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July 31, 2021 during the completion of the first part of this work [7].

Abstract. In this paper, we present and analyze a posteriori error estimates in the L2-norm
of an ultra-weak discontinuous Galerkin (UWDG) method for nonlinear second-order boundary-
value problems for ordinary differential equations of the form u′′ = f(x, u). We first use the

superconvergence results proved in the first part of this paper (J. Appl. Math. Comput. 69,
1507-1539, 2023) to prove that the UWDG solution converges, in the L2-norm, towards a special
p-degree interpolating polynomial, when piecewise polynomials of degree at most p ≥ 2 are used.
The order of convergence is proved to be p + 2. We then show that the UWDG error on each

element can be divided into two parts. The dominant part is proportional to a special (p+1)-degree
Baccouch polynomial, which can be written as a linear combination of Legendre polynomials of
degrees p − 1, p, and p + 1. The second part converges to zero with order p + 2 in the L2-
norm. These results allow us to construct a posteriori UWDG error estimates. The proposed

error estimates are computationally simple and are obtained by solving a local problem with no
boundary conditions on each element. Furthermore, we prove that, for smooth solutions, these
a posteriori error estimates converge to the exact errors in the L2-norm under mesh refinement.
The order of convergence is proved to be p+2. Finally, we prove that the global effectivity index

converges to unity at O(h) rate. Numerical results are presented exhibiting the reliability and the
efficiency of the proposed error estimator.

Key words. Second-order boundary-value problems, ultra-weak discontinuous Galerkin method,

superconvergence, a posteriori error estimation, Baccouch polynomials.

1. Introduction

This paper is a continuation of our recent paper [7] and is devoted to the a poste-
riori error estimation for the following nonlinear second-order two-point boundary-
value problems (BVPs) [4, 9, 15, 18] solved with the ultra-weak discontinuous
Galerkin (UWDG) method

u′′ = f(x, u), x ∈ Ω = [a, b],(1a)

u(a) = ua, u′(b) = ub,(1b)

where f : [a, b] × R → R is a given smooth function. Precise conditions on f are
specified later. We would like to point out that, in the present work, we restrict
ourselves to either the mixed Dirichlet-Neumann boundary conditions (u(a) = ua,
u′(b) = ub) or periodic boundary conditions (u(a) = u(b), u′(a) = u′(b)) to sim-
plify the presentation. The main novelty of this paper is to construct a posteriori
error estimates of the UWDG method proposed in the first part and to prove the
convergence of the proposed error estimators in the L2-norm.
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Various numerical methods have been proposed to solve nonlinear differential
equations in literature, such as the finite difference methods, the time-splitting
pseudo-spectral methods, the finite element methods, and the discontinuous Galerkin
(DG) methods, to name a few. The main reason for us to establish DG methods is
because of its flexibility in handling geometry, exhibiting superconvergence prop-
erties, accommodating hp-adaptivity, and high parallel efficiency. The DG method
was first proposed by Reed and Hill in 1973 [19] for approximating the scalar neu-
tron equation. This type of finite element method uses a piecewise polynomial
basis for both the numerical and test function, and it was originally designed to
deal with the first spatial derivative only (see, e.g., [11, 12, 14, 19] for detailed
discussions). The original DG method has been developed in several directions
over the past few decades. For instance, Cockburn and Shu [13] proposed the so-
called local discontinuous Galerkin (LDG) method to solve a wide class of nonlinear
convection-diffusion equations with high-order spatial derivatives. By introducing
auxiliary variables that reduce the original problem into a lower-order system, typ-
ically with first-order spatial derivatives, the LDG methods ensure the stability of
the scheme by suitable numerical fluxes embedded with the resulting system. See
[17, 25, 26] and references therein for recent developments of the LDG method.

Another streamline of development is motivated by the urge to solve high-
order problems, and this includes the ultra-weak discontinuous Galerkin method
(UWDG) introduced by Despres [16] for linear elliptic PDEs. The idea of the
UWDG method for higher-order equations is to shift all the spatial derivatives
through integration by parts to the test function in the weak formulation, and the
stability of the scheme is guaranteed by certain numerical fluxes and additional
internal penalty terms when necessary.

In recent years, the study of superconvergence and a posteriori error estimates
of DG methods has been an active research field in numerical analysis, see the
monographs by Verfürth [23], Wahlbin [24], and Babuška and Strouboulis [5]. A
knowledge of superconvergence properties can be used to (i) construct simple and
asymptotically exact a posteriori estimates of discretization errors and (ii) help
detect discontinuities to find elements needing limiting, stabilization and/or refine-
ment. A posteriori error estimates play an essential role in assessing the reliability
of numerical solutions and in developing efficient adaptive algorithms. Typically, a
posteriori error estimators employ the known numerical solution to derive estimates
of the actual solution errors. They are also used to steer adaptive schemes where
either the mesh is locally refined (h-refinement) or the polynomial degree is raised
(p-refinement). For an introduction to the subject of a posteriori error estimation
see the monograph of Ainsworth and Oden [3].

In [7], we presented and analyzed a superconvergent UWDG method for the
model problem (1). We first used a suitable choice of the numerical fluxes to derive
optimal L2-error estimates of the scheme. The order of convergence is proved to
be p + 1 in the L2-norm, when piecewise polynomials of degree p ≥ 2 are used.
Moreover, we proved that the UWDG solution is superconvergent with order p+2
for p = 2 and p + 3 for p ≥ 3 towards a special projection of the exact solution.
Finally, we proved that the UWDG solution and its derivative are superconvergent
at the nodes with an order of O(h2p). Our proofs are valid for arbitrary regu-
lar meshes using piecewise polynomials with degree p ≥ 2. Numerical experiments
were presented to confirm the sharpness of all the theoretical findings. In this work,
we use the results in the first part to construct efficient and reliable a posterior-
i error estimates for the UWDG method. We further prove that the proposed a
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posteriori error estimators converge to the true errors in the L2-norm under mesh
refinement at the optimal rate. To the author’s knowledge, a posteriori error analy-
sis for UWDG approximations of nonlinear second-order two-point boundary-value
problems has not been studied in the literature.

In this paper, we present and analyze an implicit a posteriori UWDG error
estimate for the model BVP (1). We use the results of the first part of this work
to prove that the dominant part of the spatial discretization error for the UWDG
solution is proportional to a (p+1)-degree polynomial, when piecewise polynomials
of degree at most p are used. This polynomial can be written as a linear combination
of Legendre polynomials of degrees p−1, p, and p+1. We use this result to construct
a residual-based a posteriori error estimate for the spatial error. The leading term of
the discretization error is estimated by solving a local problem with no boundary
conditions on each element. We further prove that the proposed UWDG error
estimate converges to the true error at O(hp+2) rate. Finally, we prove that the
global effectivity index in the L2-norm converges to unity at O(h) rate. Our proofs
are valid for any regular meshes and using piecewise polynomials of degree p ≥ 2.

This paper is organized as follows. In Section 2, we recall the UWDG method for
the second-order BVP (1). We also introduce some basic notations and preliminar-
ies which will be used later. In Section 3, we present new superconvergence results.
We present our a posteriori error estimation procedure and prove that these error
estimates converge to the true errors under mesh refinement in L2-norm with op-
timal convergence rate in Section 4. Numerical examples are provided to show the
accuracy and capability of the scheme in Section 5. Some concluding remarks and
future work are given in Section 6.

2. The UWDG method and Preliminaries

Since this paper is a continuation of the author’s recent work [7], we adopt the
same definitions and notation given therein.

2.1. The UWDG scheme. We discretize the computational interval Ω = [a, b]
by non-overlapping intervals Ii = (xi−1, xi), i = 1, 2, . . . , N such that

a = x0 < x1 < · · · < xN = b.

