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LIE-POISSON NUMERICAL METHOD FOR A CLASS OF

STOCHASTIC LIE-POISSON SYSTEMS

QIANQIAN LIU AND LIJIN WANG∗

Abstract. We propose a numerical method based on the Lie-Poisson reduction for a class of

stochastic Lie-Poisson systems. Such system is transformed to SDE on the dual g∗ of the Lie
algebra related to the Lie group manifold where the system is located, which is also the reduced
form of a stochastic Hamiltonian system on the cotangent bundle of the Lie group by momentum

mapping. Stochastic Poisson integrators are obtained by discretely reducing stochastic symplectic
methods on the cotangent bundle to integrators on g∗. Stochastic generating functions creating
stochastic symplectic methods are used to construct the schemes. An application to the stochastic
rigid body system illustrates the theory and provides numerical validation of the method.

Key words. Stochastic Lie-Poisson systems, structure-preserving algorithms, Poisson integra-
tors, Lie-Poisson reduction, Poisson structure, Casimir functions.

1. Introduction

Stochastic Poisson systems (SPSs) are stochastic differential equation systems
(SDEs) of the following form ([12]):

dy(t) = B(y(t))

(
∇H0(y(t))dt+

s∑
r=1

∇Hr(y(t)) ◦ dWr(t)

)
,

y(0) = y0,(1)

where y0 ∈ Rm, Hr : Rm → R (r = 0, . . . , s) are smooth functions, {Wr(t)}t≥0

(r = 0, . . . , s) are independent standard real valued Wiener processes defined on a
complete filtered probability space (Ω,F , {Ft}t≥0,P), ‘◦’ indicates that the SDEs
are of Stratonovich sense. B(y) = (bij(y)) is called the structure matrix of the SPS,
which is is a smooth m ×m matrix–valued function of y with the skew-symmetry
bij(y) = −bji(y), and satisfies

m∑
l=1

(
∂bij(y)

∂yl
blk(y) +

∂bjk(y)

∂yl
bli(y) +

∂bki(y)

∂yl
blj(y)

)
= 0,(2)

for all i, j, k ∈ {1, . . . ,m}. These properties of B(y) guarantee that it induces the
Poisson bracket of two smooth functions K(y) and L(y) by

{K,L}(y) = ∇K(y)TB(y)∇L(y),(3)

which satisfies the skew-symmetry, Jacobi identity and the Leibniz’ rule, as the case
for canonical Poisson bracket of Hamiltonian systems ([9]).
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In this sense, the SPSs can be considered as generalizations of stochastic Hamil-
tonian systems (SHSs) ([5, 12, 22]) :

dy(t) = J−1

(
∇H0(y(t))dt+

s∑
r=1

∇Hr(y(t)) ◦ dWr(t)

)
,

y(0) = y0,(4)

where J−1 =

(
0d −Id

Id 0d

)
and Id is the d-dimensional identity matrix. When the

dimension of a SPS is even, i.e. m = 2d, and B(y) ≡ J−1, the SPS degenerates to
a SHS. If the diffusion part vanishes, i.e. ∇Hr ≡ 0, (1) are deterministic Poisson
systems which have got attention since 19th century (see e.g. [9] and references
therein). The Poisson and Hamiltonian systems can transform to each other by
coordinate transformations or Poisson reductions ([9, 18] and references therein).
Numerical methods for SPSs can be constructed using these properties, such as
those based on the Darboux-Lie theorem ([9]) which transform symplectic methods
for SHSs to Poisson integrators for SPSs via coordinate transformations ([12]).
In this paper, however, we attempt another way, to construct Poisson integrators
via Poisson reductions for a class SPSs, generalizing the deterministic Lie-Poisson
reduction numerical approach ([4, 9, 13, 26] ) to stochastic cases.

Almost surely, the phase flow of the SPS (1) φt,ω : y → φt,ω(y) possesses the
Poisson structure, i.e. ([3, 12] )

∂φt,ω(y)

∂y
B(y)

∂φt,ω(y)

∂y

T

= B(φt,ω(y)), ∀t ≥ 0, a.s.(5)

If the rank of B(y) is not full such that there exist functions C(y) yielding

B(y)∇C(y) = 0

almost surely, then these functions are called Casimir functions ([9]) of the SPSs,
which are invariants of the systems, since almost surely

dC(y) = ∇C(y)T dy = ∇C(y)TB(y)

(
∇H0(y)dt+

s∑
r=1

∇Hr(y) ◦ dWr(t)

)
= 0.

Now we consider special structure matrices B(y) whose elements depend linearly
on y, i.e.

bij(y(t)) =

m∑
k=1

Ck
jiy

k(t), ∀i, j = 1, . . . ,m.(6)

Analog to deterministic case ([9]), SPSs (1) with B(y) fulfilling (6) are called sto-
chastic Lie-Poisson systems (SLPSs) ([3, 11, 16]). The skew-symmetry as well as
properties (2) and (6) of B(y) make it possible to define a Lie bracket calculation
using the constants Ck

ij in (6) by:

[Ei, Ej ] =
m∑

k=1

Ck
ijEk, i, j = 1, . . . ,m(7)

on a vector space with basis {Ei} (i = 1, . . . ,m). The vector space equipped with
the Lie bracket calculation constituts a Lie algebra ([9]), denoted by g.

