχηη − uζχηζ)]

= vη

√
1 + χ2

η + χ2
ζ + v

χηχηη√
1 + χ2

η + χ2
ζ

.
(32)

Likewise, differentiating the equation (31) with respect to ζ, we get,

[β(uξξχζ + uξζ − χη
∂uη
∂ζ
− χζ

∂uζ
∂ζ
− uηχηζ − uζχζζ)]

= vζ

√
1 + χ2

η + χ2
ζ + v

χζχζζ√
1 + χ2

η + χ2
ζ

.
(33)

With χη(0, 0) = χζ(0, 0) = 0 on the interface, the jump relations (25)-(33) simplify
to:

[u] = w,(34)

[uη] = wη,(35)

[uζ ] = wζ ,(36)

[βuξ] = v,(37)

[uηη] = −χηη[uξ] + wηη = D1,(38)

[uζζ ] = −χζζ [uξ] + wζζ = D2,(39)

[uηζ ] = −χηζ [uξ] + wηζ = D3,(40)

[βuξη] = χηη[βuη] + χηζ [βuζ ] + vη = D4,(41)

[βuξζ ] = χηζ [βuη] + χζζ [βuζ ] + vζ = D5.(42)

In addition to these relations, the PDE (4) provides two more jump conditions:

u+
xx + u+

yy + u+
zz =

f+

β+
= D6,(43)

u−xx + u−yy + u−zz =
f−

β−
= D7.(44)

The subsequent step involves transforming these jump conditions (34)-(44) into
Cartesian coordinates and expressing all the limiting values from outside the inter-
face. The expressions for u+, u+

x , u+
y , u+

z , u+
xx, u+

xy, u+
xz, u

+
yy, u+

yz, and u+
zz can be

found in Appendix A [39]. Notably, D1 through D5 can also be expressed in terms
of u−x , u−y , and u−z .

2.6. The approximation of the correction terms. In this section, we will
discuss how to interpolate the correction terms Cxi,j,l, C

y
i,j,l, and Czi,j,l using the

Cartesian coordinate transformations of the jump relations given by equations (34)
to (42), as well as the other two jump conditions equations (43) and (44) derived
from the PDE itself.

Given an irregular grid point (xi, yj , zl), we first select a point x∗ = (x∗i , y
∗
j , z
∗
l )

on the interface Γ near (xi, yj , zl). Here, we consider this point the control point
closest to (xi, yj , zl).
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To ensure that the resulting difference scheme at the irregular point follows the
form of equation (7), we expand each Ui+im,j+jm,l+lm around the control point
x∗ = (x∗i , y

∗
j , z
∗
l ). Here, m = 1, 2.., ns, and ns is the number of grid points in the

difference scheme. The values of im, jm, and lm will be selected from −1, 0, 1. We
will elaborate later on how to choose ns. Additionally, it is important to note that
m depends on i, j, and l, although we have omitted this dependence for simplicity.

Without loss of generality, let’s assume that (xi, yj , zl) is an irregular point,
and the seven-point stencil around (xi, yj , zl) only cuts through the right arm,
while (xi, yj , zl) ∈ Ω−. We will proceed by considering the Taylor expansion of
u(xi+im , yj+jm , zl+lm) around the control point x∗ = (x∗i , y

∗
j , z
∗
l ).

u(xi+im , yj+jm , zl+lm) = u± + (xi+im − x∗i )u±x + (yj+jm − y∗j )u±y

+ (zl+lm − z∗l )u±z +
1

2
(xi+im − x∗i )2u±xx

+
1

2
(yj+jm − y∗j )2u±yy +

1

2
(zl+lm − z∗l )2u±zz

+ (xi+im − x∗i )(yj+jm − y∗j )u±xy

+ (xi+im − x∗i )(zl+lm − z∗l )u±xz

+ (yj+jm − y∗j )(zl+lm − z∗l )u±yz +O(h3).

(45)

In the above expression, the plus or minus sign is chosen based on whether
(xi+im , yj+jm , zl+lm) lies in Ω+ or Ω−. By utilizing the coordinate transformation
of the nine interface relations (34) to (42), along with the other two jump relations
given by equations (43) and (44), we can eliminate the limiting values from the
plus side using the limiting values from the minus side, as explained in Appendix A
[39]. Consequently, the Taylor series expansion of equation (45) will include terms
dependent on u−, u−x , u−y , u−z , u−xx, u−xy, u−xz, u

−
yy, and u−yz.

