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A NOVEL DEEP NEURAL NETWORK ALGORITHM FOR THE

HELMHOLTZ SCATTERING PROBLEM IN THE UNBOUNDED

DOMAIN

ANDY L YANG†

Abstract. In this paper, we develop a novel meshless, ray-based deep neural network algorithm

for solving the high-frequency Helmholtz scattering problem in the unbounded domain. While our
recent work [44] designed a deep neural network method for solving the Helmholtz equation over
finite bounded domains, this paper deals with the more general and difficult case of unbounded

regions. By using the perfectly matched layer method, the original mathematical model in the
unbounded domain is transformed into a new format of second-order system in a finite bounded
domain with simple homogeneous Dirichlet boundary conditions. Compared with the Helmholtz
equation in the bounded domain, the new system is equipped with variable coefficients. Then, a

deep neural network algorithm is designed for the new system, where the rays in various random
directions are used as the basis of the numerical solution. Various numerical examples have been
carried out to demonstrate the accuracy and efficiency of the proposed numerical method. The
proposed method has the advantage of easy implementation and meshless while maintaining high

accuracy. To the best of the author’s knowledge, this is the first deep neural network method to
solve the Helmholtz equation in the unbounded domain.

Key words. Deep Learning, plane wave, deep neural network, loss, high frequency, Helmholtz

equation.

1. Introduction

Scattering occurs when light, sound, or moving particles encounter inhomo-
geneities in their medium of propagation (e.g., the illuminated object has a curved
or rough surface). As an illustration, a beam of light traveling through dilute milk
appears pink when viewed from below, but light blue when viewed from the side and
above. The study of scattering phenomena has close ties to engineering and tech-
nology, such as the use of tropospheric scattering for microwave or ultrashortwave
in communication technology [22] and the investigation of the dynamical proper-
ties of atoms or electrons using scattering phenomena of various rays in the field
of material science [32]. Due to the fact that scattering originates from the wave
nature of matter [26, 33], its mathematical model is the standard wave equation or
other equations derived from it. It is known, however, that the wave equation is
a system of partial differential equations containing both time and space variables,
which makes it more challenging to solve, especially when the boundary condition
is complex, such as being unsmooth or unbounded. Thus, the Helmholtz equa-
tion, a simplified form of the time-independent wave equation obtained by using
the separation of variables to simplify the analysis, has since become the landmark
model for the study of scattering theory in its broadest sense. Moreover, if the
Helmholtz equation is understood from the perspective of operator, the constant
used to represent the wave frequency (or called wave number) can also be regarded
as an eigenvalue, and the Helmholtz equation becomes an eigenvalue problem of
the Laplace operator [13].
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It is well known that when certain mathematical models are too complex to be
solved analytically, it has become common subconscious to use computers for nu-
merical simulations, as is the case with the wave equation and its simplified form,
the Helmholtz equation. Notice that both, especially the latter, have a wide range
of scientific and engineering applications, such as optics, acoustics, electricity, and
quantum mechanics. For example, the cornerstone of non-relativistic quantum me-
chanics, Schrdinger’s equation, is an extension of the Helmholtz equation, and a
special case of the Helmholtz equation, the Laplace equation, also appears frequent-
ly in electrostatics. Thus, the ubiquitous application of these fundamental physical
models in natural sciences, from satellite launches in space engineering or radar sig-
nal propagation in submarines to the design of cell phones or the acoustic detection
of advanced materials, has driven the urgent need to design reliable and accurate
numerical methods for them. This is also the purpose of this paper, namely to
design reliable and accurate numerical methods for computing numerical solutions
to the Helmholtz equation using computer technology.