Lie-Poisson systems arise in celestial mechanics, robotics, fluid mechanics, and
rigid body, etc. Typical examples include the Vlasov-Poisson equations, the Euler
equations for rigid bodies ([4, 9, 13, 18, 19]). Numerical methods for deterministic
Lie-Poisson systems have been developed during the last decades, including the
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Lie-Poisson reduction methods ([4, 13, 26]), the splitting approach ([14, 19]), the
Lie-group method ([7]), the variational approach on the dual of Lie algebra ([17]),
Lie-Poisson methods on R3 ([20]), and so on. Methods for stochastic Lie-Poisson
systems appeared in recent years, such as those in [3, 16] based on splitting or Lie
group methods, etc. These methods aim to preserve the Poisson structure and/or
the Casimir functions of the original systems. A numerical method yn → yn+1 is
called a Poisson integrator if it preserves both the Poisson structure and the Casimir
functions ([9, 12]), namely for any n ∈ N it holds (in ‘a.s.’ sense in stochastic cases)

∂yn+1

∂yn
B(yn)

∂yn+1

∂yn

T

= B(yn+1),(8)

C(yn+1) = C(yn).(9)

It has been shown theoretically and empirically that such structure-preserving
integrators behave much better than general methods, especially in long time
simulations([3, 9, 12, 24, 25] and references therein).

Rigid body system has been a benchmark model in geometric mechanics, so is its
stochastic counterpart in stochastic geometric mechanics ([11]). In [3, 5, 12, 15, 24],
the following stochastic rigid body system was studied dy1

dy2

dy3

 =

 0 −y3 y2

y3 0 −y1
−y2 y1 0

 y1/I1
y2/I2
y3/I3

 (dt+ c ◦ dW (t)),(10)

where (y1, y2, y3)T ∈ R3, c is a constant, and Ij (j = 1, 2, 3) are moments of
inertia. It is easy to see that the stochastic rigid body system is a stochastic
Lie-Poisson system. In the above mentioned papers, various numerical methods
were constructed to preserve the Poisson structure, Casimir function, or the energy
of the system. However, none of them treated the system from the Lie-Poisson
reduction point of view. Generally, to our best knowledge, there is still no Lie-
Poisson reduction numerical methods for stochastic Lie-Poisson systems.

In this paper, we focus on SLPSs with one noise of the following form:

dy = B(y)∇H(y)(dt+ c ◦ dW (t)),(11)

where B(y) is skew-symmetric and satisfies (2) and (6). We generalize the deter-
ministic Lie-Poisson reduction method ([4, 13, 26]) to SLPSs (11), to construct
Lie-Poisson integrators for them. Lie-Poisson reduction methods for more general
SLPSs will be topics of further study.

Contents are arranged as follows. In Section 2 we derive the dual Lie algebra
representation of SLPSs (11). In Section 3 we give the stochastic Lie-Poisson re-
duction method. The method is applied to the stochastic rigid body system (10)
in Section 4 with some numerical experiments. Section 5 is a brief conclusion.

2. Dual Lie algebra representation of SLPSs

Given a SLPS (11) with B(y) = (bij(y)) satisfying (6), namely

bij(y(t)) =

m∑
k=1

Ck
jiy

k(t), ∀i, j = 1, . . . ,m.

Let {Ei} (i = 1, . . . , n) be the basis of a Lie algebra g on which the Lie bracket [·, ·]
is defined by

[Ei, Ej ] =
m∑

k=1

Ck
ijEk, i, j = 1, . . . ,m,



LIE-POISSON METHOD FOR SLPSS 107

and let G be the Lie group associated with g, i.e. g = TIG.
Denote by g∗ the dual of the Lie algebra g, namely the vector space of all linear

forms Y : g → R on g. The duality between g∗ and g is represented by ⟨Y,X⟩ for
Y ∈ g∗ and X ∈ g. Let Fi ∈ g∗ (i = 1, . . . ,m) satisfy

⟨Fi, Ej⟩ = δij ,(12)

where δ is the Kronecker function. It is not difficult to verify that {Fi} (i =
1, . . . ,m) form a basis of g∗ ([9]). We have the following theorem.

Theorem 2.1. Let {y(t)}t≥0 be the solution of (11), define Y (t) =
∑m

i=1 y
i(t)Fi ∈

g∗, and let H(Y ) := H(y). Then the SLPSs (11) is equivalent to the following
stochastic differential equation on g∗:

⟨dY,X⟩ = ⟨Y, [H ′(Y ), X]⟩(dt+ c ◦ dW (t)), ∀X ∈ g,(13)

where H ′(Y ) =
∑m

i=1
∂H(y)
∂yi Ei.

Proof. According to the definition of H ′(Y ) and the relation (7),

⟨Y, [H ′(Y ), Ei]⟩ = ⟨Y,
m∑
j=1

∂H(y)

∂yj
[Ej , Ei]⟩

=

m∑
j=1

m∑
k=1

∂H(y)

∂yj
Ck

ji⟨Y,Ek⟩.

Due to ⟨dY,Ei⟩ = dyi, ⟨Y,Ei⟩ = yi, as well as the linearity of the Lie bracket and
the duality calculations, (13) is equivalent to

dyi = ⟨dY,Ei⟩
= ⟨Y, [H ′(Y ), Ei]⟩(dt+ c ◦ dW (t))

=

m∑
j=1

(
m∑

k=1

Ck
jiy

k

)
∂H(y)

∂yj
(dt+ c ◦ dW (t))

=
m∑
j=1

bij(y)
∂H(y)

∂yj
(dt+ c ◦ dW (t)), i = 1, . . . ,m,

which is just the SLPSs (11). The last equality has used the relation (6). �

Thus, we found the equivalent stochastic differential equation on g∗ for the SLPSs
(11).

