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NUMERICAL APPROXIMATIONS OF THE

ALLEN-CAHN-OHTA-KAWASAKI EQUATION WITH MODIFIED

PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

JINGJING XU, JIA ZHAO, AND YANXIANG ZHAO*

Abstract. The physics-informed neural networks (PINNs) has been widely utilized to numerically
approximate PDE problems. While PINNs has achieved good results in producing solutions
for many partial differential equations, studies have shown that it does not perform well on
phase field models. In this paper, we partially address this issue by introducing a modified

physics-informed neural networks. In particular, they are used to numerically approximate Allen-
Cahn-Ohta-Kawasaki (ACOK) equation with a volume constraint. Technically, the inverse of
Laplacian in the ACOK model presents many challenges to the baseline PINNs. To take the zero-
mean condition of the inverse of Laplacian, as well as the volume constraint, into consideration,

we also introduce a separate neural network, which takes the second set of sampling points in
the approximation process. Numerical results are shown to demonstrate the effectiveness of the
modified PINNs. An additional benefit of this research is that the modified PINNs can also be
applied to learn more general nonlocal phase-field models, even with an unknown nonlocal kernel.

Key words. Physics-informed neural networks, Allen-Cahn-Ohta-Kawasaki equation, phase field
models.

1. Introduction

Ohta-Kawasaki(OK) free energy [22], usually associated with a volume con-
straint, has been used to simulate the phase separation of diblock copolymers,
i.e., polymers consisting of two types of monomers, A and B, that are chemically
incompatible and connected by a covalent chemical bond. It is formulated as

E[u] =

∫
Td

[
ϵ

2
|∇u|2 + 1
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W (u)

]
dx+
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[∫
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(f(u)− ω) dx
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Here Td =
∏

i[−Xi, Xi) ⊂ Rd, d = 1, 2, 3 is a periodic domain, and u = u(x) is a
phase field labeling function representing the density of A species with interfacial
width ϵ. Function W (u) = 18(u2 − u)2 is a double well potential. The nonlinear
function f(u) = 6u5−15u4+10u3 keeps the 0-1 structure of u as f(0) = 0 and f(1) =
1. More importantly it also has the property that f ′(0) = f ′(1) = 0, which localize
the force and avoid possible non-zeros and non-ones near the boundary of the
interface [29] when considering L2 gradient flow dynamics of (1). The first integral
is a local surface energy, the second term represents the long-range interaction
between the molecules with γ controlling its strength and ω ∈ (0, 1) being the
fraction of species A, and the third term is a penalty term to fulfill the volume
constraint ∫

Td

(f(u)− ω) dx = 0.(2)
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Allen-Cahn-Ohta-Kawasaki(ACOK) model [29], which is the focus of this paper,
takes the L2 gradient dynamics of the OK free energy in (1) as

ut =− δE[u]

δu

(3)

=ε∆u− 1

ε
W ′(u)− γ(−∆)−1(f(u)− ω)f ′(u)−M

[∫
Td

(f(u)− ω) dx

]
f ′(u).

Here the long-range interaction term satisfies the zero-mean condition:∫
Td

(−∆)−1(f(u)− ω)dx = 0.(4)

Various successful and efficient partial differential equation (PDE) solvers can
be applied to the model, such as Finite Difference, Finite Element [20], Spectral
method [10, 15], etc. In recent years, some novel numerical methods have also
been studied for Cahn-Hilliard dynamics, i.e., the H−1 gradient flow dynamics of
OK energy, such as the midpoint spectral method [1], and the Invariant Energy
Quadratization (IEQ) method [5]. In [29], a first-order energy stable linear semi-
implicit method is introduced and analyzed for the ACOK equation. Our goal in
this paper is to study the approximation of the solution of the ACOK equation
with neural networks.

