
INTERNATIONAL JOURNAL OF c⃝ 2024 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 21, Number 2, Pages 181–200 doi: 10.4208/ijnam2024-1007

AN H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY

COMPUTATION ON POWELL-SABIN SPLITS FOR THE

STOKES PROBLEM

JEFFREY M. CONNORS AND MICHAEL GAIEWSKI

Abstract. A solenoidal basis is constructed to compute velocities using a certain finite element
method for the Stokes problem. The method is conforming, with piecewise linear velocity and

piecewise constant pressure on the Powell-Sabin split of a triangulation. Inhomogeneous Dirichlet
conditions are supported by constructing an interpolating operator into the solenoidal velocity
space. The solenoidal basis reduces the problem size and eliminates the pressure variable from the
linear system for the velocity. A basis of the pressure space is also constructed that can be used to

compute the pressure after the velocity, if it is desired to compute the pressure. All basis functions
have local support and lead to sparse linear systems. The basis construction is confirmed through
rigorous analysis. Velocity and pressure system matrices are both symmetric, positive definite,
which can be exploited to solve their corresponding linear systems. Significant efficiency gains

over the usual saddle-point formulation are demonstrated computationally.

Key words. Divergence free, Powell-Sabin, Stokes, finite element, saddle-point.

1. Introduction

This paper relates to finite element computations for the incompressible Stokes
problem in two dimensions. Given the real, simply connected and polygonal domain
Ω ⊂ R2, we consider the Dirichlet problem to solve for velocity u : Ω → R2 and
pressure p : Ω → R such that

−ν∆u+∇p = f on Ω,(1)

∇ · u = 0 on Ω,(2)

u = g on ∂Ω,(3)

and

∫
Ω

p dx = 0,(4)

where ν > 0 is a constant viscosity parameter and g is a target set of boundary
values for the velocity field. Bold font will be reserved for vectors and spaces of
vector-valued functions.

There are countless research expositions related to the Stokes problem since it
connects to many scientific models and problems in mathematics. Here, we are
primarily interested in the computation of velocity and pressure variables using a
certain finite element method where the incompressibility constraint (2) is ultimate-
ly satisfied pointwise over the domain, yielding a true solenoidal velocity field. In
contrast, many methods only satisfy this condition in some weak (integrated) sense,
and special mixed pairings of elements for the velocity and pressure are generally
needed for strong incompressibility. A motivation is that solenoidal velocities break
a coupling in the consistency error between velocity and pressure variables, so that
velocity computation is not polluted by errors that should only affect the pressure

Received by the editors on August 14, 2023 and, accepted on December 20, 2023.

2000 Mathematics Subject Classification. 65N30.

181

182 J. CONNORS AND M. GAIEWSKI

accuracy. In the literature, this property is called pressure robustness. A review of
methods may be found in [8].

These methods turn out to carry an additional potential benefit: to construct
a locally-supported and solenoidal basis directly for the velocity space. Where-
as a certain saddle-point problem is typically solved for the velocity and pressure
variables, a solenoidal basis can be used to express the linear system in a block-
triangular fashion that allows the velocity to be computed without computing the
pressure. If the pressure is desired, it can then be calculated after via a separate
solve, but in both cases the saddle-point solve is replaced by smaller, symmetric
positive-definite systems. Few methods of this type exist at present, and it is not
clear that a solenoidal basis can always have a local support. There are meth-
ods of discontinuous-Galerkin (DG) type [7, 10, 11]. Also, for Raviart-Thomas
(RT), Brezzi-Douglass-Marini (BDM) and hybridized locally-DG mixed elements
that possess a weak divergence but not a weak gradient, see [2, 15, 1, 16]. In the
H1-conforming case there is method with fourth-order polynomial velocities [12]
and a method with first-order velocities [13].

The purpose of this paper is to develop the decoupled velocity and pressure
computations for the mixed pair in [4]. The method enforces solenoidal, first-order
polynomial velocities and is H1-conforming. The element order is the same as the
method in [13], but the finite element mesh is quite different. We use Powell-Sabin
splits that subdivide triangles of a fairly general mesh into six subtriangles (de-
tailed later), whereas the meshes of [13] use rectangular meshes and subdivide each
rectangle into four triangles. This latter meshing approach may be less convenient
for some applications. Besides the geometry, the method of this paper allows for a
local macro-element assembly requiring only the six local triangles of the Powell-
Sabin split at once, grouping nodal basis functions for four nodes. The method
of [13] refers to macro-element basis functions over a nine-rectangle grid of four
triangles per rectangle, hence thirty-six triangles, and ultimately groups thirteen
nodal functions together.

We summarize the paper contents as follows. Details of the Powell-Sabin mesh
and finite element method for Stokes are given in Section 2, along with some pre-
liminary technical lemmas. This includes a discussion about handling Dirichlet
boundary conditions. In Section 3 we construct a solenoidal basis for the finite
element velocity space with local support that can accommodate Dirichlet condi-
tions. The properties are proved, and we include details of the local construction
for implementation. In Section 4 we construct a local basis of the pressure space
such that each basis function is the divergence of a known basis function in the
(non-solenoidal) discrete velocity space, with proof. This pressure basis requires
a subset of vertices to be marked using a graph-theoretic spanning tree, for which
purpose there is already an inexpensive algorithm due to Kruskal [9]. The pressure
basis is fairly simple to implement once this is done. Computational examples are
given in Section 5 comparing the velocity and pressure computations to the classical
saddle-point system, the latter using the usual non-solenoidal basis for velocity. A
summary discussion is provided in Section 6.

2. A finite element method on Powell-Sabin splits

This section provides some mathematical preliminaries and then outlines the
finite element spaces studied, focusing on a specific instance from amongst those
discussed in [4].

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 183

2.1. Preliminaries. Given any countable set S, we denote by |S| its cardinality,
whereas for sets S ⊂ Ω, |S| denotes the geometric area. Also, for S ⊂ Ω we refer
to the function spaces

L2(S) :=

{
f : S → R | ∥f∥2 =

∫
S

|f |2 dx < ∞
}
,

L2
0(S) :=

{
f ∈ L2(S) |

∫
S

f dx = 0

}
,

Hk(S) :=

f : S → R | ∥f∥2k =
∑
|α|≤k

∫
S

|Dαf |2 dx < ∞

 ,

Hk
0 (S) :=

{
f ∈ Hk(S) |Dαf |∂S = 0, ∀αwith |α| < k

}
.

Here, x = (x, y) are coordinates in S ⊂ Ω. Generally, vectors and their components
have the form f = (f1, f2). Vector-valued spaces use bold font as well:

L2(S) =
[
L2(S)

]2
, Hk(S) =

[
Hk(S)

]2
, and Hk

0(S) =
[
Hk

0 (S)
]2

.

