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A POSTERIORI ERROR ESTIMATES FOR A LOCAL

DISCONTINUOUS GALERKIN APPROXIMATION OF

SEMILINEAR SECOND-ORDER ELLIPTIC PROBLEMS ON

CARTESIAN GRIDS

MAHBOUB BACCOUCH

Abstract. In this paper, we design and analyze new residual-type a posteriori error estimators

for the local discontinuous Galerkin (LDG) method applied to semilinear second-order elliptic
problems in two dimensions of the type −∆u = f(x, u). We use our recent superconvergence
results derived in Commun. Appl. Math. Comput. (2021) to prove that the LDG solution is
superconvergent with an order p+2 towards the p-degree right Radau interpolating polynomial of

the exact solution, when tensor product polynomials of degree at most p are considered as basis
for the LDG method. Moreover, we show that the global discretization error can be decomposed
into the sum of two errors. The first error can be expressed as a linear combination of two (p+1)-
degree Radau polynomials in the x- and y− directions. The second error converges to zero with

order p + 2 in the L2-norm. This new result allows us to construct a posteriori error estimators
of residual type. We prove that the proposed a posteriori error estimators converge to the true
errors in the L2-norm under mesh refinement at the optimal rate. The order of convergence is
proved to be p+ 2. We further prove that our a posteriori error estimates yield upper and lower

bounds for the actual error. Finally, a series of numerical examples are presented to validate the
theoretical results and numerically demonstrate the convergence of the proposed a posteriori error
estimators.

Key words. local discontinuous Galerkin method, semilinear elliptic problems, a posteriori error
estimators, superconvergence, Radau polynomial.

1. Introduction

The a posteriori error estimates are computable quantities from numerical so-
lutions. They can be used for mesh modification such as refinement or coarsening
[50]. In this work, we design and analyze a posteriori error estimators for the lo-
cal discontinuous Galerkin (LDG) for the following semilinear second-order elliptic
problems of the form

(1a) −∆u = f(x, u), x ∈ Ω.

In our analysis we assume that the nonlinear function f : Ω × R → R is smooth
with respect to its arguments. Since a priori error estimates provided in [25] will
be used, we make the same assumption on f . To be more precise, we always assume
that f and its partial derivatives are continuous for x ∈ Ω and u ∈ R and satisfies
the following uniform bound

(1b) |f(x, u)| ≤ M, ∀ x ∈ Ω, ∀ u ∈ R,

as well as the Lipschitz condition

(1c) |fu(x, u)− fu(y, v)| ≤ L (∥x− y∥+ |u− v|) , ∀ x, y ∈ Ω, ∀ u, v ∈ R.

We focus on two dimensions and write x as (x, y). Without loss of generality, we
consider a rectangular domain denoted by Ω = {x = (x, y) : a < x < b, c < y < d}.
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Here, we remark that our results remain true, with minor changes in the proofs,
when Ω is a rectangular bounded domain of R3. In this paper, we will consider
either periodic boundary conditions

u(a, y) = u(b, y), u(x, c) = u(x, d),(1d)

ux(a, y) = ux(b, y), uy(x, c) = uy(x, d), (x, y) ∈ ∂Ω,

or purely Dirichlet boundary conditions

(1e) u = gD, (x, y) ∈ ∂Ω,

or mixed Dirichlet-Neumann boundary conditions

(1f) u = gD, (x, y) ∈ ∂ΩD, n · ∇u = n · gN , (x, y) ∈ ∂ΩN .

Here, n is the outward unit normal to the boundary, ∂Ω, of Ω. For the mixed bound-
ary conditions (1f), we make the assumption that the boundary ∂Ω = ∂ΩD ∪ ∂ΩN

is decomposed into two disjoint sets denoted by ∂ΩD and ∂ΩN , where Dirichlet and
Neumann boundary conditions are imposed, respectively. In addition, we assume
that the measure of the Dirichlet boundary ∂ΩD is nonzero. In our analysis, we as-
sume that the given functions f , gD, and gN are smooth functions on their domains
such that the problem (1) has one and only one solution u ∈ H2(Ω). We refer the
reader to [37, 39, 41] and the references therein for the existence and uniqueness of
solutions to general elliptic problems.
Among the numerous numerical schemes used to solve elliptic problems, the dis-
continuous Galerkin (DG) finite element methods constitute an important class. In
recent years, DG methods have been proven to be powerful and popular compu-
tational methods for the numerical solution of partial differential equations. They
have been successfully applied to approximate solutions to many linear and non-
linear time-independent as well as time-dependent problems. The DG method was
originally proposed by Reed and Hill in [46] to solve hyperbolic conservation laws
with only first-order spatial derivatives. A major development of the DG method is
the so-called Runge-Kutta DG (RKDG) framework proposed for solving nonlinear
hyperbolic conservation laws containing first order spatial derivatives in a series
of papers by Cockburn, Shu et al.. Later, serval DG methods were designed to
deal with equations involving higher order derivatives. The DG method has many
attractive features compared with the classical numerical methods such as finite
difference and finite element methods. The main advantages of these DG meth-
ods include the high order accuracy, geometric flexibility, suitability for h− and
p−adaptivity, extremely local data structure, high parallel efficiency and a good
theoretical foundation for stability and error estimates. We refer the reader to
[33, 45, 47, 48] for more information on many DG methods and their applications.

The DGmethod was later generalized to the so-called local discontinuous Galerkin
(LDG) method by Cockburn and Shu to solve problems with higher order spatial
derivatives, such as convection-diffusion equations [35, 51], wave equations [10, 13],
and other third- and fourth-order problems [36, 44, 53]. The LDG method shares all
the nice features of the DG methods for hyperbolic equations, and it becomes one
of the most popular numerical methods for solving elliptic problems. The main idea
of the LDG method is to convert the original differential equation into a system of
first-order differential equations by introducing some auxiliary variables, and then
discretize the resulting system with the classical DG method for first-order equa-
tions. With carefully chosen numerical fluxes, the stability and convergence of the
LDG methods have been studied for many linear and nonlinear model problems.
After that, the LDG method has been a popular way to solve many problems with
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higher order spatial derivatives, including second- and fourth-order boundary-value
problems for ordinary differential equations (ODEs) [22, 24], convection-diffusion
equations [1, 11, 20], second-order wave equations [10, 13], sine-Gordon equations
[18, 23], third-order KdV type equations [21] and fourth-order problems [12, 36],
and many other linear and nonlinear equations.

Arnold et al. [8] proved that approximations of the potential and the flux, given
by consistent and stable DG methods, converge in the L2-norm with order p+1 and
p, respectively, for any p ≥ 1, when piecewise polynomials of degree p ≥ 1 are used
as approximating spaces. In [31], the authors have discussed stability and order of
convergence of the LDG method applied to the Laplace equation. With a specific
choice of numerical fluxes, it is shown in [31] that the discrete potential uh and
its flux qh, where uh and qh are, respectively, the LDG approximations to u and
q = ∇u, converge in L2-norm with order p + 1 and p, respectively, for any p ≥ 1.
Subsequently, the authors in [40] have discussed the LDG method for quasilinear
elliptic boundary-value problems and they have shown that uh and qh converge in
L2-norm with order p + 1 and p, respectively. In [34], Cockburn et al., presented
a superconvergence result for the LDG method for the linear elliptic problem on
Cartesian grids. They identified a special numerical flux for which the L2-norm
of the gradient and the L2-norm of the potential are of orders p + 1/2 and p + 1,
respectively, when tensor product polynomials of degree at most p are used. In [9],
Cockburn and Dong analyzed the so-called the minimal dissipation local discon-
tinuous Galerkin method (md-LDG) for convection-diffusion or diffusion problems.
The distinctive feature of this method is that the stabilization parameters associat-
ed with the numerical trace of the flux are identically equal to zero in the interior
of the domain; this is why its dissipation is said to be minimal. They showed that
the orders of convergence of the approximations for the potential and the flux using
polynomials of degree p are the same as those of all known discontinuous Galerkin
methods, namely, (p+ 1) and p, respectively. Their numerical results suggest that
these orders of convergence are sharp. The novelty of the analysis is that it bypasses
a seemingly indispensable condition, namely, the positivity of the above mentioned
stabilization parameters, by using a new, carefully defined projection tailored to
the very definition of the numerical traces. More recently, Adjerid and Chaabane
[2] improved the results in [34]. They proved that, by approximating Dirichlet
boundary conditions with appropriate projections or interpolations, both the LDG
solution and its gradient on Cartesian meshes are of order p + 1 in the L2-norm.
More specifically, they improved the estimate for the solution gradient by a factor√
h.
A posteriori error estimates can be used to evaluate the solution errors of the

discrete problem without requiring any a priori information on the exact solution.
Indeed, the a posteriori analysis controls the overall discretization error of a problem
by providing error indicators that are easy to compute. Once these error indicators
are constructed, their efficiency can be proven by bounding each indicator by the
local error. A posteriori error estimations have been studied for several types of
partial differential equations. We refer the reader to [7, 28, 38, 50] and the references
therein.

A posteriori error estimates provide very useful indications of the accuracy of the
approximations as they tell us how well a given approximation is without knowing
the exact solution. They further provide the basis of adaptive mesh refinement
(AMR). An AMR algorithm refines grids by placing finer and finer subgrids in
the different portions of the computational domain where they are required. The
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typical AMR algorithm for elliptic problems is based on the following procedure
solve → estimate → mark → refine. In the first step we solve the problem on an
initial mesh. In the second step, we estimate the error using the a posteriori error
bound which is the purpose for this paper. In the third step, we mark a subset
of elements for refinement. In the last step, we refine the elements marked for
refinement. The process can be repeated until the solution is sufficiently accurate.

A wide variety of a posteriori error estimators are available for second-order
elliptic problems. Karakashian and Pascal [43] proposed a posteriori error estimates
for a DG approximation of second-order elliptic problem on triangular partition.
Bustinza et al. [29] presented a residual-based reliable a posteriori error estimator
for the LDG approximations of linear and nonlinear diffusion problems. Castillo
[30] constructed an a posteriori global error estimate for the LDG method for linear
second order elliptic problems. Ainsworth et al. proposed and studied several a
posteriori error estimate techniques for DG methods on triangular meshes in a series
of papers [3, 4, 5, 6]. In [49], the authors presented a numerical study of an adaptive
technique for solving steady fluid flow problems through porous media in 2D using a
LDG method. Their technique starts with an initial conformal spatial discretization
of the domain and, in each step, the error of the solution is estimated. The mesh is
locally modified according to the error estimate by performing two local operations:
refinement and agglomeration. This procedure is repeated until the solution reaches
a desired accuracy. In [13, 14, 16, 17, 26, 27], Adjerid and Baccouch designed and
analyzed several residual-based and recovery-based a posteriori DG and LDG error
estimates for two-dimensional hyperbolic and elliptic problems on triangular and
rectangular meshes.