Recently, there has been an increasing interest in solving PDEs with machine
learning methods, among which the physics-informed neural networks(PINNs) [24]
have gained tremendous popularity. PINNs are based on a fully-connected feed-
forward deep neural network (DNN) [14, 26], which is often interpreted utilizing
universal approximation theorem [6, 11, 12, 18]. The structure of a fully-connected
DNN, consisting of an input layer, hidden layers, and an output layer, is shown
in Figure 1. Every node in one layer is connected with every node in another
by a series of computations. The nodes in the input layer are the specific data
studied, and the nodes in the output are the expected outcome. For example,
in the case of facial recognition, the input could be the RBG values (features) of
each pixel of the sample pictures, while the output could be the assigned numerical
values representing the individuals (classes). The nodes in the hidden layers are
called neurons, and they are responsible for the performance of the neural network.
There can be many hidden layers in a neural network; in the case of Figure 1, the
number of hidden layers is three.

A column vector is fed to each node of the input layer. Then in the first hidden
layer, we multiply it by another row vector, i.e., weight, to get the product. This is
the case that there is only one neuron in the relevant hidden layer. If there are more
neurons, the row vector will be a weight matrix instead, where the number of rows
of the matrix represents the number of neurons. A bias vector is then added to the
product, and an activation function is applied to the new vector, which contributes
to the output of the current hidden layer, which is also the input of the next layer.
In a nutshell, let M be the number of hidden layers, p be the input of the neural
network, then the output a of the neural network will be aM , with

a0 = p,(5)

ai = f i(W iai−1 + bi), i = 1, ...,M − 1,(6)

where ai−1 is the input, W i represents the weights, bi represents the bias, and f i

is the activation function in the ith layer.
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Figure 1. Fully-connected DNN structure.

To obtain the proper weights and bias, we perform an optimization process, for
example, gradient descent, on the weight and bias to update them. To calculate
the derivatives involved in the optimization process, the network goes through a
process called back-propagation [25], which is essentially a chain rule applied on
each layer starting from the final one. We start with a certain loss function:

Loss(y, a(Θ)),

where y is the object, the network is approximating, and Θ denotes the weights
and bias of the DNN. The loss function, depending on the specific problem, could
be a mean square error (MSE), mean absolute error (MAE), log loss function, etc.
We then perform back-propagation on the loss function, trace all the way back to
get the derivatives of weights and bias for each layer, and then use the optimization
tool to update the weights and bias. A gradient descent update is as follows:

Θn+1 = Θn − η∇ΘLoss,

where η is the learning rate, and ∇ΘLoss is the direction of update. It works
essentially like a directing system, telling you which direction to go and how far to go
in that direction based on your current location and destination. The optimization
process will be repeated several times until the prescribed accuracy is achieved. We
call this number of repetitions the number of epochs.

Furthermore, there are a variety of optimizers that can be selected. The previ-
ously mentioned gradient descent is one of them. While it has many advantages,
it does not work well in our non-convex problem due to its notoriously poor per-
formance on escaping local minimums [7]. Therefore, other optimizers, such as
momentum [23], ADAM [16], Adadelta [30], RMSprop [13], etc are developed to
better address this issue. The momentum method adds an accelerator in the rele-
vant direction. For example, think about rolling a ball down a ramp. As the ball
goes down, it gains momentum and travels faster and faster. Other methods, like
Adadelta, use different forms of adaptive learning rates. It is worth mentioning that
RMSprop works by dividing “the learning rate for a weight by a running average
of the magnitudes of recent gradients for that weight” [13].