However, not only is it not easy to simulate them numerically, but also very chal-
lenging. The main difficulty in solving the Helmholtz equation numerically comes
from its non-positive definite structure, which causes a high degree of oscillation of
the solution at large wave frequencies, leading to the so-called “pollution effect” [1],
i.e., the approximate solution obtained in numerical calculations has only a very
low accuracy. At the same time, we know that the scattering phenomenon of waves
usually occurs in the unbounded region in practical physical and engineering appli-
cations. Consequently, for the Helmholtz equation over an unbounded region that
is more applicable to real-world circumstances, the unbounded nature of the region
poses additional obstacles to the development of effective and accurate numerical
approaches. Therefore, this paper aims to address these two challenges simulta-
neously, i.e., designing reliable and accurate numerical methods for the Helmholtz
equation with high frequency and located in the unbounded domain.

Indeed, we note that a considerable amount of work has been focused on dealing
with these numerical challenges of the Helmholtz equation. The available numerical
methods can be roughly divided into two main categories, namely, traditional mesh-
based methods and novel meshless deep neural network (DNN) methods. In the
following, we review these two categories of numerical methods for two different
cases: bounded regions and unbounded regions, respectively.

For the case of bounded regions, the former traditional type of mesh-based meth-
ods for solving the Helmholtz equation includes the finite element method (FEM),
Discontinuous Galerkin/ hybridizable discontinuous Galerkin/ weak Galerkin meth-
ods, and the Spectral method, etc. (see [1, 8, 25, 31, 37, 41] and reference therein),
for dealing with the Helmholtz equation equipped with various boundary conditions
in a finite bounded region. Due to the highly oscillatory character of the solution,
higher-order polynomials or oscillatory non-polynomial basis [31, 45] are typically
employed in these approaches to prevent pollution effects; however, the computa-
tional cost is significant due to the extra degrees of freedom. Using the latter type
of methods, the recently prevalent DNN approach to solve the Helmholtz equation
in bounded regions, has produced relatively little work to date. To name only a few
that the author is aware of, existing approaches include the so-called Deep-Least
Squares method (DLSM) developed in [6], the plane wave activation based neural
network method (PWNN) in [42], and the ray-based DNN (RBDNN) method in
our recent work [44], etc. Although the DNN method is still in its infancy in solving
the Helmholtz equation, it has features that traditional methods do not have, such
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as its meshless nature that allows us to easily get away from designing adaptive
meshes or applying specially designed spatial discretization methods, so it is very
easy to implement. It can also more effectively and accurately approximate the
exact solution of the Helmholtz equation, especially for the large frequency case, as
evidenced by the numerical results obtained so far in [6, 44].

For the case of unbounded regions, all numerical methods that exist for solving
the Helmholtz equation belong to the traditional type methods, i.e., the mesh-based
methods such as the FEM, finite difference method, or Spectral method. Moreover,
the unboundedness of regions requires special technical treatment, such as the need
to reduce unbounded regions to bounded regions, which gives rise to the imper-
ative requirement that the problem being reduced must be well-posed (existence,
uniqueness and stability of the solution) and that the underlying solution must be
as close as possible to the original solution in the truncated domain. Therefore,
the development of efficient and robust domain truncation techniques for models
over unbounded regions has become a long-standing research topic of great inter-
est, of which successful techniques to date include the artificial boundary conditions
(ABCs) [2, 20, 16, 15, 17, 19, 35, 34, 40], and the perfectly matched layer (PML)
method developed in [5, 11, 4]. The idea of the ABCs method is to introduce an
arbitrary boundary with artificial boundary conditions on it, such that the original
problem is reduced to a boundary value problem in a bounded computational do-
main. The numerical approximation of the original problem can then be obtained
by solving the reduced problem. The idea of the PML method is to surround the
computational domain with a specially designed lossy medium that allows all waves
propagating inside the computational domain to be attenuated. The major differ-
ence between the PML method and the ABCs method is that the PML method
modify the governing equation accordingly so that any outgoing wave is perfectly
transmitted from the domain to the layer regardless of the incident angle, while the
ABCs method does not modify the equations. If the PML method is understood in
the frequency domain, it can be simply interpreted as a complex coordinate stretch
in the governing equation [11]. Since its inception, the PML method has been ex-
tensively investigated due to its superior accuracy and stability compared to the
ABCs method. Many different PML absorption layers have been built [11, 40],
and the PML method has even been incorporated into the toolkit of COMSOL, a
commercial software for industrial computing.