More recently, we investigated the convergence and superconvergence properties
of the LDG method for semilinear second-order elliptic problem in two dimensions
(1) using rectangular meshes in [25]. We introduced special Gauss-Radau projec-
tions to obtain, under some suitable choice of numerical fluxes, the optimal conver-
gence order in L2-norm of O(hp+1) for the LDG solution u and its gradient q = ∇u,
when tensor product polynomials of degree at p and grid size h are employed. We
further proved that the LDG solutions uh and qh are superconvergent with order
p+2 toward special Gauss-Radau projections of the exact solutions. These results
play a central role in the design and analysis of the proposed a posteriori error
estimators.

In this paper, we continue the investigation of the LDG method proposed in [25].
The main purpose of this part is to design and analyze efficient residual-based a
posteriori error estimates for the LDG method for the same model problem (1).
We first prove that the error between the LDG solution uh and the interpolating
polynomial that interpolates u at the roots of the (p+1)-degree right Radau poly-
nomial achieves (p+2)-th order superconvergence in the L2-norm. This new result
allows us to prove that the actual error u− uh can be decomposed into the sum of
two errors. The first error is the significant one and can be expressed as a linear
combination of two (p+ 1)-degree Radau polynomials in the x- and y− directions.
The second error is less significant and it is shown to converge to zero with order
p+ 2 in the L2-norm. This decomposition allows us to construct a posteriori error
estimators of residual-type. The a posteriori error estimates are shown to converge
to the true errors in the L2-norm under mesh refinement. The order of convergence
is proved to be p + 2. Finally, we show that the proposed estimators are asymp-
totically exact. Our numerical experiments are in very good agreement with the
theoretical orders of convergence. To the best of our knowledge, these results are
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novel in the literature. We would like to point out that the present LDG method
has several features over the standard numerical methods due to the following nice
properties: (i) the LDG method can be easily designed for any order of accuracy
(the order of accuracy can be locally determined in each cell, thus allowing for
efficient p adaptivity), (ii) it can be used on arbitrary triangulations, even those
with hanging nodes, thus allowing for efficient h-adaptivity, ( iii) the LDG method
provides optimal convergence properties for both the solution and the auxiliary
variables that approximate its derivatives, (iv) the LDG method is extremely local
in data communications (the evolution of the solution in each cell needs to com-
municate only with the immediate neighbors, regardless of the order of accuracy,
thus allowing for efficient parallel implementations), and (iv) it achieves super-
convergence properties, which play a key role to construct asymptotically exact a
posteriori error estimators.

The remainder of this paper is organized as follows. In Section 2, we recall
the LDG scheme for the second-order elliptic BVP (1). We also present some
preliminary results which will be used throughout this paper. Sections 3 and 4
are the main sections of the present paper, where superconvergence error analysis
and a posteriori error estimation are discussed in details. Extensive numerical
experiments are given in Section 5 to illustrate the theoretical convergence rates
proved in Sections 3 and 4. Finally, in Section 6, we conclude with a short discussion
of possible extensions and a description of our forthcoming work.

2. The LDG method and Preliminaries

This section is devoted to the definition of the LDG method. We also provide
some notation, projections, and the a priori error estimates provided in [25].

2.1. The LDG scheme. Here, we define the finite element spaces and proceed to
construct the LDG scheme. First, let us introduce a new auxiliary variable q = ∇u
and write the model problem in the following mixed form [25]

−∇ · q = f(x, y, u),(2a)

q−∇u = 0.(2b)

Let Th be Cartesian mesh of the domain Ω = [a, b]×[c, d]. We assume that the mesh
consists of N = n×m rectangular elements K = Ii × Jj , where Ii = [xi−1, xi], i =
1, 2, . . . , n and Jj = [yj−1, yj ], j = 1, 2, . . . ,m where

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < ym = d.

For each rectangle K ∈ Th, we denote the mesh sizes as hi = xi − xi−1 and kj =
yj − yj−1. The maximal mesh size is denoted by h = max

1≤i≤n, 1≤j≤m
(hi, kj). In this

paper, we assume the mesh Th is a shape regular triangulation of Ω, characterized
by a small parameter h, namely that there exists a constant c0 > 0 such that
cK ≥ c0, ∀ K ∈ Th. Here cK is the so-called chunkiness parameter defined by
cK = hK/dK , where hK = max(hi, kj) is the local mesh size defined as the length
of the longest edge of the element K and dK is the diameter of the inscribed circle.

The LDG weak formulation is obtained by multiplying the two equations in (2)
by sufficiently smooth test functions v and w, respectively, integrating over an
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arbitrary rectangle K ∈ Th, and applying Green’s Theorem∫∫
K

q · ∇v dxdy −
∫
Γ

n · q vds =

∫∫
K

f(x, y, u) v dxdy,(3a) ∫∫
K

q ·w dxdy +

∫∫
K

u ∇ ·w dxdy −
∫
Γ

u n ·w ds = 0,(3b)

where n is the outward normal unit vector to Γ and Γ = ∂K is used to denote the
boundary of rectangle K ∈ Th.

Let Pp(Ii) and Pp(Jj) be the spaces of polynomials of degree at most p on the
intervals Ii and Jj , respectively. We define the piecewise polynomial finite element
space V p

h as the space of tensor product of Pp(Ii) and Pp(Jj), that is

V p
h = {v ∈ L2(Ω) : Ω → R| v|K ∈ Qp(K), ∀ K ∈ Th},

where Qp(K) is the tensor product space of Pp(Ii) and Pp(Jj). We also extend this
definition to vector-valued functions as

Vp
h = {w ∈ (L2(Ω))2 : Ω → R2|w|K ∈ (Qp(K))

2
, ∀ K ∈ Th}.

The discrete LDG method is now formulated as follows: find uh ∈ V p
h and

qh = [q1,h, q2,h]
t ∈ Vp

h such that∫∫
K

qh · ∇v dxdy −
∫
Γ

n · q̂h vds =

∫∫
K

v f(x, y, uh) dxdy, ∀ v ∈ V p
h ,(4a) ∫∫

K

qh ·w dxdy +

∫∫
K

uh ∇ ·w dxdy −
∫
Γ

ûh n ·w ds = 0, ∀ w ∈ Vp
h,(4b)

for all K ∈ Th. The ”hat” quantities ûh and q̂h are the so-called numerical fluxes.
They take either the value from one side of the interface (namely inside or outside
of the element K) or some linear combination of the values from both sides of the
interface. The numerical fluxes need to be designed suitably to ensure consistency,
stability, and convergence.

To define the numerical fluxes ûh and q̂h on the boundary Γ, we introduce some
definitions and notation. For y ∈ Jj , we let v

+(xi, y) and v−(xi, y) be the values of
the function v at the point (xi, y) from the right element Ii+1×Jj and from the left
element Ii×Jj , respectively. Similarly, for x ∈ Ii, we use v

+(x, yj) and v−(x, yj) to
denote the values of v at the point (x, yj) from the top element Ii × Jj+1 and from
the bottom element Ii × Jj , respectively, i.e., for i = 0, 1, . . . , n and j = 0, 1, . . . ,m

v±(xi, y) = lim
s→0±

v(xi + s, y), y ∈ Jj , v±(x, yj) = lim
s→0±

v(x, yj + s), x ∈ Ii.

Let K+ and K− be two adjacent rectangular elements of the mesh Th. We consider
an arbitrary point (x, y) of the edge Γ = K+ ∩K− sharing the adjacent elements
K+ and K−. Let us use n± to denote the corresponding outward unit normal
vectors at that point. Let (v±,w±) be the traces of (v,w) on Γ from the interior
of the element K±. The mean values {·} and jumps J·K of a scalar-valued function
v ∈ V p

h and a vector-valued function w ∈ Vp
h at the point (x, y) ∈ Γ are defined as

{v} =
1

2
(v+ + v−), {w} =

1

2
(w+ +w−),

JvK = v+n+ + v−n−, JwK = n+ ·w+ + n− ·w−.

Now, we are in the position to introduce the numerical fluxes [9, 25, 31, 34].

• Numerical fluxes associated with the periodic boundary conditions (1d): We
use the following alternating fluxes

(4c) ûh = u−
h and q̂h = q+

h .
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We remark that this choice is not particularly restrictive. For example, the
other choice ûh = u+

h and q̂h = q−
h can be used.

• Numerical fluxes associated with the mixed boundary conditions (1f): If Γ
is an interior edge then we take

(4d) ûh = {uh}+C12 · JuhK and q̂h = {qh} − C11JuhK −C12JqhK,
where C11 ≥ 0 is a stabilization parameter and C12 is a parameter defined
on the edge Γ as

C12 · n =
1

2
sign(v · n).

Here, v is a fixed vector that is not parallel to any normals of element
interfaces. It is used to define artificial inflow and outflow boundaries of the
domain Ω. The vector v is employed to provide a single rule for selecting the
numerical fluxes ûh and q̂h. For simplicity, we choose v = [1, 1]t. Then, we
define the following artificial inflow boundary ∂Ω− and the artificial outflow
boundary ∂Ω+ as

∂Ω− = {(x, y) ∈ ∂Ω | n · v ≤ 0} = ∂Ω−
1 ∪ ∂Ω−

2 ,

∂Ω+ = {(x, y) ∈ ∂Ω | n · v > 0} = ∂Ω+
1 ∪ ∂Ω+

2 ,

where ∂Ω−
1 , ∂Ω

−
2 , ∂Ω

+
1 , and ∂Ω+

2 are, respectively, the left, bottom, right,
and top edges of the physical domain Ω. We also define the inflow boundary
Γ− and the outflow boundary Γ+ of each rectangle element K ∈ Th as

Γ− = {(x, y) ∈ Γ | n · v ≤ 0} = Γ−
1 ∪ Γ−

2 ,

Γ+ = {(x, y) ∈ Γ | n · v > 0} = Γ+
1 ∪ Γ+

2 ,

where Γ−
1 , Γ

−
2 , Γ

+
1 , and Γ+

2 are, respectively, used to denote the left, bot-
tom, right, and top edges of the rectangle K.