In our case, we adopt ADAM as our optimizer for each epoch and L-BFGS-B
with a certain stopping condition as the optimizer afterward. Introduced in [16],
ADAM can be viewed as a combination of the momentum method and RMSprop.
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It uses the mean mt and uncentered variance vt of the gradient with regards to
time t to adapt the learning rate for each weight and bias of the neural network:

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t ,

where gt is the gradient of the loss function at time step t, and the hyper-parameters
β1, β2 ∈ [0, 1) direct the decay rates of mt and vt. A bias correction is also applied
to mt and vt, which leads to

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

,

and to update the weights and bias, we perform Θt = Θt−1−η m̂t√
v̂t+ε

, where η is the

learning rate, and ε is arbitrary. On the other hand, the L-BFGS-B optimizer [3]
uses a “limited memory” BroydenCFletcherC GoldfarbCShanno (BFGS) [2,8,9,27]
matrix to represent the Hessian matrix of the objective function, making it great for
optimization problems with a large number of variables. Stems from the L-BFGS
method [19,21], L-BFGS-B places upper and lower bound constraints on variables.
It identifies fixed and free variables for each step with a basic gradient method. It
then performs the L-BFGS method on the free variables to achieve better accuracy.

For PINNs, sampled collocation points are fed to the DNN, and the function val-
ue is returned to the output layer. Weight and bias in each layer can be learned or
updated by optimizing the error function to reach the prescribed accuracy, in which
the back-propagation technique is needed to compute the first-order derivatives. D-
ifferent from traditional machine learning DNN, which requires a very large amount
of ground truth data to make an accurate prediction, PINNs take advantage of the
physics information and make up for the lack of sufficient ground truth data. It
divides the error function into two components, one corresponding to the known
ground truth data and the other corresponding to the physics information. Con-
sequently, our goal is to minimize the error between the limited amount of ground
truth and the prediction, as well as how much the prediction ”fits” the physics
information. Furthermore, as shown in [4], PINNs can be employed to solve inverse
problems, in particular, inverse scatter problems in photonic metamaterials and
nano-optics technologies, by transforming them into parameter retrieving problem-
s. However, PINNs also have their downsides. As suggested in [17], “existing PINN
methodologies can learn good models for relatively trivial problems”, and it can fail
when predicting solutions for a more complex model, which is likely due to the fact
that the setup of PINNs makes it hard to optimize the less-smooth loss landscape.
They have, therefore, proposed a “curriculum regularization”, which is finding a
good initialization for weights and training the model gradually. Notably, this has
made the optimization process easier. They also mentioned a sequence-to-sequence
learning method, which is similar to the Time-Adaptive Method proposed in [28].
This method can make learning easier by learning in small intervals.

Traditional machine learning approaches often rely on extensive labeled data to
make accurate predictions, while mathematical methods may not fully capture the
complexities of real-world data. By combining these two methodologies, Physics-
Informed Neural Networks (PINNs) can achieve precise predictions even with limit-
ed data and effectively adapt the underlying equation to ground truth observations.
Consequently, PINNs have the potential to address real-world challenges across di-
verse applications, such as physics, medicine, and fluid dynamics. It’s important to
note that using PINNs to discover solutions to the ACOK model is just the initial
step. Our future objective is to leverage PINNs as a tool for learning the gener-
al kernel function governing long-range interactions, which traditional numerical
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methods for PDEs struggle to solve. Although traditional numerical methods have
proven successful and efficient, the unique advantages offered by PINNs should not
be overlooked.

In this work, our main contribution lies in addressing the challenges posed by the
complexity of the ACOK model when applied to PINNs. As shown in Equation 1,
the ACOK model cannot be directly solved using the original PINNs due to several
factors. These factors include the long-range interaction term (−∆)−1(f(u) − ω),
the volume constraint (2), and the zero-mean condition (4), all of which introduce
nonlocal conditions that require computational and structural modifications to the
basic PINNs framework. To handle the long-range interaction term, we incorporate
a second neural network to solve for (−∆)−1(f(u) − ω). In order to account for
the volume constraint and the zero-mean condition, we introduce a third neural
network, where the x variable is uniformly sampled and the t variable is randomly
sampled.