In order to treat the Dirichlet boundary conditions (3), let γ0 : H1(Ω) → H1/2(∂Ω)
be the classical trace operator. We also use the divergence-free subspaces

V(S) :=
{
v ∈ H1(S) |∇ · v = 0onS

}
,

V0(S) :=
{
v ∈ H1

0(S) |∇ · v = 0onS
}
.

Dot-product and inner-product notations:

f · g = f1g1 + f2g2, ∀f ∈ R2, g ∈ R2,

(f, g) =

∫
Ω

f(x)g(x) dx, ∀f ∈ L2(Ω), g ∈ L2(Ω),

(f,g) =

∫
Ω

f(x) · g(x) dx, ∀f ∈ L2(Ω), g ∈ L2(Ω),

∇f(x) : ∇g(x) =
∑
i=1,2

∇fi(x) · ∇gi(x), ∀f ∈ H1(Ω), g ∈ H1(Ω),

(∇f,∇g) =

∫
Ω

∇f(x) : ∇g(x) dx, ∀f ∈ H1(Ω), g ∈ H1(Ω).

2.2. Finite element method. Let τMh = {TM
k } be a family of conforming trian-

gulations of Ω, denoting the triangular mesh elements by Tk for 1 ≤ k ≤ |τMh |. The
domain is polygonal (Section 1), and we assume the triangulation represents the
domain boundary exactly. Here, h = maxk{hk} where hk = diam(TM

k) is the max-
imum diameter of a triangle in the mesh. The superscript M is used to distinguish
this macro-mesh from its Powell-Sabin split, the latter denoted here by τh. The
mesh τh is formed via a subdivision of each triangle TM

k into six smaller triangles.
The Powell-Sabin mesh τh is constructed via the following procedure. Find the

incenter of each TM
k . This is connected via line segments to the vertices of TM

k .
Given any two adjacent triangles TM

k and TM
j , their incenters are then connected

via a line segment, which necessarily intersects their shared edge. If a triangle TM
k

has an exterior edge (on ∂Ω), the midpoint of the exterior edge is connected via a
line segment to the incenter. An important feature of the Powell-Sabin split is the
creation of singular points in the mesh. A singular point is any vertex such that all
edges meeting at that vertex fall on precisely two straight lines. By construction,
the mesh τh has precisely one singular vertex along each edge of τMh , and no others.

184 J. CONNORS AND M. GAIEWSKI

..

∂Ω

.

T1

.

T2

.

T3

.

T4

.

T5

.

T6

Figure 1. The Powell-Sabin split illustrated for a triangle of the
macro-mesh τMh . The incenter z (black dot) is connected to the
vertices (green dots, edges) and neighboring incenters (red edges).
In case of an edge on the boundary, the incenter is connected to
the midpoint of that edge (blue edge, dot). The split results in
six triangles, τz = {T1, . . . , T6}, and a set of singular vertices in
correspondence with the edges of τMh (red and blue dots).

Given a vertex z, it is convenient for us to use a local indexing for the set of
triangles that share this vertex. Such a set is denoted by

τMz =
{
TM
1 , . . . , TM

|τM
z |

}
⊂ τMh

for triangles in the macro-mesh, or else

τz =
{
T1, . . . , T|τz|

}
⊂ τh

for the Powell-Sabin mesh. Throughout this paper we assume an ordering of the
local triangles so that TM

j and TM
j+1 (or Tj and Tj+1) share an edge. Moreover, we

assume that a point rotated counter-clockwise around z that crosses the shared edge
will move out of triangle j and into j + 1. Graphically, the Powell-Sabin splitting
is summarized in Figure 1, along with an example of the set τz with z an incenter
of a triangle in τMh .

Some notation of use follows here, where an edge or vertex is called exterior if
it lies on ∂Ω, otherwise it is interior.

• EM
int (and EM

ext) – interior (and exterior) edges of τMh
• V M

int (and V M
ext) – interior (and exterior) vertices of τMh

• Sint (and Sext) – interior (and exterior) singular vertices of τh
• EM = EM

int ∪ EM
ext, V

M = V M
int ∪ V M

ext, S = Sint ∪ Sext,

Note the cardinality relationships

(5) |EM
int| = |Sint| and |EM

ext| = |Sext|.
Given any region S ⊂ Ω, let Pk(S) be the space of polynomials of order k or less

on S, with corresponding vector-valued space Pk(S) = [Pk(S)]
2. Spaces needed to

discuss the discrete velocity are

Xh =
{
vh ∈ [C(Ω)]2 | vh ∈ P1(T), ∀T ∈ τh

}
⊂ H1(Ω),

X0
h = {vh ∈ Xh | vh = 0 on ∂Ω} ⊂ H1

0(Ω),

Vh = Xh ∩V(Ω),

V0
h = Vh ∩V0(Ω).

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 185

The corresponding pressure space is identified after observing a key property of
the divergence of the discrete velocity (cf. [4]; see [14] for a proof).

Lemma 1. Let q ∈ C(T) for all T ∈ τh and define a function

θz(q) :=

 q|T1(z)− q|T2(z) + q|T3(z)− q|T4(z), if z ∈ Sint,

q|T1(z)− q|T2(z), if z ∈ Sext,

where τz = {T1, . . . , T4} if z ∈ Sint or τz = {T1, T2} if z ∈ Sext. Then for any
vh ∈ X0

h and singular vertex z ∈ S there holds θz(∇ · vh) = 0.

The pressure space is

Ph =
{
qh ∈ L2

0(Ω) | qh|T ∈ P0(T), ∀T ∈ τh, θz(qh) = 0, ∀z ∈ S
}
.

Before the finite element problem can be stated formally, we must address a
critical property of the discrete, solenoidal velocity space Vh. This affects the
boundary conditions and is also referenced later to construct a solenoidal basis
in Section 3. First, we require a technical lemma.

Lemma 2. Let T ⊂ R2 be a triangle with vertices zi, 1 ≤ i ≤ 3, ordered counter-
clockwise going from zi to zi+1 along ∂T . Each triangle edge, ei, lies opposite the
vertex zi, with outward unit normal vector ni. Note the identity

(6)
∑

1≤i≤3

|ei|ni = 0.

Given any v ∈ P1(T), it holds that

(7)

∫
T

∇ · v dx = −1

2

∑
1≤i≤3

|ei|v(zi) · ni.

Remark 1. The negative sign on the right side of (7) is a result of the labeling of
edge ei as being opposite the vertex zi.

Proof. Let A : R2 → R2 be the linear operator that rotates a vector clockwise 90
degrees. Then∑

1≤i≤3

|ei|ni = |e1|A
(
z3 − z2
|e1|

)
+ |e2|A

(
z1 − z3
|e2|

)
+ |e3|A

(
z2 − z1
|e3|

)
= 0.

Then (7) follows from (6) after applying the divergence form of Green’s Theorem.
�

We will use ds for a measure along edges.

