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NONLINEAR SYSTEM IDENTIFICATION BASED ON FUZZY

NEURAL NETWORK
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Abstract. This paper focuses on neural network-based learning methods for identifying nonlinear

dynamic systems. The Takagi-Sugeno (T-S) fuzzy model is introduced to represent nonlinear
systems in a linear way. Fractional calculus is integrated to minimize the cost function, yielding
a fractional-order learning algorithm that can derive optimal parameters in the T-S fuzzy model.
The proposed algorithm is evaluated by comparing it with an integer-order method for identifying

numerical nonlinear systems and a water quality system. Both evaluations demonstrate that the
proposed algorithm can effectively reduce errors and improve model accuracy.

Key words. Fractional calculus, T-S fuzzy neural network, gradient descent method, nonlinear
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1. Introduction

System identification (SID) is indispensable both in traditional industry (chem-
ical industry, refinery, etc.) and modern engineering fields, e.g., mechanical engi-
neering [1], robotics and quadrotors [2], etc., since it can provide effective models
for adaptive control and prediction [3–5]. Neural network (NN) based SID meth-
ods have aroused the interest of many researchers since the activation function in
NN has multiple choices so that the NN could bear excellent performance in fit-
ting nonlinear systems [6]. One of the widely used NN is the fuzzy neural network
(FNN) [7, 8], which is a hybrid intelligent system based on fuzzy logic and neural
network. By applying fuzzy sets and rules to the neural network, the FNN can han-
dle fuzzy and uncertain information and has good generalization ability. The FNN
has been widely applied in many fields, including electric power [9], machinery [10],
and mathematics [11].

Takagi-Sugeno (T-S) fuzzy model is one of the most commonly used fuzzy neural
network models which is proposed by Takagi and Sugeno in 1985. It describes the
rule of ’if-then’ and consists of two parts: an antecedent network and a consequent
network. The antecedent network is used to match the antecedent of fuzzy rules,
and the consequent network is used to generate the consequent of fuzzy rules. The
total output is the weighted sum of the consequences of each fuzzy rule, where the
weighting coefficient is the applicability of each rule. The parameters of membership
functions can be initialized by the training samples, while associated parameters
are identified by the recursive least squares algorithm [13]. Muralisankar made use
of the Lyapunov-Krasovskii functional and stochastic analysis approach and estab-
lished new delay-dependent stability criteria in terms of linear matrix inequalities
(LMIs) in T-S fuzzy stochastic neural networks [14]. Li proposed a recognition
method and simplified scheme for T-S fuzzy neural networks. The basic idea is
that the structure identification of fuzzy neural networks is guided by the out-
put approximation error attenuation in each cluster, with input space clustering
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and sub clustering as the main steps [15]. Li studied observer based distributed
time-varying delay T-S fuzzy neural network dissipation rate control, obtained an
observer-based controller for the T-S fuzzy delayed model [16].

In addition, there are many identification algorithms for neural networks, such
as the gradient descent (GD) algorithm [17] and the least squares (LS) algorithm
[18]. In order to solve the problem of inefficient traditional lower and upper bound
estimation (LUBE) model training, Liu adopted a new training scheme based on the
GD method, which improved the LUBE model and enhanced efficiency [19]. Zheng
focused on the most commonly used Stochastic Gradient Descent (SGD) algorithm
in a mild decentralized setting and proposed a robust algorithm to handle unstable
networks. [20].

Recently, fractional order-based SID algorithms have attracted many researcher-
s [21, 22, 24]. Fractional differential calculus also has been a famous notion in
mathematics for many years. It is an extension of traditional calculus and dif-
ference theory, and can describe many nonlinear and nonlocal phenomena. Some
classical fractional derivatives include the Grunwald Letnikov derivative, Riemann-
Liouville derivative, and Caputo derivative. Lupupa proposed a fractional order
identification algorithm for wireless communication which had smaller errors than
the conventional method because of its long-term memory ability and the reduction
of model parameters [21]. Gehring analyzed fractional models from the perspective
of mathematical algebra, unknown parameters and fractional order were identified
solely from input-output signals, and further elastic materials were selected to il-
lustrate the effectiveness of the method [22]. Liang investigated the input-output
finite-time stability of fractional-order positive switched systems [23]. Aguilar used
fractional calculus to reduce the number of parameters of the proposed neural net-
work model, which simplified the complexity of the model and reduced the time
required for digital simulation [24]. Compared with the integer order, fractional
calculus takes into account the influence of the variables at the previous time and
constructs a long memory function, so that the fractional order system can make use
of the past information, and has a better effect on control and identification [25–27].