Now, the equation (45) can be expressed in the form:

u(xi+im , yj+jm , zl+lm) = c1mu
− + c2mu

−
x + c3mu

−
y + c4mu

−
z + c5mu

−
xx

+ c6mu
−
xy + c7mu

−
xz + c8mu

−
yy + c9mu

−
yz + c10

m .
(46)

Here, coefficients c1m through c10
m are known quantities. Consequently, the correction

term Cxi,j,l can be reformulated as:

Cxi,j,l =a1u
− + a2u

−
x + a3u

−
y + a4u

−
z + a5u

−
xx

+ a6u
−
xy + a7u

−
xz + a8u

−
yy + a9u

−
yz + a10.(47)

In the above expression, coefficients a1 through a10 are known. The interpolation
for Cyi,j,l and Czi,j,l will follow the same form as for Cxi,j,l, with only the coefficients
being different.

Now, we make an assumption that the correction terms Cxi,j,l can be approxi-
mated as follows:

(48) Cxi,j,l =

ns∑
m

γmUi+im,j+jm,l+lm + γc.
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Figure 4. The 27-point stencil for three-dimensional compact scheme.

By comparing equations (47) and (48), we derive the following linear system:

(49)


c11 c12 · · · c13 c1m−1 c1m
c21 c22 · · · c23 c2m−1 c2m

· · ·
c81 c82 · · · c83 c8m−1 c8m
c91 c92 · · · c93 c9m−1 c9m




γ1

γ2

· · ·
γm−1

γm

 =



a1

a2

a3

a4

a5

a6

a7

a8

a9


.

The value of γc in equation (48) can be determined using the following expression:

(50) γc = a10 −
ns∑
m

c10
m · γm.

The linear system presented in equation (49) consists of nine linear equations for
determining the coefficients γm. To ensure a solvable system, we choose ns = 27,
which corresponds to all 27 grid points within the cube centered at the irregular
grid point (xi, yj , zl), as illustrated in Figure 4. Although we encounter an under-
determined linear system due to the greater number of unknowns than equations,
we can solve it using singular value decomposition (SVD) to obtain the minimum
norm solution. At this stage, the finite difference scheme at the irregular grid
point (xi, yj , zl) is entirely determined. The linear system for the finite difference
equations can be expressed as:

(51) AhU = F .

Let us delve further into the coefficient matrix (51). As previously described, the
coefficients τm in the finite difference scheme (7) are obtained by incorporating the
γm values, which are derived by solving the underdetermined linear system equation
(49), into the standard seven-point stencil. This stencil retains the same coefficients
as those of the finite difference scheme used for the discrete Laplacian operator in
a Poisson equation in the absence of an interface. Notably, these γm values are
contingent on the interface’s location and the jump β in the PDE (4).

It is important to note that the coefficients γm in the correction terms are gen-
erally of order O(1/h2). However, our numerical experiments indicate that their
magnitudes are significantly smaller than 1/h2. Consequently, the dominant weight-
s in the FD scheme (7) are still determined by the grid values of the seven-point
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stencil. As a result, the eigenvalues of the coefficient matrix will remain within the
stability region. In section 3, we will provide a specific example that illustrates the
magnitudes of eigenvalues and coefficients γm for a problem with a moderate jump
in β.

Now, to recover the gradient of the solution at the interface, the following for-
mulas can be employed:

U−ξ = αxξU
−
x + αyξU

−
y + αzξU

−
z ,(52)

U+
ξ = ραxξU

−
x + ραyξU

−
y + ραzξU

−
z + v/β+,(53)

U−η = αxηU
−
x + αyηU

−
y + αzηU

−
z ,(54)

U+
η = αxηU

−
x + αyηU

−
y + αzηU

−
z + wη,(55)

U−ζ = αxζU
−
x + αyζU

−
y + αzζU

−
z ,(56)

U+
ζ = αyζU

−
x + αyζU

−
y + αzζU

−
z + wζ .(57)

Here, ξ represents the unit normal direction, while η and ζ denote the tangen-
tial directions to the interface at the control point x∗ = (x∗i , y

∗
j , z
∗
l ). Addition-

ally, ρ = β−/β+ stands for the jump ratio. Equations (52) and (53) are ob-
tained through the coordinate transformation of equation (37). Equations (54)
and (55) are derived from the coordinate transformation of equation (35). Sim-
ilarly, equations (56) and (57) are acquired by the coordinate transformation of
equation (36). To interpolate these gradients from the solution, we again assume
that the interpolation scheme takes the form of an equation (48). Here, the point
(xi, yj , zl) is chosen as the closest irregular point to the considered control point.
Consequently, the resulting linear system resembles equation (49), but with the
right-hand vector replaced by [0, αxξ, αyξ, αzξ, 0, 0, 0, 0, 0, 0]T for calculating U−ξ
and [0, ραxξ, ραyξ, ραzξ, 0, 0, 0, 0, 0, v/β

+]T for U+
ξ .