Let us define the length of Ii as hi = xi − xi−1. We use h = max
1≤i≤N

hi and hmin =

min
1≤i≤N

hi to denote the length of the largest and smallest intervals, respectively. We

assume that mesh is regular in the sense that there exists a positive constant λ such
that λh ≤ hmin ≤ h.

We denote by v(x+
i ) and v(x−

i ) the values of v at the discontinuity point xi from
the right cell Ii+1 and from the left cell Ii, respectively, i.e.,

v(x±
i ) = lim

s→0±
v(xi + s), i = 0, 1, . . . , N.

Let the finite element space be the discontinuous piecewise polynomials space V p
h =

{v ∈ L2(Ω) : v|Ii ∈ Pp(Ii), i = 1, 2, . . . , N}, where Pp(Ii) is the set of polynomials
of degree up to p ≥ 0 defined on the interval Ii.

Multiplying (1a) by a test function v, integrating over an arbitrary interval Ii,
and using integration by parts twice, we get the following UWDG weak formulation∫

Ii

(−u v′′ + vf(x, u)) dx− u′(xi)v(xi) + u′(xi−1)v(xi−1)(2)

+ u(xi)v
′(xi)− u(xi−1)v

′(xi−1) = 0.
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Next, we use the UWDG weak formulation (2) to define the UWDG scheme as
follows: We approximate u by uh ∈ V p

h and we choose the test function v ∈ V p
h to

get the following UWDG scheme: Find uh ∈ V p
h such that for all v ∈ V p

h∫
Ii

(−uhv
′′ + vf(x, uh)) dx− û′

h(xi)v(x
−
i ) + û′

h(xi−1)v(x
+
i−1)

+ ûh(xi)v
′(x−

i )− ûh(xi−1)v
′(x+

i−1) = 0,(3a)

holds for all i = 1, 2, . . . , N . In (3a), we used the hat terms ûh and û′
h to denote

the so-called numerical fluxes, which are nothing but approximations to u and u′

at the node xi, respectively. We would like to emphasize that the choice of the

numerical fluxes ûh and û′
h is crucial for the accuracy of the UWDG method.

To complete the UWDG scheme, we need to specify the numerical fluxes ûh and

û′
h. In this paper, when the mixed boundary conditions (1b) are used, we choose

the following alternating numerical fluxes

ûh(xi) =

{
ua, i = 0,
uh(x

−
i ), i = 1, 2, . . . , N,

û′
h(xi) =

{
u′
h(x

+
i ), i = 0, 1, . . . , N − 1,

ub, i = N.

(3b)

When the periodic boundary conditions are used, we use

(3c) ûh(xi) = uh(x
−
i ), û′

h(xi) = u′
h(x

+
i ), i = 0, 1, . . . , N.

After we select the numerical fluxes, the resulting finite dimensional problem be-
comes an algebraic system of nonlinear equations to which the Newton-Rapshon
iterative scheme can be applied to find the unknown coefficients in uh.

2.2. Norms. Throughout this paper, we adopt the following notation

• Let (u, v)Ii =
∫
Ii
u(x)v(x) dx be the standard L2-inner product over the

interval Ii.

• Denote ∥u∥0,Ii = (u, u)
1/2
Ii

=
(∫

Ii
u2(x)dx

)1/2
to be the standard L2-norm

of u on Ii.
• For any natural number ℓ, we use Hℓ(Ii) =

{
u ∈ L2(Ii) : Dku ∈ L2(Ii),

∀ k ≤ ℓ} to denote the standard Sobolev space on Ii, where Dku = dku
dxk .

• The Hℓ-norm of a real-valued function u ∈ Hℓ(Ii) on the interval Ii is
defined by

∥u∥ℓ,Ii =

(
ℓ∑

k=1

∥∥Dku
∥∥2
0,Ii

)1/2

.

• The broken Sobolev Hℓ-norm of u on the whole domain Ω by

∥u∥ =

(
N∑
i=1

∥u∥20,Ii

)1/2

, ∥u∥ℓ =

(
N∑
i=1

∥u∥2ℓ,Ii

)1/2

, ℓ = 1, 2, . . . .

• The semi-norm on the element Ii and the semi-norm on the computational
domain Ω as

|u|ℓ,Ii =
∥∥Dℓu

∥∥
0,Ii

, |u|ℓ =

(
N∑
i=1

|u|2ℓ,Ii

)1/2

.
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2.3. Projections. For any given function u(x) ∈ Hp+1(Ω) and p ≥ 1, we define
the projection P−

h u by the following conditions

∫
Ii

(u− P−
h u)v dx = 0, ∀ v ∈ Pp−2(Ii), (u− P−

h u)′(x+
i−1) = 0, (u− P−

h u)(x−
i ) = 0.

(4)

Similarly, the projection P+
h satisfies

∫
Ii

(u− P+
h u)v dx = 0, ∀ v ∈ Pp−2(Ii), (u− P+

h u)(x+
i−1) = 0, (u− P+

h u)′(x+
i−1) = 0.

(5)

By a standard scaling argument together with the trace inequality [10, 22], we have
the following a priori error estimates

(6)
∥∥u− P±

h u
∥∥+ h

∥∥u− P±
h u
∥∥
∞ + h1/2

∥∥u− P±
h u
∥∥
Γh

≤ Chp+1 ∥u∥p+1 ,

where C is a positive constant dependent on p but not on h, Γh denotes the set of

boundary points of all elements Ii, and ∥v∥2Γh
=

N∑
i=1

(
v2(x+

i−1) + v2(x−
i )
)
.

2.4. Inverse properties. We summarize the classical inverse properties of the
finite element space V p

h in the following lemma [10].

Lemma 2.1. If v ∈ V p
h then there exists a positive constant C independent of the

mesh size h such that

∥v′∥ ≤ Ch−1 ∥v∥ , ∥v∥∞ ≤ Ch−1/2 ∥v∥ , ∥v∥Γh
≤ Ch−1/2 ∥v∥ .(7)

For the rest of the paper, we denote by C (with or without superscripts or
subscripts) a generic positive constant which is independent of the step size h, but
depend on the exact solution of the model problem (1). Furthermore, it may vary
from line to line.

2.5. A priori error estimates and superconvergence results. In this section,
we summarize the error estimates in the L2-norm and superconvergence results
proved in the first part, which will be needed in our a posteriori error analysis. We
first impose the following assumptions on the function f(x, u) : [a, b]× R → R

(1) f(x, u) and ∂f(x,u)
∂u are continuous functions on the set D = {(x, u) | x ∈

[a, b], u ∈ R}.
(2) There exists a positive constant L such that∣∣∣∣∂f(x, u)∂u

∣∣∣∣ ≤ L, for all (x, u) ∈ D.(8)

By the Mean-Value Theorem, the function f satisfies the following uniform Lips-
chitz condition on D in the variable u with uniform Lipschitz constant L

(9) |f(x, u)− f(x, v)| ≤ L |u− v| , for all (x, u), (x, v) ∈ D = [a, b]× R.

Let eu = u− uh be the error between the exact and numerical solutions. Then, we
decompose the actual error into two terms as

(10) eu = ξu + ηu,

where ξu = P−
h u − uh ∈ V p

h is the error between the UWDG solution and the

projection of the exact solution and ηu = u− P−
h u is the projection error.

We are now ready to present error estimates for the UWDG scheme.
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Theorem 2.1. Suppose that u ∈ Hp+1(Ω) solves (1). Let p ≥ 2 and uh be the
UWDG solution defined in (3). Then, for sufficiently small h, we have

∥eu∥ ≤ Chp+1,(11)

∥eu∥∞ ≤ Chp,(12)

where C is a positive constant independent of the mesh size h.

Proof. See [7, Theorem 3.1]. �

Next, we recall an important superconvergence result towards the projection
P−
h u.