The rest of this paper is organized as follows. In Section 2, we present the nu-
merical methods. Specifically, we briefly revisit the baseline PINNs in Section 2.1.
Then we elaborate on the modified PINNs, including the application of the periodic
boundary condition, the approximation of the long-range interaction term, the vol-
ume constraint, and the zero-mean condition, in Section 2.2. We will then present
and discuss some 1-dimensional results in Section 3. In the end, we give a detailed
discussion and explain our future work in Section 4.

2. Numerical Methods

Our goal in this paper is to take the ground truth u(0, x) data as input, and
predict the solution u(t, x) of ACOK equation with neural networks.

2.1. Baseline PINNs. For the basic setup, we follow the basic PINNs. Let us
recall (1) and define the residual function F (t, x) as

F (t, x) := ut − ε∆u+
1

ε
W ′(u) + γ(−∆)−1(f(u)− ω) · f ′(u)(7)

+M

[∫
(f(u)− ω) dx

]
· f ′(u),

where u(t, x) can be approximated by a deep neural network Netu, and F (t, x) can
be calculated by a shared parameter neural network NetF based on the predicted
u(t, x). The network can be learned by minimizing the mean square error:

MSE = MSEu +MSEF ,

where

MSEu =
1

Nu

Nu∑
i=1

∣∣u(tiu, xi
u)− ui

∣∣2 , MSEF =
1

NF

NF∑
i=1

∣∣F (tiF , x
i
F )

∣∣2 .
As shown in Figure 2, {tiu, xi

u}
Nu
i=1 are selected from the collocation points that are

along the boundary, i.e. the blue points, and at the initial time, i.e. the red points.
Also, {tiF , xi

F }
NF
i=1 are sampled from the internal collocation points, i.e. the black

points.
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Figure 2. Sampling for the initial points, boundary points, and in-
ternal points.

For the purpose of computational efficiency and prediction accuracy, a random
sample is taken from the initial and boundary collocation points. Moreover, the
internal points are selected near-randomly using Latin Hypercube Sampling(LHS)
method.

We take pairs of {tiu, xi
u}

Nu
i=1 and {tiF , xi

F }
NF
i=1 as the input, and employ the feed

forward deep neural network(DNN) to approximate the u value at these collocation
points: u(tiu, x

i
u) and u(tiF , x

i
F ). To check the accuracy of the prediction, we take

the mean square error between the ground truth ui and the prediction u(tiu, x
i
u).

Note that we take the mean square error of F (tiF , x
i
F ) obtained through NetF to

ensure that the approximation by the DNN satisfies the physics, which is described
by the ACOK equation.

As previously mentioned, ADAM is selected as our optimizer for each epoch, and
L-BFGS-B is employed in the last step. Both of them have built-in packages de-
veloped in Python for implementation. We also use tanh as the activation function
for each hidden layer.

2.2. Modified PINNs. Next, we demonstrate how we develop the modified PINNs.
There are several difficulties in applying the baseline PINNs directly to the ACOK
equation, which motivate us to propose the modified PINNs to overcome these
issues.

2.2.1. Periodic boundary conditions. As we have the periodic boundary con-
dition in the ACOK equation, MSEu is separated further into two components, one
corresponding to the initial collocation points, i.e. MSEin, and the other corre-
sponding to the boundary collocation points, i.e. MSEb. Hence, we can update the
loss function as:

MSE = MSEin +MSEb +MSEF ,

where

MSEin =
1

Nin

Nin∑
i=1

∣∣u(tiin, xi
in)− ui

0

∣∣2 , MSEb =
1

Nb

Nlb∑
i=1

∣∣u(tilb, xi
lb)− u(tiub, x

i
ub)

∣∣2 ,
and

MSEF =
1

NF

NF∑
i=1

∣∣F (tiF , x
i
F )

∣∣2 .
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Since we have the ground truth at the initial time, we take the mean square error
between the u value predicted by the DNN, u(tiin, x

i
in), and the ground truth ui.