Although the first type, mesh-based numerical methods, is well-established for
the Helmholtz equation in the unbounded region, the second type, meshless DNN
method, does not yet exist for this case. As described above, the DNN method
has shown its superiority in dealing with bounded regions, i.e., it not only provides
very good accuracy but also overcomes the “pollution effect” of using high-order
polynomials for the high-frequency case. We also note that the DNN method has
attracted extensive attention in recent years for many of the classical problems
involved in scientific computing, especially the numerical solution of ordinary d-
ifferential equations (ODE) or partial differential equations (PDE), cf. [30, 6, 3,
14, 18, 24, 23, 27, 28, 29, 36, 38, 43] and references therein. Therefore, a natural
conjecture arises as to whether the DNN method can also be used for solving the
Helmholtz equation in the unbounded region.

To address this conjecture, a new ray-based DNN-PML method referred to as
RBDNN-PML, is proposed in this paper, whose main idea is to combine the ray-
based DNN method for bounded regions proposed in our previous work [44] with the
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PML method that deals with unbounded regions. We expect that such a combina-
tion can effectively and accurately solve the Helmholtz equation for high-frequency
wave scattering over an unbounded domain. The construction of such a method
is by no means an easy task because the steps of the method include not only the
reformulation of the original equation but also the construction of the minimization
objective function that allows the neural network to be trained. This is a completely
new approach and, to the author’s knowledge, no method on DNNs has been applied
to solve the high-frequency Helmholtz equations in unbounded regions. Also, the
authors believe that the method proposed in this paper is also quite adaptable and
can be extended to solve other similar systems of ODEs or PDEs in unbounded
regions, such as the wave equation, heat equation, or electromagnetic equations by
using DNNs.

The rest of this article is organized as follows. In Section 3, we introduce the
framework of the perfectly matched layer method and apply it for the Helmholtz
scattering problem over the unbounded domain. The system in turn is transferred
into a new form with easy boundary conditions in the finite bounded domain.
In Section 4, we propose the meshless RBDNN-PML method for solving the new
derived system. In Section 5, we present some numerical results to demonstrate
the effectiveness and accuracy of our proposed method. Some concluding remarks
and a discussion of future plans are given in Section 6.

2. Helmholtz scattering problem and PML method

2.1. Helmholtz scattering problem. The time-harmonic wave scattering prob-
lem reads as follows,

−∆u− k2u = f(x), in R2,(1a)

u = g(x), on ΓD,(1b)

√
r

(
∂u

∂r
− iku

)
= 0, as r = |x| → ∞,(1c)

where, u is the unknown complex wave function, k > 0 is the wave number, f(x)
is the known source term (in many work, f is simply set as zero), R2 is the two
dimensional domain of real numbers R, x ∈ R2, i is the imaginary unit, D is a
bounded domain in R2 with Lipschitz boundary ΓD, g ∈ H− 1

2 (ΓD) is determined
by the incoming wave, and ∂

∂r means the partial derivative with r.
Note that the first boundary condition (1b) implies that the incident wave on the

boundary of the illuminated object (i.e., ΓD) is known, while the second condition
(1c) means that at infinity, the wave has been completely attenuated to 0. For
clarity, we depict the system (1a)-(1c) in the schematic diagram Fig. 1(a).