2.7. Algorithm Overview. This section presents an outline of the algorithm for
solving three-dimensional elliptic interface problems.

Step 1: Embed the irregular domain (interface) within a cubic domain Ω =
[a, b]× [a, b]× [a, b] and represent the interface using a zero level set function.

Step 2: Determine the regular and irregular grid points, along with the locations
of control points, which correspond to the intersection points of the interface and
the grid lines. This is achieved using the level set grid function φ.

Step 3: Apply the standard 7-point central difference scheme at the regular grid
points.

Step 4: Solve the underdetermined linear system provided by equation (49) to
compute the correction terms Cxik,jk,lk , Cyi,j,l, and Czi,j,l at irregular grid points.
Subsequently, establish the 27-point compact scheme at irregular points.

Step 5: Solve the system of linear equations detailed in equation (51).
Step 6: Recover the gradients of the solution.

3. Numerical Examples

This section presents numerical experiments for 3D elliptic interface problems
with Dirichlet boundary conditions using the proposed Direct IIM. Nevertheless,
other linear boundary conditions, such as the Neumann or Robin type of BCs,
can be easily adapted as long as the problem has a unique solution. The boundary
conditions are implemented by modifying both the coefficients in the matrix and the
right-hand side of the linear system (51). These experiments were conducted on an
AMD Ryzen Threadripper PRO 5965WX to demonstrate the method’s efficiency,
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with detailed CPU times provided for various numerical examples. Furthermore,
we validated the method’s practical applicability on commonly used computing
devices by successfully conducting computations on a standard personal MacBook,
accommodating grid sizes up to 80 x 80 x 80. The linear system, as outlined in
equation (51), was solved using the backslash operator in MATLAB.

Error measurements throughout our experiments are quantified in the L∞ norm.
The convergence order is calculated using the following formula:

(58) order =
1

log(2)
log
‖E2h‖∞
‖Eh‖∞

.

For all problems, β(x, y, z) is defined as:

(59) β(x, y, z) =

{
β− if (x, y, z) ∈ Ω−,

β+ if (x, y, z) ∈ Ω+.

In the convergence analysis tables, N represents the number of grid points in
each direction. E(u) denotes the maximum norm error of the numerical solution.
Additionally, E(un), E(uη), and E(uζ) respectively represent the maximum norm
errors in the normal and tangential components of the solution.

Example 3.1 .
In this example, the solution u(x, y, z) and its flux demonstrate jump discontinu-
ities. The governing differential equation is:

(60) (βux)x + (βuy)y + (βuz)z = f.

The domain Ω is defined as [−1, 1]× [−1, 1]× [−1, 1], with the interface Γ being a
sphere described by:

(61) φ(x, y, z) = x2 + y2 + z2 − 0.25.

The source term f is defined as follows:

(62) f(x, y, z) =

{
6β− if (x, y, z) ∈ Ω−,

6β+ if (x, y, z) ∈ Ω+.

The jump in the solution u(x, y, z) and its flux is given by:

[u] = 10,(63)

[βun] = β+ − β−.(64)

The Dirichlet boundary conditions are derived from the exact solution, which is
defined as follows:

(65) u(x, y, z) =

{
x2 + y2 + z2 if (x, y, z) ∈ Ω−,

x2 + y2 + z2 + 10 if (x, y, z) ∈ Ω+.

Figure 5 displays slices of the computed solution and the corresponding error
distributions. We have conducted several cases for different jumps in β. For all
these cases, we have observed that the maximum norm errors exhibit magnitudes
ranging from 10−12 to 10−15 in the infinity norm. Detailed grid refinement analyses
are presented in Tables 1 and 2. These errors primarily originate from round-off
errors, which can be attributed to the quadratic nature of the solution.
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Figure 5. (a) Plot of the numerical solution for Example 3.1. (b)
Plot of the error in the numerical solution with N = 80, β− = 1,
and β+ = 10.