Taking into account the advantages of T-S fuzzy neural networks and fractional
calculus, this paper proposes a fuzzy neural network for complex nonlinear system
identification. The T-S fuzzy neural network is trained to fit nonlinear system
observations in a linear way, and the parameters of the membership functions in
the T-S fuzzy neural network can be estimated using a fractional-order gradient
descent method. The main contributions of this paper are as follows:

• T-S fuzzy model is combined with the neural network to analyze complex
nonlinear problems in a linear way. A fractional-order gradient descent
learning algorithm is proposed to deal with the T-S fuzzy neural network.

• Evaluation is performed by comparing with integer order method on the
identification of numerical nonlinear system and a water quality system,
both of which show that the proposed algorithm can effectively reduce the
error of the results and improve the accuracy of the model.

The rest of this paper is organized as follows. In Section 2, a T-S fuzzy model
is constructed. In Section 3, the fractional order gradient descent updating rule is
proposed to optimize the weights in the T-S fuzzy neural network, and a detailed
pseudo code is presented. In Section 4, examples of numerical nonlinear model and
water quality system are provided to verify the proposed algorithm. Finally, the
evaluation of this work is reviewed and open issues are discussed for future research
in Section 5.
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2. Problem Formulation

2.1. T-S Model of Fuzzy Systems. T-S fuzzy model is a model with strong
adaptive ability, and can be modeled as follows [28]:

Ri : If x1 is Ai
1, x2 is Ai

2, · · · , xn is Ai
n

then yi = pi0 + pi1x1 + · · ·+ pinxn,(1)

where Ri (i = 1, 2, · · · , l) is the ith rule of neural network, l is the maximum number
of rules, x1, x2, · · · , xn are the inputs of the network, n is the number of inputs,
and Ai

j (j = 1, 2, · · · , n) are fuzzy sets of xj in the ith rule, yi is the output of the

ith rule and is a linear combination of inputs x1, x2, · · · , xn, p
i
j is the parameter

of ith rule. Generally, larger l will increase the complexity of the network, while
smaller l may yield inaccurate network. Define M(xj) as the membership degree
of the membership function of xj in the fuzzy set Ai

j :

M(xj) = µi
xj

= e
−

(xj−cij)
2

bi
j ,(2)

where µi
xj

is the membership degree of xj in the ith rule, which decides to what

degree one rule integrates to the final output, and cij and bij are the mean and width
of the corresponding membership function, respectively. In this paper, the mem-
bership function has the same distribution with Gaussian, which yields excellent
performance in system identification [29]. Considering the fuzzy operator of each
rule, the output yf of FNN can be obtained by:

yf =

∑l
i=1 w

iyi∑l
i=1 w

i

=

∑l
i=1 w

i(pi0 + pi1x1 + · · ·+ pinxn)∑l
i=1 w

i
,(3)

where

(4) wi =
n∏

j=1

µi
xj

i = 1, 2, · · · , l,

represents the fuzzy degree of the ith output in the total output. In this article,
the T-S fuzzy neural network is a parallel-parallel identification mode, where both
input and output variables are decomposed into multiple fuzzy subsets, each cor-
responding to a fuzzy rule. These fuzzy rules are independent of each other, and
fuzzy inference is conducted in parallel, ultimately summarizing the output of the
fuzzy neural network.

Based on the T-S model given earlier, we can design the block diagram of a
fuzzy neural network shown in Figure 1. The network consists of two parts: the an-
tecedent network and the consequent network. The antecedent network is designed
to match the antecedent of fuzzy rules, while the consequent network generate the
consequent of fuzzy rules.
(A) Antecedent network. The antecedent network consists of four layers. The first
layer is the input layer, in which each node is directly connected to the individual
component xi of the input vector. The input layer serves to transmit the input

value x =
[
x1 x2 . . . xn

]T
to the next layer. n is the number of nodes in this layer.

The second layer consists of nodes representing linguistic variable values, such
as ”NM” and ”PS”. Its purpose is to calculate the membership function µi

j of each
input component belonging to the fuzzy set of each linguistic variable value, where
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Figure 1. Fuzzy neural network structure based on T-S model.

µi
j = µi

A (xj), j = 1, 2, · · · , n; i = 1, 2, · · · , l. n is the dimension of the input, and l
is the number of fuzzy partitions for xj . In this paper, we use the Gaussian function
(2) as the membership function.