Now, we are ready to define the numerical fluxes if the edge Γ lies on
∂Ω. Using the above definitions, we choose

ûh =


P−
h gD, (x, y) ∈ ∂ΩD,

u−
h , (x, y) ∈ ∂ΩN ∩ ∂Ω+,

u+
h , (x, y) ∈ ∂ΩN ∩ ∂Ω−,

(4e)

q̂h =


P+

h gN , (x, y) ∈ ∂ΩN ,
q+
h , (x, y) ∈ ∂ΩD ∩ ∂Ω−,

q+
h − C11(u

−
h − P−

h gD) n, (x, y) ∈ ∂ΩD ∩ ∂Ω+,
(4f)

where P−
h and P+

h are special Gauss-Radau projections which will be de-
fined later.

• Numerical fluxes associated with the purely Dirichlet boundary conditions
(1e): If the edge Γ lies on ∂Ω then we take

ûh = P−
h gD, (x, y) ∈ ∂Ω, q̂h =

{
q+
h , (x, y) ∈ ∂Ω ∩ ∂Ω−,

q+
h − C11(u

−
h − P−

h gD) n, (x, y) ∈ ∂Ω ∩ ∂Ω+.

(4g)

After we define the numerical fluxes ûh and q̂h, the discrete scheme (4) is equivalent
to an algebraic system of nonlinear equations for the unknown coefficients appearing
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in uh and qh. The resulting system can be solved using Newton’s method for
nonlinear system of equations.

Remark 2.1. We remark that the LDG method works for general parameters C11

and C12. However, in the remainder of the paper, we present a priori and a pos-
teriori error analysis for the minimal dissipation LDG (md-LDG) method where
C11 = O(1) on all edges in E+

D and C11 = 0 on all other edges. This particular
md-LDG method is studied by many authors including [1, 9, 13, 19, 23, 27, 34]. We
remark that in the md-LDG method, the stabilization parameters associated with the
numerical trace of the flux are identically equal to zero for all interior edges; this is
why its dissipation is said to be minimal. We would like to mention that Cockburn
and Dong [9] analyzed the md-LDG for linear convection-diffusion or linear diffu-
sion problems. They showed that the orders of convergence of the approximations
for the potential and the flux using polynomials of degree p are the same as those
of all known discontinuous Galerkin methods, namely, (p+ 1) and p, respectively.

Throughout the paper, we use the following notation:

• Γh: the set of all element interfaces of the triangulation Th,
• ΓB: the set of all boundary edges of the partition Th on ∂Ω,
• Γ0 = Γh\ΓB: the set of all interior interfaces of Th,
• Γ−

B: the set of edges on the inflow boundary ∂Ω−,

• Γ+
B: the set of edges on the outflow boundary ∂Ω+,

• Γ±
D = ∂ΩD ∩ ∂Ω±,

• ΓD, ΓN , and Γ±
D, denote the sets of all edges in ∂ΩD, ∂ΩN , and ∂Ω±

D,
respectively.

2.2. Norms. In this subsection, we define several norms that will be used through-

out the paper. Denote ∥u∥0,K =
(∫∫

K
u2(x, y)dxdy

)1/2
to be the standard L2-norm

of u on the rectangle K ∈ Th. For any natural number ℓ and for K ∈ Th, the Hℓ-
norm of a real-valued function u ∈ Hℓ(K) and Hℓ-norm of a vector-valued function

q = [q1, q2]
t ∈ Hℓ(K) =

(
Hℓ(K)

)2
on the rectangle K are defined by

∥u∥ℓ,K =

 ∑
0≤α+β≤ℓ

∥∥∥∥ ∂α+βu

∂xα∂yβ

∥∥∥∥2
0,K

1/2

, ∥q∥ℓ,K =
(
∥q1∥2ℓ,K + ∥q2∥2ℓ,K

)1/2
.

Let ΓK be the edges of the element K, and we define

∥u∥ΓK
=

(∫
∂K

u2(x(s), y(s))ds

)1/2

.

We also define the broken Sobolev Hℓ-norm of u and Hℓ-norm of q on the whole
domain Ω by

∥u∥ℓ =

( ∑
K∈Th

∥u∥2ℓ,K

)1/2

, ∥q∥ℓ =

( ∑
K∈Th

∥q∥2ℓ,K

)1/2

.

When ℓ = 0 we drop the subscript from the norm i.e.,

∥u∥ =

( ∑
K∈Th

∥u∥20,K

)1/2

, ∥q∥ =

( ∑
K∈Th

∥q∥20,K

)1/2

.
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Moreover, we define the Hℓ-norm for a real-valued function u on the whole compu-
tational domain Ω as

∥u∥Γh
=

( ∑
K∈Th

∥u∥2ΓK

)1/2

.

Finally, we define the semi-norm on the element K and the semi-norm on the
computational domain Ω as

|u|ℓ,K =

 ∑
α+β=ℓ

∥∥∥∥ ∂α+βu

∂xα∂yβ

∥∥∥∥2
0,K

1/2

, |u|ℓ =

( ∑
K∈Th

|u|2ℓ,K

)1/2

.

2.3. Preliminaries and Projections. In this subsection, we study the basic
properties of the finite element space V p

h . We first summarize some classical inverse
properties in the following lemma [32].

Lemma 2.1. Let K = Ii × Jj be an element in Th and denote its boundary by Γ.
Suppose that v ∈ V p

h . Then there exists a constant C independent of the mesh size
h and v such that

∥∇v∥0,K ≤ Ch−1 ∥v∥0,K ,(5a)

h ∥v∥∞,K + h1/2 ∥v∥0,Γ ≤ C ∥v∥0,K ,(5b)

where ∥v∥0,Γ =
(∫

Γ
v2(x(s), y(s)) ds

)1/2
and ∥v∥∞,K = max

(x,y)∈K
|v(x, y)|.

In this paper, we consider several special projections in one and two dimensions.
We use Pp(Ii) to denote the space of polynomials of degree not exceeding p on
Ii = [xi−1, xi]. Suppose u ∈ L2(Ii), then we define the standard L2-projection, Px,
from L2(Ii) into V p

h by

(6)

∫
Ii

(u− Pxu)v dx = 0, ∀ v ∈ Pp(Ii), i = 1, 2, . . . , n.

In addition, we also define two one-dimensional Gauss-Radau projections P−
x and

P+
x . These special projections are used in the error estimates of the DG methods

to derive optimal L2-error bounds in the literature, e.g., in [15]. For p ≥ 1, the
Gauss-Radau projection P−

x u is defined by the following conditions
(7a)∫
Ii

(u−P−
x u)v dx = 0, ∀ v ∈ Pp−1(Ii) and (u−P−

x u)(x−
i ) = 0, i = 0, 1, . . . , n.

Similarly, the projection P+
x u is defined by the following conditions

(7b)∫
Ii

(u−P+
x u)v dx = 0, ∀ v ∈ Pp−1(Ii) and (u−P+

x u)(x+
i−1) = 0, i = 0, 1, . . . , n.

For the above one-dimensional projections, the following a priori error estimates
hold

∥u− Pxu∥+ h ∥(u− Pxu)
′∥ ≤ Chp+1 ∥u∥p+1 ,(8) ∥∥u− P±

x u
∥∥+ h

∥∥(u− P±
x u)′

∥∥ ≤ Chp+1 ∥u∥p+1 ,

where ∥w∥ =
(∑n

i=1

∫
Ii
w2(x)dx

)1/2
is the L2-norm of w(x) on the whole domain

I = [a, b].
Since Cartesian meshes are used in this paper, we apply the tensor product of the
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projections in the one-dimensional case. On the rectangle element K = Ii × Jj , we
define the projections P−

h and P+
h for a real-valued function u = u(x, y) into V p

h as
tensor product of the projections in one dimension [34]

(9) P±
h u = P±

x ⊗ P±
y u,

with the subscripts x and y indicating the use of the one-dimensional projections
P±
x with respect to the corresponding variable. To be more specific, the projection

P−
h u ∈ V p

h can de obtained from the following conditions [52]:∫∫
K

(u− P−
h u)v dxdy = 0, ∀ v ∈ Qp−1(K),(10a) ∫

Jj

(u− P−
h u)(x−

i , y)v(y) dy = 0, ∀ v ∈ Pp−1(Jj),(10b) ∫
Ii

(u− P−
h u)(x, y−j )v(x) dx = 0, ∀ v ∈ Pp−1(Ii),(10c)

(u− P−
h u)(x−

i , y
−
j ) = 0.(10d)

We need another special projection P+
h for vector-valued function q = [q1, q2]

t. It
is defined as follows [34]

(11) P+
h q = [P+

x ⊗ Pyq1, Px ⊗ P+
y q2]

t,

where Px and P+
x are the one-dimensional L2- and Gauss-Radau projections in

the x-direction, respectively. Similarly, Py and P+
y are the one-dimensional L2-

and Gauss-Radau projections in the y-direction, respectively. We remark that the
projection P+

h q ∈ Vp
h has the following properties

(12)∫∫
K

(P+
h q−q) ·∇v dxdy = 0 and

∫
Γ−

n · (P+
h q−q)+v+ds = 0 ∀ v ∈ Qp(K).

We note that the projection P+
h q is uniquely defined by the conditions (12).

For the above two-dimensional projections, we have the following projection
results [34].

Lemma 2.2. The two-dimensional projections P−
h and P+

h are well-defined. Fur-

thermore, for u ∈ Hp+1(Ω) and q ∈
(
Hp+1(Ω)

)2
, there exists a constant C inde-

pendent of h such that
(13)∥∥u− P−

h u
∥∥+ h

∥∥u− P−
h u
∥∥
∞ ≤ Chp+1 ∥u∥p+1 ,

∥∥q−P+
h q
∥∥ ≤ Chp+1 ∥q∥p+1 .

2.4. A priori error estimates. In this section, we recall the a priori error esti-
mates of the LDG method from [25]. From now on, the symbol C (with or without
subscripts) will be used to denote a generic positive constant independent of the
mesh size h. However, all constants may depend on the exact solution u of (1).
Also, the constants may take different values at different places.

To derive the error estimates, let us first denote the errors by

eu = u− uh, eq = q− qh.

We denote the error between the LDG solutions and the projections of the exact
solutions by

ēu = P−
h u− uh ∈ V p

h , ēq = P+
h q− qh ∈ Vp

h.

We denote the projection errors by

ϵu = u− P−
h u, ϵq = q−P+

h q.
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We remark that the actual errors eu and eq can be decomposed as

(14) eu = ēu + ϵu, eq = ēq + ϵq.

In the next theorem, we summarize the a priori error estimates for eu and eq in
the L2-norm.