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 are satisfied. We

further assume that the function g(x) = ∂f(x,u(x))
∂u is a sufficiently smooth func-

tion satisfying
∣∣∣dkg(x)

dxk

∣∣∣ ≤ C for k = 1, 2. Then there exists a positive constant C

independent of h such that

∥ξu∥ ≤
{

Chp+2, p = 2,
Chp+3, p ≥ 3.

(13)

Proof. See [7, Theorem 4.1]. �

Finally, we recall the pointwise superconvergence at the downwind and upwind
points and for the cell averages.

Theorem 2.3. Assume that the assumptions of Theorem 2.2 are satisfied. In

addition, we assume that g(x) = ∂f(x,u(x))
∂u is sufficiently smooth function. To be

more precise, we assume that the function g(x) ∈ Cp(Ω). Then there exists a
positive constant C such that∣∣eu(x−

k )
∣∣ ≤ Ch2p,

∣∣e′u(x+
k−1)

∣∣ ≤ Ch2p, k = 1, 2, . . . , N.(14) (
1

N

N∑
k=1

∣∣eu(x−
k )
∣∣2)1/2

≤ Ch2p+ 1
2 ,

(
1

N

N∑
k=1

∣∣e′u(x+
k−1)

∣∣2)1/2

≤ Ch2p+ 1
2 .(15)

Proof. See [7, Theorems 4.2 and 4.3]. �

3. Superconvergence towards a special interpolating polynomial

Here, we use the previous results to show that the true error eu can be divided
into a dominant part and a less dominant part. The dominant part is proportional
to the (p+ 1)-degree polynomial and the less dominant part converges at O(hp+2)
rate in the L2-norm.

3.1. Jacobi polynomials. In our analysis, we will use the classical Jacobi poly-
nomial defined by the Rodgrigues formula [1]

P̂α,β
k (ξ) =

(−1)k

2kk!
(1− ξ)−α(1 + ξ)−β dk

dξk
[
(1− ξ)α+k(1 + ξ)β+k

]
,

α, β > −1, k = 0, 1, 2, . . . ,(16)

for ξ ∈ [−1, 1]. We note that if α = β = 0, then it reduces to the kth-degree

Legendre polynomial, which will be denoted by L̂k(ξ) = P̂ 0,0
k (ξ) on [−1, 1].
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The kth-degree Legendre polynomial, L̂k(ξ) = P̂ 0,0
k (ξ) on [−1, 1], satisfies the fol-

lowing properties:

L̂k(1) = 1, L̂′
k(1) =

k(k + 1)

2
.(17a)

L̂k(−ξ) = (−1)kL̂k(ξ).(17b)

L̂′
k(−1) = (−1)k+1 k(k + 1)

2
.(17c)

The results in (17a) and (17b) can be found in [1]. To show (17c), we differentiate

(17b) with respect to ξ to get −L̂′
k(−ξ) = (−1)kL̂′

k(ξ). Setting ξ = 1 and using
(17a), we obtain

L̂′
k(−1) = (−1)k+1L̂′

k(1) = (−1)k+1 k(k + 1)

2
.

Next, we define the k-degree right Radau polynomial on [−1, 1] as (see [2])

(18) R̃k(ξ) = (ξ − 1)P̂ 1,0
k−1(ξ) = L̃k(ξ)− L̃k−1(ξ), −1 ≤ ξ ≤ 1,

which has k real distinct roots, −1 < r1 < r2 < · · · < rk = 1.

We further note Jacobi polynomials satisfy the orthogonality condition [1]∫ 1

−1

(1− ξ)α(1 + ξ)βP̂α,β
k (ξ)P̂α,β

l (ξ)dξ = γkδkl, α, β > −1,(19)

where γk = 2α+β+1

2k+α+β+1
Γ(k+α+1)Γ(k+β+1)

k!Γ(k+α+β+1) > 0 and δkl is the Kronecker symbol equal

to 1 if k = l and 0, otherwise. Here, Γ(x) =
∫∞
0

tx−1e−t dt is the classical Gamma
function.

We also need the coefficient of the term ξk in P̂α,β
k (ξ), which is given by (see [1])

(20) Ak =
Γ(2k + α+ β + 1)

2kk!Γ(k + α+ β + 1)
.

Mapping the physical element Ii into the reference element [−1, 1] by the standard
affine mapping

(21) x =
xi + xi−1

2
+

hi

2
ξ,

we get the k-degree shifted Jacobi polynomial Pα,β
k,i (x), the k-degree shifted Le-

gendre polynomial Lk,i(x), and the k-degree shifted right Radau polynomial Rk,i(x)
on Ii

Pα,β
k,i (x) = P̂α,β

k

(
2x− xi − xi−1

hi

)
,

Lk,i(x) = P 0,0
k,i (x), Rk,i(x) = Lk,i(x)− Lk−1,i(x).

3.2. Baccouch polynomials. Before we state the main superconvergence results,
we define some special polynomials, which, to the best of our knowledge, are not
defined in the literature. Since these polynomials play an important role in our a
posteriori error analysis, we name them after the author’s last name.
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Definition 3.1 (Baccouch polynomials). The Baccouch polynomials, denoted by

B̂k(ξ), are defined by B̂0(ξ) = 1, B̂1(ξ) = 1 − ξ, and, for k ≥ 2, by the recurrence
relation

B̂k(ξ) = L̂k(ξ)− L̂k−1(ξ) +
k2

(k − 1)2

(
L̂k−1(ξ)− L̂k−2(ξ)

)
, −1 ≤ ξ ≤ 1.(22)

We remark that B̂k(ξ) can be written in terms of right-Radau and Jacobi poly-
nomials as

B̂k(ξ) = R̂k(ξ) +
k2

(k − 1)2
R̂k−1(ξ)(23a)

= (ξ − 1)P̂ 1,0
k−1(ξ) +

k2

(k − 1)2
(ξ − 1)P̂ 1,0

k−2(ξ), −1 ≤ ξ ≤ 1.(23b)

The first seven Baccouch polynomials and their roots are given in Table 1 and Table
2.

Table 1. The first seven Baccouch polynomials.

k B̂k(ξ)
0 1
1 1− ξ
2 3

2 (−3 + 2ξ + ξ2)
3 5

8 (−1− 6ξ + 3ξ2 + 4ξ3)
4 7

72 (13− 12ξ − 66ξ2 + 20ξ3 + 45ξ4)
5 9

128 (3 + 60ξ − 30ξ2 − 180ξ3 + 35ξ4 + 112ξ5)
6 11

400 (−31 + 30ξ + 435ξ2 − 140ξ3 − 945ξ4 + 126ξ5 + 525ξ6)
7 13

576 (−5− 210ξ + 105ξ2 + 1400ξ3 − 315ξ4 − 2394ξ5 + 231ξ6 + 1188ξ7)

Table 2. The roots of first seven Baccouch polynomials.

k Roots of B̂k(ξ)
1 1
2 −3, 1
3 −1.59307, −0.15693, 1
4 −1.2874, −0.558689, 0.401648, 1
5 −1.17026, −0.730541, −0.0491512, 0.637447, 1
6 −1.11277, −0.818813, −0.327203, 0.261555, 0.757236, 1
7 −1.08026, −0.86995, −0.503043, −0.0236188, 0.456239,0.826185, 1

Lemma 3.1. The polynomial B̂k(ξ) satisfies the following properties

B̂k(1) = 0, B̂′
k(−1) = 0, k ≥ 2,(24) ∫ 1

−1

B̂k(ξ)v(ξ) dξ = 0, ∀ v ∈ Pk−3([−1, 1]), k ≥ 3.(25)

Furthermore, B̂k(ξ) has k distinct real roots b0, b1, . . . , bk−1, where b0 < −1, the
k − 1 roots b1 < b2 < · · · < bk−2 lie in (−1, 1), and bk−1 = 1. Finally, we have

(26) B̂k(ξ) =
(2k)!