However, the periodic boundary condition means that we will calculate MSEb by
taking the mean square error between the u value on the lower bound, i.e. u(tilb, x

i
lb),

and the u value on the upper bound, i.e. u(tiub, x
i
ub), at the same time t, since the

ground truth value of u is unknown.

2.2.2. Approximation of the inverse of Laplacian. One major difficulty is
how to approximate the long-range interaction term in our model. As stated
above, the purpose of the shared parameter neural network NetF is to approxi-
mate F (tiF , x

i
F ) given u(tiF , x

i
F ). Recall (7):

F := ut−ε∆u+
1

ε
W ′(u)+γ(−∆)−1(f(u)−ω) ·f ′(u)+M

[∫
(f(u)− ω) dx

]
·f ′(u).

While ut, ∆u can be obtained by back-propagation, and W ′(u), f(u) and f ′(u)
can be directly calculated using the explicit expression, the difficulty lies with the
approximation of (−∆)−1(f(u)− ω) and

∫
(f(u)− ω) dx.

To approximate the inverse of the Laplacian

(−∆)−1(f(u)− ω),

we add a second output ν to Netu to approximate

ν := (−∆)−1(f(u)− ω).

If (−∆) operator is applied on both sides, we recover:

−∆ν = f(u)− ω.

Since ν has already been approximated by the DNN, ∆ν can be calculated by
back-propagation. To ensure the accuracy of ν, a mean square error can be taken
between (−∆)ν and f(u)− ω, as the latter is achieved by the explicit expression:

MSELap =
1

NF

NF∑
i=1

∣∣−∆ν(tiF , x
i
F )− (f(u(tiF , x

i
F ))− ω)

∣∣2 ,
and the first four terms of F can be calculated by:

F = ut − εuxx +
1

ε
W ′(u) + γν · f ′(u).

Furthermore, as the ground truth of (−∆)−1uin and the periodic boundary con-
dition on (−∆)−1u are available, the total mean square loss is modified as:

MSE = (MSEuin+MSE((−∆)−1u)in)+(MSEub
+MSE((−∆)−1u)b)+MSEF+MSELap,

where

MSE((−∆)−1u)in =
1

Nin

Nin∑
i=1

∣∣(−∆)−1u(tiin, x
i
in)− ((−∆)−1u)i0

∣∣2 ,
MSE((−∆)−1u)b =

1

Nb

Nlb∑
i=1

∣∣(−∆)−1u(tilb, x
i
lb)− (−∆)−1u(tiub, x

i
ub)

∣∣2 .
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Figure 3. Netv Structure.

2.2.3. Integral approximation. Next, we propose a structural modification to
approximate the integral term. The integral term∫

(f(u)− ω) dx,

imposes a problem to the modified PINNs, as the near-randomly sampled collo-
cation points are not evenly distributed along each t. It is usually the case that
at some t there are one or no points selected, shown in Figure 4. As a result, the
integral can not be calculated accurately for each t. To resolve this issue, a separate
shallow neural network Netv is introduced, which only takes t as input and has a
built-in uniform mesh on x. This network aims to output the value of the integral
term for each randomly sampled t. After the network is trained, the updated op-
timal weights and bias ensure that for any input t, the network will produce the
corresponding

∫
(f(u)− ω) dx, even if the new input t is different from the t used

for training.

(a) LHS Sampling.

(b) Uniform x and Random t Mesh.

Figure 4. Collocating point sampling strategy: (a) LHS sampling;
(b) uniform spatial sampling and random t.
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As demonstrated in Figure 3, to train Netv, the mean square error between the
output of Netv and the discrete form of the integral

Nx∑
i=1

f(u(tjuni, x
i
uni)) ·∆x− ω,

is taken:

MSEint =
1

Nt

Nt∑
j=1

∣∣∣∣∣v(tjuni)−
[

Nx∑
i=1

f(u(tjuni, x
i
uni)) ·∆x− ω

]∣∣∣∣∣
2

,

where {tjv, xi
v} denotes the new uniform x and random t mesh as in Figure 4,

and u(tjuni, x
i
uni) can be output by Netu with the same set of input. Further-

more,
∑Nx

i=1 f(u(t
j
uni, x

i
uni)) is obtained by taking the column sum of output of

f(u(tjuni, x
i
uni)) along each sampled t direction.