Table 1. A grid refinement analysis for Example 3.1 with β− = 1
and β+ = 1.

N E(u) E(un) E(uη) E(uζ)
10 8.81E-13 3.73E-13 3.32E-13 3.82E-13
20 4.30E-13 1.10E-13 1.18E-13 1.53E-13
40 2.10E-14 1.93E-14 4.92E-14 3.34E-14
80 1.02E-14 0.54E-15 1.92E-14 1.68E-14
160 9.97E-15 9.40E-15 8.26E-15 6.59E-15

Table 2. A grid refinement analysis for Example 3.1 with β− = 1
and β+ = 104.

N E(u) E(un) E(uη) E(uζ)
10 8.88E-12 3.73E-12 3.32E-12 3.82E-12
20 4.30E-13 1.10E-13 8.18E-13 8.53E-13
40 1.60E-14 1.93E-14 1.92E-14 2.34E-14
80 6.82E-15 3.64E-15 4.83E-15 5.68E-15
160 2.77E-15 1.40E-15 1.36E-15 1.59E-15

Example 3.2 . Stability analysis and applicability for general interfaces.
In this example, our initial focus is on the stability analysis of our method. This
entails two primary components:

1. Eigenvalue analysis: An examination of the eigenvalues of the coefficient ma-
trix derived from our finite difference scheme, as detailed in equation (51).

2. Condition number analysis: This involves investigating the condition number
under varying values of β for the underdetermined linear system, as outlined in
equation (49).

After a detailed analysis focused on the stability of our method, we will later
extend our exploration to assess its applicability to general surface interfaces within
this section.

To commence with the stability analysis, we consider an elliptic interface problem
characterized by jump discontinuities in both the solution u(x, y, z) and its flux. In
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this analysis, the governing differential equation is defined as follows:

(66) (βux)x + (βuy)y + (βuz)z = f.

The domain Ω is specified as [−1, 1]× [−1, 1]× [−1, 1]. The interface, represented
as a sphere, is given by the equation:

(67) φ(x, y, z) = x2 + y2 + z2 − 0.25.

The source term f varies according to:

(68) f(x, y, z) =

{
2β−er

2

(3 + 2r2) if (x, y, z) ∈ Ω−,

2β+er
2

(3 + 2r2) if (x, y, z) ∈ Ω+,

where r =
√
x2 + y2 + z2. The jumps in the solution and flux and boundary

conditions are derived using the exact solution given by:

(69) u(x, y, z) =

{
er

2

if (x, y, z) ∈ Ω−,

er
2

+ 1 if (x, y, z) ∈ Ω+.

Detailed grid refinement analyses are provided in Tables 3 through 6 by varying
the jump in β. The results demonstrate near second-order accuracy for both the
solution and the gradient of the solution.

Table 3. A grid refinement analysis for Example 3.2 for interface
as a sphere with β− = 1 and β+ = 1.

N E(u) order E(un) order E(uη) order E(uζ) order
10 6.40E-02 0.134324 0.141663 0.14311
20 1.83E-02 1.81 3.47E-02 1.95 4.08E-02 1.80 4.15E-02 1.79
40 4.85E-03 1.91 8.98E-03 1.95 1.12E-02 1.86 1.09E-02 1.93
80 1.25E-03 1.96 2.41E-03 1.90 2.79E-03 2.01 2.78E-03 1.97
160 3.16E-04 1.98 6.01E-04 2.00 7.05E-04 1.99 7.59E-04 1.87

Table 4. A grid refinement analysis for Example 3.2 for interface
as a sphere with β− = 1 and β+ = 102.