Theorem 2.1. Suppose that u ∈ Hp+2(Ω) is the exact solution of (1). Let q =

∇u ∈
(
Hp+1(Ω)

)2
. Let p ≥ 1 and assume that (uh,qh) are the LDG solutions

defined in (4). Then, for sufficiently small h, there exists a constant C independent
of h such that

∥eu∥ ≤ Chp+1.(15)

∥eq∥ ≤ Chp+1.(16)

Proof. Cf. [25, Theorem 2]. �

Remark 2.2. We would like to mention that in [34], Cockburn et al., presented
a superconvergence result for the LDG method for the linear elliptic problem (1),
but f(x, u) is linear in u, on Cartesian grids. They identified a special numerical
flux for which the L2-norm of the gradient and the L2-norm of the potential are of
orders p+1/2 and p+1, respectively, when tensor product polynomials of degree at
most p are used. In [25, Theorem 2], we proved optimal results for the semilinear
case.

3. Superconvergence error analysis

In this section, we investigate the superconvergence properties of the LDGmethod
presented in Section 2. We prove that the LDG solution uh is superconvergent with
order p+ 2 towards the Gauss-Radau interpolant of the exact solution πu. We use
this new superconvergence result to prove that the LDG error eu can be decom-
posed into two errors. The first is the significant part of the error which is a linear
combination of two (p + 1)-degree Radau polynomials in the x- and y- directions.
The second part is less significant and it converges to zero in the L2-norm with
order p+ 2.

We first recall the following superconvergence results from [25].

Theorem 3.1. Under the assumptions of Theorem 2.1, there exists a positive con-
stant C independent of mesh size h such that

∥ēu∥ ≤ Chp+2.(17)

∥ēq∥ ≤ Chp+2.(18)

Proof. Cf. [25, Theorems 3, 4]. �

Before, we present our main superconvergence results, we define the Legendre
and Radau polynomials.

Legendre polynomials on the reference interval [−1, 1] can be defined recursively
by

L̃0(ξ) = 1, L̃1(ξ) = ξ, pL̃p(ξ) = (2p− 1)L̃p−1(ξ)− (p− 1)L̃p−2(ξ), ξ ∈ [−1, 1].
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The pth-degree Legendre polynomial satisfies the following useful properties:

L̂p(−1) = (−1)p, L̂p(1) = 1, L̂′
p(−1) = (−1)p+1 p(p+ 1)

2
, L̂′

p(1) =
p(p+ 1)

2
,

(19)

∫ 1

−1

L̂p(ξ)L̂q(ξ)dξ =
2

2p+ 1
δpq,

(20)

where δpq is used to denote the Kronecker symbol.
The (p + 1)-degree right Radau polynomial on the reference interval [−1, 1] is

defined by

(21) R̂p+1(ξ) = L̂p+1(ξ)− L̂p(ξ), ξ ∈ [−1, 1].

It can be showing that R̂p+1(ξ), ξ ∈ [−1, 1] has p+ 1 distinct real roots in [−1, 1].
We will denote them by −1 < ξ0 < ξ1 < · · · < ξp = 1.

Using the change of variables

(22) x(ξ) =
xi + xi−1

2
+

hi

2
ξ, y(η) =

yj + yj−1

2
+

kj
2
η, ξ, η ∈ [−1, 1],

we get the p-degree shifted Legendre polynomials on the physical intervals Ii and
Jj

Lp,i(x) = L̂p

(
2x− xi − xi−1

hi

)
, Lp,j(y) = L̂p

(
2y − yj − yj−1

kj

)
, x ∈ Ii, y ∈ Jj .

Similarly, the p-degree shifted right Radau polynomials on Ii and Jj are given by

Rp,i(x) = R̂p

(
2x− xi − xi−1

hi

)
, Rp,j(y) = R̂p

(
2y − yj − yj−1

kj

)
, x ∈ Ii, y ∈ Jj .

Next, we recall some results which will be needed in the a posteriori error analysis.

Lemma 3.1. The shifted Legendre and Radau polynomials on Ii and Jj satisfy the
following properties

∥Lp,i∥20,Ii =
hi

2p+ 1
,(23a) ∫

Ii

R′
p+1,i(x)Lp,i(x)dx =

∫
Jj

R′
p+1,j(y)Lp,j(y)dy = 2,(23b)

∥Rp+1,i∥20,Ii =
4(p+ 1)

(2p+ 1)(2p+ 3)
hi, ∥Rp+1,j∥20,Jj

=
4(p+ 1)

(2p+ 1)(2p+ 3)
kj ,(23c)

where hi = xi − xi−1 and ki = yj − yj−1.

Proof. The proof of this lemma can be found in [11] more precisely in its Lemma
2.1. �

Next, we define an important two-dimensional interpolating right Radau polyno-
mial πu ∈ V p

h as follows: on each rectangular element K = [xi−1, xi]× [yj−1, yj ] =
Ii × Jj , the polynomial πu ∈ Qp(K) interpolates u(x, y) at the (p + 1)2 points
(xi,k, yj,l), k, l = 0, 1, . . . , p, i.e.,

πu(xi,k, yj,l) = u(xi,k, yj,l), k, l = 0, 1, . . . , p,

where xi,k and yj,l are, respectively, the roots ofRp+1,i(x), x ∈ Ii andRp+1,j(y), y ∈
Jj .

In the next lemma, we show that the interpolation error u−πu on each element
K can be split into a significant part and a less significant part.
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Lemma 3.2. Suppose that u ∈ Hp+2(K). Then the interpolation error u−πu can
be split as

u− πu = ϕ+ γ, (x, y) ∈ K = Ii × Jj ,(24a)

where the significant part, ϕ, is a linear combination of two (p + 1)-degree right
Radau polynomials in the x- and y-directions i.e.,

ϕ = aiRp+1,i(x) + bjRp+1,j(y),(24b)

and the less significant part γ = u − π̂u, where for each K ∈ Th, π̂u ∈ Qp(K) ∪
span({xp+1, yp+1}) is the two-dimensional interpolation polynomial that interpo-
lates u at the Radau points (xi,k, yj,l), k, l = 0, 1, . . . , p and at the two additional
points (xi−1, yj) and (xi, yj−1). Moreover, it satisfies the following estimate

∥γ∥s,K ≤ Chp+2−s ∥u∥p+2,K , 0 ≤ s ≤ p+ 1.(24c)

Finally, we have the following estimate

∥ϕ∥s,K ≤ Chp+1−s ∥u∥p+2,K , 0 ≤ s ≤ p.(24d)

Proof. The proof of lemma can be found in [16] more precisely in its Lemma 3.2. �

In [16], we proved that the error between πu and P−
h u converges to zero in

the L2-norm and the order of convergence is p + 2. We present this result in the
following lemma.

Lemma 3.3. Assume that u ∈ Hp+2(Ω). Let P−
h u be the two-dimensional Gauss-

Radau projection and πu be the two-dimensional Radau interpolating polynomial.
Then, we have the following superconvergence property∥∥πu− P−

h u
∥∥ ≤ Chp+2 ∥u∥p+2 .(25)

Proof. The proof of (25) can be found in [16] more precisely in its Lemma 3.3. �

Now, we are ready to prove our main superconvergence results. More specifically,
we prove that the significant part of the actual error eu is a linear combination of
two (p+ 1)-degree right Radau polynomials in the x- and y- directions.

Theorem 3.2. Suppose that the assumptions of Theorem 2.1 are satisfied. Then
there exists a constant C independent of h such that

(26) ∥uh − πu∥ ≤ Chp+2.

Moreover, on each element, the error can be decomposed as

(27a) eu(x, y) = ϕ(x, y) + ω(x, y), ∀ (x, y) ∈ K ∈ Th,
where

(27b) ϕ = aiRp+1,i(x) + bjRp+1,j(y), ω = γ + πu− uh,

and

(27c) ∥ω∥s ≤ Chp+2−s, s = 0, 1.

Proof. We write the interpolation error uh − πu as adding and subtracting P−
h u as

uh − πu = (uh − P−
h u) + (P−

h u− πu) = −ēu + (P−
h u− πu).

Taking the L2-norm and applying the Cauchy-Schwarz inequality, we obtain

∥uh − πu∥ ≤ ∥ēu∥+
∥∥P−

h u− πu
∥∥ .

Using the superconvergence results (17) and (25), we deduce (26).
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Next, we split the error eu by adding and subtracting the interpolating polyno-
mial πu as

eu = u− uh = (u− πu) + (πu− uh).

Since on each element K the interpolation error can be split as u− πu = ϕ+ γ, we
have

(28a) eu = (ϕ+ γ) + (πu− uh) = ϕ+ (γ + πu− uh) = ϕ+ ω,

where ϕ = aiRp+1,i(x) + bjRp+1,j(y) and ω is given by

(28b) ω = γ + πu− uh = u− π̂u+ πu− uh.

Finally, we will derive (27c). Using the triangle inequality and the classical inequal-
ity (a+ b)2 ≤ 2(a2 + b2), we get

∥ω∥2s,K = ∥γ + (πu− uh)∥2s,K ≤
(
∥γ∥s,K + ∥πu− uh∥s,K

)2
≤2
(
∥γ∥2s,K + ∥πu− uh∥2s,K

)
.

Since πu− uh ∈ V p
h , we can use the inverse inequality to have

∥πu− uh∥s,K ≤ C0h
−s ∥πu− uh∥0,K , s = 0, 1.

Thus, we obtain

∥ω∥2s,K ≤ 2
(
∥γ∥2s,K + C2

0h
−2s ∥πu− uh∥20,K

)
.

Summing over all elements K ∈ Th and using the estimates (24c) and (26) yields

∥ω∥2s =
∑

K∈Th

∥ω∥2s,K ≤ 2

( ∑
K∈Th

∥γ∥2s,K + C2
0h

−2s
∑

K∈Th

∥πu− uh∥20,K

)
≤ 2

(
C1h

2p+4−2s + C2
0C2h

2p+4−2s
)
≤ Ch2p+4−2s,

which complete the proof of (27c). �

4. A posteriori error estimation

As opposed to a priori error estimates (15) and (16), a posteriori error estimates
are computable quantities in terms of the numerical solution. They measure the
actual errors without the knowledge of the exact solutions. Accurate error estima-
tion is a critical component of numerical simulations, being useful for reliability,
uncertainty quantification and adaptive error control.

In this section, we present a residual-based a posteriori error estimation proce-
dure to estimate the LDG error eu = u − uh. We then use the superconvergence
results from the previous section to prove that these a posteriori error estimates
converge to the true error eu in the L2-norm under mesh refinement with order
p+2. Finally, we prove that the global effectivity index, which is the ratio between
the a posteriori error estimator and the exact error in the L2-norm, converge to
unity as h → 0.