After the optimal weight and bias are achieved, the t part of the original LHS
sampled points is fed to Netv, and outputs

v =

∫
(f(u(tiF , x

i
F ))− ω) dx,

and F can be approximated by

F = ut − εuxx +
1

ε
W ′(u) + γν · f ′(u) +Mv · f ′(u),

which is calculated in NetF . Taking the mean square error F will obtain the
complete MSEF .

Therefore, the total mean square loss is modified as:

MSE = (MSEuin +MSE((−∆)−1u)in) + (MSEub
+MSE((−∆)−1u)b)

+MSEF +MSELap +MSEint,

Figure 5. The modified PINNs structure with Netv and zero-mean
condition.
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where

MSEF =
1

NF

NF∑
i=1

∣∣F (tiF , x
i
F )

∣∣2 .
2.2.4. Zero-mean constraint. For the zero-mean condition on the inverse of the
Laplacian, since the calculation of the mean is involved, the uniform x and random
t meshgrid created for the integral approximation can be used as input of Netu,
and the column sum of the output (−∆)−1u(tiF , x

i
F ), which corresponds to each

time t, is minimized in a loss function

MSEzm =
1

Nt

Nt∑
j=1

∣∣∣∣∣
Nx∑
i=1

(−∆)−1u(tiF , x
i
F ) ·∆x

∣∣∣∣∣
2

.

The complete modified PINNs structure is shown in Figure 5.
Hence, the modified PINNs is learned by minimizing the mean square loss:

MSE = (MSEuin +MSE((−∆)−1u)in) + (MSEub
+MSE((−∆)−1u)b) +MSEF

+MSELap +MSEv +MSEzm.

Moreover, since certain components have more importance over the others, such
as the mean square error on the initial condition for its ground truth availability,
adjustable weights are applied to each component:

MSE = Wuin
MSEuin

+W((−∆)−1u)inMSE((−∆)−1u)in

+Wub
MSEub

+W((−∆)−1u)bMSE((−∆)−1u)b

+WFMSEF +WLapMSELap +WintMSEint +WzmMSEzm.

3. Numerical Results

Now we have all the pieces regarding how to apply PINNs on ACOK. We can
combine them and implement them in Python. The code is based on the work of
Maziar Raissi et al. [24]. We now show the results of the modified PINNs on 1-
dimensional ACOK with different time intervals, ranging from 1×10−3s to 1×10−2s.
Fine-tuning on hyper-parameter is needed to reach the best results, but it is out of
our current research scope.

Figure 6 are run for 495 epochs, with weights Wuin = 1 × 105, W((−∆)−1u)in =

5 × 106, Wub
= 1, W((−∆)−1u)b = 30, WF = 1, WLap = 500, Wint = 1, Wzm = 30.

There are 10 hidden layers in Netu, each containing 20 neurons, while only 3 hidden
layers with 10 neurons for each layer were needed for Netv, since it is a much simpler
neural network.

We can see that the modified PINNs perform remarkably well in smaller time
periods. However, as the time interval increases, the prediction of (−∆)−1u at the
right tail is getting notably worse. There are several ways to address this problem.
One approach is the Time-Adaptive Method [28], or similarly, the sequence-to-
sequence learning [17], which learns only one small-time period at a time and then
uses the prediction as to the initial data for the next period. Since our model
approximates well with short time intervals, we can compile all the sub-results
together to get the entire solution. For example, we could use the data of the last
time column in Figure 6(a) as the initial data for the next 100 columns and repeat
the process in 100 column increments to achieve good results.