Remark 2.1. For comparisons, we also give the Helmholtz equation over a finite
bounded domain so that interested readers can clearly tell the significant differences
between the two models. The Helmholtz equation in a finite bounded domain Ω ∈ R2

reads as follows (cf. [44, 6]):

−∆u− k2u = f(x), in Ω,(2a)

u = g(x), on ΓD,(2b)

∂nu+ iku = h(x), on ΓN ,(2c)

where ∂Ω denotes the boundary of Ω with ΓD∪ΓN = ∂Ω, and n denotes the outward
unit normal vector field on ΓN . The schematic diagram of the system (2a)-(2c) is
shown in Fig. 1(b).
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(a) Unbounded domain (b) Bounded domain

Figure 1. The comparison of the Helmholtz equation in the un-
bounded domain shown in (a) vs. the bounded domain shown in
(b).

The PML method [5, 11, 4] can be viewed as a complex coordinate stretching of
the original scattering problem (1a)–(1c), which usually has two versions, circular
and uniaxial, and in the following we briefly describe each of them. The application
of the PML method enables to transform the system in the unbounded region to
the problem in the bounded region.

2.2. The circular PML method. We introduce two concentric circles, one large
and one small, which are defined as BR = {x ∈ R2 : |x| ≤ R}, and Bρ = {x ∈
R2 : |x| ≤ ρ}, with R < ρ. The radius R is set big enough such that the domain
D is contained in the interior of the circle BR. We let Γ1 = ∂BR and Γ2 = ∂Bρ.
The PML interlayer located outside the small circle BR and inside the large circle
Bρ is defined as ΩPML with ΩPML = {x ∈ R2 : R ≤ |x| ≤ ρ}. The region
that lies outside D and inside BR is defined as Ω1 = BR \ D. These symbols are
depicted in the schematic diagram Fig. 2(a) along with the regions or boundaries
they represent.

(a) Circular PML domain (b) Uniaxial PML domain

Figure 2. Schematic diagram of the circular PML domain shown
in (a) and uniaxial PML domain shown in (b).

We define a complex function α(r) as the model medium property, such that

α(r) = 1 + iσ(r) with σ ∈ C(R), σ ≥ 0, and σ = 0 for r ≤ R.

In [9], a typical choice of σ(r) is given as follows:

(3) σ(r) = σ0

( r −R

ρ−R

)m
,
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where σ0 is a given constant in R, and m ≥ 1 is a given integer.
We define r̃ as the complex radius that is given as.

r̃ = r̃(r) =

 r, if r ≤ R,∫ r

0

α(t)dt = rβ(r), if r ≥ R.

Then, following the PML framework given in [12, 39], the Helmholtz equation (1a)
can be reformulated to the following form:

(4) ∇ · (A∇ũ) +Bũ = 0 in R2 \BR,

where A = HLHT , B = k2αβ, and

L =

(
β(r)
α(r) 0

0 α(r)
β(r)

)
, H =

(
cos θ − sin θ
sin θ cos θ

)
.

Thus, the reformulated Helmholtz equation with the circular PML reads as

∇ · (A∇û) +Bû = 0, in ΩPML ∪ Ω1,(5a)

û = g, on ΓD,(5b)

û = 0, on Γ2.(5c)

2.3. The Uniaxial PML method. We introduce two rectangles B1, B2 such that
D ⊂ B1 ⊂ B2. The rectangle B1 is defined as B1 = {x ∈ R2 : |x1| ≤ L1/2, |x2| ≤
L2/2}, and the rectangle B2 is defined as B2 = {x ∈ R2 : |x1| ≤ L1/2 + d1, |x2| ≤
L2/2+d2}. The rectangles are set big enough such that the domain D is contained
in the interior of B1. We let Γ1 = ∂B1, and Γ2 = ∂B2. These symbols are
depicted in the schematic diagram Fig. 2(b) along with the regions or boundaries
they represent.

We define two complex functions α1(x1) and α2(x2) as the model medium prop-
erty. They read as α1(x1) = 1 + iσ1(x1), α2(x2) = 1 + iσ2(x2), where

σj ∈ C(R), σj ≥ 0, σj(−t) = σ(t) and σ = 0 for r ≤ Lj/2, j = 1, 2.