We first derive a formulation to estimate the error eu. Multiplying (2b) by a test
function r ∈ Vp

h and integrating over an arbitrary rectangle K of the mesh, we get

(29)

∫∫
K

∇u · r dxdy =

∫∫
K

q · r dxdy.
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Replacing u by uh + eu and q by qh + eq and rearranging terms, we obtain

(30)

∫∫
K

∇eu · r dxdy = −
∫∫

K

(∇uh − qh − eq) · r dxdy.

Decomposing the error eu as in (27a) gives the weak formulation∫∫
K

∇ϕ · r dxdy = −
∫∫

K

(∇uh − qh +∇ω − eq) · r dxdy.

Taking the test function r = [Lp,i(x), 0]
t and r = [0, Lp,j(y)]

t and applying (27b)
i.e, ϕ = aiRp+1,i(x) + bjRp+1,j(y), we get the two linear system of equations

ai

∫∫
K

R′
p+1,i(x)Lp,i(x) dxdy = −

∫∫
K

((uh)x − q1,h + ωx − eq1)Lp,i(x) dxdy,

bj

∫∫
K

R′
p+1,j(y)Lp,j(y) dxdy = −

∫∫
K

((uh)y − q2,h + ωy − eq2)Lp,j(y) dxdy.

Using the property (23b) and solving for the constants ai and bj , we find

ai = − 1

2kj

∫∫
K

((uh)x − q1,h + ωx − eq1)Lp,i(x) dxdy,(31a)

bj = − 1

2hi

∫∫
K

((uh)y − q2,h + ωy − eq2)Lp,j(y) dxdy.(31b)

We remark that ai and bj are not computable quantities since ω and eq are generally
unknown terms. For this, we propose the following error estimation procedure: We
approximate the actual error eu(x, y) on each rectangle K ∈ Th by the leading part,
denoted by Eu(x, y), as

(32a) Eu(x, y) = âiRp+1,i(x) + b̂jRp+1,j(y), ∀ (x, y) ∈ K,

where the modified coefficients âi and b̂j are approximations of the coefficients ai
and bj , respectively. These computable coefficients âi and b̂j are obtained from the
coefficients ai and bj by neglecting the unknown quantities eq and ω i.e.,

(32b) âi = − 1

2kj

∫∫
K

((uh)x − q1,h)Lp,i(x) dxdy,

(32c) b̂j = − 1

2hi

∫∫
K

((uh)y − q2,h)Lp,j(y) dxdy.

We remark that the proposed LDG error estimator Eu(x, y) = âiRp+1,i(x) +

b̂jRp+1,j(y), ∀ (x, y) ∈ K depends on the LDG solution (uh,qh) solely. There-
fore, it is a computable quantity. In addition, the local error estimator Eu(x, y),
∀ (x, y) ∈ K ∈ Th is computationally simple since it is derived by solving a local
linear problem with no boundary conditions on each element K ∈ Th.

In order to evaluate the accuracy of our error estimator, we use the global effec-
tivity index in the L2-norm defined by

Θ =
∥Eu∥
∥eu∥

=


∑

K∈Th

∥Eu∥20,K∑
K∈Th

∥eu∥20,K


1/2

,
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with ∥Eu∥ denoting an estimate for the actual error ∥eu∥ in the L2-norm. The global
effectivity index represents the degree of over or under estimation and should be
ideally close to 1.0.

In the next theorem, we prove that the error estimator Eu converges to the exact
error eu in the L2-norm under h-refinement.

Theorem 4.1. Assume that the conditions of Theorem 2.1 are satisfied. Suppose

that (ai, bj) and (âi, b̂j) are, respectively, the coefficients defined by (31) and (32).
If the error estimator Eu(x, y) is given by (32a), then

∥eu − Eu∥ ≤ Chp+2.(33)

Moreover, we have

(34) ∥Eu∥ − Chp+2 ≤ ∥eu∥ ≤ ∥Eu∥+ Chp+2.

Finally, under the assumption

(35) ∥eu∥ ≥ Chp+1,

the global effectivity index Θ = ∥Eu∥
∥eu∥ converges to unity at O(h) rate i.e.,

(36) Θ = 1 +O(h).

Proof. We begin the proof of the estimate (33). For (x, y) ∈ K ∈ Th, we have

eu(x, y) = aiRp+1,i(x) + bjRp+1,j(y) + ω(x, y),

Eu(x, y) = âiRp+1,i(x) + b̂jRp+1,j(y).

Subtracting Eu from eu and taking the L2-norm, we get

∥eu − Eu∥20,K =

∫∫
K

(
(ai − âi)Rp+1,i(x) + (bj − b̂j)Rp+1,j(y) + ω(x, y)

)2
dxdy.

Applying the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we obtain

∥eu − Eu∥20,K ≤ 3(ai − âi)
2 ∥Rp+1,i∥20,K + 3(bj − b̂j)

2 ∥Rp+1,j∥20,K + 3 ∥ω∥20,K .

Using the estimate (23c), we get

(37) ∥eu − Eu∥20,K ≤ 12(p+ 1)hikj
(2p+ 1)(2p+ 3)

(
(ai − âi)

2 + (bj − b̂j)
2
)
+ 3 ∥ω∥20,K .

Next, we will estimate (ai− âi)
2+(bj − b̂j)

2. Subtracting (32) from (31), we obtain

ai − âi = − 1

2kj

∫∫
K

(ωx − eq1)Lp,i(x) dxdy,

bj − b̂j = − 1

2hi

∫∫
K

(ωy − eq2)Lp,j(y) dxdy.

Squaring both sides and using the inequality (a− b)2 ≤ 2(a2 + b2), we get

(ai − âi)
2 ≤ 1

2k2j

((∫∫
K

ωxLp,i(x) dxdy

)2

+

(∫∫
K

eq1Lp,i(x) dxdy

)2
)
,

(bj − b̂j)
2 ≤ 1

2h2
i

((∫∫
K

ωyLp,j(y) dxdy

)2

+

(∫∫
K

eq2Lp,j(y) dxdy

)2
)
.
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Applying the Cauchy-Schwarz inequality and applying (23a) yields

(ai − âi)
2 ≤ 1

2k2j

(
∥ωx∥20,K + ∥eq1∥

2
0,K

)
∥Lp,i∥20,K

=
hi

2(2p+ 1)kj

(
∥ωx∥20,K + ∥eq1∥

2
0,K

)
,

(bj − b̂j)
2 ≤ 1

2h2
i

(
∥ωy∥20,K + ∥eq2∥

2
0,K

)
∥Lp,j∥20,K

=
kj

2(2p+ 1)hi

(
∥ωy∥20,K + ∥eq2∥

2
0,K

)
.

Adding both equations, we get

(ai − âi)
2 + (bj − b̂j)

2 ≤ hi

2(2p+ 1)kj

(
∥eq1∥

2
0,K + ∥ωx∥20,K

)
(38)

+
kj

2(2p+ 1)hi

(
∥eq2∥

2
0,K + ∥ωy∥20,K

)
.

Combining (37) and (38), we arrive at

∥eu − Eu∥20,K ≤ 6(p+ 1)

(2p+ 1)2(2p+ 3)

(
h2
i ∥eq1∥

2
0,K + k2j ∥eq2∥

2
0,K + h2

i ∥ωx∥20,K

+k2j ∥ωy∥20,K
)
+ 3 ∥ω∥20,K

≤ 6(p+ 1)h2

(2p+ 1)2(2p+ 3)

(
∥eq∥20,K + ∥∇ω∥20,K

)
+ 3 ∥ω∥20,K

≤ Cp

(
h2 ∥eq∥20,K + h2 ∥∇ω∥20,K + ∥ω∥20,K

)
.

where Cp = max
(
3, 6(p+1)

(2p+1)2(2p+3)

)
. Since ∥∇ω∥0,K ≤ ∥ω∥1,K , we deduce

∥eu − Eu∥20,K ≤ Cp

(
h2 ∥eq∥20,K + h2 ∥ω∥21,K + ∥ω∥20,K

)
,

Summing over all elements and applying the estimates (16) and (27c), we arrive at

∥eu − Eu∥2 ≤ Cp

(
h2 ∥eq∥2 + h2 ∥ω∥21 + ∥ω∥2

)
≤ Cp

(
h2C1h

2p+2 + h2C2h
2p+2 + C3h

2p+4
)
≤ Ch2p+4,

which completes the proof of (33).
To show (34), we apply the reverse triangle inequality as

|∥Eu∥ − ∥eu∥| ≤ ∥Eu − eu∥ .(39)

Combining (33) and (39), we establish (34).
Finally, we prove (36). Dividing (39) by ∥eu∥ and using the estimate (33) and

the assumption (35), we get

|Θ− 1| =
∣∣∣∣∥Eu∥
∥eu∥

− 1

∣∣∣∣ = |∥Eu∥ − ∥eu∥|
∥eu∥

≤ ∥Eu − eu∥
∥eu∥

≤ C1h
p+2

C2hp+1
≤ Ch,

which gives Θ = 1 +O(h). Thus, we completed the proof of the Theorem. �

Theorem 4.1 indicates that the a posteriori error estimate Eu converges to the
true error eu at O(hp+2) rate in the L2-norm. It also suggests that the global
effectivity index Θ converges to unity at O(h) rate as h → 0.
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Remark 4.1. The error estimator ηu is said to be reliable (respectively efficient)
if there exists a constant Crel (respectively Ceff), independent of the mesh size h,
such that

Ceff ηu +H.O.T ≤ ∥eu∥ ≤ Crel ηu +H.O.T,

where H.O.T is a higher order term. Therefore, the estimate (34) indicates that the

proposed error estimator ηu = ∥Eu∥ =

( ∑
K∈Th

∥Eu∥20,K

)1/2

is reliable and efficient.

Remark 4.2. Since eu = u− uh, we have by the estimate (33)

∥u− (uh + Eu)∥ = ∥(u− uh)− Eu∥ = ∥eu − Eu∥ ≤ Chp+2.

Consequently, the post-processed approximation ûh = uh + Eu yields O(hp+2)
superconvergent solution.

Remark 4.3. The performance of an error estimator is commonly measured by
the effectivity index which is the ratio of the estimated error to the actual error. In
particular, we say that the error estimator is asymptotically exact if the effectivity
index approaches unity as the mesh size goes to zero. We note that (36) indicates
that the computable quantity ∥Eu∥ provides an asymptotically exact a posteriori
estimator on the actual error ∥eu∥.

Remark 4.4. The assumption (35) implies that terms of order O(hp+1) are present
in the error ∥eu∥. If this were not the case, the error estimate ∥Eu∥ might not be
such a good approximation of the actual error ∥eu∥. Even though the proof of
(36) is valid under the assumption (35), our computational results given in the
next section suggest that the global effectivity index in the L2-norm converge to
unity at O(h2) rate. Thus, the proposed error estimation procedure is an excellent
measure of the gradient of the error.