2k(k!)2

k−1∏
j=0

(ξ − bj).
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Proof. Since L̂k(1) = 1, (22) gives B̂k(1) = 0. Next, we use (17c) to get

B̂′
k(−1) = L̂′

k(−1)− L̂′
k−1(−1) +

k2

(k − 1)2

(
L̂′
k−1(−1)− L̂′

k−2(−1)
)

= (−1)k+1 k(k + 1)

2
− (−1)k

(k − 1)k

2
+ (−1)k

k2(k − 1)

(k − 1)2

(
k

2
+

k − 2

2

)
=

(−1)k+1

2

[
k(k + 1) + (k − 1)k − 2k2

]
= 0.

The proof of (25) follows immediately from the orthogonality relation
∫ 1

−1
L̂k(ξ)v(ξ) dξ =

0, ∀ v ∈ Pk−1([−1, 1]).

Next, we show that B̂k(ξ) has k distinct real roots b0, b1, . . . , bk−1, where b0 < −1,
the k − 1 roots b1 < b2 < · · · < bk−2 lie in (−1, 1), and bk−1 = 1. Using (16) with
α = 1 and β = 0, we have

P̂ 1,0
k−1(ξ) =

(−1)k−1

2k−1(k − 1)!
(1− ξ)−1 dk−1

dξk−1

[
(1− ξ)k(1 + ξ)k−1

]
,

P̂ 1,0
k−2(ξ) =

(−1)k−2

2k−2(k − 2)!
(1− ξ)−1 dk−2

dξk−2

[
(1− ξ)k−1(1 + ξ)k−2

]
.

Combining these with (23), we get

B̃k(ξ) =(ξ − 1)P̂ 1,0
k−1(ξ) +

k2

(k − 1)2
(ξ − 1)P̂ 1,0

k−2(ξ)

=(ξ − 1)
(−1)k−1

2k−1(k − 1)!
(1− ξ)−1 dk−1

dξk−1

[
(1− ξ)k(1 + ξ)k−1

]
+

k2

(k − 1)2
(ξ − 1)

(−1)k−2

2k−2(k − 2)!
(1− ξ)−1 dk−2

dξk−2

[
(1− ξ)k−1(1 + ξ)k−2

]
=

(−1)k

2k−1(k − 1)!

dk−1

dξk−1

[
(1− ξ)k(1 + ξ)k−1

]
+

k2

(k − 1)2
(−1)k−1

2k−2(k − 2)!

dk−2

dξk−2

[
(1− ξ)k−1(1 + ξ)k−2

]
=

1

2k−1(k − 1)!

dk−1

dξk−1

[
(ξ − 1)k(1 + ξ)k−1

]
+

k2

(k − 1)2
1

2k−2(k − 2)!

dk−2

dξk−2

[
(ξ − 1)k−1(1 + ξ)k−2

]
,
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which can be written as

B̃k(ξ) =
1

2k−2(k − 2)!

dk−2

dξk−2

[
1

2(k − 1)

d

dξ

[
(ξ − 1)k(1 + ξ)k−1

]
+

k2

(k − 1)2
(ξ − 1)k−1(1 + ξ)k−2

]
=

1

2k−2(k − 2)!

dk−2

dξk−2

[
k(ξ − 1)k−1(1 + ξ)k−1

2(k − 1)

+
(ξ − 1)k(1 + ξ)k−2

2
+

k2(ξ − 1)k−1(1 + ξ)k−2

(k − 1)2

]
=

2k − 1

2k−1(k − 1)!

dk−2

dξk−2

[
(ξ − 1)k−1(1 + ξ)k−2

(
ξ +

k + 1

k − 1

)]
.

Let fk(ξ) = (ξ−1)k−1(1+ξ)k−2
(
ξ + k+1

k−1

)
, which is a polynomial of degree 2k−2.

We note that the function fk(ξ) has 2k − 2 roots: the simple root −k+1
k−1 , the root

−1 (with multiplicity k − 2), and the root 1 (with multiplicity k − 1).

• By Rolle’s Theorem, f ′
k(ξ) has 2k−3 roots: one simple root ξ1,1 ∈ (−k+1

k−1 ,−1),

the root −1 (with multiplicity k − 3), one simple root ξ1,2 ∈ (−1, 1), and
the root 1 (with multiplicity k − 2).

• Similarly, by Rolle’s Theorem, f ′′
k (ξ) has 2k − 4 roots: one simple root

ξ2,1 ∈ (−ξ1,1,−1), the root −1 (with multiplicity k − 4), one simple root
ξ2,2 ∈ (−1, ξ1,2), one simple root ξ2,3 ∈ (ξ1,2, 1), and the root 1 (with
multiplicity k − 3).

• Using an induction argument and Rolle’s Theorem, we can show that the

polynomial dk−3fk
dξk−3 of degree k + 1 has k + 1 roots: one simple root < −1,

the simple root −1, k − 3 simple roots in (−1, 1), and the root 1 (with
multiplicity two).

• Finally, Rolle’s Theorem can be used to show that the polynomial dk−2fk
dξk−2 of

degree k has k roots: one root less than −1, k− 2 distinct zeros in (−1, 1),
and the simple root 1.

Since B̃k(ξ) is proportional to
dk−2fk
dξk−2 , we conclude that B̃k(ξ) has k roots: one root

less than −1, k − 2 distinct zeros in (−1, 1), and the simple root 1.

Finally, we show (26). Since B̂k(ξ) is a polynomial of degree k and has k distinct

real roots b0 < b1 < · · · < bk−1 = 1, we can factor it as B̂k(ξ) = ck
k−1∏
j=0

(ξ − bj),

where ck is the coefficient of the term ξk. Since

B̂k(ξ) = L̂k(ξ)− L̂k−1(ξ) +
k2

(k − 1)2

(
L̂k−1(ξ)− L̂k−2(ξ)

)
, −1 ≤ ξ ≤ 1,

we deduce that ck is the coefficient of the term ξk in L̂k(ξ). Using (20) with

α = β = 0 and the fact that Γ(k + 1) = k!, the coefficient of the term ξk in L̂k(ξ)

is ck = Γ(2k+1)
2kk!Γ(k+1)

= (2k)!
2k(k!)2

. Thus, we have B̂k(ξ) = (2k)!
2k(k!)2

k−1∏
j=0

(ξ − bj). This

completes the proof of the lemma. �

3.3. Shifted Baccouch polynomials. Mapping the physical element Ii into the
reference element [−1, 1] by the standard affine mapping (21), we get the k-degree
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shifted Baccouch polynomial Bk,i(x) on Ii

Bk,i(x) = B̂k

(
2x− xi − xi−1

hi

)
, x ∈ Ii.(27)

Throughout this paper, the roots of the k-degree polynomial B̂k(ξ) are denoted by
bj , j = 0, 1, . . . , k − 1 and the roots of the k-degree polynomial Bk,i(x) for x ∈ Ii
are defined by

xi,j =
hi

2
bj +

xi + xi−1

2
, j = 0, 1, . . . , k − 1.(28)

Using (26) and (27), we get

Bk,i(x) =
(2k)!

2k(k!)2

k−1∏
j=0

(
2x− xi − xi−1

hi
− 2xi,j − xi − xi−1

hi

)
(29)

=
(2k)!

(k!)2hk
i

k−1∏
j=0

(x− xi,j), x ∈ Ii.

Consequently, the (p+ 1)-degree shifted Baccouch polynomial Bp+1,i(x) on Ii can
be written as

(30) Bp+1,i(x) =
(2p+ 2)!

((p+ 1)!)2hp+1
i

p∏
j=0

(x− xi,j), x ∈ Ii.

Next, we state some properties of Bp+1,i which will be needed in our a posteriori
error analysis.