Lemma 3. Let eM ∈ EM have endpoints z1 and z2. The trace of any vh ∈ Vh

along eM may be uniquely determined from the values

(8) vh(z1), vh(z2), and

∫
eM

vh · n ds,

where n is a unit normal along eM .

Proof. Refer to Figure 2 to visualize the vertices, edges and normal vectors used in
this proof. Let zs ∈ S be the singular vertex of τh on eM . Since vh is piecewise
linear and continuous along eM , it suffices to show that if the values in (8) are all
zero, then also vh(zs) = 0. Direct integration shows that if vh(zi) = 0, i = 1, 2,
then

(9)

∫
eM

vh · n ds = 0 ⇒ vh(zs) · n = 0.

186 J. CONNORS AND M. GAIEWSKI

..

z2

.

z1

.

zc

.

zs

.

eM = e1 ∪ e2

.

e1

.

e2

.

T1

.

T2

.

n

.

ns
1

.

es1

.

ns
2

.

es2

Figure 2. Labels referenced in the proof of Lemma 3.

It remains only to show that the tangential component is zero; equivalently
vh(zs) · (z2 − z1) = 0. Let zc be the incenter of a triangle in τMh that has edge eM .
There are two triangles, say T1 and T2, in τzc with edges e1 and e2, respectively,
that lie on eM , opposite zc. They have a shared edge lying opposite zi on Ti. Let
the edge of Ti opposite zs be esi and have outward unit normal ns

i for i = 1, 2.
Since vh is solenoidal, we may apply (7) on each triangle Ti to find

|es1|vh(zs) · ns
1 + |e1|vh(zc) · n = 0(10)

and |es2|vh(zs) · ns
2 + |e2|vh(zc) · n = 0.(11)

Note that edges es1, e
s
2 and eM form a perimeter of triangle T1 ∪ T2, hence the

vectors ns
1 and ns

2 are equivalent to a certain basis of R2. Then (10)-(11) show that
vh(zs) = 0 if vh(zc) ·n = 0. Indeed, now sum (10)-(11) and apply (6), (9) to show
that

(|e1|+ |e2|)vh(zc) · n = −|es1|vh(zs) · ns
1 − |es2|vh(zs) · ns

2

= (|e1|+ |e2|)vh(zs) · n = 0.

�

A consequence of Lemma 3 is that we cannot generally interpolate boundary
data g ∈ [C(∂Ω)]2 to compute a solenoidal Stokes velocity uh ∈ Vh by setting
uh(z) = g(z) at all the exterior nodes z of the Powell-Sabin mesh. The follow-
ing definition provides an appropriate interpolant, where the function Gh will be
explicitly constructed in Section 3.

Definition 1 (Boundary data interpolation). Let g ∈ H1/2(∂Ω) ∩ [C(∂Ω)]2. We
denote by gh the interpolant of g, where gh = γ0(Gh) for some Gh ∈ Vh and

gh(z) = g(z), ∀z ∈ V M
ext(12)

and

∫
e

gh · n ds =

∫
e

g · n ds, ∀e ∈ EM
ext,(13)

where n is the outward unit normal vector on ∂Ω.

We may now state the finite element problem. We solve for uh ∈ Xh and ph ∈ Ph

by decomposing uh = wh + Gh, Gh ∈ Vh as in Definition 1 and wh ∈ X0
h such

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 187

that

a(wh,vh)− (ph,∇ · vh) = L(vh), ∀vh ∈ X0
h,(14)

(∇ ·wh, qh) = 0, ∀qh ∈ Ph,(15)

a(wh,vh) := ν (∇wh,∇vh) ,

L(vh) := (f,vh)− a(Gh,vh).

However, it is shown in [4] that the solution of (14)-(15) will in fact have wh ∈ V0
h.

Thus uh ∈ Vh, and we focus in this paper on directly solving the problem on the
solenoidal subspace; find wh ∈ V0

h satisfying

(16) a(wh,vh) = L(vh), ∀vh ∈ V0
h.

This is accomplished in Section 3. Note that the pressure variable need not be
computed, but if it is desired we also provide a way to compute it after the velocity
is found. One solves the problem: find ph ∈ Ph such that

(17) (ph,∇ · vh) = a(uh,vh)− (f,vh), ∀vh ∈ X0
h \V0

h.

This method is detailed in Section 4.

3. A solenoidal velocity basis

Explicit constructions of basis functions are provided here. We also show how to
implement boundary conditions, and a localized implementation of the basis using
a macro-element technique.

3.1. Bases of Vh and V0
h. Given a vertex z ∈ V M , the support of each basis

function will be τMz . Consider the subspaces with this support:

(18) Vz =
{
vh ∈ Vh | vh(x) = 0 ∀x ∈ TM , ∀TM ⊂ τMh \ τMz

}
.

We will first construct a basis of Vz. A certain union of these across vertices z will
later form the desired basis for Vh.

Lemma 4. Given any z ∈ V M , it holds that dim(Vz) = 3. Moreover, a ba-
sis {Φ1,Φ2,Φ3} is found by taking (α1, β1, δ1) = (1, 0, 0), (α2, β2, δ2) = (0, 1, 0),
(α3, β3, δ3) = (0, 0, 1), and setting

Φi(z) = (αi, βi)(19)

and

∫
eMj

Φi · nj ds = δi,(20)

for 1 ≤ i ≤ 3, where, for each TM
j ∈ τMz , {eMj−1, e

M
j } ⊂ EM are its edges that have

z as one endpoint, and nj is the unit normal on eMj that points in the direction of
counter-clockwise rotation around z.

Proof. Note that we must have

0 =

∫
TM
j

∇ ·Φi dx = ±

(∫
eMj

Φi · nj ds−
∫
eMj−1

Φi · nj−1 ds

)
,

so that the value of δi is j-independent in (20). Since z is the common vertex of all
TM
j ∈ τMz , the conditions (19)-(20) impose the same constraints on each TM

j , so it

suffices to look at the restriction to one TM
j . Denote by zc the incenter of TM

j and

eM the edge that lies opposite z.
Consider the vector space

Wj =
{
vh ∈ C(TM

j) | vh ∈ P1(T), ∀T ∈ τzc , and vh = 0 on eM
}
.