By [10], one can choose d1, d2 and σj(t) such that

d1
L1

=
d2
L2

= χ,(6)

and

σj(t) = σ̃j

(
|t| − Lj/2

dj

)m

,(7)

where χ is a given constant in R, m is a given integer, and σ̃j =
(m+ 1)σ

dj
for

j = 1, 2.
We denote x̃j as the complex coordinate that reads as

x̃j =

 xj , if |xj | ≤ Lj/2,∫ xj

0

α(t)dt, if |xj | ≥ Lj/2.
(8)

For the solution u of the Helmholtz scattering problem (1a)–(1c), let ũ = E(u|Γ1)
be an extension of u|Γ1 . Then, following the PML method given in [10], one can
derive that ũ satisfies

∂2ũ

∂x̃2
1

+
∂2ũ

∂x̃2
2

+ k2ũ = 0 in R2 \B1,
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which yields the desired equation by applying the chain rule, as follows:

∇ · (A∇ũ) +Bũ = 0 in R2 \B1,

where B = k2α1(x1)α2(x2) and

A =

(
α2(x2)/α1(x1)

α1(x1)/α2(x2)

)
.

Thus, the reformulated Helmholtz equation with the uniaxial PML reads as

∇ · (A∇û) +Bû = 0, in ΩPML ∪ Ω1,(9a)

û = g, on ΓD,(9b)

û = 0, on Γ2.(9c)

It can be seen that after the application of PML method, the original form of
the equation is changed from (1a)-(1c) to (5a)-(5c) if using the circular PML and
(9a)-(9c) if using the uniaxial PML. The Laplace operator of the original system
is changed into a divergence-gradient operator with the variable coefficient A; the
constant wave number part k2u is also changed into variable coefficients Bû. Thus,
if only looking at the form of the equation alone, one may have the illusion that the
new system is actually more difficult to solve. But in fact this is not the case, as it
can be seen that the complex boundary conditions of the original system become
the homogenous Dirichlet type boundary conditions for the bounded regions. And
this change is important, especially for the application of DNN methods to solve
the system, because in our previous work [44], we have established the so-called
ray-based DNN method for the Helmholtz equation in bounded regions. Hence, the
PML method can be viewed as a bridge that allows us to extend the previously
established methods [44] to unbounded regions. The application in PML gives us
a great convenience because it is practically possible to obtain the DNN algorithm
for the new model directly by changing the loss equation when building the neural
network.

3. Methodology of RBDNN-PML for Helmholtz equation

In this section, we develop the RBDNN-PML methods (i.e., we firstly use the
PML method to truncate the unbounded domain to a bounded domain, and then
using the ray-based DNN method to solve the truncated problem) to solve the
Helmholtz equation in the unbounded region. In the subsection 3.1, we give a brief
introduction of the general DNN framework. In 3.2, the ray-based DNN method for
the bounded domain Helmholtz problem is proposed. Since in Section 2, we have
already transfer the unbounded domain problem to the problem in the bounded
domain, thus in section 3.3, the RB-DNN method is applied to the new system by
constructing the minimization objective function.
3.1. DNN method. A DNN is a sequential alternative composition of linear func-
tions and nonlinear activation functions. A n-layer neutral network Nn can be
defined as

• Input layer: N 0 = x,
• Hidden layers: N l = σl(W

lN l−1 + bl), l = 1, 2, · · · , n− 1,
• Output layer: Nn = WnNn−1 + bn,

where σ denotes the activation function, Wl denote the weights and bl denote the
biases. The most common used types of activation functions include the sigmoid
function σ(t) = (1 + e−t)−1 and the rectified linear unit (ReLU) σ(t) = max(0, t).
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For simplicity, we denote all the parameters in DNN by a parameter vector Θ, i.e.,

Θ = {W1, · · · ,Wn,b1,b2, · · · ,bn}.
In Fig. 3, we sketch a simple fully connected DNN example with 3 hidden layers
and 8 neurons in each hidden layer. The number ml denotes the number of neurons
in the l-th layer.