Lemma 3.2. The (p + 1)-degree shifted Baccouch polynomial Bp+1,i(x), x ∈ Ii
satisfies the following properties∫

Ii

B2
p+1,i(x) dx = σphi,(31a) ∫

Ii

B′′
p+1,i(x)Bp+1,i(x) dx = −4(p+ 1)2(2p+ 1)

p2hi
=

λp

hi
,(31b)

where σp = 1
2p+3 +

(2p+1)2

p4
1

2p+1 +
(p+1)4

p4
1

2p−1 and λp = − 4(p+1)2(2p+1)
p2 are constants

independent of h.

Proof. Using the orthogonality relation (19), we have∫
Ii

B2
p+1,i(x) dx =

hi

2

∫ 1

−1

B̂2
p+1(ξ) dξ

=
hi

2

∫ 1

−1

(
L̂p+1(ξ) +

2p+ 1

p2
L̂p(ξ)−

(p+ 1)2

p2
L̂p−1(ξ)

)2

dξ

=
hi

2

∫ 1

−1

(
L̂2
p+1(ξ) +

(2p+ 1)2

p4
L̂2
p(ξ) +

(p+ 1)4

p4
L̂2
p−1(ξ)

)
dξ

=

(
1

2p+ 3
+

(2p+ 1)2

p4
1

2p+ 1
+

(p+ 1)4

p4
1

2p− 1

)
hi = σphi,
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where σp = 1
2p+3 + (2p+1)2

p4
1

2p+1 + (p+1)4

p4
1

2p−1 is a constant independent of h. Fur-

thermore, we have∫
Ii

B′′
p+1,i(x)Bp+1,i(x) dx =

2

hi

∫ 1

−1

B̂′′
p+1(ξ)B̂p+1(ξ) dξ

=− 2(p+ 1)2

p2hi

∫ 1

−1

L̂′′
p+1(ξ)L̂p−1(ξ) dξ.

Integrating by parts twice, we get∫
Ii

B′′
p+1,i(x)Bp+1,i(x) dx = −4(p+ 1)2(2p+ 1)

p2hi
=

λp

hi
,

where λp = − 4(p+1)2(2p+1)
p2 is a constant independent of h. �

Theorem 3.1. Suppose that b1 < b2 < . . . < bp = 1 are the roots of B̂p+1(ξ) in
(−1, 1]. Then there exists a unique polynomial Ihu of degree at most p such that
Ih(bk) = u(bk), k = 1, 2, . . . , p and (Ih)′(−1) = u′(−1).

Proof. We prove the existence as follows. Let Sp−1(ξ) be the Lagrange interpolating
polynomial of degree at most p− 1 that interpolates u(ξ) at roots b1, b2, . . . , bp i.e.,

Sp−1(ξ) =

p∑
k=1

u(bk)

p∏
j=1, j ̸=k

ξ − bj
bk − bj

.

Let us now construct from Sp−1(ξ) a new polynomial, Ih(ξ), in the following way:

Ihu(ξ) = Sp−1(ξ) + α

p∏
j=1

(ξ − bj),

where α is a constant to be determined. By construction the degree of Ih(ξ) is at
most p. In addition, we have Ih(bk) = u(bk), k = 1, 2, . . . , p. All that remains is
to determine the constant α in such a way that the last interpolation condition,
(Ih)′(−1) = u′(−1), is satisfied, i.e.,

u′(−1) = S′
p−1(−1) + α

p∑
k=1

p∏
j=1,j ̸=k

(−1− bj).

This condition defines α as

α =
u′(−1)− S′

p−1(−1)
p∑

k=1

p∏
j=1,j ̸=k

(−1− bj)

.

This shows the existence.

To show the uniqueness, we assume there are two polynomials P1(ξ) and P2(ξ) of
degree ≤ p such that Ps(bk) = u(bk) for k = 1, 2, . . . , p and P ′

s(−1) = u′(−1) with
s = 1, 2. We consider the difference P (ξ) = P1(ξ) − P2(ξ). Since P (bk) = 0, k =
1, 2, . . . , p, P (ξ) has at least p roots. Since P (ξ) is a polynomial of degree ≤ p with p

distinct roots, then it can be written as P (ξ) = β
p∏

j=1

(ξ−bj), where β is a constant.

Furthermore, using the fact that P ′(−1) = 0, we obtain β
p∑

k=1

p∏
j=1,j ̸=k

(−1− bj) = 0,

which gives β = 0. Thus, P (ξ) = 0. Therefore the interpolating polynomial must
be unique. �



630 M. BACCOUCH

3.4. Interpolating polynomials. Here, we define two interpolation operators
Πh and Π̂h. The operator Πh is defined as follows: For any function u = u(x),
Πhu|Ii ∈ Pp(Ii) and interpolates u at the roots xi,j , j = 0, 1, . . . , p, of the (p+ 1)-

degree polynomial Bp+1,i(x) on Ii i.e., at the nodes xi,j = xi−xi−1

2 bj +
xi+xi−1

2 ,

j = 0, 1, . . . , p, where bj are the roots of B̂p+1(ξ) on [−1, 1].

The operator Π̂h is such that Π̂hu|Ii ∈ Pp+1(Ii) and is defined as follows: Π̂hu|Ii
interpolates u at xi,j , j = 0, 1, . . . , p, and at an additional point x̄i in Ii with
x̄i ̸= xi,j , i = 0, 1, . . . , p. For simplicity we choose x̄i = xi−1.

Remark 3.1. The operator Π̂h is needed for technical reasons in the proof of the
error estimates. We would like to mention that the interpolating polynomial Π̂hu
depends on the additional point x̄i. We note that we can easily verify the following

(33) Π̂hu = Πhu+ cp+1Bp+1,i(x).

Using (33) and the fact that Π̂hu(x̄i) = u(x̄i), we find cp+1 = u(x̄i)−Πhu(x̄i)
Bp+1,i(x̄i)

.

In the next lemma, we prove some properties of Bp+1,i(x) which will be needed in
our a posteriori error analysis. In particular, we show that the interpolation error
can be divided into dominant and less dominant parts.

Lemma 3.3. Let P−
h u be the projection defined in (4) and Πhu be the interpolating

polynomial that interpolated u at xi,j , j = 0, 1, . . . , p,. Then

P−
h Lp+1,i(x) = ΠhLp+1,i(x) = Lp,i(x)−

(p+ 1)2

p2
Rp,i(x).(34)

Consequently, we have

Πhv = P−
h v, ∀ v ∈ Pp+1(Ii).(35)

Moreover, if u ∈ Hp+2(Ii) then the interpolation error u−Πhu can be split as:

(36) u−Πhu = ϕi + γi, ϕi = aiBp+1,i(x), γi = u− Π̂hu, on Ii,

where ai is the coefficient of Bp+1,i in the (p + 1)-degree interpolating polynomial

Π̂hu and

∥ϕi∥k,Ii ≤ Chp+1−k
i ∥u∥p+1,Ii

, 0 ≤ k ≤ p,(37a)

∥γi∥k,Ii ≤ Chp+2−k
i ∥u∥p+2,Ii

, 0 ≤ k ≤ p+ 1.(37b)

Finally, we have the following superconvergence result∥∥Πhu− P−
h u
∥∥
0,Ii

≤ Chp+2
i ∥u∥p+2,Ii

.(38)

Proof. First we show (34). Writing P−
h Lp+1,i(x) =

∑p
j=0 cjLj,i(x) ∈ Pp(Ii) and

using the properties in (4), we get

p∑
j=0

cj

∫
Ii

Lj,i(x)v dx =

∫
Ii

Lp+1,iv dx, ∀ v ∈ Pp−2(Ii),(39)

p∑
j=0

cjL
′
j,i(xi−1) = L′

p+1,i(xi−1),

p∑
j=0

cjLj,i(xi) = Lp+1,i(xi).(40)

Taking v = Lk,i(x), k = 0, 1, . . . , p − 2 in (39), we get ck = 0 for k = 0, 1, . . . , p −
2. Thus, P−

h Lp+1,i(x) = cp−1Lp−1,i(x) + cpLp,i(x). Using Lj,i(xi) = 1 and
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L′
j,i(xi−1) = (−1)j+1 j(j+1)

hi
, the two conditions in (40) give

(−1)p
(p− 1)p

hi
cp−1 + (−1)p+1 p(p+ 1)

hi
cp = (−1)p+2 (p+ 1)(p+ 2)

hi
, cp−1 + cp = 1,

which simplifies

(p− 1)pcp−1 − p(p+ 1)cp = (p+ 1)(p+ 2), cp−1 + cp = 1.