3. Stochastic Lie-Poisson reduction methods

3.1. From cotangent bundle to dual Lie algebra. Let the Lie group G be a
subgroup of GL(m) = {A : A ∈ Rm×m, det(A) ̸= 0} given by

G = {Q : Q ∈ GL(m), gi(Q) = 0, i = 1, . . . , κ},(14)

where gi : GL(m) → R (i = 1, . . . , κ) are certain constraint functions defining the
group G. We consider the following SHS on G ([10, 11]):

 dP = (−∇QH(P,Q)−
∑κ

i=1 λi∇Qgi(Q)) (dt+ c ◦ dW (t)), P (t0) = p,
dQ = ∇PH(P,Q)(dt+ c ◦ dW (t)), Q(t0) = q,
gi(Q) = 0, i = 1, . . . , κ,

(15)
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where P,Q, p, q ∈ Rm×m, ∇QH =
(

∂H
∂Qij

)
(i, j = 1 . . . ,m), λi (i = 1, . . . , κ) are

Lagrange parameters which can be written as functions of (P,Q) under certain
conditions ([10]). The tangent space of G at Q is TQG = {v ∈ Rm×m : g′(Q)v = 0},
where g = (g1, . . . , gκ)

T , and 0 ∈ Rκm×m.
Differentiate the constraint g(Q) = 0 with using the Stratonovich differential

chain rule, we get g′(Q)dQ = 0. This means that Q̇ ∈ TQG a.s., which implies
P ∈ T ∗

QG a.s. ([9]). Therefore the SHS (15) can be seen as an equation system on
the cotangent bundle T ∗G of G, where

T ∗G = {(V,U) : U ∈ G,V ∈ T ∗
UG}.

A Hamiltonian function H(P,Q) is said to be left-invariant under the group
action of G, if ([9])

H(UTP,U−1Q) = H(P,Q), ∀U ∈ G.

In this situation we have

H(P,Q) = H(QTP, I), ∇PH(P,Q) = Q∇PH(QTP, I),

and the second equation of (15) becomes

dQ = Q∇PH(QTP, I)(dt+ c ◦ dW (t)).(16)

Since TQG = {QX : X ∈ g} and Q̇ ∈ TQG, we obtain

∇PH(QTP, I)(1 + c ◦ Ẇ (t)) ∈ g = TIG, a.s.,

where Ẇ (t) is the formal derivative ofW (t). This implies immediately that QTP ∈
T ∗
I G = g∗ a.s.. Now we can consider H(P,Q) as a function of Y = QTP , that is
H(P,Q) = H(Y ) whereby H : g∗ → R.

Theorem 3.1. Consider the stochastic Hamiltonian system (15) on the Lie group
G (14). If the Hamiltonian function H is left-invariant under group actions of G,
and (P (t), Q(t)) ∈ T ∗G solves the system (15), then Y (t) = Q(t)TP (t) ∈ g∗ solves
the SDE (13) on the dual g∗ of the Lie algebra g of G.

Proof. For QTP = Y ∈ g∗, we have Y =
∑m

j=1 y
jFj so that H(P,Q) = H(Y ) =

H(y) with y = (y1, . . . , ym)T . The duality between T ∗
QG and TQG is given by the

matrix inner product (·, ·) as

⟨P, V ⟩ = (P, V ) = trace(PTV ), ∀P ∈ T ∗
QG,V ∈ TQG.

From ∇Atrace(A
TB) = B, we obtain

∇PH(P,Q) =
m∑
j=1

∂H(y)

∂yj
∇P yj =

m∑
j=1

∂H(y)

∂yj
∇P ⟨Y,Ej⟩

=
m∑
j=1

∂H(y)

∂yj
∇P trace(P

TQEj) =
m∑
j=1

∂H(y)

∂yj
QEj = QH ′(Y ),

where we have used ⟨Y,Ej⟩ = yj and H ′(Y ) =
∑m

j=1
∂H(y)
∂yj Ej . Similarly, based on

the equality yj = trace(PTQEj) = trace(QTPET
j ), we obtain

∇QH(P,Q) = PH ′(Y )T .
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Thus the SHS (15) can be written as

dP =

(
−PH ′(Y )T −

κ∑
i=1

λi∇Qgi(Q)

)
(dt+ c ◦ dW (t)),

dQ = QH ′(Y )(dt+ c ◦ dW (t)).(17)

Due to the Stratonovich differential chain rule,

dY = d(QTP ) = (PT ◦ dQ)T +QT ◦ dP

=

(
H ′(Y )TQTP +QT (−PH ′(Y )T −

κ∑
i=1

λi∇Qgi(Q))

)
(dt+ c ◦ dW (t))

=

(
H ′(Y )TY − Y H ′(Y )T −

κ∑
i=1

λiQ
T∇Qgi(Q)

)
(dt+ c ◦ dW (t)).(18)

Note that ∀X ∈ g,

⟨H ′(Y )TY,X⟩ = trace(Y TH ′(Y )X) = ⟨Y,H ′(Y )X⟩,
⟨Y H ′(Y )T , X⟩ = trace(H ′(Y )Y TX) = trace(Y TXH ′(Y )) = ⟨Y,XH ′(Y )⟩,