Figure 3. An example of a simple fully connected DNN.

3.2. Ray-based meshless DNN method. We consider the high frequency Helmholtz
boundary value problem as follows

−∆u− k2u = f(x) in Ω,(10a)

u = uD on ∂Ω.(10b)

When adopting the DNN method, we train a neural network by minimizing some
loss function. Define a space Pk,p that is spanned by the plane wave functions with
p different unit direction dl ∈ RN−1 with |dl| = 1 and l = 1, 2, · · · , p, such that

Pk,p(R
N ) = {u ∈ C∞(RN ) : u(x) =

p∑
j=1

αle
ikx·dl}.(11)

Examples of such spaces are the so-called the ultra weak-variational formulation
method [7], the plane-wave DG (discontinuous Galerkin) method [25].

Then, the meshless, Ray-based DNN method for solving (10a)–(10b) can be
defined as

ud(x,Θ) =

p∑
j=1

eikx·djNj(x,Θ),(12)

where Nj(x,Θ) = NR
j (x,Θ) + iN I

j (x,Θ) with NR
j (x,Θ) and N I

j (x,Θ) represent
two different DNNs which are independent with each other.

The DNN in (12) is used to compute the solution of Helmholtz equations by
minimizing the least squares of the Helmholtz equation’s residual, which are given
by the loss function as follows:

loss(Θ) = losseq(Θ) + ϱlossDbc(Θ),(13)

where ϱ denotes a penalty parameter and

losseq(Θ) =

N∑
m=1

|f(xm)−∆ud(xm,Θ)− k2ud(xm,Θ)|2,(14a)

lossDbc(Θ) =

M1∑
m=1

|uD(xm)− ud(xm,Θ)|2,(14b)
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with N,M1 denote the number of choosing points in Ω, ∂Ω.
In practice, the integral of the above loss function is usually computed by a

numerical way. A commonly-used approach in machine learning method is to use
the Monte Carlo integration that is given below. For any v, the numerical integral
of it reads as ∫

Ω

v(x)dx =
|Ω|
N

N∑
i=1

v(xi),(15)

where |Ω| is the volume of the domain Ω and {xi}Ni=1 are the random points in Ω.

3.3. RBDNN-PML method. Based on the strategy of the RBDNN method
((12)-(14b)) constructed for the Helmholtz equation in bounded domain and the
new system ((5a)–(5b) or (9a)–(9b)) after using the PML method, we propose a
DNN method for the reformulated Helmholtz scattering problem with PML as

u(x,Θ) =

 u1(x,Θ1) =

p∑
j=1

eikx·djNj(x,Θ1), x ∈ Ω1,

u2(x,Θ2) = Np+1(x,Θ2), x ∈ ΩPML.

(16)

The DNN in (16) is used to compute the solution of PML problem by minimizing
the following least squares of the residual,

loss(Θ) = losseq(Θ1) + ϱ1loss
D
in(Θ1) + losspml(Θ2) + ϱ2loss

D
out(Θ2) + ϱ3lossif (Θ),

(17)

where ϱi(i = 1, 2, 3) denote three penalty parameters and

losseq(Θ1) =

N1∑
m=1

| −∆u1(xm,Θ1)− k2u1(xm,Θ1)|2,

lossDin(Θ1) =

M1∑
m=1

|g(xm)− u1(xm,Θ1)|2,

losspml(Θ2) =

N2∑
m=1

|∇ · (A∇u2(xm,Θ2)) +Bu2(xm,Θ2)|2,

lossDout(Θ1) =

M3∑
m=1

|u2(xm,Θ2)|2,

lossif (Θ) =

M2∑
m=1

|u1(xm,Θ1)− u2(xm,Θ2)|2.

with N1, N2 denote the number of choosing points in Ω1,ΩPML and M1,M2,M3

denote the number of choosing points in ∂D,Γ1,Γρ.