Solving the system for cp−1 and cp, we obtain

cp−1 =
(p+ 1)2

p2
, cp = −2p+ 1

p2
.

Thus,

P−
h Lp+1,i(x) =

(p+ 1)2

p2
Lp−1,i(x)−

2p+ 1

p2
Lp,i(x)

=Lp,i(x)−
(p+ 1)2

p2
(Lp,i(x)− Lp−1,i(x))

=Lp,i(x)−
(p+ 1)2

p2
Rp,i(x).

Using the standard interpolation error formula [8] and (30), there exists y ∈ Ii such
that the interpolation error Lp+1,i −Πh(Lp+1,i) is

Lp+1,i −Πh(Lp+1,i) =
L
(p+1)
p+1,i (y)

(p+ 1)!

p∏
j=0

(x− xi,j)

=
(2p+ 2)!

((p+ 1)!)2hp+1
i

p∏
j=0

(x− xi,j) = Bp+1,i(x),

since L
(p+1)
p+1,i (y) = (2p+2)!

(p+1)!hp+1
i

. Consequently, we have Πh(Lp+1,i) = Lp+1,i(x) −

Bp+1,i(x). Since Bp+1,i(x) = Lp+1,i(x)− Lp,i(x) +
(p+1)2

p2 Rp,i(x), we obtain

Πh(Lp+1,i) =Lp+1,i(x)− Lp+1,i(x) + Lp,i(x)−
(p+ 1)2

p2
Rp,i(x)

=Lp,i(x)−
(p+ 1)2

p2
Rp,i(x).

This completes the proof of (34).

Next, we show (35). Let v ∈ Pp+1(Ii). Then v can be split as v(x) = v1(x) +
diLp+1,i(x), where v1 ∈ Pp(Ii) and di is a constant. Applying the operators Πh and
P−
h and using the fact that Πhv1 = P−

h v1 = v1, ∀ v1 ∈ Pp(Ii) yields

Πhv = v1 + diΠh(Lp+1,i), P−
h v = v1 + diP

−
h (Lp+1,i).

Thus, we have

v −Πhv = di (Lp+1,i −Πh(Lp+1,i)) , v − P−
h v = di

(
Lp+1,i − P−

h (Lp+1,i)
)
.(41)

Using (34), we get

v −Πhv = diBp+1,i(x) = v − P−
h v.(42)

Thus, we establish that

Πhv = P−
h v, ∀ v ∈ Pp+1(Ii).
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Next, we prove (36). Adding and subtracting V = Π̂hu =
p∑

k=0

akLk,i + aiLp+1,i ∈

Pp+1(Ii), we split the interpolation error as

u−Πhu = (u− V ) + (V −Πhu) = ϕi + γi, ϕi = V −Πhu, γi = u− V = u− Π̂hu.

We note that, by (33), Πhu = Πh(Π̂hu) = ΠhV . Thus, by (34), we get

ϕi = V −ΠhV =

p∑
k=0

akLk,i + aiLp+1,i −Πh

(
p∑

k=0

akLk,i + aiLp+1,i

)
= ai (Lp+1,i −Πh(Lp+1,i)) = aiBp+1,i.

Multiplying Π̂hu =
p∑

k=0

akLk,i + aiLp+1,i by Lp+1,i, integrating over Ii, and using

the orthogonality relation (19), we obtain∫
Ii

Lp+1,iΠ̂hu dx =

p∑
k=0

ak

∫
Ii

Lp+1,iLk,idx+ ai

∫
Ii

Lp+1,iLp+1,idx =
hi

2p+ 3
ai,

which gives ai =
2p+3
hi

∫
Ii
Lp+1,iΠ̂hu dx. Thus, we completed the proof of (36).

Next, we will prove (37). By the standard interpolation error estimates we have

(43) ∥ϕi∥k,Ii ≤ C1h
p+1−k
i ∥V ∥p+1,Ii

, ∥γi∥k,Ii ≤ C2h
p+2−k
i ∥u∥p+2,Ii

.

Finally, we find a bound of ∥V ∥p+1,Ii
by adding and subtracting u and applying

the triangle inequality as

∥V ∥p+1,Ii
≤ ∥V − u∥p+1,Ii

+ ∥u∥p+1,Ii
=
∥∥∥Π̂hu− u

∥∥∥
p+1,Ii

+ ∥u∥p+1,Ii

≤ (Chi + 1) ∥u∥p+1,Ii
≤ C ∥u∥p+1,Ii

,

which complete the proofs of (37).

In order to prove (38) we note that Π̂hu ∈ Pp+1(Ii), thus by (35) and (33), we have

(44) P−
h (Π̂hu) = Πh(Π̂hu) = Πhu,

and by the standard interpolation error we have

(45)
∥∥∥u− Π̂hu

∥∥∥
0,Ii

≤ C1h
p+2
i ∥u∥p+2,Ii

.

Applying P−
h to u = u− Π̂hu+ Π̂hu and using (44), we obtain

P−
h u = P−

h (u− Π̂hu) + P−
h (Π̂hu) = P−

h (u− Π̂hu) + Πhu,

which, in turn, yields

(46) P−
h u−Πhu = P−

h (u− Π̂hu).

Now, we show that
∥∥P−

h v
∥∥
0,Ii

≤ C2 ∥v∥0,Ii by writing∥∥P−
h v
∥∥
0,Ii

=
∥∥P−

h v − v + v
∥∥
0,Ii

≤
∥∥P−

h v − v
∥∥
0,Ii

+ ∥v∥0,Ii(47)

≤Chp+1
i ∥v∥p+1,Ii

+ ∥v∥0,Ii ≤ C2 ∥v∥0,Ii .

Taking the L2 norm of (46) and applying the estimate (47) with v = u− Π̂hu, we
obtain ∥∥P−

h u−Πhu
∥∥
0,Ii

=
∥∥∥P−

h (u− Π̂hu)
∥∥∥
0,Ii

≤ C2

∥∥∥u− Π̂hu
∥∥∥
0,Ii

.(48)

Combining (48) and the standard interpolation estimates (45) we establish (38). �
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Now, we are ready to state and prove the main global superconvergence result:
the UWDG solution is O(hp+2) super close to Πhu.

Theorem 3.2. Under the assumptions of Theorem 2.1, there exists a positive con-
stant C independent of h such that

(49) ∥uh −Πhu∥ ≤ Chp+2.

Moreover, the true error can be divided into a dominant part and a less dominant
part as

(50a) eu(x) = αiBp+1,i(x) + ωi(x), x ∈ Ii,

where

(50b) ωi = γi +Πhu− uh,

and

(50c)

N∑
i=1

∥∥∥∥dkωi

dxk

∥∥∥∥2
0,Ii

≤ Ch2(p+2−k), k = 0, 1, 2.

Finally,

(51) ∥e′u∥ =

(
N∑
i=1

∥e′u∥
2
0,Ii

)1/2

≤ Chp, ∥eu∥1 ≤ Chp.

Proof. Adding and subtracting P−
h u to uh −Πhu, we write

uh −Πhu = (uh − P−
h u) + (P−

h u−Πhu) = −ξu + P−
h u−Πhu.