188 J. CONNORS AND M. GAIEWSKI

The six triangles in τzc together have seven distinct vertices (see e.g. Figure 1, with
vh = 0 at the three vertices on eM . Any vh ∈ Wj is uniquely determined by its
values at the other four vertices, so dim(Wj) = 8. Two triangles Ti ∈ τzc have an
edge lying on eM , say T1 and T2 (see Figure 2). Eight linear constraints may be
introduced by requiring

vh(z) = (α, β),∫
eMj

vh · nj ds = δ,

for any desired values α, β and δ, and also setting ∇ · vh = 0 on triangles Ti,
2 ≤ i ≤ 6. In fact, then ∇ · vh = 0 will hold also on T1. This is verified as follows.
Note that T1 and T2 each have two vertices on eM , where vh = 0, and their third
vertex is zc. Apply Lemma 2 on T2 (where we impose ∇ · vh = 0) first, which
reduces to

0 = vh(zc) · n,

where n is the outward unit normal for TM
j along eM . Application of Lemma 2 on

T1 shows that ∇ · vh is proportional to vh(zc) · n, thus ∇ · vh = 0 on T1.
The proof reduces to showing that if α = β = δ = 0 then vh = 0 at all seven

vertices. We already have vh = 0 at the three vertices on eM , plus at z as well
under these conditions. Since δ = 0, we may apply Lemma 3 to conclude that
vh = 0 along the other two edges of the macro-triangle TM

j , hence at the two
singular vertices on those edges, leaving only the incenter vertex zc. Above we
showed vh(zc) · n = 0; repeating the arguments (apply Lemma 2) on any of the
triangles Ti with 3 ≤ i ≤ 6 shows that vh(zc) · n∗ = 0 for n∗ = nj or n∗ = nj−1.
Since n and n∗ cannot be parallel, it follows vh(zc) = 0. �

The solenoidal basis is discussed in the next result. It requires the exclusion of
a single function to form a basis, but the association made with the boundary by
choosing a vertex z0 ∈ V M

ext is for convenience in implementing boundary conditions;
see Section 3.2. Also, in Section 4 a single boundary vertex must be chosen to
extract a special basis for the pressure space, so in practice it is natural to use the
same vertex z0.

Theorem 1. Given an indexing zk ∈ V M , 0 ≤ k ≤ |V M | − 1 such that z0 ∈ V M
ext

(lies on ∂Ω), we denote by Φ
(k)
i , 1 ≤ i ≤ 3, the basis functions of Vz defined

in Lemma 4 for z = zk. We define sets

B =

 3∪
i=1

|V M |−1∪
k=0

Φ
(k)
i

 \
{
Φ

(0)
3

}
,

B0 =
{
Φ

(k)
i ∈ B | zk ∈ V M

int

}
.

It holds that B is a basis of Vh and B0 is a basis of V0
h.

Proof. We prove that B is a basis of Vh by showing that dim(Vh) = 3|V M | − 1
along with the linear independence of B. The former claim is a counting argument.
Since Vh is the kernel of the divergence operator on Xh, we may use the rank-
nullity theorem. It is proved in ([6], Theorem 4) that dim(∇·Xh) = |EM |+3|τMh |.

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 189

Thus

(21) dim(Vh) = dim(Xh)− |EM | − 3|τMh | = 2|V | − |EM | − 3|τMh |
= 2(|V M |+ |EM |+ |τMh |)− |EM | − 3|τMh |

= 2|V M |+ |EM | − |τMh |,

and we apply the Euler identity |EM | − |τMh | = |V M | − 1 to conclude dim(Vh) =
3|V M | − 1 = |B|. Next, assume v ∈ span(B) satisfies

v =
3∑

i=1

|V M |−1∑
k=0

c
(k)
i Φ

(k)
i = 0 = (0, 0),

where c
(0)
3 = 0 (recall this basis function is excluded from B). By construction, we

have at the vertices in zj ∈ V M

v(zj) = (c
(j)
1 , c

(j)
2) = (0, 0), 0 ≤ j ≤ |V M | − 1,

and we may reduce

v =

|V M |−1∑
k=0

c
(k)
3 Φ

(k)
3 = 0 = (0, 0).

Note that each coefficient c
(k)
3 may be associated with a point zk ∈ V M ; these are

joined by the edges in EM to form a connected graph. Given any edge e ∈ EM

with unit normal n and endpoints zn and zm, we have∫
e

v · n ds = ±
(
c
(n)
3 − c

(m)
3

)
= 0,

and therefore c
(n)
3 = c

(m)
3 holds for all values n, m. Since c

(0)
3 = 0, we have c

(k)
3 = 0

for all k. This proves linear independence of B. Finally, the fact that B0 is a basis
of V0

h now follows by simply restricting the boundary values to zero. �

3.2. Implementation details. The correct representation of Dirichlet conditions
is now easy to show. Recall the decomposition uh = Gh + wh, where wh ∈ V0

h

solves (16) and Gh ∈ Vh satisfies Definition 1. The component wh is computed
using the basis B0. We may expand out Gh using B \ B0; for convenience in
exposition, assume the exterior edge ordering eMk ∈ EM

ext, 1 ≤ k ≤ |EM
ext|, such

that eMk and eMk+1 share a vertex. This supports a vertex labelling zk ∈ V M ,

0 ≤ k ≤ |V M | − 1, such that each edge eMk ∈ EM
ext has endpoints zk−1 and zk.

We may expand out

Gh =

3∑
i=1

|V M
ext|−1∑
k=0

c
(k)
i Φ

(k)
i .

Boundary values are still interpolated at the points zk ∈ V M
ext, corresponding to (12):

Gh (zk) = (c
(k)
1 , c

(k)
2) = g (zk) , 0 ≤ k ≤ |V M

ext| − 1.

At split points in the Powell-Sabin mesh along the boundary, the values of Gh are
determined implicitly through the normal moments (13). Specifically, we have the
system of equations∫

eMk

Gh · n ds = ±(c
(k)
3 − c

(k−1)
3) =

∫
eMk

g · n ds, 1 ≤ k ≤ |V M
ext| − 1,

190 J. CONNORS AND M. GAIEWSKI

..
(0, 0)

.
(1, 0)

.

(0, 1)

.

T̂M

.

TM
k

Figure 3. A localized construction of basis functions can be made
explicit using a reference mapping Fk : T̂M → TM

k . The mapping

Fk is defined as an affine function that maps the vertices of T̂M to
those of TM

k (black). The additional points used to subdivide T̂M

are the preimages under Fk of the singular vertices and incenter
on TM

k (red).

where n is the outward unit normal on ∂Ω and the sign depends on whether the
edges are ordered clockwise or counter-clockwise around the boundary. It is not
necessary to include case k = |V M

ext|(= |EM
ext|) here because the boundary data must

already satisfy the compatability condition

∇ · uh = 0 ⇒
∫
∂Ω

Gh · n ds = 0.

We have c
(0)
3 = 0 by convention in Theorem 1, resulting in a square, lower-triangular

system of equations here that is trivial to solve.
A localized construction of basis functions is possible using a reference map. The

reference triangle is denoted by T̂M , which has vertices ẑ1 = (0, 0), ẑ2 = (1, 0) and

ẑ3 = (0, 1). Let TM
k ∈ τMz . We denote by Fk : T̂M → TM

k an affine map onto TM
k

with Jacobian Jk. The reference triangle is then divided into six subtriangles, say
T̂i for 1 ≤ i ≤ 6. This is done by adding four points that are the preimages under
Fk of the singular nodes and incenter on TM

k ; see Figure 3.
Functions vh ∈ Vh will be represented locally on TM

k by leveraging the Piola
transformation

(22) vh =
1

|det(Jk)|
Jkv̂h.