Remark 4.5. We note that Eu is a computable quantity since it only depends
on the LDG solution (uh,qh). It provides an a posteriori estimator on the error
∥u− uh∥. We would like to emphasize that our LDG error estimate is computation-
ally simple and is obtained by solving a local problem with no boundary conditions
on each element.

Remark 4.6. In our error analysis p is assumed to be ≥ 1. When p = 0, the
superconvergence results in this paper and in [25] are not valid. Also, our error
estimate procedure does not apply when p = 0.

5. Numerical examples

In this section we present several numerical examples to validate the theoret-
ical results and test the performance of the residual-type a posteriori error es-
timator. We use the same test problems in [25] where we showed the L2 er-
rors ∥eu∥ = O(hp+1), ∥eq∥ = O(hp+1), ∥ēu∥ = O(hp+2), ∥ēq∥ = O(hp+2), and
∥∇ēu∥ = O(hp+1). Here, we will show the convergence of the errors ∥uh − πu∥,
∥eu − Eu∥, and |Θ− 1| on logarithmic scales. The numerical convergence order of
the error is computed by using the formula

order = − ln(en1/en2)

ln(n1/n2)
,

where enk
, k = 1, 2, is the error using Nk = n2

k square elements. We will consider
problems with smooth solutions, but we will also consider problems that do not
conform to the theory presented above, with a variety of exact solutions that are
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less regular than H4(Ω). When the Dirichlet boundary conditions are used, the
stabilization parameter is given by C11 = 1, when tensor product polynomials of
degree at most p are considered as basis for the LDG method.

Example 5.1. In the first example, we test the superconvergence results and
demonstrate the robustness of the proposed residual-type a posteriori error es-
timator to the classical semilinear Poisson-Boltzmann (PB) equation

−uxx − uyy = e−u + 8π2 sin(2π(x+ y))− e− sin(2π(x+y)), (x, y) ∈ [0, 1]2.(40a)

The boundary conditions are extracted from the analytical solution

u(x, y) = sin(2π(x+ y)).

Several numerical tests are performed on this example to investigate the effect of
boundary conditions. We will consider the purely Dirichlet boundary conditions,
the mixed Dirichlet-Neumann boundary conditions, and finally the periodic bound-
ary conditions. We first consider the Poisson-Boltzmann equation (40a) subject to
the boundary conditions of Dirichlet type

u(x, 0) = sin(2πx), u(x, 1) = sin(2πx), x ∈ [0, 1],(40b)

u(0, y) = sin(2πy), u(1, y) = sin(2πy), y ∈ [0, 1].(40c)

We solve this problem using the LDG scheme presented in Section 2 on a uniform
Cartesian meshes having N = 25, 100, 225, 400, and 625 elements. These meshes
are obtained by dividing the computational domain Ω = [0, 1]2 into n2 squares with
n = 5, 10, 15, 20, and 25. We compute the LDG solutions uh ∈ V p

h and qh ∈ Vp
h

with p = 1, 2, 3, 4. In the left figure of Figure 1, we show the L2-norm of the errors
between the LDG solution uh and the right Radau interpolating polynomial πu.
These results indicate that the LDG solution uh is O(hp+2) superclose to to the
interpolant πu in the L2-norm for p = 1, 2, 3, 4. These results are in full agreement
with the theoretical result of Theorem 3.2.

Next, we implement our error estimation procedure presented in Section 4 to find
the error estimator Eu on each rectangle of the mesh and the global error ∥eu − Eu∥.
In the right figure of Figure 1, we show the convergence orders of the global errors
∥eu − Eu∥. We observe that ∥eu − Eu∥ = O(hp+2) as h → 0. We conclude that our
a posteriori error estimator Eu converges to the actual error eu in the L2-norm as
h → 0. This is in full agreement with the theoretical result presented in Theorem
4.1. This example shows that the orders of convergence derived in this paper are
sharp.

Next, we present the global effectivity index Θ in Table 1. We observe that Θ is
near unity and converges to unity under h-refinement. Finally, the errors |Θ− 1|
and their orders of convergence shown in the same Table 1 suggest that |Θ− 1| is
O(h2). This numerical convergence rate is higher than the theoretical rate derived
in Theorem 4.1 by one order.

We repeat the previous experiment with all parameters kept unchanged except
that we use the mixed Dirichlet-Neumann boundary conditions

u(0, y) = sin(2πy), u(x, 0) = sin(2πx),(40d)

ux(1, y) = cos(2πy), uy(x, 1) = cos(2πx), (x, y) ∈ ∂Ω.(40e)

In the left figure of Figure 2, we report the L2 errors between the LDG solution
uh and the right Radau interpolating polynomial πu and their convergence orders.
Clearly, these results show optimal convergence orders. Again, our results are in full
agreement with the theoretical results. The L2 errors ∥eu − Eu∥ shown in the right
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Figure 1: Convergence orders for ∥uh − πu∥ (left) and ∥eu − Eu∥ (right) for the B-
VP (40a) subject to the Dirichlet boundary conditions (40b-40c) on uniform meshes
having N = 25, 100, 225, 400, and 625 elements using the spaces Qp, p = 1, 2, 3, 4.
The slopes of the fitting lines are shown on the graph.

Table 1. Global effectivity indices Θ and the errors |Θ− 1| for
the BVP (40a) subject to the Dirichlet boundary conditions (40b-
40c) on uniform meshes having N = 25, 100, 225, 400, and 625
elements using Qp, p = 1, 2, 3, 4.

N p = 1 p = 2
Θ |Θ− 1| order Θ |Θ− 1| order

25 0.80938 1.9062e-1 0.88485 1.1515e-1
100 0.95013 4.9866e-2 1.9346 0.97392 2.6076e-2 2.1427
225 0.97849 2.1506e-2 2.0742 0.98970 1.0299e-2 2.2911
400 0.98844 1.1563e-2 2.1570 0.99462 5.3758e-3 2.2599
625 0.99291 7.0918e-3 2.1908 0.99672 3.2751e-3 2.2208
N p = 3 p = 4

Θ |Θ− 1| order Θ |Θ− 1| order
25 0.91800 8.2001e-2 0.91694 8.3063e-2
100 0.98045 1.9550e-2 2.0685 0.98077 1.9230e-2 2.1108
225 0.99157 8.4280e-3 2.0752 0.99180 8.1987e-3 2.1025
400 0.99536 4.6413e-3 2.0737 0.99549 4.5108e-3 2.0769
625 0.99707 2.9261e-3 2.0674 0.99715 2.8483e-3 2.0603

figure of Figure 2 suggest optimal O(hp+2) convergence rate. Next, we present the
global effectivity indices in Table 2. We observe that the error estimators converge
to the true errors in the L2-norm under h-refinement. The errors |Θ− 1| and
their convergence orders shown in Table 2 suggest that the convergence order for
|Θ− 1| is O(h2). Again, the observed numerical convergence order is higher than
the theoretical order established in Theorem 4.1.

Finally, we solve the same problem but we use the periodic boundary conditions

u(0, y) = u(1, y), u(x, 0) = u(x, 1),(40f)

ux(0, y) = ux(1, y), uy(x, 0) = uy(x, 1), (x, y) ∈ ∂Ω.(40g)

We report the L2-norm of the errors ∥uh − πu∥ and ∥eu − Eu∥ in Figure 3. We can
observe that ∥uh − πu∥ = O(hp+2) and ∥eu − Eu∥ = O(hp+2). Thus, optimal (p+
2)-th order can be always achieved. These results are consistent with our theoretical
results. Finally, we present the global effectivity indices and the errors |Θ− 1| in
Table 2. These results suggest that the convergence rate for |Θ− 1| is O(h2).
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Figure 2: Convergence rates for ∥uh − πu∥ (left) and ∥eu − Eu∥ (right) for the
BVP (40a) subject to the mixed boundary conditions (40d-40e) on uniform meshes
having N = 25, 100, 225, 400, and 625 elements using the spaces Qp, p = 1, 2, 3, 4.
The slopes of the fitting lines are shown on the graph.

Table 2. Global effectivity indices Θ and the errors |Θ− 1| for
the BVP (40a) subject to the mixed boundary conditions (40d-
40e) on uniform meshes having N = 25, 100, 225, 400, and 625
elements using Qp, p = 1, 2, 3, 4.

N p = 1 p = 2
Θ |Θ− 1| order Θ |Θ− 1| order

25 0.89375 1.0625e-1 0.93624 6.3760e-2
100 0.97165 2.8349e-2 1.9061 0.98378 1.6220e-2 1.9749
225 0.98723 1.2771e-2 1.9667 0.99276 7.2432e-3 1.9883
400 0.99278 7.2209e-3 1.9820 0.99592 4.0822e-3 1.9933
625 0.99537 4.6336e-3 1.9882 0.99738 2.6152e-3 1.9956
N p = 3 p = 4

Θ |Θ− 1| order Θ |Θ− 1| order
25 0.93355 6.6447e-2 0.93388 6.6118e-2
100 0.98319 1.6809e-2 1.9830 0.98322 1.6781e-2 1.9782
225 0.99251 7.4868e-3 1.9947 0.99252 7.4798e-3 1.9929
400 0.99579 4.2144e-3 1.9975 0.99579 4.2118e-3 1.9964
625 0.99730 2.6981e-3 1.9985 0.99730 2.6970e-3 1.9976

Again, the observed numerical convergence rate is higher than the theoretical order
established in Theorem 4.1.

Example 5.2. Here, we apple the LDG method to the following semilinear elliptic
problem

−uxx − uyy = −u3 + g(x, y), (x, y) ∈ [0, 1]2,(41a)

where the boundary conditions and the function g(x, y) are extracted from the
exact solution

u(x, y) = sin(2πx) sin(2πy).

We remark that the function f(x, u) does not satisfy assumptions (1b) and (1c). We
consider the purely Dirichlet and mixed boundary conditions. First, we consider
(41a) subject to the purely Dirichlet boundary conditions

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0, (x, y) ∈ ∂Ω.(41b)
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Figure 3: Convergence rates for ∥uh − πu∥ (left) and ∥eu − Eu∥ (right) for the BVP
(40a) subject to the periodic boundary conditions (40f-40g) on uniform meshes
having N = 25, 100, 225, 400, and 625 elements using the spaces Qp, p = 1, 2, 3, 4.
The slopes of the fitting lines are shown on the graph.

Table 3. Global effectivity indices Θ and the errors |Θ− 1| for
the BVP (40a) subject to the periodic boundary conditions (40f-
40g) on uniform meshes having N = 25, 100, 225, 400, and 625
elements using Qp, p = 1, 2, 3, 4.