N E(u) order E(un) order E(uη) order E(uτ ) order
10 8.54E-02 1.23E-01 3.64E-01 3.73E-01
20 2.40E-02 1.83 2.95E-02 2.06 8.97E-02 2.02 8.70E-02 2.10
40 6.32E-03 1.92 9.94E-03 1.57 2.50E-02 1.84 2.49E-02 1.81
80 1.61E-03 1.97 3.18E-03 1.64 9.32E-03 1.42 9.38E-03 1.41
160 4.08E-04 1.98 1.16E-03 1.45 2.26E-03 2.05 2.29E-03 2.04

Eigenvalue analysis: To assess our method’s stability, we analyzed the eigenval-
ues of the coefficient matrix obtained from the finite difference (FD) scheme (51).
Figure 6 illustrates the eigenvalues of the coefficient matrix of the FD scheme for
Example 3.2 with the interface as a sphere. The analysis is conducted for a grid size
of N = 22 points in each direction of the computational domain. The eigenvalues
are presented for two cases: (a) β− = 1 and β+ = 100 and (b) β− = 100 and
β+ = 1. Notably, for both cases, the coefficient matrix of the FD scheme exclusive-
ly has negative real parts for its eigenvalues, indicating the stability of the original
method in this particular example. Figure 7 provides insight into the values of
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Table 5. A grid refinement analysis for Example 3.2 for interface
as a sphere with β− = 1 and β+ = 104.

N E(u) order E(un) order E(uη) order E(uτ ) order
10 8.58E-02 1.24E-01 3.64E-01 3.80E-01
20 2.42E-02 1.83 2.98E-02 2.06 9.29E-02 1.97 8.97E-02 2.08
40 6.35E-03 1.93 8.29E-03 1.84 2.79E-02 1.73 2.80E-02 1.68
80 1.62E-03 1.97 3.87E-03 1.10 9.90E-03 1.50 9.96E-03 1.49
160 4.09E-04 1.98 1.40E-03 1.46 2.34E-03 2.08 2.38E-03 2.07

Table 6. A grid refinement analysis for Example 3.2 for interface
as a sphere with β− = 102 and β+ = 1.

N E(u) order E(un) order E(uη) order E(uζ) order
10 4.42E-01 4.65E-01 5.45E-01 5.45E-01
20 2.97E-01 1.31 1.23E-01 1.91 1.60E-01 1.77 1.66E-01 1.72
40 1.19E-01 1.82 2.13E-02 2.54 2.87E-02 2.47 3.10E-02 2.42
80 3.39E-02 1.95 6.04E-03 1.81 5.40E-03 2.41 6.13E-03 2.34
160 8.74E-03 1.95 1.74E-03 1.80 1.61E-03 1.75 1.60E-03 1.94

Figure 6. Eigenvalue distribution of the coefficient matrix for
Example 3.2 with N = 22. Cases: (a) β− = 1 and β+ = 100, and
(b) β− = 100 and β+ = 1. All eigenvalues exhibit negative real
parts.

γm, which are coefficients in the underdetermined linear system (49). These coef-
ficients are instrumental in computing the correction terms for a specific irregular
grid point (xi, yj , zl). To facilitate understanding, we labeled the 27 grid points
in the FD scheme corresponding to this irregular grid point using red ink. The
labeling sequence begins with the lowest left corner grid point as number 1, and it
increases by one as it moves to the right and upward. Refer to Figure 7 for a visual
representation of this labeling scheme.

As discussed in Section 2.6, to determine the coefficients τm of the FD scheme
for a particular irregular point (labeled as number 14), we added the coefficients
of the standard seven-point stencil of the FD scheme for a Poisson equation (4) in
the absence of an interface. Specifically, the central point is assigned a coefficient
of −6/h2 ≈ −661.00, while the remaining six grid points (labeled as numbers 5, 11,
13, 15, 17, and 23) are assigned a coefficient of 1/h2 ≈ 110.25. This addition was
performed to the γm values obtained from solving the linear system (49). Notably,
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Figure 7. The γm coefficients for a point (xi, yj , zl) near the in-
terface in Example 3.2. Standard seven-point stencil grid points
are indicated with green circles, interface grid points with orange,
and other stencil points with black.

the larger coefficients in the FD scheme arise primarily from the values of the seven-
point stencil, providing insight into the stability of the original method.

Condition number analysis: In addition to the eigenvalue analysis, we investi-
gate the condition number for two scenarios involving β jumps for Example 3.2. The
results are summarized in Table 7, where the interface is represented as a sphere.
These results demonstrate that the condition number remains stable across various

Table 7. Condition number analysis for Example 3.2 with varying
β ratios and spherical Interface.

N [β] = 100 [β] = 104

10 128 128
20 566 567
40 2101 2105
80 8039 8053

scenarios, providing strong evidence of the robustness of our numerical method a-
gainst different jumps in β.