As shown in the proof of Lemma 4, vh can be determined uniquely on TM
k via three

degrees of freedom using the basis (19)-(20). Given that Fk maps reference vertex

ẑj to z, we can associate three basis functions on the reference element, say Φ̂
(j)

i ,

1 ≤ i ≤ 3, such that the divergence (in reference coordinates) is ∇̂ · Φ̂
(j)

i = 0, with

Φ̂
(j)

i (ẑj) = (α̂i, β̂i)(23)

and

∫
êMj

Φ̂
(j)

i · n̂j dŝ = δ̂i.(24)

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 191

..
ẑ1
.

ẑ2
.

ẑ3

.

ẑs3

.

ẑs1

.

êM1

.
êM2

.

êM3

.

ẑc

.

ẑs2

Figure 4. Labels for some edges (red) and points on T̂M .

Here, êMj is the edge of T̂M between ẑj−1 and ẑj (modulo 3), and n̂j is the outward-

pointing unit normal vector along that edge (see Figure 4). We choose (α̂1, β̂1, δ̂1) =

(1, 0, 0), (α̂2, β̂2, δ̂2) = (0, 1, 0), and (α̂3, β̂3, δ̂3) = (0, 0, 1).
Since there are three such functions for each reference vertex, we have a total

of nine local basis functions on T̂M . These correspond to the three vertices of
TM
k . However, care is needed to map between the basis functions when changing

variables. Given the values

(ai, bi) = |det(Jk)|(Jk)−1Φi(z), i = 1, 2,

the correct mappings are

Φ1|TM
k

=
a1

|det(Jk)|
JkΦ̂

(j)

1 +
b1

|det(Jk)|
JkΦ̂

(j)

2 ,

Φ2|TM
k

=
a2

|det(Jk)|
JkΦ̂

(j)

1 +
b2

|det(Jk)|
JkΦ̂

(j)

2 ,

and Φ3|TM
k

=
1

|det(Jk)|
JkΦ̂

(j)

3 .

The Piola transformation is well-known to preserve the divergence and the integral
of the normal component along edges, so it is easy to verify the relationships above.

Let ẑsi , 1 ≤ i ≤ 3, satisfy the requirements that ẑsi lies on êMi and ẑsi =
(Fk)

−1(zsi) for some singular vertex zsi ∈ S that lies on an edge of TM
k . Also,

let ẑc = (Fk)
−1(zc), where zc is the incenter for TM

k . Labels for points on T̂M are

shown in Figure 4. In order to describe each Φ̂
(j)

i explicitly, it suffices to list its val-

ues at the seven points ẑi and ẑsi , 1 ≤ i ≤ 3, and ẑc. Given that Φ̂
(j)

i = (û
(j)
i , v̂

(j)
i),

ẑc = (x̂c, ŷc) and ẑsi = (x̂s
i , ŷ

s
i), these values are provided in Table 1 (j = 1), Table 2

(j = 2), and Table 3 (j = 3).
While the construction has been localized to TM

k , it is important to note that the

basis functions Φ̂
(j)

i depend on the locations of the singular vertices and incenter of
TM
k . In implementation, assembly may be performed by looping over triangles in

τMh with a subloop over the six subtriangles of the Powell-Sabin split, computing
nodal values locally for all basis functions. In turn, once these nodal values are
found, each Φi has an obvious representation in the standard nodal basis used in
continuous, piecewise linear finite element methods, so integration on each triangle

192 J. CONNORS AND M. GAIEWSKI

Table 1. Tabulated values of (û
(1)
i , v̂

(1)
i) = Φ̂

(1)

i , 1 ≤ i ≤ 3, at
the points shown in Figure 4.

ẑc ẑs1 ẑs2 ẑs3 ẑ1 ẑ2 ẑ3

û
(1)
1 −ŷc −ŷs1 1− x̂s

2 0 1 0 0

v̂
(1)
1 ŷc

ŷs
1−ŷc

x̂c 0 0 0 0 0

û
(1)
2 x̂c 0

x̂s
2−x̂c

ŷc 0 0 0 0

v̂
(1)
2 −x̂c 1− ŷs1 −x̂s

2 0 1 0 0

û
(1)
3 -2 -2 2

x̂c−x̂s
2

ŷc 0 0 0 0

v̂
(1)
3 2 2

ŷs
1−ŷc

x̂c 2 0 0 0 0

Table 2. Tabulated values of (û
(2)
i , v̂

(2)
i) = Φ̂

(2)

i , 1 ≤ i ≤ 3, at
the points shown in Figure 4.

ẑc ẑs1 ẑs2 ẑs3 ẑ1 ẑ2 ẑ3

û
(1)
1 0 0 x̂s

2 x̂s
3 +

x̂c−x̂s
3

1−x̂c−ŷc 0 1 0

v̂
(1)
1 −ŷc 0 0

ŷc−ŷs
3

1−x̂c−ŷc 0 0 0

û
(1)
2 0 0

x̂s
2−x̂c

ŷc

x̂c−x̂s
3

1−x̂c−ŷc 0 0 0

v̂
(1)
2 x̂c − 1 0 x̂s

2 − 1 x̂s
3 +

ŷc−ŷs
3

1−x̂c−ŷc 0 1 0

û
(1)
3 0 0 2

x̂s
2−x̂c

ŷc 2
x̂c−x̂s

3

1−x̂c−ŷc 0 0 0

v̂
(1)
3 -2 0 -2 2

ŷc−ŷs
3

1−x̂c−ŷc 0 0 0

Table 3. Tabulated values of (û
(3)
i , v̂

(3)
i) = Φ̂

(3)

i , 1 ≤ i ≤ 3, at
the points shown in Figure 4.

ẑc ẑs1 ẑs2 ẑs3 ẑ1 ẑ2 ẑ3

û
(1)
1 ŷc − 1 ŷs1 − 1 0

ŷs
3−ŷc

1−x̂c−ŷc − x̂s
3 0 0 1

v̂
(1)
1 0

ŷs
1−ŷc

x̂c 0
ŷc−ŷs

3

1−x̂c−ŷc 0 0 0

û
(1)
2 −x̂c 0 0

x̂c−x̂s
3

1−x̂c−ŷc 0 0 0

v̂
(1)
2 0 ŷs1 0

x̂s
3−x̂c

1−x̂c−ŷc − x̂s
3 0 0 1

û
(1)
3 2 2 0 2

x̂s
3−x̂c

1−x̂c−ŷc 0 0 0

v̂
(1)
3 0 2

ŷc−ŷs
1

x̂c 0 2
ŷs
3−ŷc

1−x̂c−ŷc 0 0 0

can leverage classical techniques. Also, since the values of Φi at z are defined
already by Lemma 4, it is only necessary to compute basis values at incenters and
singular vertices. Values at singular vertices can be stored to avoid recomputation
when looping over triangles in τMh . The ultimate cost to assemble the linear system

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 193

and solve is investigated in Section 5 via comparison with the classical saddle-point
approach, which does not use the solenoidal basis.