4. Numerical example

In this section, we implement numerical examples to verify the effectiveness of
the proposed meshless DNN method in solving the Helmholtz equation with high
wave numbers and unbounded domain.
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Example 1. In the first numerical example, we set the scattering region D be
a unit circle with radius a = 1, and suppose the exact solution is known, that is

u = H
(1)
0 (kr) where H

(1)
0 denotes the zeroth-order Hankel function of the first kind.

We take R = 0.3, ρ = 1, σ = 30. We set NR(x),N I(x) to be 4 hidden layers with
80 neurons in each hidden layer for k = 100, and 10 hidden layers with 100 neurons
in each hidden layer for k = 500. In the learning process, we choose the points in
each epoch to be 1000. The maximum errors on the domain Ω1 = {x ∈ R2 : |x| ∈
[0.3, 0.8]} are shown in Table 1 for each case and various epochs. We see that as the
number of epochs increases, the errors of real and imaginary parts both decrease to
the scale of 10−6, which shows that the numerical solution of our proposed DNN
method converges very well to the exact solution. The profiles of the computed
solution using 5000 epochs for k = 500 are shown in Fig. 4. These results show
that even when k is large, the DNN method can also solve the Helmholtz scattering
problem well.

Table 1. Example 1: maximum error with various epochs for
k = 100 and k = 500.

k No. of points epoch Re-Error Im-Error
100 2500*2500 1000 1.4e-1 1.4e-1

5000 2.4e-2 2.4e-2
7000 8.8e-3 8.9e-3
10000 4.4e-3 4.4e-3

500 5000*5000 1000 3.6e-1 3.5e-1
5000 4.3e-2 4.4e-2
8000 8.8e-3 8.7e-3
10000 7.7e-3 7.8e-3

(a) The real part (b) The imaginary part

Figure 4. Example 1 with k = 500: (a) the real part, and (b)
imaginary part of the computed solution.

Example 2. In the second numerical example, we set the scattering domain D
to be rectangular withD = [−0.4, 0.4]×[−0.4, 0.4]. Similar to the previous example,

we also set the exact solution as u = H
(1)
0 (kr). We take L1 = L2 = 1.4, d1 = d2 =

0.3. We set NR(x),N I(x) to be 6 hidden layers with 40 neurons in each hidden
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Table 2. Example 2: maximum error with various epochs for
k = 500 and k = 3000.

k No. of points epoch Re-Error Im-Error
500 500*500 500 7.2e-1 7.7e-1

3000 5.7e-1 6.0e-1
6000 2.2e-2 2.4e-2
20000 1.1e-3 1.2e-3

3000 3000*3000 1000 4.7e-1 4.9e-1
4000 8.4e-2 8.4e-2
7000 3.8e-2 3.7e-2
30000 1.4e-3 1.3e-3

(a) real part (b) imaginary part

Figure 5. Example 2 with k = 3000: (a) the real part, and (b)
imaginary part of the computed solution.

layer for k = 500, and 10 hidden layers with 80 neurons in each hidden layer for
k = 3000. In the learning process, we choose the points in each epoch to be 1000.
The maximum errors on the domain Ω1 = {x ∈ R2 : |x| ∈ [−0.7, 0.7]2 \ [−0.4, 0.4]2}
are shown in Table 2 for each case and various epochs. These accuracy results show
that for the square region in this example, our proposed DNN method also solves
the Helmholtz scattering problem well for very large wave frequency numbers k. In
Fig. 5, we also the profiles of the solution u that is computed using 10000 epochs
for k = 3000.