Each node in the third layer represents a fuzzy rule, which is used to match
the antecedents of the fuzzy rule and calculate the fitness of each rule, that is wi,
The total number of nodes in this layer is l. For a given input, only the language
variable values near the input point have a large membership value, while the
language variable values far from the input point have a small membership value.

The fourth layer has the same number of nodes as the third layer, which is used
to achieve normalized calculation.

(5) wi = wj/
l∑

j=1

wj , i = 1, 2, · · · , l.

(B) Consequent network. It consists of r parallel sub-networks with the same struc-
ture, each of which generates an output quantity.

The consequent network consists of r parallel sub-networks with the same struc-
ture. The first layer of each sub-network is the input layer, which transfers the
input variables to the second layer. The input value of the 0th node in the input
layer is x0 = 1, which serves as the constant term in the fuzzy rule consequent.

The second layer of each sub-network has l nodes, each representing a rule. The
function of this layer is to calculate the consequent of each rule.

(6)
yij = pij0 + pij1x1 + · · ·+ pijnxn =

n∑
k=0

pijkxk

j = 1, 2, · · · , r; i = 1, 2, · · · , l; x0 = 1.

The third layer of each sub-network calculates the output of the system.

(7) yj =

l∑
i=1

wiyij j = 1, 2, · · · , r.

The output yj of the fuzzy neural network is the weighted sum of the consequents
of each rule, where the weighting coefficients are the normalized fitness of each
fuzzy rule. In other words, the output of the antecedent network is used as the
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Figure 2. Flowchart of the fuzzy neural network.

connection weight of the consequent network. Figure 2 is the flowchart of the fuzzy
neural network proposed in this paper.

To get a proper neural network is to find the optimal weights (pij , c
i
j , b

i
j) in (1)

and (2) that can minimize the following cost function

(8) E(θ) =
1

2
(y − yf (θ))

2,

where E is the cost function, y and yf are real output and neural network output
respectively, and θ represents the set of weights (pij , c

i
j , b

i
j). Since fractional cal-

culus has been a top choice to improve system performance both in control and
identification, we take fractional order based algorithm into consideration in the
next section.

2.2. Fractional calculus. The Riemann-Liouville (RL) fractional derivative, Grun-
wald-Letnikov (GL) fractional derivative, and Caputo fractional derivative are wide-
ly used definitions in fractional calculus.
(A) The RL fractional derivative. The RL fractional derivative is defined by Riemann-
Liouville [21] as

(9) Dαf(t) =


dn

dtn

[
1

Γ(n−α)
d
dt

∫ t

0
f(τ)

(t−τ)α+1−n dτ
]

n− 1 < α < n
dn

dtn f(t) α = n

,

where f(•) is the function of t, D is the fractional derivative operator, n is a positive
integer (n = 1, 2, · · · ), α is arbitrary order, and Γ(•) is the Gamma function defined
as

(10) Γ(α) =

∫ ∞

0

e−ττα−1dτ.

The RL fractional derivative is one of the earliest methods for defining fractional
derivatives, which is defined by the Riemann-Liouville integral of a function and
is mainly used to describe the initial conditions of fractional differential equations
in practical applications. Its definition includes integrals, so the calculation is
relatively complex. It is applicable to functions defined on the interval (−∞,∞).
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(B) The GL fractional derivative. The GL fractional derivative is proposed by
Grunwald-Letnikov

Dαf(t) = lim
h→0

1

hα

∞∑
m=0

(−1)m
(
α
m

)
f(t−mh)(11)

≈ 1

hα

L∑
m=0

(−1)m
(
α
m

)
f(t−mh),

where h is the sampling time, L is the number of the past values considered, and

the Newton’s binomial

(
α
m

)
is defined as

(12)

(
α
m

)
=

Γ(α+ 1)

Γ(m+ 1)Γ(α−m+ 1)
.

Define aαj = (−1)m
(
α
m

)
(j = 0, 1, 2, · · · ) as the forgetting factor, which represents

the influence of the past moment on the future moment, then aαj can be written as:

(13) aαj =


0 j < 0
1 j = 0

(−1)j α(α−1)···(α−j+1)
j! j = 1, 2, 3, ...

.

The recursive expression of aαj may be reformed as

aαj =

{
1 j = 0(
1− α+1

j

)
aαj−1 j = 1, 2, 3, ...