⟨QT∇Qgi(Q), X⟩ = ⟨∇Qgi(Q), QX⟩ = 0,

(19)

whereby the last equality is owing to QX ∈ TQG. From (19) and (18) we get

⟨dY,X⟩ = ⟨Y, [H ′(Y ), X]⟩(dt+ c ◦ dW (t)), ∀X ∈ g,

which is just (13). �

3.2. Discrete reduction. Consider two left-invariant smooth functions K(P,Q)
and L(P,Q) on T ∗G. By Y = QTP they become functions K(Y ) and H(Y ) on g∗.
Due to Y =

∑m
j=1 y

jFj they can be viewed as functions K(y) and L(y) on Rm. In

T ∗G they have the canonical Poisson bracket defined by ([9])

{K,L}can =
m∑

k,l=1

(
∂K

∂Qkl

∂L

∂Pkl
− ∂K

∂Pkl

∂L

∂Qkl

)
.(20)

On Rm, their Poisson bracket defined by the structure matrix B(y) (where y =
(y1, . . . , ym)T ) is

{K,L} =
m∑

i,j=1

∂K

∂yi
bij

∂L

∂yj
.(21)

Lemma 3.1. ([9]) For the left-invariant smooth functions K and L, let QTP =
Y =

∑m
j=1 y

jFj ∈ g∗, we have

{K,L}(y) = ⟨Y, [L′(Y ),K ′(Y )]⟩ = {K,L}can(P,Q),(22)

where y = (y1, . . . , ym)T , K ′(Y ) =
∑m

j=1
∂K(y)
∂yj Ej ∈ g.

Now we consider a symplectic integrator for a SHS on T ∗G with left-invariant
Hamiltonian:

(P1, Q1) = Φh(P0, Q0).(23)

We assume that the symplectic integrator is also left-invariant, that is:

Φh(U
TP0, U

−1Q0) = (UTP1, U
−1Q1), ∀U ∈ G.(24)
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Let Y1 = QT
1 P1, Y0 = QT

0 P0. From (23) and by (24) it follows

(P1, Q1) = Φh(P0, Q0) = Φh(Q
T
0 P0, I) =: (Φ1

h(Q
T
0 P0),Φ

2
h(Q

T
0 P0)),

which implies

Y1 = QT
1 P1 = Φ2

h(Q
T
0 P0)

TΦ1
h(Q

T
0 P0) =: Ψh(Q

T
0 P0) = Ψh(Y0).

Thus the symplectic integrator Φh induces a mapping Ψh on g∗:

Y1 = Ψh(Y0),(25)

which is a numerical scheme for (13). Further by considering the relation between

Y ∈ g∗ and its coordinates y = (y1, . . . , ym)T ∈ Rm, i.e. Yi =
∑m

j=1 y
j
iFj , (i = 0, 1),

one gets a mapping on Rm:

y1 = ψh(y0),(26)

where yi = (y1i , . . . , y
m
i )T (i = 0, 1), which is an integrator for the SLPS (11).

Analogous to the deterministic case ([9]), by using Lemma 3.1, we can prove the
following result for the stochastic case.

Theorem 3.2. If Φh(P,Q) is a left-invariant symplectic integrator for the SHS
(15), then its reduction ψh(y) is a Poisson map for the SLPS (11).

We omit the proof since it can follow the same way as its deterministic coun-
terpart given in [9]. This theorem provides the possibility of producing Poisson
numerical schemes for SLPSs by reducing left-invariant symplectic integrators of
its SHS formulation.

4. Lie-Poisson integrators for the stochastic rigid body system

In this section we apply the above method to the stochastic rigid body system
(10). We mainly extend the generating function approach and exponential map
used in Lie-Poisson reduction numerical methods solving the deterministic rigid
body system ([4, 13, 26]) to the stochastic context.

Here we recall the stochastic rigid body system (10): dy1

dy2

dy3

 =

 0 −y3 y2

y3 0 −y1
−y2 y1 0

 y1/I1
?y2/I2
y3/I3

 (dt+ c ◦ dW (t)),(27)

where H(y) = 1
2

(
(y1)2

I1
+ (y2)2

I2
+ (y3)2

I3

)
, and C(y) = 1

2

(
(y1)2 + (y2)2 + (y3)2

)
is a

Casimir function of the system. The structure matrix is

B(y) =

 0 −y3 y2

y3 0 −y1
−y2 y1 0

 .

4.1. Generating function for stochastic symplectic mapping. Given a s-
tandard SHS ([22]):{

dP = −∂H0(P,Q)
∂Q dt−

∑s
r=1

∂Hr(P,Q)
∂Q ◦ dWr(t), P (t0) = p,

dQ = ∂H0(P,Q)
∂P dt+

∑s
r=1

∂Hr(P,Q)
∂P ◦ dWr(t), Q(t0) = q,

(28)

where P,Q, p, q ∈ Rd. It is proved that the phase flow of (28) preserves symplectic
structure ([22]), i.e.

dP (t) ∧ dQ(t) = dp ∧ dq, ∀t ≥ t0.
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A mapping (pT , qT )T → (PT , QT )T is symplectic, if and only if there exists locally
a smooth function S(q,Q, t) such that ([6, 8, 9, 23])

PT dQ− pT dq = dS.