Furthermore, the problem can be improved by rescaling the sampling points.
As shown in Figure 7(a), changes in phase separation occur most rapidly during
the earlier time period. Therefore, we propose rescaling the sampling points to
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(a) (b)

(c) (d)

Figure 6. Numerical results of the ACOK equation using the modified
PINNs with various settings. (a) t = 1 × 10−3, N0 = 500, Nb = 95,
Nf = 2 × 104, Ntuni = 20; (b) t = 2 × 10−3, N0 = 500, Nb = 195,
Nf = 4 × 104, Ntuni = 40; (c) t = 5 × 10−3, N0 = 500, Nb = 495,
Nf = 1 × 105, Ntuni = 100; (d) t = 1 × 10−2, N0 = 500, Nb = 995,
Nf = 2× 105, Ntuni = 200.

be denser in earlier time columns. Recall Figure 4, we continue to use the LHS
sampling, but rescale the points polynomially to achieve the denser in the beginning
effect, as in Figure 7(b).

The results are shown as follows, Figure 8(a) is the result with original LHS
sampling, with time interval being 3×10−3s. Notice that the right tail on (−∆)−1u
fits quite badly in this case due to the long time interval. Figure 8(b) is the result
with a x2 rescaling on the points. Although it does not fix the problem entirely,
we can see that the tail on (−∆)−1u fits much better with a x2 rescaling. In some
cases, x2 rescaling does not improve the result much. Therefore, x3 rescaling could
potentially be used to improve the fitting further.

Next, we present the results of the modified PINNs on 2D ACOK with different
time intervals, ranging from 4× 10−3s to 2× 10−2s.

Figure 9 are run for 10000 epochs, with weights Wuin = 1×105, W((−∆)−1u)in =

5 × 106, Wub
= 1, W((−∆)−1u)b = 30, WF = 1, WLap = 500, Wint = 1, Wzm = 30.

There are 9 hidden layers in Netu, each containing 32 neurons, while only 3 hidden
layers with 10 neurons for each layer were needed for Netv, same as in the 1D case.
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(a)

(b)

Figure 7. An illustration on how to improve the modified PINNs. (a)
numerical results of the 1D ACOK equation with spectrum method;
(b) scaling sample points.

(a) Original LHS sampling. (b) x2 rescaling sampling.

Figure 8. A comparison of different sampling strategy. (a) shows the
original LHS sampling; (b) shows the x2 rescaling sampling. In both
cases, we use t = 3 × 10−2, N0 = 500, Nb = 2995, Nf = 6 × 105, and
Ntuni = 10.
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(a)

(b)

Figure 9. 2D Numerical approximations of the ACOK equation using
the modified PINNs with various setups. (a) t = 4× 10−3, N0 = 1664,
Nb = 258, Nf = 33282, Ntuni = 5; (b) t = 2 × 10−2, N0 = 1664,
Nb = 1290, Nf = 166410, Ntuni = 25.

Note that, similar to the 1D case, our modified PINNs in 2D perform well only
within a small time period. As the time interval increases, the modified PINNs start
to exhibit large errors, as shown in the third columns of (a) and (b) in Figure 9.
Additionally, it is important to mention that in the 2D simulation, we simply use a
near-equilibrium configuration as the initial condition, resulting in nearly identical
solution snapshots at different times. However, our framework still encounters
challenges in reproducing solutions when a more random initial condition is chosen.
We acknowledge this limitation and will consider it in the future work.

4. Discussion and future work

During implementation, we have discovered that our modified PINNs are chal-
lenging to train due to their many hyper-parameters. Some hyper-parameters, such
as learning rate, number of hidden layers, and number of neurons of each layer, are
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fixed during our training. However, the weights, number of epochs, and number of
sampling points need fine-tuning to achieve the best results.