4. Computation of pressure from velocity

It is possible to compute ph after uh has been computed, if desired, by solving
the problem posed in (17). Bases for X0

h \V0
h and Ph will be constructed for this

purpose in this section. The next result is used later to verify the correct number
of basis functions, and also shows that the linear system for the pressure solve is
square.

Lemma 5. It holds that dim(X0
h \V0

h) = dim(Ph) = 2|τMh |+ 2|EM
int| − |V M

int|.

Proof. The pressure space is piecewise constant on τh, but with the constraints
imposed by Lemma 1, which remove a degree of freedom for each singular point. As
proved in [4], an equivalent way to count is three basis functions per interior singular
point and one per exterior singular point. Along with the constraint Ph ⊂ L2

0(Ω),
it follows from the correspondence between singular points and edges of τMh that
dim(Ph) = 3|EM

int| + |EM
ext| − 1. We count three edges per triangle, so including

multiplicity for interior edges we find 3|τMh | = 2|EM
int| + |EM

ext|, thus dim(Ph) =
3|τMh |+ |EM

int| − 1. Insert the Euler identity in the form

1 = |τMh |+ |V M | − |EM | = |τMh |+ |V M
int| − |EM

int|
and we find dim(Ph) = 2|τMh |+ 2|EM

int| − |V M
int|.

Now refer to Theorem 1: |B0| = dim(V0
h) = 3|V M

int|. All interior vertices on

the Powell-Sabin split contribute toward the dimension of X0
h; we may group the

vertices as V M
int plus interior singular vertices and incenters of triangles in τMh , so

that

dim(X0
h) = 2(|V M

int|+ |EM
int|+ |τMh |)

⇒ dim(X0
h \V0

h) = 2|τMh |+ 2|EM
int| − |V M

int| = dim(Ph).

�

The construction of basis functions builds upon the scalar finite element space

Sh =
{
λ ∈ C(Ω) |λ|T ∈ P1(T), ∀T ∈ τh

}
.

Let {λz} for all vertices z ∈ V be the usual Lagrangian (nodal) basis for Sh, such
that for a given indexing {zi} of V we have λzj (zk) = δjk. Next, we denote the

singular points on the edges eMj ∈ EM
int as z

(j)
s for 1 ≤ j ≤ |EM

int|. On each edge

eMj , associate a unit normal vector nj and a unit tangent vector tj . The basis
construction will make use of some functions

ψ(j)
s = λ

z
(j)
s

nj and ϕ(j)
s = λ

z
(j)
s

tj .

The support of these functions is the set of four triangles T ∈ τh with the common

interior singular vertex z
(j)
s . If we denote the incenters of each triangle TM

k ∈ τMh
by z

(k)
c for 1 ≤ k ≤ |τMh |, then the following are also needed:

ψ(k)
c = λ

z
(k)
c

(1, 0) and ϕ(k)
c = λ

z
(k)
c

(0, 1).

The support of these functions is the set of six triangles T ∈ τh with the common

vertex z
(k)
c .

Some functions above must be excluded to extract a basis. This must be done
carefully. First, identify one vertex z0 ∈ V M

ext (that lies on ∂Ω; see also Theorem 1),

194 J. CONNORS AND M. GAIEWSKI

and group it together with the interior vertices zj ∈ V M
int, 1 ≤ j ≤ |V M

int|. There
exists some subset of edges in EM

int, say eMk that we may index (without loss of
generality) as 1 ≤ k ≤ N , such that these edges form a spanning tree for the
graph created by the vertex set {z0, . . . , z|V M

int|} and all of the edges that have both

endpoints ζ1, ζ2 ∈ {z0, . . . , z|V M
int|}. A spanning tree of a connected graph is itself

a connected subgraph that touches every vertex in the graph without creating any
cycles. These particular vertices and edges form a finite connected graph, so a
spanning tree exists. It is well-known that N = |V M

int|. We compute a spanning
tree using Kruskal’s algorithm [9] for implementation.

Theorem 2. Given the indexing above, the following set S is a basis of X0
h \V0

h:

S =
{
ψ(j)

s

}|EM
int|

j=|V M
int|+1

∪{
ϕ(j)

s

}|EM
int|

j=1

∪{
ψ(k)

c

}|τM
h |

k=1

∪{
ϕ(k)

c

}|τM
h |

k=1
.

Furthermore, ∇ · S is a basis of Ph.

Proof. Indeed, by Lemma 5 we have the correct number of basis functions. Note
that the functions in S are equivalent to a subset of the standard nodal basis
functions typically used for the globally continuous, piecewise linear velocity space
on τh except that at singular points the vectors are expressed in the local basis
{nj , tj} of R2. Since the properties of these basis functions are well-known, it

is immediately clear that S ⊂ X0
h \ V0

h by construction and that S is linearly
independent. Therefore, it is a basis for X0

h \V0
h.

Note that each function in ∇ · S is also in L2
0(Ω) (apply the divergence form of

Green’s theorem), thus each function is in Ph by Lemma 1. It remains to show that
if

|EM
int|∑

j=|V M
int|+1

aj∇ · ψ(j)
e +

|EM
int|∑

j=1

bj∇ · ϕ(j)
e +

|τM
h |∑

k=1

ck∇ · ψ(k)
c +

|τM
h |∑

k=1

dk∇ · ϕ(k)
c = 0,

then the coefficients shown are all zero. Equivalently, 0 = ∇ · ϕ where

ϕ =

|EM
int|∑

j=|V M
int|+1

ajψ
(j)
e +

|EM
int|∑

j=1

bjϕ
(j)
e +

|τM
h |∑

k=1

ckψ
(k)
c +

|τM
h |∑

k=1

dkϕ
(k)
c .

Thus ϕ ∈ V0
h. Since ϕ is already expressed as a linear combination of basis func-

tions, it suffices to show that ϕ = 0. The basis functions are non-zero at (specific)
singular points and incenters but vanish at neighboring vertices, so ϕ(z) = 0 for
any z ∈ V M . Upon changing to the basis of V0

h in Theorem 1, this latter property
implies

ϕ =

|V M
int|∑

k=1

βkΦ
(k)
3 .