Example 3. In the third numerical example, we consider the scattering domain
D is a circle and the incoming wave is a plane wave, propagating along the x-axis.
Suppose the incoming wave can be written in polar coordinate as

uinc = −eikx = −
∞∑

n=−∞
i−nJn(kρ)e

inθ.
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(a) real part (b) imaginary part

Figure 6. Example 3 with k = 30: (a) the real part, and (b)
imaginary part of the computed solution.

(a) real part (b) imaginary part

Figure 7. Example 3 with k = 100: (a) the real part, and (b)
imaginary part of the computed solution.

The exact solution for the scattering of such a wave from a circular disk is given
by the series

Uex(ρ, ϕ) = −
∞∑

n=0

inJn(kR)
H

(1)
n (kρ)

H
(1)
n (ka)

einθ.(18)

We set NR(x),N I(x) to be 8 hidden layers with 100 neurons in each hidden
layer, Ω1 = {x ∈ R2 : |x| ∈ [0.3, 0.8]}, ΩPML = {x ∈ R2 : |x| ∈ [0.8, 1]}. In
Fig. 6 and Fig. 7 , we plot the profiles of the solution u that is computed using
10000 epochs for k = 30 and k = 100, respectively. Both numerical results show
the wave propagation pattern, especially for high frequencies k = 100, and the
numerical results are very accurate and robust to obtain the signature propagation
morphology of scattered waves.
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5. Concluding remarks

In this paper, we propose a novel, efficient, and robust numerical method for
solving the high-frequency Helmholtz scattering problem in the unbounded region.
The proposed method is based on the combination of the PML method and the
ray-based DNN method. The numerical results demonstrate the effectiveness of
the proposed method in providing a highly accurate approximation of the exact
solution. As the approach provided in this study is sufficiently generic, it is expected
that comparable methods can be derived in future research to solve other systems
in unbounded regions, such as the wave equation, heat equation, or electromagnetic
equations by using the DNN method. Some discussions on those topics are given
below.

• Extension to high dimension: The numerical methods and numerical experi-
ments in this paper are actually for 2D (two-dimensional) space, while 3D (three-
dimensional) space is more than just adding a spatial variable the algorithm and
computational consumption will need to be changed accordingly or even completely
different. The extension/generalization of the PML method as well as designing a
DNN method for the Helmholtz equation in the 3D domain while ensuring feasi-
ble computational cost is by no means an easy task, which is the first plan of the
author.

• Extension to the wave equation: In the author’s previous work [44] and this
article, all numerical algorithms are designed for solving the Helmholtz equation,
which belongs to the so-called ODE system, i.e., all derivatives are only for spatial
variables. Indeed, most mathematical systems describing the laws of nature are
systems of PDEs, i.e., the derivatives include not only space but also time, e.g., the
wave equations, the fluid dynamics systems, etc. One of the current hot research
topics in the computational community has been the application of machine learning
methods in an attempt to find more accurate and stable mathematical methods
[14, 21]. Therefore, one of the author’s further research plans is to extend the ray-
based approach designed in this paper to the wave equations, and the combination
of DNN and PML techniques designed in this paper to the wave equations over
unbounded regions. This method is sufficiently adaptable and therefore it is highly
possible to establish a framework for the design of efficient numerical methods for
the wave equations without losing specialty but in a uniform manner.

• DNN method for coupled nonlinear type models: Most of the physical models
that had been widely used and studied in the natural science are so-called coupled
nonlinear models, where multiple variables are coupled together in a nonlinear man-
ner, such as the Navier-Stokes equations in fluid dynamics, which are nonlinear due
to the presence of advection terms and the system also contains two variables, the
velocity field and the pressure; and the Maxwell equations describing the electro-
magnetic field, which consist of four coupled equations. It should be noted that the
DNN method constructed in this paper is only for a simple linear system containing
only one variable, then how to construct a DNN algorithm for a nonlinear system
with multiple variables is also one of the plans that the author is very interested in
and ready to implement.
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