Taking the L2-norm and applying the triangle inequality, we obtain

∥uh −Πhu∥ ≤ ∥ξu∥+
∥∥P−

h u−Πhu
∥∥ .

Using the estimates (13) and (38), we establish (49).

Next, we add and subtract Πhu to eu, we have

(52) eu = u−Πhu+Πhu− uh.

Furthermore, one can split the interpolation errors u − Πhu on Ii as in (36) to
obtain

(53) eu = ϕi + γi +Πhu− uh = ϕi + ωi, where ωi = γi +Πhu− uh.

Next, we will prove (50c). Using the Cauchy-Schwarz inequality and the inequality
2|ab| ≤ a2 + b2, we write for k = 0, 1, 2,∥∥∥∥dkωi

dxk

∥∥∥∥2
0,Ii

=

∫
Ii

(
dkγi
dxk

+
dk(Πhu− uh)

dxk

)2

dx

=

∥∥∥∥dkγidxk

∥∥∥∥2
0,Ii

+ 2

∫
Ii

dkγi
dxk

dk(Πhu− uh)

dxk
dx+

∥∥∥∥dk(Πhu− uh)

dxk

∥∥∥∥2
0,Ii

≤ 2

(∥∥∥∥dkγidxk

∥∥∥∥2
0,Ii

+

∥∥∥∥dk(Πhu− uh)

dxk

∥∥∥∥2
0,Ii

)
.
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Using the inverse inequality
∥∥∥dk(Πhu−uh)

dxk

∥∥∥
0,Ii

≤ C h−k ∥Πhu− uh∥0,Ii , we obtain

the estimate∥∥∥∥dkωi

dxk

∥∥∥∥2
0,Ii

≤ 2

(∥∥∥∥dkγidxk

∥∥∥∥2
0,Ii

+ h−2k

∥∥∥∥dk(Πhu− uh)

dxk

∥∥∥∥2
0,Ii

)
.

Summing over all elements and applying (37b) and (49) yields∥∥∥∥dkωi

dxk

∥∥∥∥2
0,Ii

≤ 2
(
C1h

2(p+2−k) + h−2kC2h
2(p+2)

)
≤ Ch2(p+2−k),

which gives the estimate (50c).

In order to show (51), we note that

(54) ∥eu∥21,Ω = ∥eu∥2 +
N∑
i=1

∥e′u∥
2
0,Ii

.

Differentiating (53) with respect to x, taking the L2-norm, and applying the Cauchy-
Schwarz inequality and the inequality |ab| ≤ 1

2 (a
2 + b2), we get

∥e′u∥
2
0,Ii

= (ϕ′
i + ω′

i, ϕ
′
i + ω′

i)Ii ≤ 2
(
∥ϕ′

i∥
2
0,Ii

+ ∥ω′
i∥

2
0,Ii

)
.

Summing over all elements and applying (37a) and (50c), we obtain

(55)

N∑
i=1

∥e′u∥
2
0,Ii

≤ Ch2p.

Finally, substituting (11) and (55) into (54) establishes (51). �

4. A posteriori error estimation

In this section, we present a technique to compute asymptotically correct a pos-
teriori estimates of the UWDG errors for the nonlinear BVP (1). These estimates
are computed by solving a local problem with no boundary condition on each ele-
ment. We further prove that the UWDG discretization error estimates converge to
the true spatial errors in the L2-norm as h → 0. Next, we present the weak finite
element formulation to compute a posteriori error estimate for the nonlinear BVP
(1).

Multiplying (1) by arbitrary smooth function v and integrating over an arbitrary
element Ii, we get ∫

Ii

u′′v dx =

∫
Ii

vf(x, u) dx.(56)

Replacing u by uh + eu, we obtain∫
Ii

e′′uv dx =

∫
Ii

v (f(x, uh + eu)− u′′
h) dx.(57)

Substituting (50a), i.e., eu = αiBp+1,i(x) + ωi, into the left-hand side of (57) and
choosing v = Bp+1,i yields

αi

∫
Ii

B′′
p+1,iBp+1,idx =

∫
Ii

Bp+1,i (f(x, uh + eu)− u′′
h − ω′′

i ) dx.(58)
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Solving for αi and using (31b), we obtain

αi =
hi

λp

∫
Ii

Bp+1,i (f(x, uh + eu)− u′′
h − ω′′

i ) dx.(59)

Our error estimate procedure consists of approximating the true error on each
element Ii by the leading term as

eu(x) ≈ Eu(x) = aiBp+1,i(x), x ∈ Ii,(60a)

where the coefficient of the leading term of the error, ai, is obtained from the
coefficient αi defined in (59) by neglecting the unknown terms ωi and eu, i.e.,

(60b) ai =
hi

λp

∫
Ii

Bp+1,i (f(x, uh)− u′′
h) dx.

We note that our error estimates are obtained by solving local problems with no
boundary conditions.

An accepted efficiency measure of a posteriori error estimates is the effectivity
index. In this paper, we use the global effectivity index

Θ =
∥Eu∥
∥eu∥

,

and is used to appraise the accuracy of the error estimate. Ideally, the global
effectivity index should stay close to one and should converge to one under mesh
refinement; [6].

Remark 4.1. A standard measure of the quality of an estimator is the so-called
effectivity index. A property that has been considered highly relevant to measure
the potential quality of an estimator is the so-called asymptotic exactness. Roughly
speaking, an estimator is asymptotically exact for a particular problem if its effec-
tivity index converges to one when the meshsize approaches zero. For more details
consult [6].

Next, we will show that the error estimate Eu converges to the exact error eu in
the L2-norm as h → 0. Furthermore, we will prove the convergence to unity of the
global effectivity index Θ under mesh refinement.

The main results of this section are stated in the following theorem. In particular,
we state and prove asymptotic results of our a posteriori error estimates.

Theorem 4.1. Suppose that the assumptions of Theorem 2.1 are satisfied. If Eu =
aiBp+1,i(x), x ∈ Ii, where ai, i = 1, 2, . . . , N, are given by (60b), then there exists
a positive constant C independent of h such that

∥eu − Eu∥ ≤ C hp+2,(61) ∣∣ ∥eu∥ − ∥Eu∥
∣∣ ≤ C1h

p+2.(62)

As a consequence, the UWDG method combined with the a posteriori error estima-
tion procedure yields O(hp+2) superconvergent solution i.e.,

∥eu − Eu∥2 = ∥u− (uh + Eu)∥2 =

N∑
i=1

∥u− (uh + aiBp+1,i)∥20,Ii ≤ C h2p+4.(63)

Finally, if there exists a constant C = C(u) > 0 independent of h such that

∥eu∥ ≥ Chp+1,(64)
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then the global effectivity index in the L2 norm, which is defined as Θu = ∥Eu∥
∥eu∥ ,

converges to unity at O(h) rate i.e.,

(65) Θu = 1 +O(h).