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 195

Given any edge eMj with 1 ≤ j ≤ |V M
int|, note that∫

eMj

ψ(m)
e · nj ds = 0, |V M

int|+ 1 ≤ m ≤ |EM
int|,∫

eMj

ϕ(m)
e · nj ds = 0, 1 ≤ m ≤ |EM

int|,∫
eMj

ψ(m)
c · nj ds = 0, 1 ≤ m ≤ |τMh |,∫

eMj

ϕ(m)
c · nj ds = 0, 1 ≤ m ≤ |τMh |,

⇒
∫
eMj

ϕ · nj ds = 0.

In turn, we have a square, homogeneous linear system of equations for the coeffi-
cients βk:

(25)

|V M
int|∑

k=1

βk

∫
eMj

Φ
(k)
3 · nj ds =

|V M
int|∑

k=1

βk (±δkj) = 0, 1 ≤ j ≤ |V M
int|.

Recall that the edges eMj form a spanning tree for the vertices {z0, . . . , z|V M
int|}.

Each basis function Φ
(k)
3 is associated with vertex zk, and they can be put into

one-to-one correspondence with the edges eMj , 1 ≤ j ≤ |V M
int|, say zk is an endpoint

of edge eMjk . Since the labeling of interior vertices is arbitrary, for convenience we

may assume that edge eMjk has endpoints zk−1 and zk. As z0 lies on ∂Ω, only basis

function Φ
(1)
3 is supported on edge eMj1 , so β1 = 0 by (25). Inductively, given that

βk−1 = 0 we find that only Φ
(k)
3 is supported on edge eMjk , so βk = 0 also for

2 ≤ k ≤ |V M
int|. Thus, ϕ = 0, completing the proof. �

5. Computations

Two test problems are provided here on the domain Ω = (0, 1) × (0, 1) ⊂ R2.
The usual norms for the spaces L2(Ω) and [H1(Ω)]2 are denoted by ∥ · ∥ and
∥ · ∥1, respectively. Computations that use the solenoidal basis for velocity are
labelled as SOL, as opposed to SP for the saddle-point formulation (without the
solenoidal basis). All computations are done in MATLAB using the multifrontal
direct solver package invoked by the command mldivide, commonly referred to as
the “backslash” operator. The Choleski solver is called by mldivide for all SOL
calculations in order to exploit the symmetric, positive definite matrix properties,
whereas for the SP system the solver called is MA57. The MA57 solver is optimized
for sparse, symmetric indefinite systems. The macro-meshes τMh were generated
using code from [5, 17]. The code for Kruskal’s Algorithm comes from [3].

5.1. Manufactured solution test. We will use the manufactured solution

(26) u =

 sin(x) cos(y)

− cos(x) sin(y)

 , p = xy − 1

4
,

with parameter choice ν = 1. Errors for velocity and pressure are shown in Figure 5
in their respective norms. The horizontal axis shows the mesh size h for the Powell-
Sabin splits τh. The optimal convergence rates were observed for both velocity and
pressure variables. Between SOL and SP, the computed states agreed to within the

196 J. CONNORS AND M. GAIEWSKI

h

||u
−

u
h
|| 1

10−2 10−1 100

h
10−2 10−1 100

10−3 10−3

10−2 10−2

10−1 10−1

100 100

SOL
SP
r = 1

SOL
SP
r = 1

||p
−
p
h
||

Figure 5. Velocity and pressure errors converge with the optimal
scaling ∥u−uh∥1 = O(hr) and ∥p− ph∥ = O(hr) with r = 1 using
the manufactured solution. The SOL and SP velocity calculations
agree to round-off precision, so the plotted data overlaps.

|V |

V
el
o
ci
ty

S
O
L
<

T
im

e
>

S
P

<
T
im

e
>

|V |

Assembly
Solve
Total

Assembly
Solve
Total

0 2 4 6 8 0 2 4 6 8

×104 ×104

0

2

4

6

8

0

2

4

6

8

Figure 6. Time trials comparing velocity computation with SOL
versus SP; manufactured solution problem.

limits of round-off error. We also observed (not shown) that the condition number
of the matrix for the SOL velocity system was consistently less than 1% of the
corresponding SP condition number.

Run times were computed to assemble and to solve the systems. In Figure 6 we
plot < Time > versus |V | , where |V | is the number of vertices in the Powell-Sabin
mesh and < Time > is the averaged timing over 20 runs. The timings for SOL
are only for computing velocity. A jump up in solver time was observed for the
SP case around |V | ≈ 3 × 104; output from the solver package indicated this was
due to an increase in the cost to correctly factor the system. Although assembly
times using SOL are significant, there is an overall time savings to compute velocity
alone using SOL versus SP on fine meshes. Solver timings are much smaller for SOL
even on fairly coarse meshes, which would translate to further efficiency gains for
applications that require repeated solves without significant reassembly.

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 197

P
re
ss
u
re

S
O
L
<

T
im

e
>

|V |

Assembly
Solve
Total

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
×104

Figure 7. SOL pressure timings; manufactured solution problem.

T
ot
al

<
T
im

e
>

|V |

SOL
SP

0

2

4

6

0 2 4 6 8 10
×104

Figure 8. Total time to assemble and solve for pressure and ve-
locity; manufactured solution problem.

Timings are displayed for the computation of pressure via the SOL method
in Figure 7. These times are somewhat less than the corresponding times for the
SOL velocity computations. The total time required to compute both velocity and
pressure is compared in Figure 8. In conclusion, the SOL method supports a more
efficient system solve on fairly coarse meshes, and may be used to compute velocity
alone more quickly. Due to assembly costs, the SOL and SP methods are about
even in computing the full velocity-pressure system on relatively coarse meshes
(here about |V | < 3 × 104), but there is an increasing time advantage using SOL
as the meshes become finer.

5.2. Lid-driven cavity test. Methods SOL and SP were tested on the benchmark
lid-driven cavity problem as seen in, e.g., [18]. We again chose the parameter ν = 1.
This problem sets the problem body and boundary forcings as

f = 0, g =

{
(1, 0), for (x, y) such that y = 1, 0 < x < 1

(0, 0), otherwise
.

The SOL and SP velocity and pressure values agreed to within machine precision
error. The velocity and pressure profiles are presented in Figure 9 using a mesh
with 64 macro-triangles. The same timing measurements that were shown for the
manufactured solution problem in Figure 6-Figure 8 were repeated for the lid-driven
cavity problem. These latter results are shown in Figure 10-Figure 12. Clearly, the

198 J. CONNORS AND M. GAIEWSKI

0 0.5 1 0 0.5 1
0

0.5

1

0

0.5

1

0

5

10

15

-5

-10

-15

Figure 9. Velocity (left) and pressure (right) estimates for SOL
for the lid-driven cavity problem.

|V |

V
el
o
ci
ty

S
O
L
<

T
im

e
>

S
P

<
T
im

e
>

|V |

Assembly
Solve
Total

Assembly
Solve
Total

0 2 4 6 8 0 2 4 6 8

×104 ×104

0

2

4

6

8

0

2

4

6

8

Figure 10. Time trials comparing velocity computation with SOL
versus SP on the lid driven cavity problem.

results are very similar between the two test problems. There is even slightly more
advantage using SOL in the lid-driven cavity problem because of reduced assembly
costs compared to the manufactured solution problem.