Applicability for general interfaces: In this part of the analysis, we extend the
applicability of the Direct IIM proposed in this paper to non-spherical interfaces,
addressing more general surface interfaces. We utilize the same elliptic interface
problem as defined in (66), with the identical boundary conditions as described in
(69). However, the interface is modeled as an ellipsoid instead of a sphere, defined
by the equation:

(70) φ(x, y, z) = x2 + 2y2 + z2 − 0.25.

This modification allows us to test the method’s effectiveness in the general in-
terfaces. The grid refinement analysis for these scenarios is presented in Tables
8 through 11. These results indicate that the method still preserves second-order
accuracy even with non-spherical interfaces.
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Furthermore, we present a comparative analysis of the solution, its error, and
interface representations for spherical and ellipsoidal cases in Figure 8. This analysis
demonstrates the method’s adaptability to different interface shapes.

Additionally, to assess the computational efficiency of our method for different
interface geometries, we have conducted CPU time analysis for both spherical and
ellipsoidal cases. The results in Table 12 illustrate the CPU times (in seconds)
required for Example 3.2 with each geometry. This evaluation helps understand
the method’s performance in terms of computational demand for varying interface
configurations.

Table 8. A grid refinement analysis for Example 3.2 with ellipsoid
β+ = 1 and β− = 1.

N E(u) order E(un) order E(uη) order E(uζ) order
10 6.40E-02 1.09E-01 1.23E-01 1.23E-01
20 1.83E-02 1.81 2.68E-02 2.02 4.05E-02 1.60 3.96E-02 1.63
40 4.85E-03 1.91 8.52E-03 1.65 1.14E-02 1.82 1.18E-02 1.74
80 1.25E-03 1.96 2.22E-03 1.94 2.71E-03 2.08 3.04E-03 1.96
160 3.16E-04 1.98 5.55E-04 2.00 6.99E-04 1.96 6.95E-04 2.13

Table 9. A grid refinement analysis for Example 3.2 with ellipsoid
β+ = 103 and β− = 1.

N E(u) order E(un) order E(uη) order E(uζ) order
10 8.21E-02 1.44E-01 3.53E-01 4.08E-01
20 2.30E-02 1.84 7.61E-02 0.91 9.84E-02 1.84 1.02E-01 2.00
40 6.02E-03 1.93 1.22E-02 2.64 2.24E-02 2.14 2.51E-02 2.02
80 1.54E-03 1.97 3.78E-03 1.69 7.40E-03 1.60 8.40E-03 1.58
160 3.90E-04 1.98 1.09E-03 1.80 2.22E-03 1.74 2.44E-03 1.78

Table 10. A grid refinement analysis for Example 3.2 with ellip-
soid β+ = 104 and β− = 1.

N E(u) order E(un) order E(uη) order E(uζ) order
10 8.22E-02 1.44E-01 3.53E-01 4.08E-01
20 2.30E-02 1.84 7.84E-02 0.87 9.87E-02 1.84 1.02E-01 2.00
40 6.02E-03 1.93 1.23E-02 2.68 2.25E-02 2.13 2.52E-02 2.02
80 1.54E-03 1.97 4.15E-03 1.56 7.41E-03 1.60 8.42E-03 1.58
160 3.90E-04 1.98 1.11E-03 1.90 2.22E-03 1.74 2.45E-03 1.78

Example 3.3 .
In this example, both the solution u(x, y, z) and its flux have jump discontinuities.
The governing differential equation is given by:

(71) (βux)x + (βuy)y + (βuz)z = f.

The domain Ω is defined as [−1, 1]× [−1, 1]× [−1, 1], and the interface Γ is a sphere
represented by the zero level set of the function:

(72) φ(x, y, z) = x2 + y2 + z2 − 0.25.
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Table 11. A grid refinement analysis for Example 3.2 with ellip-
soid β+ = 1, β− = 102.

N E(u) order E(un) order E(uη) order E(uζ) order
10 1.76E-01 4.33E-01 3.95E-01 3.74E-01
20 1.67E-01 0.08 3.75E-01 0.21 1.92E-01 1.04 1.94E-01 0.94
40 8.68E-02 0.94 9.67E-02 1.95 4.48E-02 2.10 4.61E-02 2.07
80 2.63E-02 1.72 3.68E-02 1.40 6.86E-03 2.71 6.50E-03 2.83
160 6.90E-03 1.93 1.05E-02 1.81 1.74E-03 1.98 1.65E-03 1.98

Table 12. CPU time in seconds for Example 3.2 with sphere and
ellipsoid.