.(14)

Grunwald-Letnikov fractional derivative, on the other hand, is defined by a re-
cursive forward difference formula and is suitable for calculating the fractional de-
rivative of discrete data. The definition of the GL fractional derivative is relatively
simple and easy to compute and it can handle functions defined on any domain.
(C) The Caputo fractional derivative. In both the RL and GL fractional derivatives
described above, the differential equation may be difficult to solve if the initial
conditions are non-zero, so we need the other fractional derivative Caputo.

(15) Dα
t y(t) =

1

Γ(m− α)

∫ t

t0

y(m)(τ)

(t− τ)1+α−m
dτ,

wherem = ⌈α⌉ is integer. Caputo fractional derivative is defined by a mixed method
based on integer-order derivatives and Riemann-Liouville fractional derivatives, and
is widely used to describe the boundary conditions of fractional differential equa-
tions in practical applications.

Overall, these three definitions of fractional derivatives have their own advan-
tages and disadvantages. Depending on the specific problem, appropriate definition
can be chosen to solve fractional calculus equations.

3. Techniques for fuzzy neural network

3.1. Fuzzy neural network based integer order algorithm. The integer or-
der gradient descent method is a common way of implementing the machine learning
process, particularly in neural network models, where the core of the BP backprop-
agation method is the gradient descent to optimise the weight parameters for each
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layer.

θt = θt−1 − η
∂E

∂θ
,

△θ = θt − θt−1 = −η
∂E

∂θ
,(16)

where θt and θt−1 represent the weights of the current time and the previous time,
respectively, η is the learning rate, and △θ is the change of weight. Then, the
modified integer order estimates of the model parameters can be derived as:

pij(t) = pij(t− 1)− η
∂E

∂yf

∂yf
∂pij

,(17)

cij(t) = cij(t− 1)− η
∂E

∂yf

∂yf
∂cij

,(18)

bij(t) = bij(t− 1)− η
∂E

∂yf

∂yf
∂bij

,(19)

where

∂E

∂yf
=−(y − yf ),

∂yf
∂pij

=
wixj

w1 + w2 + · · ·+ wl
=

wixj∑l
i=1 w

i
,

∂yf
∂cij

=
∂yf
∂wi

∂wi

∂cij

=
∂

∂wi
(
w1y1 + w2y2 + · · ·+ wlyl∑l

i=1 w
i

)
∂wi

∂cij

=
yi(

∑l
i=1 w

i)−
∑l

i=1 w
iyi

(
∑l

i=1 w
i)2

∂wi

∂cij
,

∂yf
∂bij

=
∂yf
∂wi

∂wi

∂bij

=
∂

∂wi
(
w1y1 + w2y2 + · · ·+ wlyl∑l

i=1 w
i

)
∂wi

∂bij

=
yi(

∑l
i=1 w

i)−
∑l

i=1 w
iyi

(
∑l

i=1 w
i)2

∂wi

∂bij
,

∂µi
xj

∂cij
= e

−
(xj−cij)

2

bi
j (

2(xj − cij)

bij
) = µi

xj
(
2(xj − cij)

bij
),

∂µi
xj

∂bij
= e

−
(xj−cij)

2

bi
j (

(xj − cij)
2

(bij)
2

) = µi
xj
(
(xj − cij)

2

(bij)
2

),

∂wi

∂cij
=

∂wi

∂µi
xj

∂µi
xj

∂cij
= µi

x1
µi
x2

· · ·µi
xj−1

µi
xj+1

· · ·µi
xn

∂µi
xj

∂cij
,

∂wi

∂bij
=

∂wi

∂µi
xj

∂µi
xj

∂bij
= µi

x1
µi
x2

· · ·µi
xj−1

µi
xj+1

· · ·µi
xn

∂µi
xj

∂bij
.

(20)
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Then, we derive the iterative computation of the fuzzy parameters:

pij(t) = pij(t− 1) + η (y − yf )
wixj∑l
i=1 w

i
,(21)

cij(t) = cij(t− 1) + η (y − yf )
2
(
yi

(∑l
i=1 w

i
)
−
∑l

i=1 w
iyi

) (
xj − cij

)
wi

bij

(∑l
i=1 w

i
)2 ,(22)

bij(t) = bij(t− 1) + η (y − yf )

(
yi

(∑l
i=1 w

i
)
−
∑l

i=1 w
iyi

) (
xj − cij

)2
wi(

bij
)2 (∑l

i=1 w
i
)2 ,(23)

where i = 1, 2, · · · , l, j = 1, 2, · · · , n. Equations (21)-(23) represent the integer
correction method of parameters and coefficients in fuzzy neural network in (1),
and the pseudo codes of the integer order gradient descent fuzzy neural network
(IOFNN) algorithm are listed as follows:

Algorithm 1 The training process of the integer order learning algorithm

Input:
x1, x2, ..., xn

Output:
yf

1: Construct the model in (2)
2: Initialization: pij(0), b

i
j(0), c

i
j(0)

3: Training times: N
4: Number of samples: M
5: t = 1
6: for 1 : N do
7: for 1 : M do
8: Calculate yf by (3)
9: Compute pij(t+ 1) by (21), cij(t+ 1) by (22), and bij(t+ 1) by (23)

10: t = t+ 1
11: end for
12: end for
13: End

3.2. Fuzzy neural network based fractional order algorithm. The tradi-
tional integer order fuzzy neural network (IOFNN) has good performance in system
identification, but the convergence rate and estimation accuracy haven’t reached
the desired level. Since fractional calculus has been a top choice to improve system
performance both in control and identification, we take fractional order based al-
gorithm into consideration in this section. The numerical solution of the fractional
order differential equation given by the GL fractional derivative [30] can be written
as:

(24) f(tm) = Dα
θ h

α −
L∑

m=0

aαj f(tm − j),
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where Dα
θ is equal to Dαθ(t). Considering the GL fractional derivative (11) and its

numerical solution (24), we rephrase the gradient descent method into a fractional
order one:

(25) △θ = θt − θt−1 = −η
∂E

∂θ
hα −Dα

θ h
α.

Consider that E is a composite function of θ [31]:

(26) △θ = −η
∂E

∂θ
hα −Dα

θ h
α = −η

∂E

∂yf

∂yf
∂θ

hα −Dα
θ h

α.

Then, the modified fractional order estimates of the model parameters can be de-
rived as:

pij(t) = pij(t− 1)− η
∂E

∂yf

∂yf
∂pij

hα −Dα
pi
j
hα,(27)

cij(t) = cij(t− 1)− η
∂E

∂yf

∂yf
∂cij

hα −Dα
cij
hα,(28)

bij(t) = bij(t− 1)− η
∂E

∂yf

∂yf
∂bij

hα −Dα
bij
hα,(29)

where

Dα
pi
j
=

1

hα

L∑
m=0

(−1)m
(
α
m

)
pij(t−mh),

Dα
cij
=

1

hα

L∑
m=0

(−1)m
(
α
m

)
cij(t−mh),

Dα
bij
=

1

hα

L∑
m=0

(−1)m
(
α
m

)
bij(t−mh).

Considering the Eq. (20), we derive the iterative computation of the fuzzy param-
eters:

pij(t) = pij(t− 1) + η(y − yf )
wixj∑l
i=1 w

i
hα

−
L∑

m=0

(−1)m
(
α
m

)
pij(t−mh),(30)

cij(t) = cij(t− 1) + η(y − yf )
2(yi(

∑l
i=1 w

i)−
∑l

i=1 w
iyi)(xj − cij)w

i

bij(
∑l

i=1 w
i)2

hα

−
L∑

m=0

(−1)m
(
α
m

)
cij(t−mh),(31)

bij(t) = bij(t− 1) + η(y − yf )
(yi(

∑l
i=1 w

i)−
∑l

i=1 w
iyi)(xj − cij)

2wi

(bij)
2(
∑l

i=1 w
i)2

hα

−
L∑

m=0

(−1)m
(
α
m

)
bij(t−mh),(32)
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where i = 1, 2, · · · , l, j = 1, 2, · · · , n. Equations (30)-(32) represent the fractional
correction method of parameters and coefficients in fuzzy neural network in (1),
and the pseudo-code of the fractional order gradient descent fuzzy neural network
(FOFNN) algorithm is listed as follows:

Algorithm 2 The training process of the fractional order learning algorithm

Input:
x1, x2, ..., xn

Output:
yf

1: Construct the model in (2)
2: Initialization: pij(0), b

i
j(0), c

i
j(0)

3: Training times: N
4: Number of samples: M
5: t = 1
6: for 1 : N do
7: for 1 : M do
8: Calculate yf by (3)
9: Compute pij(t+ 1) by (30), cij(t+ 1) by (31), and bij(t+ 1) by (32)

10: t = t+ 1
11: end for
12: end for
13: End

4. Simulation examples

4.1. Nonlinear System Identification. Nonlinear systems have widely existed
in modeling and analysis of complex systems, including but not limited to industrial
processes, control systems, and mechanical systems. Traditional linear systems
often cannot fully describe the complex dynamic characteristics of these systems,
while nonlinear systems can more accurately characterize the nonlinear behavior
and time-varying properties of the systems. Fuzzy neural networks have shown
good performance in these cases [14, 15]. Consider a complex nonlinear system as
follows:

(33) y(k) =
u(k − 2)(y(k − 3)− 1)

∑3
i=1 y(k − i) + u(k − 1)

1 + y2(k − 2) + y2(k − 3)
,

where u(k) is a random sequence between (-1,1). The inputs of the FNN model
are y(k − 1), y(k − 2), y(k − 3), u(k − 1), u(k − 2), and the output is y(k). For
comparison, appropriate integer order parameters are selected as l = 5, η = 0.01, the
training times N of IOFNN is 10, the results are shown in Figure 3. The fractional
order parameters are chosen as the same as integer one with extra fractional order
α = 0.9878, the results of fractional order gradient descent fuzzy neural network are
shown in Figure 4. The root means square error (RMSE) is provided to measure
the accuracy of the two algorithms, which can be defined as follows:

(34) RMSE =

√∑N
i=1(y − yf )2

N
,

and the RMSEs of both algorithms are listed in Table 1. From Table 1, where the
RMSE of fractional order gradient descent fuzzy neural network is smaller than
that of integer order one. This implies that FOFNN can yield better accuracy.
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(b) Prediction results

Figure 3. Simulation results of IOFNN.
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(b) Prediction results

Figure 4. Simulation results of FOFNN.

Table 1. Performance of the IOFNN and FOFNN.

Model n l RMSE
IOFNN 5 5 0.1036
FOFNN 5 5 0.0948

4.2. Water quality system. In order to verify the effectiveness of the proposed
FOFNN, we select a group of data on water quality grade. The date comes from a
book named MATLAB Neural Networks 43 Case Studies which is one of the famous
dates for testing neural networks. The main factors affecting water quality include
ammonia nitrogen, dissolved oxygen, chemical oxygen demand, permanganate in-
dex, total phosphorus, and total nitrogen. These indicators are input to the FNN
model, while water quality grade is output. The data set contains 350 training data
sets and 50 test data sets and the sample time is h = 1s. In this experiment, n = 6
inputs are determined to be the inputs of the FNN model, and the parameters by
the integer-order algorithm are l = 12, η = 0.01, N = 40, additional parameter of
the fractional-order model is set as α = 0.98. Figures 5 and 6 show the simulation
results of both algorithms, respectively.

In order to observe the difference between the two diagrams intuitively, we add
the absolute value of the error of each training. The result is shown in Figure 7.
From Figure 7 and Table 2, we can see that the performance of the fractional
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(b) Prediction results

Figure 5. Water quality system simulation of IOFNN.
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Figure 6. Water quality system simulation of FOFNN.
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Figure 7. The sum of the absolute value of the error for each training.

Table 2. The performance of water quality system by IOFNN and FOFNN.

Model n l RMSE
IOFNN 6 12 0.1381
FOFNN 6 12 0.1176
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order is better than that of the positive integer order, and it has a better advantage
in accuracy. Considering the energy loss in the actual system, the fractional-order
system has better performance results.
Results:
As shown in the above two systems, the relevant fuzzy parameters are determined
by well-designed rules and collected data, that is, pij , c

i
j , b

i
j of each rule. Figures

3-6 show the training and prediction results of IOFNN and FOFNN, while Table
1 and 2 record the RMSEs of comparison of both algorithms in the two examples.
We can conclude that FOFNN has a smaller RMSE than IOFNN, which means
that FOFNN has a greater advantage in accuracy. In addition, Figure 7 is the sum
of the absolute values of the errors in the model training process and the FOFNN
algorithm has a faster convergence rate than IOFNN, indicating that FOFNN can
appropriately reduce the complexity of the model as well as ensure the accuracy of
identification.

5. Conclusions

In this paper, a fuzzy neural network is proposed to model complex nonlinear
systems, which is trained and estimated by using fractional order gradient descent.
The fractional learning algorithm has the advantage of multiple time points, which
makes it more accurate than the integer order algorithm. In order to verify the
effectiveness of the proposed algorithm, a numerical nonlinear model and a water
quality system are considered. The experimental results show that the algorithm
in this paper has better accuracy than the classic algorithm. Consider the novel
fractional gradient descent-based learning algorithm in [32] and [33], which is the
convex combination of the conventional and modified Riemann-Liouville derivative-
based fractional gradient descent methods, convex combination in a fuzzy neural
network will be discussed in our future work.
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