The most challenging part of our fine-tuning is finding a well-balanced set of
weights. Each weight controls a different part of the estimation. For instance,
Wuin , W((−∆)−1u)in controls the fitting of initial data, which is undoubtedly an
essential part of our loss function since the initial data is the only ground truth
data we have. But they differ from each other, as we later find out that the scale of
((−∆)−1u)in is 100 times smaller than that of uin. Therefore, we also consider that
by increasing W((−∆)−1u)in to counter the scale issue. A similar scaling technique is
applied to Wub

and W((−∆)−1u)b , which controls the periodic boundary conditions.
WF dominates the physics information in our model, while WLap controls the

accuracy of the approximation of the long-range interaction term. We have learned
that the accuracy of the long-range interaction term is one of the key players in
our approximation. Wint directs the volume constraint and, therefore, can be in-
creased if the predicted result has an incorrect volume. Wzm applies only to the
((−∆)−1u)in, which means the scaling problem also needs to be taken into consid-
eration. We have also discovered that the interval of a number of epochs is quite
important. The model will not train well with too few epochs. However, if we boost
the number of epochs to the scale of the thousands, the model is over-trained and
does not perform well.

Moreover, we tune the number of the sampling points using the principle that
we want to keep the randomness while at the same time preserving as much of the
known information as possible. We also remain attentive to the efficiency of the
program. Again, the initial data, being the only piece of ground truth information
available, need to have the most sampling points proportionally. We do not take
all the initial data because we want to keep the randomness. We also sample a
relatively large percentage of the boundary points for the same reason. As the
total number of the grid points is quite large for the internal points, we cannot take
as many as the sampling points while keeping the program’s efficiency. Randomness
also plays a crucial part here. Therefore, we only select less than half of the points.
The number of randomly selected t columns in the uniform mesh, Ntuni , follows
the same principle.

To increase the randomness, we also implemented a mini-batch method. The
idea is that instead of considering all the points simultaneously, we consider a
small subset of the points at a time. In theory, it should need fewer epochs and
converge faster. However, as the computation in our case is quite complex, we
have discovered that the mini-batch method takes significantly longer time than
the regular approach.

In the 2D case of this problem, we encounter significant difficulty due to the
exponential growth in the number of points and the introduction of the front and
back bound in addition to the existing upper and lower bound. This increased
complexity leads to insufficient memory capacity, further exacerbated by a more
intricate back-propagation process that incorporates the second-order derivative.
To tackle these challenges, we have implemented a two-pronged approach. Firstly,
we fine-tune the sampling ratio to achieve an optimal balance between computa-
tional resources and accuracy. This allows us to effectively manage memory usage
without compromising the integrity of our calculations. Secondly, we maintain a
relatively small time interval, which reduces the overall complexity of the problem
and ensures a more manageable and efficient computational process.
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There are several directions in which the current work can be extended. First,
as we mentioned in the Introduction, this work is our first attempt to use machine
learning tools to discover the solutions to ACOK model. An ongoing work is to
use PINNs to learn the kernel structures for a general long-range interaction term,
given multiple solution snapshots. This ongoing work, using PINNs to predict the
underlying physics, is indeed the more important aspect of the application of PINNs
to ACOK model, comparing to discovering the solutions. Second, it is well known
that ACOK dynamics (more generally, the phase field equations) highly depends on
the initial states. As the randomness of the initial states increases, the ACOK dy-
namics to system equalibira become more complex. We will explore systematically
the PINNs model for more random initials, particularly in the 2D case, in order to
capture the complete ACOK dynamics (or at least the initial stage which involves
the most significant change on the solution configuration). Also, the efficiency of
the training process can be further improved. Although the current 1D and 2D
results are obtained within an hour, initializing the randomized weights and biases
closer to the optimal solution could significantly reduce the number of required
epochs, and consequently, the overall training time. Furthermore, it would be valu-
able to explore alternative machine learning approaches, such as Fourier Neural
Operators (FNO), conventional neural networks, and transformer-based methods,
for their potential applicability to ACOK model.
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