N
[β] = 100 [β] = 104

Sphere Ellipsoid Sphere Ellipsoid
10 22.09 25.54 22.06 22.56
20 57.19 60.55 57.17 53.40
40 252.98 255.52 252.95 238.09
80 813.03 756.04 812.06 726.38

The source term f is defined as follows:

(73) f(x, y, z) =

{
3β−ex+y+z if (x, y, z) ∈ Ω−,

−β+π2(sin(πx) + sin(πy) + sin(πz)) if (x, y, z) ∈ Ω+.

The jump in solution u(x, y, z) and its flux is computed by the equation (74).
Boundary conditions are defined by the exact solution:

(74) u(x, y, z) =

{
ex+y+z if (x, y, z) ∈ Ω−,

sin(πx) + sin(πy) + sin(πz) if (x, y, z) ∈ Ω+.

Table 13. Grid refinement analysis for Example 3.3.

N [β] = 1 [β] = 5 [β] = 10 [β] = 50
E(u) Order E(u) Order E(u) Order E(u) Order

10 4.85E-02 9.77E-02 1.09E-01 1.18E-01
20 1.45E-02 1.74 3.94E-02 1.31 4.53E-02 1.26 5.04E-02 1.22
40 3.74E-03 1.95 1.60E-02 1.30 1.88E-02 1.27 2.13E-02 1.24
80 1.03E-03 1.86 5.81E-03 1.46 8.60E-03 1.13 9.86E-03 1.11
160 2.65E-04 1.97 1.51E-03 1.94 2.39E-03 1.85 3.20E-03 1.62

Table 14. CPU time in seconds for varying values of [β] for Ex-
ample 3.3.

N [β] = 1 [β] = 10 [β] = 50
10 40.17 26.95 24.76
20 150.27 69.24 64.06
40 713.69 301.04 283.76
80 852.53 947.23 902.97
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Figure 8. Comparative visualization for Example 3.2 with [β] =
100 and N = 80: (a) Numerical solution with a spherical inter-
face, (b) Numerical solution with an ellipsoidal interface, (c) Error
analysis for the spherical interface, (d) Error analysis for the ellip-
soidal interface, (e) Interface representation with a sphere, and (f)
Interface representation with an ellipsoid.

We have presented the grid refinement analyses and CPU time evaluations for
Example 3.3 in Tables 13 and 14. We have also included Figures 9a and 9b, illus-
trating the numerical solution and its corresponding error for Example 3.3.

Our observations reveal that the error is of second order when the jump in β is
zero or relatively small. We can still expect second-order accuracy for larger jump
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Figure 9. (a) Plot of numerical solution for Example 3.3, (b)
Plot of error of the numerical solution with N = 80, β− = 1 and
β+ = 100.

ratios when the meshes are fine enough. An alternative approach is to use the
preconditioning technique described in [19]. Despite this, it successfully captures
the discontinuities in the solution and maintains a decent order of accuracy.

4. Conclusion and future work

This paper introduces a direct methodology for addressing three-dimensional
elliptic interface problems characterized by piecewise constant coefficients. This
approach represents an advancement of the foundational work by Chen et al. [1],
initially developed for two-dimensional elliptic interface problems. By adapting and
expanding this method to three-dimensional scenarios, we ensure a user-friendly
implementation accessible to a broad audience, including those not experts in the
field.

The method exhibits second-order accuracy for moderate coefficient jumps. Sta-
bility analysis, including eigenvalue and condition number assessments, confirms
the method’s robustness against variations in the coefficient jump of β. We can
still expect second-order accuracy for larger jump ratios when the meshes are fine
enough. An alternative approach is to use the preconditioning technique described
in [19].

Through comparative analysis, we demonstrated the method’s adaptability to
general interfaces, such as spherical and ellipsoidal shapes.

Additionally, we have conducted an extensive CPU analysis using the AMD
Ryzen Threadripper PRO 5965WX. To further emphasize the practicality and ac-
cessibility of our method, we also carried out computational tests on a widely used
personal computing device, a standard MacBook. This step not only demonstrates
the versatility of our approach but also its adaptability to common computing en-
vironments.

We also plan to enhance the efficiency of our method by integrating a multigrid
solver for solving linear systems within the finite difference (FD) scheme. This
advancement aims to replace the current use of the backslash operator in MATLAB,
offering a more robust and efficient computational framework.
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