For SHS (28), the generating function S(q,Q, t, ω) for its symplectic flow can be
found by solving the stochastic Hamilton-Jacobi partial differential equation (H-J
PDE) ([6, 23])

(29) dS(q,Q, t, ω) = −H0(
∂S

∂Q
,Q)dt−

s∑
r=1

Hr(
∂S

∂Q
,Q) ◦ dWr(t)

with the initial condition

∂S

∂Qi
(q, q, t0) +

∂S

∂qi
(q, q, t0) = 0, i = 1, · · · , d.

If the matrix
(

∂2S
∂qi∂Qj

)
is almost surely invertible for t ∈ [t0, τ ], where τ > t0

is a stopping time, then the solution S of (29) almost surely generates the flow
ϕt,ω : (pT , qT )T → (P (t, ω)T , Q(t, ω)T )T of the SHS (28) via the relation ([6])

P (t, ω) =
∂S(q,Q(t), t, ω)

∂Q
, p = −∂S(q,Q(t), t, ω)

∂q
.(30)

One can construct a symplectic numerical scheme for the SHS (28) through the
relation (30), by finding an approximate solution S to the stochastic H-J PDE
([6, 23]).

4.2. Approximate generating function. Using the same way as in [26], one can
prove that if the Hamiltonians Hi, i = 0, . . . s are left-invariant, then the generating
function S, i.e. the solution to the stochastic H-J PDE (29) is also left-invariant.
In this situation it holds

S(Q, q) = S(I,Q−1q) = S̃(g), g = Q−1q.

Then the relation (30) can be written as ([13])

p = −∂S(Q(t), q, t)

∂q
= −∂S̃(Q

−1q)

∂q
(31)

= −
∂S̃(LQ−1q)

∂q
= −L∗

Q−1

∂S̃

∂g
|g=Q−1q,

P =
∂S(Q(t), q, t)

∂Q
=
∂S̃(Q−1q)

∂Q
(32)

=
∂S̃(RqQ

−1)

∂Q
= −L∗

Q−1R∗
Q−1R∗

q

∂S̃

∂g
|g=Q−1q,

where for g ∈ G, the mappings Lg : G → G : u → gu, and Rg : G → G : u → ug
are left and right translations by g on u ∈ G respectively ([1]). These translations
can be transformed to left and right translations L∗

g and R∗
g on T ∗G.

The mapping JR : T ∗G → g∗ ([13]) is defined as JR(P,Q) = L∗
QP . For the

stochastic rigid body system, it corresponds to the transformation JR(P,Q) =
L∗
QP = QTP = Y ∈ g∗, the so-called momentum mapping.
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Similar to the discussion in [13], for the stochastic rigid body system(10) where
G = SO(3) and H is left-invariant, one can reduce its stochastic H-J PDE (29)
(s = 1, H1 = cH0 := cH ) on T ∗G to that on g∗:

dS̃(g) = −H(−R∗
g

∂S̃

∂g
)(dt+ c ◦ dW (t)),(33)

where g = Q−1q. We define

Y0 = JR(p, q) = L∗
qp = −L∗

qL
∗
Q−1

∂S̃

∂g
|g=Q−1q(34)

= −L∗
Q−1q

∂S̃

∂g
|g=Q−1q = −L∗

g

∂S̃

∂g
|g=Q−1q,

Y = JR(P,Q) = L∗
QP = −L∗

QL
∗
Q−1R∗

Q−1R∗
q

∂S̃

∂g
|g=Q−1q

= −R∗
Q−1q

∂S̃

∂g
|g=Q−1q = −R∗

g

∂S̃

∂g
|g=Q−1q.

Thus we get the reduced mapping Y = R∗
gL

∗
g−1Y0 = Ad∗g−1Y0 on g∗ from the

mapping (pT , qT )T → (PT , QT )T on T ∗G.
Applying the method in [4, 13], we describe the generating function approach

using the exponential map. ∀g ∈ G, choose ξ ∈ g such that g = exp(ξ). Thus the
equation (33) becomes

dS̃ = −H(−dS̃ · ψ(adξ))(dt+ c ◦ dW (t))(35)

= −H0(−dS̃ · ψ(adξ))dt−H1(−dS̃ · ψ(adξ)) ◦ dW1(t),

where H0 = H,H1 = cH,W1(t) =W (t), dS̃ ·ψ(adξ) = R∗
gdS̃, dS̃ · χ(adξ) = L∗

gdS̃.
Meanwhile we have

Y0 = −dS̃ · χ(adξ), Y = −dS̃ · ψ(adξ),

and

χ(adξ) = Id +
1

2
adξ +

1

12
ad2ξ + · · · ,

ψ(adξ) = χ(adξ)− adξ,

where the condition g = Q−1q is transformed to ξ|t=0 = Id.
Let S0 be the function that generates the identity map on the Lie algebra. Next

we consider the expansion of the generating function S̃(ξ, t, ω) using the method in
[6]:

S̃(ξ, t, ω) = S0(ξ) + ΣαSα(ξ)Jα,(36)

where α = {j1, ..., jl}, ji ∈ {0, 1}, and Jα is the Stratonovich multiple integral

Jα =

∫ t

0

∫ sl

0

· · ·
∫ s2

0

◦dW j1
s1 · · · ◦ dW jl−1

sl−1
◦ dW jl

sl

with ds =: dW 0
s .