N p = 1 p = 2
Θ |Θ− 1| order Θ |Θ− 1| order

25 0.88833 1.1167e-1 0.93635 6.3646e-2
100 0.97046 2.9543e-2 1.9184 0.98375 1.6248e-2 1.9698
225 0.98673 1.3269e-2 1.9741 0.99275 7.2548e-3 1.9886
400 0.99251 7.4913e-3 1.9872 0.99591 4.0877e-3 1.9941
625 0.99520 4.8026e-3 1.9924 0.99738 2.6182e-3 1.9965
N p = 3 p = 4

Θ |Θ− 1| order Θ |Θ− 1| order
25 0.93358 6.6423e-2 0.93380 6.6204e-2
100 0.98319 1.6806e-2 1.9827 0.98321 1.6793e-2 1.9791
225 0.99251 7.4859e-3 1.9945 0.99252 7.4837e-3 1.9934
400 0.99579 4.2141e-3 1.9973 0.99579 4.2135e-3 1.9968
625 0.99730 2.6980e-3 1.9984 0.99730 2.6978e-3 1.9981

We use the LDG scheme presented in Section 2 to (41a) subject to (41b). The
domain [0, 1]2 is partitioned into uniform squares with h = 1/5, 1/10, 1/15, 1/20,
and 1/25. We use the finite element spaces with degree p = 1, 2, 3, 4. We list
the L2-norm of the errors ∥uh − πu∥ and ∥eu − Eu∥ in Figure 4. We also present
the numerical orders of convergence. We observe that the convergence orders meet
the theoretical expectation very well. In Table 4, we report the global effectivity
index Θ and the error |Θ− 1| for different N and p. We observe that Θ approaches
one under mesh refinement. The numerical results confirm the theoretical analysis.
Even though the assumptions (1b) and (1c) do not hold, the same results are
observed.

Next, we solve the same problem but we use the mixed Dirichlet-Neumann
boundary conditions instead of the Dirichlet boundary conditions. To to more
specific, we consider (41a) subject to

u(0, y) = u(x, 0) = 0, ux(1, y) = cos(y), uy(x, 1) = cos(x), (x, y) ∈ ∂Ω.(41c)
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Figure 4: Convergence rates for ∥uh − πu∥ (left) and ∥eu − Eu∥ (right) for the BVP
(41a) subject to the Dirichlet boundary conditions (41b) on uniform meshes having
N = 25, 100, 225, 400, and 625 elements using the spaces Qp, p = 1, 2, 3, 4. The
slopes of the fitting lines are shown on the graph.

Table 4. Global effectivity indices Θ and the errors |Θ− 1| for
the BVP (41a) subject to the Dirichlet boundary conditions (41b)
on uniform meshes having N = 25, 100, 225, 400, and 625 elements
using Qp, p = 1, 2, 3, 4.

N p = 1 p = 2
Θ |Θ− 1| order Θ |Θ− 1| order

25 0.6845 3.1546e-1 1.0271 2.7108e-2
100 0.8816 1.1839e-1 1.4139 1.0065 6.3536e-3 2.0594
225 0.9509 4.9115e-2 2.1699 1.0029 2.9254e-3 1.9704
400 0.9756 2.4389e-2 2.4334 1.0019 1.8999e-3 1.3504
625 0.9861 1.3903e-2 2.5187 1.0011 1.0528e-3 2.6456
N p = 3 p = 4

Θ |Θ− 1| order Θ |Θ− 1| order
25 1.1977 1.9766e-1 1.1439 1.4395e-1
100 1.0674 6.7353e-2 1.5532 1.0483 4.8271e-2 1.5763
225 1.0301 3.0143e-2 1.9829 1.0215 2.1481e-2 1.9969
400 1.0156 1.5593e-2 2.2912 1.0109 1.0938e-2 2.3461
625 1.0086 8.6353e-3 2.6484 1.0059 5.8926e-3 2.7720

The L2-norm of the errors ∥uh − πu∥ and ∥eu − Eu∥ are shown in Figure 5 for p=
1, 2, 3, 4. The rates of convergence obtained agree with the theoretical rates of
convergence stated in Theorems 26 and 4.1, i.e., our estimates are sharp. Finally,
Table 5 displays the global effectivity index Θ and the error |Θ− 1|. We can observe
that the global effectivity indices stay close to unity and converge to unity under
h-refinement.

Example 5.3. In this example, we consider the following elliptic problem with
mixed boundary conditions

− uxx − uyy = −u+ 2u3

1 + u2
+ g(x, y), (x, y) ∈ [0, 1]2,(42a)

u(x, 0) = 0, uy(x, 1) = (1− e)(1− x)(ex
2

− 1), x ∈ [0, 1],(42b)

u(0, y) = 0, ux(1, y) = (1− e)(1− y)(ey
2

− 1), y ∈ [0, 1].(42c)
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Figure 5: Convergence rates for ∥uh − πu∥ (left) and ∥eu − Eu∥ (right) for the BVP
(41a) subject to the mixed boundary conditions (41c) on uniform meshes having
N = 25, 100, 225, 400, and 625 elements using the spaces Qp, p = 1, 2, 3, 4. The
slopes of the fitting lines are shown on the graph.

Table 5. Global effectivity indices Θ and the errors |Θ− 1| for
the BVP (41a) subject to the mixed boundary conditions (41c) on
uniform meshes having N = 25, 100, 225, 400, and 625 elements
using Qp, p = 1, 2, 3, 4.

N p = 1 p = 2
Θ |Θ− 1| order Θ |Θ− 1| order

25 0.88558 1.1442e-1 0.93537 6.4627e-2
100 0.96946 3.0540e-2 1.9056 0.98367 1.6331e-2 1.9845
225 0.98626 1.3739e-2 1.9701 0.99272 7.2789e-3 1.9930
400 0.99224 7.7615e-3 1.9850 0.99590 4.0987e-3 1.9963
625 0.99502 4.9776e-3 1.9908 0.99755 2.4512e-3 2.3039
N p = 3 p = 4

Θ |Θ− 1| order Θ |Θ− 1| order
25 0.91915 8.0854e-2 0.93050 6.9503e-2
100 0.96430 3.5695e-2 1.1796 0.96994 3.0057e-2 1.2094
225 0.97753 2.2469e-2 1.1416 0.98130 1.8703e-2 1.1700
400 0.98368 1.6325e-2 1.1104 0.98650 1.3496e-2 1.1342
625 0.98720 1.2801e-2 1.0898 0.98946 1.0536e-2 1.1096

We select the function g(x, y) suitably such that the analytical solution is

u(x, y) = (1− x)(1− y)(ex
2

− 1)(ey
2

− 1).

We apply the LDG method to this problem. We use a uniform Cartesian mesh
with N = n2 squares, where n = 5, 10, 15, 20, and 25. The discrete space V p

h

is constructed using piecewise polynomials of uniform degree p, where p = 1, 2, 3
and 4. In Figure 6, we list the L2-norm of the errors ∥uh − πu∥ and ∥eu − Eu∥ on
logarithmic scales. We also show the numerical orders of convergence. We observe
that ∥uh − πu∥ = O(hp+2) and ∥eu − Eu∥ = O(hp+2). The results showing in
Table 6 indicate that the global effectivity index Θ → 1 under mesh refinement.
Once again, the computed order of convergence matches with the theoretical order
of convergence derived in Theorems 26 and 4.1.

Example 5.4 (Nonsmooth solutions). In our error analysis, the solution u is as-
sumed to be in Hp+2(Ω) when using piecewise polynomials of degree p. In this
example, we consider a problem that does not conform to the theory presented
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Figure 6: Convergence rates for ∥uh − πu∥ (left) and ∥eu − Eu∥ (right) for the BVP
(42a) subject to the mixed boundary conditions (42) on uniform meshes havingN =
25, 100, 225, 400, and 625 elements using the spaces Qp, p = 1, 2, 3, 4. The slopes
of the fitting lines are shown on the graph.

Table 6. Global effectivity indices Θ and the errors |Θ− 1| for
the BVP (42a) subject to the mixed boundary conditions (42) on
uniform meshes with N = 25, 100, 225, 400, and 625 using Qp, p =
1, 2, 3, 4.

N p = 1 p = 2
Θ |Θ− 1| order Θ |Θ− 1| order

25 0.85472 1.4528e-1 0.91184 8.8164e-2
100 0.93804 6.1958e-2 1.2295 0.96032 3.9684e-2 1.1516
225 0.96058 3.9417e-2 1.1154 0.97477 2.5233e-2 1.1167
400 0.97109 2.8909e-2 1.0777 0.98156 1.8439e-2 1.0904
625 0.97717 2.2826e-2 1.0587 0.98549 1.4512e-2 1.0733
N p = 3 p = 4

Θ |Θ− 1| order Θ |Θ− 1| order
25 0.91915 8.0854e-2 0.93050 6.9503e-2
100 0.96430 3.5695e-2 1.1796 0.96994 3.0057e-2 1.2094
225 0.97753 2.2469e-2 1.1416 0.98130 1.8703e-2 1.1700
400 0.98368 1.6325e-2 1.1104 0.98650 1.3496e-2 1.1342
625 0.98720 1.2801e-2 1.0898 0.98946 1.0536e-2 1.1096

above, with an exact solution that is less regular than u ∈ Hp+2(Ω). To be more
precise, we consider the following boundary-value problem

− uxx − uyy = e−u + g(x, y), (x, y) ∈ [0, 1]2,(43a)

u(x, 0) = ϕ1(x), uy(x, 1) = ϕ2(x), x ∈ [0, 1],(43b)

u(0, y) = ϕ3(y), ux(1, y) = ϕ4(y), y ∈ [0, 1].(43c)

We select the functions g(x, y) and ϕk, k = 1, 2, 3, 4 such that the exact solution is

u(x, y) = (sin(2πx) + x7/2)(sin(2πy) + y7/2),

which is nonsmooth. We remark that u ∈ H3(Ω) but u /∈ H4(Ω). We apply the
LDG scheme using uniform meshes having N = 100, 144, 196, 256, 324, and 400
elements and using the spaces Qp, p = 2, 3, 4, 5. Figure 7 presents convergence
results for ∥uh − πu∥ (left) and ∥eu − Eu∥ (right). These results indicate that
the same rates of convergence as in the smooth solution case are achieved. Table 7
summarizes the global effectivity indices Θ, the errors |Θ− 1| and their convergence
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Figure 7: Convergence rates for ∥uh − πu∥ (left) and ∥eu − Eu∥ (right) for the BVP
(43) on uniform meshes having N = 100, 144, 196, 256, 324, and 400 elements using
the spaces Qp, p = 2, 3, 4, 5. The slopes of the fitting lines are shown on the graph.

rates. While our analysis does not cover this case, we observe that our results are
in accordance with the prediction of the theoretical analysis for smooth solutions.
We leave the analysis of this case (nonsmooth solutions) for future work.