6. Summary

A solenoidal basis of a first-order polynomial velocity space was explicitly con-
structed in this paper for the conforming, divergence-free velocity-pressure finite
element pair studied in [4] for the Stokes problem. These elements are defined on
the Powell-Sabin split of a triangulation for a two-dimensional domain. Inhomoge-
neous Dirichlet conditions were enabled by constructing an interpolation operator
for boundary data into the trace of the solenoidal velocity subspace. A basis of the
pressure space was also derived using divergences of non-solenoidal functions from
the full discrete velocity space. Its construction used a graph-theoretic argument to

H1-CONFORMING SOLENOIDAL BASIS FOR VELOCITY COMPUTATION 199

P
re
ss
u
re

S
O
L
<

T
im

e
>

|V |

Assembly
Solve
Total

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10
×104

Figure 11. SOL pressure timings for lid-driven cavity problem.

T
ot
al

<
T
im

e
>

|V |

SOL
SP

0

2

4

6

0 2 4 6 8 10
×104

Figure 12. Total time to assemble and solve for pressure and
velocity; lid-driven cavity problem.

discard functions associated with a certain subset of vertices in the mesh, retaining
a spanning set. The implementation can be accomplished by generating a spanning
tree related to the mesh, for which purpose their is an efficient algorithm due to
Kruskal [9]. All basis functions were shown to have local support. Rigorous proofs
were included that verify the construction of bases. Also, some implementation
details for the solenoidal velocity basis were discussed that enable a localization of
the computations to assemble the linear system.

The use of the bases studied enables a block-triangular structure for the velocity-
pressure system, wherein the velocity can be isolated and computed without com-
puting the pressure. The computed velocity can then be used after to compute the
pressure, if desired. The non-solenoidal component of the discrete velocity space is
eliminated from the velocity computation, which further reduces the problem size.

The system matrices for the velocity and pressure solves are both symmetric,
positive-definite and support the use of the Choleski direct solver. Computations
using MATLAB verified a significant decrease in time to compute velocity alone
compared to solving the usual saddle-point system. Except on fairly coarse meshes,
even computing both pressure and velocity together was faster using the solenoidal
velocity basis.

Other benefits are expected for situations not included in the scope of this paper.
The conjugate gradient method and associated preconditioners could be applied for
larger sized problems when a direct solve is not feasible. Also, for applications that

200 J. CONNORS AND M. GAIEWSKI

require repeated linear solves with a reduced cost of system reassembly compared
to the initial assembly, there could be a larger efficiency gain using the solenoidal
basis than was demonstrated in this paper.

The paper [4] also includes divergence-free finite element methods for the three-
dimensional Stokes problem onWorsey-Farin splits. The solenoidal approach should
extend to this method as well. Although the extension and implementation detail-
s are likely to require a significant effort, the critical theoretical components of
the basis construction still apply, including the graph-theoretic tools used for the
pressure basis.

References

[1] A. Alonso Rodŕıguez, J. Camaño, E. De Los Santos, and F. Rapetti. A graph approach for the

construction of high order divergence-free Raviart-Thomas finite elements. Calcolo, 55:1–28,
2018.

[2] J. Carrero, B. Cockburn, and D. Schötzau. Hybridized globally divergence-free LDG methods.
Part I: the Stokes problem. Mathematics of Computation, 75:533–563, 2006.

[3] Cheilakos, Nickolas. Kruskal algorithm. https://www.mathworks.com/matlabcentral/file
exchange/13457-kruskal-algorithm, 2006.

[4] Maurice Fabien, Johnny Guzmán, Michael Neilan, and Ahmed Zytoon. Low-order divergence-

free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits. Com-
puter Methods in Applied Mechanics and Engineering, 390:1–24, Feb 2022.

[5] Gockenbach, Mark. Understanding and Implementing the Finite Element Method. 2006.
[6] J. Guzmán, A. Lischke, and M. Neilan. Exact sequences on Powell-Sabin splits. Calcolo, 57:

1–25, 2020.
[7] Peter Hansbo and Mats G. Larson. Piecewise divergence-free discontinuous Galerkin methods

for Stokes flow. Communications in Numerical Methods in Engineering, 24(5):355–366, 2008.
[8] Volker John, Alexander Linke, Christian Merdon, Michael Neilan, and Leo G. Rebholz. On

the divergence constraint in mixed finite element methods for incompressible flows. SIAM
Review, 59(3):492–544, 2017.

[9] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

[10] A. Montlaur, S. Fernandez-Mendez, and A. Huerta. Discontinuous Galerkin methods for the
Stokes equations using divergence-free approximations. International Journal for Numerical
Methods in Fluids, 57(9):1071–1092, 2008.

[11] Lin Mu and Xiu Ye. A simple finite element method for the Stokes equations. Advances in
Computational Mathematics, 43:1305–1324, 2017.

[12] Chunjae Park. A locally calculable P 3-pressure in a decoupled method for incompressible
Stokes equations, arXiv:2107.08472, 2021.

[13] Jinshui Qin and Shangyou Zhang. Stability and approximability of the P1-P0 element for
Stokes equations. International Journal for Numerical Methods in Fluids, 54(5):497–515,
2007.

[14] L. R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence

operator in spaces of piecewise polynomials. ESAIM: Mathematical Modelling and Numerical
Analysis - Modélisation Mathématique et Analyse Numérique, 19(1):111–143, 1985.

[15] Junping Wang, Yanqiu Wang, and Xiu Ye. A robust numerical method for stokes equations
based on divergence-free H(div) finite element methods. SIAM Journal on Scientific Com-

puting, 31(4):2784–2802, 2009.
[16] Xiu Ye and Shangyou Zhang. A numerical scheme with divergence free H-div triangular finite

element for the Stokes equations. Applied Numerical Mathematics, 167:211–217, 2021.
[17] Yonker, Shea. Triangulation manipulation program. https://github.com/syonker/Triangula-

tion-Manipulation-Program, April 2018.
[18] Olek C Zienkiewicz, Robert Leroy Taylor, and Perumal Nithiarasu. The Finite Element

Method for Fluid Dynamics. Butterworth-Heinemann, 2013.

Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA

E-mail : jeffrey.connors@uconn.edu and michael.gaiewski@uconn.edu

	1. Introduction
	2. A finite element method on Powell-Sabin splits
	2.1. Preliminaries
	2.2. Finite element method

	3. A solenoidal velocity basis
	3.1. Bases of Vh and Vh0
	3.2. Implementation details

	4. Computation of pressure from velocity
	5. Computations
	5.1. Manufactured solution test
	5.2. Lid-driven cavity test

	6. Summary
	References