For l > 1, denote by α = (j1, j2, . . . , jl) a multi-index of length l ([6]), and
α− = (j1, j2, . . . , jl−1). For any two multi-indices α = (j1, j2, . . . , jl) and α′ =
(j′1, j

′
2, . . . , j

′
l′), the concatenation operation ∗ of them is defined as

α ∗ α′ = (j1, j2, . . . , jl, j
′
1, j

′
2, . . . , j

′
l′).
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The concatenation operation between a multi-index set Λ and a multi-index α is
defined as

Λ ∗ α = {α′ ∗ α|α′ ∈ Λ}.

The multiple Stratonovich integrals possess the following property.

Lemma 4.1. ([6])

JαJα′ =
∑

β∈Λα,α′

Jβ ,

where α = (j1, j2, . . . , jl), α
′ = (j′1, j

′
2, . . . , j

′
l′), and Λα,α′ is multi-index set relying

on α and α′ and given by the following formulae:

Λα,α′ =


{(j1, j′1), (j′1, j1)}, if l = 1 and l′ = 1,

{Λ(j1),α′− ∗ (j′l′), α′ ∗ (jl)}, if l = 1 and l′ ̸= 1,

{Λα−,(j′1)
∗ (jl), α ∗ (j′l)}, if l ̸= 1 and l = 1,

{Λα−,α′ ∗ (jl),Λα,α′− ∗ (j′l′)}, if l ̸= 1 and l ̸= 1.

Substituting (36) into (35) and using the same method as in [6], as well as Lemma
4.1, we have

S̃ = S0 −
1∑

r=0

∫ t

0

Hr(−dS̃ · ψ(adξ)) ◦ dW r
s (t)(37)

= S0 −
1∑

r=0

∫ t

0

∞∑
i=0

1

i!

∂iHr

∂V
(V )(

∑
α

(−dSαJα) · ψ(adξ))i ◦ dW r
s

= S0−
1∑

r=0

∞∑
i=0

1

i!

∂iHr

∂V
(V )
∑

α1,..,αi

(−dSα1ψ)..(−dSαiψ)

∫ t

0

i∏
k=1

Jαk
◦dW r

s

= S0−
1∑

r=0

∞∑
i=0

1

i!

∂iHr

∂V
(V )

∑
α1,..,αi

(−dSα1ψ)..(−dSαiψ)
∑

β∈Λα1,..,αi

Jβ∗(r)

= S0−
1∑

r=0

∞∑
i=0

∑
α1,..,αi

∑
β∈Λα1,..,αi

1

i!

∂iHr

∂V
(V )(−dSα1ψ)..(−dSαiψ)Jβ∗(r),

where V = −dS0 · ψ(adξ). Thus we obtain

S(0) = −H0(V ), S(1) = −H1(V ),

S(0,0) =
∂H0

∂V
(V )(dS(0) · ψ), S(1,1) =

∂H1

∂V
(V )(dS(1) · ψ),

S(0,1) =
∂H1

∂V
(V )(dS(0) · ψ), S(1,0) =

∂H0

∂V
(V )(dS(1) · ψ),

...

Now we truncate the series of S̃ to obtain

S̄ = S0 + S(1)J(1) + S(0)J(0) + S(1,1)J(1,1).(38)
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Noting that H0 = H, H1 = cH, we get the truncated generating function

S̄ = S0 − cH(−R∗
gdS0)J(1) −H(−R∗

gdS0)J(0)(39)

+c2
∂H

∂V
(−R∗

gdS0)(−R∗
gdH(−R∗

gdS0))J(1,1),

which is an approximation of S̃. Then we can use (34) and S̄ ≈ S̃ to construct a
Poisson mapping Y0 → Y on g∗.

4.3. The numerical scheme. The geometric settings for the stochastic rigid
body are the same with those for the deterministic rigid body ([2, 26]), stated as
follows. The Lie group is G = SO(3), and the Lie algebra is g = so(3) which is the
space of 3× 3 skew-symmetric matrices. Denote by ŷ ∈ so(3) the skew-symmetric
matrix related to the vector y ∈ R3, defined by ŷ · v = y × v for a vector v ∈ R3.
The above relation y ↔ ŷ also defines an isomorphism between R3 and so(3). The
Lie bracket on g is defined as [v̂, ŵ] = v̂ŵ − ŵv̂, for v̂, ŵ ∈ so(3), corresponding to
the cross product v × w on R3.

Using the killing form ⟨â, b̂⟩ = 1
2 trace(â

T b̂) for a, b ∈ R3, which corresponds to

the inner product a · b on R3, one can identify so(3) and so(3)∗ by defining ⟨v̂, ŵ⟩ =
v · w, where the left-hand side of the equation is the duality calculation between

v̂ ∈ so(3)∗ and ŵ ∈ so(3). Then denoting
(

1
I1
, 1
I2
, 1
I3

)T
=: I−1,

(
y1

I1
, y

2

I2
, y

3

I3

)T
:=

I−1(y) one can write

H(y) = H(ŷ) =
1

2
y · I−1(y) =

1

2
⟨ŷ, ˆI−1(ŷ)⟩

where ˆI−1(ŷ) = Î−1(y).
According to [26], for free rigid body, the function S0 = traceA generates the

identity map, where A is an orthogonal matrix. Then (34) can be written as

ŷ0 = −AT · ∇S̃(A), ŷ = −∇S̃(A) ·AT ,(40)

whereby the result has been skew-symmetrized ([26]) to be kept in so(3).
For the S0 given above we have −R∗

AdS0 = 1
2 (A − AT ). Thus it follows from

(39) that

S̄ = S0 − cH(
1

2
(A−AT ))J(1) −H(

1

2
(A−AT ))J(0)(41)