Table 7. Global effectivity indices Θ and the errors |Θ− 1| for
the BVP (43) on uniform meshes with N = 100, 144, 196, 256,
324, and 400 using Qp, p = 2, 3, 4, 5.

N p = 2 p = 3
Θ |Θ− 1| order Θ |Θ− 1| order

100 1.0237 2.3743e-2 1.0219 2.1880e-2
144 1.0162 1.6249e-2 2.0802 1.0153 1.5319e-2 1.9552
196 1.0118 1.1833e-2 2.0573 1.0113 1.1303e-2 1.9723
256 1.0090 9.0071e-3 2.0436 1.0087 8.6769e-3 1.9801
324 1.0071 7.0881e-3 2.0342 1.0069 6.8677e-3 1.9853
400 1.0057 5.7247e-3 2.0276 1.0056 5.5695e-3 1.9886
N p = 4 p = 5

Θ |Θ− 1| order Θ |Θ− 1| order
100 1.0057 5.7018e-3 1.0064 6.4131e-3
144 1.0040 3.9530e-3 2.0091 1.0045 4.4766e-3 1.9717
196 1.0029 2.9027e-3 2.0035 1.0033 3.2978e-3 1.9825
256 1.0022 2.2218e-3 2.0020 1.0025 2.5291e-3 1.9875
324 1.0018 1.7552e-3 2.0014 1.0020 2.0006e-3 1.9902
400 1.0014 1.4216e-3 2.0007 1.0016 1.6218e-3 1.9923

Example 5.5 (Anisotropic tensor diffusion problem). Consider the following two-
dimensional steady state anisotropic tensor diffusion problem

−∇ · (D∇u) = e−u + g(x, y), (x, y) ∈ [0, 1]2,(44a)

u(x, 0) = ϕ1(x), uy(x, 1) = ϕ2(x), x ∈ [0, 1],(44b)

u(0, y) = ϕ3(y), ux(1, y) = ϕ4(y), y ∈ [0, 1],(44c)

where the diffusion coefficient tensor is given by

D =

(
b1 −b2
b2 b1

)(
d1 0
0 d2

)(
b1 b2
−b2 b1

)
.
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Figure 8: Convergence rates of ∥eu − Eu∥ for d1 = 1 (left) and ∥eu − Eu∥ for
d1 = 1000 (right) for the BVP (44) on uniform meshes having N = 100, 144, 196,
256, 324, and 400 elements using the spaces Qp, p = 1, 2, 3, 4. The slopes of the
fitting lines are shown on the graph.

The direction of the anisotropy is given by a unit vector b = (b1, b2)
t. Here d1

and d2 represent the parallel and the perpendicular diffusion coefficients. We take
b1 = 0, b2 = 1, d2 = 1, and different values of d1. We choose the functions g(x, y)
and ϕk, k = 1, 2, 3, 4 such that the exact solution is

u(x, y) = sin(πx) sin(πy).

Figure 8 shows the convergence rates of ∥eu − Eu∥ for an isotropic case d1 = 1
(left) and ∥eu − Eu∥ for an anisotropic case d1 = 1000 (right) using polynomial
degrees p = 1, 2, 3, 4 by using the uniform rectangular meshes. These results
show that with anisotropy d1 = 1 and d1 = 1000, the scheme can still produce
the optimal rate of convergence for ∥eu − Eu∥, which is at the order O(hp+2). As
expected, increasing the values of d1 also increases the L2-error. However, for low
order schemes (p = 1 and 2) we do not observe the correct convergence rates when
d1 is a very large number. When the mesh is fine enough, the use of high degree
p is able to produce satisfactory numerical solutions with small errors. Also, our
numerical experiments show the desired numerical results when we increase the
degree of the polynomial p. For the anisotropic case (d1 is large), we conclude
that when we increase the polynomial degree, we recover the expected convergence
behavior. We would like to mention that anisotropic meshes are known to be well-
suited for problems which exhibit anisotropic solution features in order to provide
optimal numerical approximation. We refer to [42] and the references cited therein
for more details.

Example 5.6 (Application: Adaptive mesh refinement (AMR) algorithm). Adap-
tive mesh refinement (AMR) methods based on a posteriori error estimates have be-
come a common procedure for obtaining more accurate numerical solutions. AMR
methods based on a posteriori error estimates have become established procedures
for computing efficient and accurate approximations to the solution of differential
equations. The key idea of AMR based on a posteriori error estimation is to refine
those elements which give a large contribution to the estimated error. The typical
AMR algorithm is essentially a simple four-step procedure

SOLVE → ESTIMATE → MARK → REFINE.

The local a posteriori error estimators of section 4 can be used to mark elements
for refinement. Next, we present a simple LDG adaptive algorithm based on the
local a posteriori error estimators proposed in the previous section. It is based on
the following steps:
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(1) Select a tolerance Tol and a maximum bound on the number of interval
Nmax. Put ∥Eu∥ = 1.

(2) Construct an initial Cartesian grid Th consisting of N = n2 square elements
K = [xi−1, xi]× [yj−1, yj ] = Ii × Jj , i = 1, 2, . . . , n, j = 1, 2, . . . , n, where
Ii = [xi−1, xi], Jj = [yj−1, yj ]. For simplicity, we can start with a uniform
mesh having N = 42 square elements.

(3) While N ≤ Nmax and ∥Eu∥ ≥ Tol do the following steps
(a) Solve the LDG scheme to obtain the LDG solutions uh and qh as

described in Section 2.
(b) For each element K ∈ Th, we compute the local error estimators

∥Eu∥0,K and the global error estimator ∥Eu∥ =

( ∑
K∈Th

∥Eu∥20,K

) 1
2

.

(c) For all elements K ∈ Th
(i) Choose a parameter 0 ≤ λ ≤ 1. If ∥Eu∥0,K ≤ λ max

K∈Th

∥Eu∥0,K
then stop and accept the LDG solutions uh and qh on the ele-
ment K.

(ii) Otherwise, reject the LDG solutions onK and divide the element
K into 4 square elements by connecting the midpoints of the left
and right edges and then the bottom and top edges of the square
element K. The advantage of applying the LDG method to
elliptic problems relies on the ease with which it handles hanging
nodes.

(4) endwhile

Remark 5.1. There are many possibilities for selecting the elements to be refined
given the local error indicator ∥Eu∥0,K . For example a reasonable approach is to

refine the elements satisfying the local error indicator ∥Eu∥0,K > Tol and accept

the LDG solution uh on the element Ii if ∥Eu∥0,K ≤ Tol, where Tol is a given
tolerance. Also, there are other stopping criteria that may be used to stop the
adaptive algorithm. In the above algorithm, we used the most popular fixed-rate
strategy which consists of refining the element K if ∥Eu∥0,K > λ max

K∈Th

∥Eu∥0,K ,

where 0 ≤ λ ≤ 1 is a parameter provided by the user. Note that the choice λ =
0 gives uniform refinement, while λ = 1 gives no refinement. In practice, the
recommended value is λ = 0.5 which is a natural choice.

To test our adaptive refinement algorithm, we consider the following convection-
diffusion model problem{

−ϵ(uxx + uyy) + ux + uy = f(x, y), (x, y) ∈ [0, 1]2,

u(x, 0) = u(0, y) = u(x, 1) = u(1, y) = 0,
(45)

where f is chosen in such a way that the exact solution is given by

u(x, y) =

(
e

x−1
ϵ − 1

e−
1
ϵ − 1

+ x− 1

)(
e

y−1
ϵ − 1

e−
1
ϵ − 1

+ y − 1

)
.

We remark that the analytical solution is smooth function, but has boundary layers
at x = 1 and y = 1; see Figure 9 using ϵ = 10−2 (left) and ϵ = 10−4 (right).

To test our AMR algorithm, we take p = 1, 2 and choose ϵ = 10−2 and ϵ = 10−4.
We successively apply adaptive mesh refinement based described above starting
with the initial mesh having N = 16 elements. In Figures 10 and 11, we show
the adaptive meshes using the same tolerance Tol = 10−3 for p = 1, 2 and ϵ =
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Figure 9: The exact solution os the problem 45 with ϵ = 10−2 (left) and ϵ = 10−4

(right).

10−2, 10−4. We observe strong mesh refinement near the lines y = 1 and x = 1,
indicating that the estimator correctly captures boundary layers. The adaptive
code refines elements near the steep gradients. As predicted, we see that the local
error estimator is able to refine near the boundary layers.

Figure 10: Adaptively refined meshes for Example 5.6 using p = 1 with ϵ = 10−2

(left) and ϵ = 10−4 (right).

Figure 11: Adaptively refined meshes for Example 5.6 using p = 2 with ϵ = 10−2

(left) and ϵ = 10−4 (right).
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6. Concluding remarks

In this paper, we designed and studied an implicit residual-based a posterior-
i error estimates for the local discontinuous Galerkin (LDG) method applied to
two-dimensional semilinear elliptic problems on a rectangular region. We used our
recent optimal superconvergence results [25] to prove that the leading part of the
discretization error for the LDG solution is spanned by two (p + 1)-degree right
Radau polynomials in the x- and y- directions, when tensor product polynomials of
degree at most p are employed. We used this new result to construct asymptotically
exact a posteriori error estimator by solving a simple problem on each rectangular
element. We further proved that, for smooth solutions, these a posteriori error
estimators converge to the true errors in the L2-norm under mesh refinement. The
order of convergence is proved to be p+2. Finally, we proved that the a posteriori
error estimator is asymptotically exact. Our numerical experiments demonstrate
that the results in this paper hold true for the nonlinear problem (1) with a general
function f(x, u), indicating that the restriction on f is artificial. The generaliza-
tion of our proofs to nonlinear equations with general function f involves several
technical difficulties and will be investigated in the future. We expect that a new
technique will be needed to obtain similar superconvergence. In future work, we will
also study the superconvergence and error estimation of LDG methods for nonlin-
ear elliptic problems in multidimensional cases on unstructured triangular meshes.
We will focus on nonlinear elliptic problems whose solutions have interior layers or
sharp boundary. We are also planning to develop a posteriori error estimators for
the LDG method applied to two-dimensional parabolic and hyperbolic problems
on triangular and tetrahedral meshes. Finally, we would like to mention that the
analysis of the case of nonsmooth solutions is still an open problem.
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