+ c2
∂H

∂V
(
1

2
(A−AT ))(−R∗

AdH(
1

2
(A−AT ))J(1,1),

where the calculation between ∂H
∂V ( 12 (A−AT )) and −R∗

AdH( 12 (A−AT ) is the Killing

form given above, and J(0) = h, J(1) = ∆W (h), J(1,1) =
1
2∆W (h)2 with h = t− t0,

and ∆W (h) = W (t0 + h) − W (t0) =
√
hξ0 where ξ0 is a normally distributed

random variable: ξ0 ∼ N (0, 1).
Substituting (41) into (40) and replacing the time interval [t0, t] by [tn, tn+1], we

obtain the following one-step numerical method ŷn → ŷn+1 (n ≥ 0):

ŷn = AS
n + (AT

n I(A
S
n))

S(h+ c∆Ŵn)−
1

2
(AT

ndAnS(1,1)(An))
S∆Ŵ 2

n ,(42)

ŷn+1 = AS
n + (I(AS

n)A
T
n )

S(h+ c∆Ŵn)−
1

2
(dAnS(1,1)(An)A

T
n )

S∆Ŵ 2
n ,
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where h = tn+1− tn, ∆Ŵn =
√
hξ̂n is a truncation of ∆Wn :=W (tn+1)−W (tn) =√

hξn with ξn ∼ N (0, 1), based on the following truncation of ξn to ξ̂n ([21]):

ξ̂n =


ξn, if |ξn| ≤ Ah,

Ah, if ξn > Ah,

−Ah, if ξn < −Ah,

where Ah =
√
2k| lnh| for certain integer k ≥ 1. This truncation is performed for

implicit schemes to avoid the implementation issue caused by the unboundedness of
∆Wn ([21]). The truncation error can be merged into the scheme error by choosing
sufficiently large k. In our discussion it is enough to choose k = 4.

Further, each An (n ≥ 0, A0 := A) is first solved from the equation of ŷn, and
then substituted into the equation of ŷn+1 to calculate ŷn+1. From the relation
between the matrix ŷn and the vector yn mentioned above, we immediately obtain
yn once we get ŷn, for all n ≥ 0. Therefore we identity the numerical scheme (42)
with the final scheme yn → yn+1 for the stochastic rigid body system (10).

Theorem 4.1. The numerical scheme (42) preserves the Casimir function of the
stochastic rigid body system (10).

Proof. From the relation between ŷ0 and ŷ in (40) we have

ŷn+1 = AŷnA
T .

Since A is an orthogonal matrix, multiplying which will not change the Frobenius
norm, we obtain

∥ŷn+1∥2F = ∥AŷnAT ∥2F = ∥ŷn∥2F .

For the stochastic rigid body system (10), y = (y1, y2, y3)T ∈ R3 whose correspond-
ing ŷ ∈ so(3) is

ŷ =

 0 −y3 y2

y3 0 −y1
−y2 y1 0

 .

Meanwhile the Casimir function C(y) of (10) satisfies

∥ŷn+1∥2F = 4C(yn+1), ∥ŷn∥2F = 4C(yn).

Therefore we have C(yn+1) = C(yn). �

Combining Theorem 4.1 with the fact that the numerical scheme (42) is a Poisson
map by Theorem 3.2, (42) gives a Poisson integrator.

4.4. Numerical tests. In this section we illustrate numerical behavior of our
method (42) applied to the stochastic rigid body system (10) from several as-

pects. Hereby we take I = [
√
2 +

√
2

1.51 ,
√
2 − 0.51

√
2

1.51 , 1]
T , c = 0.2, and

y0 = [0.7, 0.7, 0]T .
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method (4.16) reference y

Figure 4.1. Sample paths produced by (42).

Figure 4.1 shows one sample path of yi (i = 1, 2, 3) respectively produced by our
method (42) for the stochastic rigid body system (10). Good coincidence between
the numerical and the reference (true) paths can be seen. Here we take the time
step h = 10−2 for our method, and use the midpoint scheme with tiny time step
10−5 to simulate the reference (true) paths.
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(b) Near preservation of Hamiltionian

Figure 4.2. Preservation of Casimir and Hamiltonian by the
method (42).

Figure 4.2 (a) illustrates the preservation of the Casimir function by our method
(42) for the system (10), whereby the Euler-Maruyama method makes the Casimir
function grow along time evolution. In Figure 4.2 (b) we see that our method
(42) can nearly preserve the Hamiltonian function of the system (10), while the
Euler-Maruyama method fails again to preserve the function.

In Figure 4.3 (a) we compare a phase trajectory created by our method (42)
(left) and the Euler-Maruyama method (right), respectively, and Figure 4.3 (b) is
the reference (true) phase trajectory simulated by using the midpoint method with
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Figure 4.3. Numerical v.s. true phase trajectories.

time step 10−5. We can see that our method gives a better trajectory simulation
than the Euler-Maruyama method.
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Figure 4.4. Root mean-square convergence order of the method (42).

Figure 4.4 shows the root mean-square convergence order of the method (42),
which is 1

2 as seen from the figure. The time steps used are h = [2−9, 2−8, 2−7, 2−6, 2−5],
and 500 samples were taken to approximate the expectations.

Remark 4.1. The convergence order results from the truncation of the generating
function S̃ to S̄ in (38). As was mentioned for deterministic cases ([4, 13, 26]),

longer truncation of the series of S̃ may provide higher convergence order also in
stochastic situation, as the case by generating functions for SHSs ([6, 23]). This
could be further studied in more details.
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5. Conclusion

In this paper we propose a Lie-Poisson reduction numerical method for solving
a class of stochastic Lie-Poisson systems (SLPSs). We present the reduction pro-
cedure for the SLPSs from constrained stochastic Hamiltonian systems (SHSs) on
Lie group manifold. Then by reducing stochastic symplectic methods generated by
stochastic generating functions for SHSs we construct stochastic Poisson integra-
tors for the SLPSs. The method is applied to a typical model of SLPSs, namely
the stochastic rigid body system, for which we give concrete scheme based on the
exponential mapping. Numerical tests show effectiveness of the proposed method.
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[3] C.E. Bréhier, D. Cohen, and T. Jahnke. Splitting integrators for stochastic Lie-Poisson sys-
tems. Math. Comp., 92:2167–2216, 2023.

[4] P.J. Channell and J.C. Scovel. Integrators for Lie-Poisson dynamical systems. Physica D,
50:80–88, 1991.

[5] D. Cohen and G. Dujardin. Energy-preserving integrators for stochastic Poisson systems.
Commun. Math. Sci., 12:1523–1539, 2014.

[6] J. Deng, C.A. Anton, and Y.S. Wong. High-order symplectic schemes for stochastic Hamil-

tonian systems. Commun. Comput. Phys., 16:169–200, 2014.
[7] K. Engø and S. Faltinsen. Numerical integration of Lie-Poisson systems while preserving

coadjoint orbits and energy. SIAM J. Numer. Anal., 39:128–145, 2001.
[8] K. Feng, H.M. Wu, M.Z. Qin, and D.L. Wang. Construction of canonical difference schemes

for Hamiltonian formalism via generating functions. J. Comp. Math., 7:71–96, 1989.
[9] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: Structure-preserving

algorithms for ordinary differential equations. Springer Science & Business Media, Berlin, 2nd
edition, 2006.

[10] D.D. Holm. Variational principles for stochastic fluid dynamics. P. Roy. Soc. A: Math. Phy.,
471 (2176):20140963, 2015.

[11] D.D. Holm and E. Luesink. Stochastic geometric mechanics with diffeomorphisms. arX-
iv:2108.07853v1 [math-ph] 17 Aug 2021, 2021.

[12] J.L. Hong, J.L. Ruan, L.Y. Sun, and L.J. Wang. Structure-preserving numerical methods for
stochastic Poisson systems. Commun. Comput. Phys., 29:802–830, 2021.

[13] S.T. Li and M.Z. Qin. A note for Lie-Poisson Hamilton-Jacobi equation and Lie-Poisson

integrator. Computers Math. Applic., 30 (7):67–74, 1995.
[14] S.T. Li and M.Z. Qin. Lie-Poisson integration for rigid body dynamics. Computers Math.

Applic., 30 (9):105–118, 1995.
[15] X.Y. Li, Q. Ma, and X.H. Ding. High-order energy-preserving methods for stochastic Poisson

systems. East. Asia. J. Appl. Math., 9:465–484, 2019.
[16] E. Luesink, S. Ephrati, P. Cifani, and B. Geurts. Casimir preserving stochastic Lie-Poisson

integrators. arXiv:2111.13143v4 [math.NA] 6 Dec 2021, 2021.
[17] Z.H. Ma and Rowley C.W. Lie-poisson integrators: A Hamiltonian, variational approach.

Int. J. Numer. Methods Engrg., 82:1609–1644, 2010.
[18] J.E. Marsden and T.S. Ratiu. Introduction to mechanics and symmetry. Texts in Applied

Mathematics. Springer New York, NY, 1999.
[19] R.I. McLachlan. Explicit Lie-Poisson Integration and the Euler Equations. Phys. Rev. Lett.,

71 (19):3043–3046, 1993.
[20] R.I. McLachlan, K. Modin, and O. Verdier. Collective Lie-Poisson integrators on R3. IMA

J. Numer. Anal., 35:546–560, 2015.
[21] G.N. Milstein, Y.M. Repin, and M.V. Tretyakov. Numerical methods for stochastic systems

preserving symplectic structure. SIAM J. Numer. Anal., 40:1583–1604, 2002.



LIE-POISSON METHOD FOR SLPSS 119

[22] G.N. Milstein, Y.M. Repin, and M.V. Tretyakov. Symplectic integration of Hamiltonian sys-
tems with additive noise. SIAM J. Numer. Anal., 39:2066–2088, 2002.

[23] L.J. Wang. Variational integrators and generating functions for stochastic Hamiltonian sys-
tems. Dissertation, KIT Scientific Publishing, 2007.

[24] L.J. Wang, P.J. Wang, and Y.Z. Cao. Numerical methods preserving multiple Hamiltonians
for stochastic Poisson systems. Discrete Cont. Dyn.-S, 15 (4):819–836, 2022.

[25] Y.C. Wang, L.J. Wang, and Y.Z. Cao. Structure-preserving numerical methods for a class of
stochastic Poisson systems. Int. J. Numer. Anal. Mod., 19 (2-3):194–219, 2022.

[26] G. Zhong and J.E. Marsden. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators.
Phys. Lett. A, 133 (3):134–139, 1988.

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049,

China
E-mail : liuqianqian19@mails.ucas.ac.cn and ljwang@ucas.ac.cn