Proof. First, we will prove (61). Since eu = αiBp+1,i + ωi and Eu = aiBp+1,i on
Ii, we have

∥eu − Eu∥20,Ii = ∥(αi − ai)Bp+1,i + ωi∥20,Ii ≤ 2(αi − ai)
2 ∥Bp+1,i∥20,Ii + 2 ∥ωi∥20,Ii ,

where we used the inequality (a+ b)2 ≤ 2a2 + 2b2. Summing over all elements and
applying the estimate (50c) yields

∥eu − Eu∥2 =
N∑
i=1

∥eu − Eu∥20,Ii ≤ 2
N∑
i=1

(αi − ai)
2 ∥Bp+1,i∥20,Ii + 2

N∑
i=1

∥ωi∥20,Ii

≤ 2
N∑
i=1

(αi − ai)
2 ∥Bp+1,i∥20,Ii + 2C1h

2p+4.(66)

Next, we will estimate
N∑
i=1

(αi − ai)
2 ∥Bp+1,i∥20,Ii . Subtracting (60b) from (59), we

obtain

αi − ai =
hi

λp

∫
Ii

Bp+1,i (f(x, uh + eu)− f(x, uh)− ω′′
i ) dx.(67)

Thus,

|αi − ai| ≤
hi

λp

∫
Ii

|Bp+1,i| (|f(x, uh + eu)− f(x, uh)|+ |ω′′
i |) dx.(68)

Using the Lipschitz condition (9) and applying the Cauchy-Schwarz inequality yield-
s

|αi − ai| ≤
hi

λp

∫
Ii

|Bp+1,i| (L |eu|+ |ω′′
i |) dx

≤
hi ∥Bp+1,i∥0,Ii

λp

(
L ∥eu∥0,Ii + ∥ω′′

i ∥0,Ii
)
.(69)

Squaring both sides and applying the inequality (a+ b)2 ≤ 2(a2 + b2), we obtain

(αi − ai)
2 ≤

2h2
i ∥Bp+1,i∥20,Ii

λ2
p

(
L2 ∥eu∥20,Ii + ∥ω′′

i ∥
2
0,Ii

)
.(70)

Multiplying by ∥Bp+1,i∥20,Ii and using (31a), i.e., ∥Bp+1,i∥20,Ii = hiσp yields

(αi − ai)
2 ∥Bp+1,i∥20,Ii ≤

2h2
i ∥Bp+1,i∥40,Ii

λ2
p

(
L2 ∥eu∥20,Ii + ∥ω′′

i ∥
2
0,Ii

)
=

2h4
iσ

2
p

λ2
p

(
L2 ∥eu∥20,Ii + ∥ω′′

i ∥
2
0,Ii

)
.

Summing over all elements and using h = max
1≤i≤N

hi, we arrive at

N∑
i=1

(αi − ai)
2 ∥Bp+1,i∥20,Ii ≤

2h4σ2
p

λ2
p

(
L2 ∥eu∥2 +

N∑
i=1

∥ω′′
i ∥

2
0,Ii

)
.
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Combining this estimate with (11) and (50c), we get

N∑
i=1

(αi − ai)
2 ∥Bp+1,i∥20,Ii ≤

2h4σ2
p

λ2
p

(
L2C1h

2p+2 + C2h
2p
)
≤ C3h

2p+4.(71)

Now, combining (66) with (71) yields

∥eu − Eu∥2 ≤ 2C3h
2p+4 + 2C1h

2p+4 ≤ Ch2p+4,

which completes the proof of (61).

In order to prove (62), we use the reverse triangle inequality to have∣∣ ∥Eu∥ − ∥eu∥
∣∣ ≤ ∥Eu − eu∥ .(72)

Combining (72) and (61) completes the proof of (62).

Using the relation eu = u− uh and the estimate (61), we obtain

N∑
i=1

∥u− (uh + aiBp+1,i)∥20,Ii = ∥u− (uh + Eu)∥2 = ∥eu − Eu∥2 ≤ Ch2p+4.

In order to prove (65), we divide the inequality in (72) by ∥eu∥ and we use the
estimate (61) and the assumption (64) to obtain∣∣∣∣∥Eu∥

∥eu∥
− 1

∣∣∣∣ ≤ ∥Eu − eu∥
∥eu∥

≤ C1h
p+2

C2hp+1
≤ Ch.

Therefore, ∥Eu∥
∥eu∥ = 1 +O(h), which completes the proof of (65). �

In the previous theorem, we proved that the global a posteriori error estimates
converge to the true spatial errors at O(hp+2) rate. We further proved that the
global effectivity index in the L2-norm converges to unity at O(h) rate.

Remark 4.2. Since eu = u− uh, we have eu −Eu = u− (uh +Eu). Using (61) to
get ∥u− (uh + Eu)∥ = ∥eu − Eu∥ ≤ Chp+2. Thus, the computable post-processed
solution defined by u∗

h = uh+Eu converges to the exact solution u at O(hp+2) rate.
This accuracy enhancement is simply achieved by adding the error estimate Eu to
the approximate UWDG solution uh only once at the end of the computation. We
would like to point out that our error estimates are obtained by solving a local
problem with no boundary conditions on each element. This leads to very efficient
computations of the post-processed approximation uh + Eu.

Remark 4.3. The performance of an error estimator is commonly measured by
the effectivity index which is the ratio of the estimated error to the actual error. In
particular, we say that the error estimator is asymptotically exact if the effectivity
index approaches unity as the mesh size goes to zero. Thus, (65) indicated that
our a posteriori error estimator is asymptotically exact. We note that Eu is a
computable quantity since it only depends on the numerical solution uh and the f .
It provides an asymptotically exact a posteriori estimator on the actual error ∥eu∥.
We would like to emphasize that our UWDG error estimate is computationally
simple which make it useful in adaptive computations.

Remark 4.4. The assumption (64) implies that terms of order O(hp+1) are present
in the error. If this were not the case, the error estimate Eu might not be such
a good approximation of the error eu. Even though the proof of (65) is valid
under the assumption (64), our computational results given in the next section
demonstrate that the global effectivity index in the L2-norm converge to unity at
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O(h) rate. Thus, the proposed error estimation technique is an excellent measure
of the error. We note that the a priori estimate (11) is optimal in the sense that
the exponent of h is the largest possible. In fact, one may show that provided that
the (p+1)st-order derivatives of the exact solution u do not vanish identically over
the domain (u ̸∈ V p

h ), then an inverse estimate of the form (64) is valid for some
positive constant C (see [3, 20, 21]), which depends on u, but not on h. Combining
(11) with (64), we show that uh approximates u to O(hp+1) in the L2 norm.

5. Numerical examples

In this section, we provide several numerical examples to verify our theoretical
findings. In our experiments, the system of nonlinear algebraic equations resulting
from the UWDG scheme (3) is approximated using the Newton-Raphson method.
The stopping criterion for Newton’s iteration is taken 10−15. In all examples,
we will compute the L2 errors ∥uh −Πhu∥, ∥eu − Eu∥, and |∥eu∥ − ∥Eu∥|. In all
numerical experiments, the numerical order of convergence is computed using the

formula − ln(||eN1
u ||/||eN2

u ||)
ln(N1/N2)

, where eN1
u and eN2

u denote the errors using N1 and N2

elements, respectively.

For easy visualization, we plot the L2-errors in log scale. For each degree p, we fit,
in a least-squares sense, the data sets with a linear polynomial function and then
we compute the slope of the fitting line.

Example 5.1. In this example, we consider the following linear BVP

(73) u′′ = u− 2 sin(x), x ∈ [0, 2π], u(0) = 1, u′(2π) = 1,

where the analytical solution is u(x) = sin(x). We note that f(x, u) = u− 2 sin(x),
which satisfies all conditions used in the theorems. We solve (73) using the UWDG
scheme presented in Section 2. We uniformly discretize the spatial interval [0, 2π]
through vertices xi = ih, i = 0, 1, . . . , N , h = 2π/N . The L2 errors ∥uh −Πhu∥ are
reported in left figure of Figure 1. These results indicate that the UWDG solution
uh is O(hp+2) super close to Πhu. This is in full agreement with Theorem 3.2.

Next, we implement the proposed error estimation procedure presented in Section
4 to find the error estimator Eu on each element and the error ∥eu − Eu∥. In the
left figure of Figure 2, we show the L2-norm of the errors between eu and Eu.
These results indicate that ∥eu − Eu∥ is O(hp+2) in the L2-norm for p = 2, 3, 4, 5.
In the right figure of Figure 2, we show the convergence rates for the global errors
|∥eu∥ − ∥Eu∥|. We observe that |∥eu∥ − ∥Eu∥| = O(hp+2) as h → 0. We conclude
that our a posteriori error estimate Eu converges to the actual error eu as h → 0.
These results are in full agreement with the theoretical estimate of Theorem 4.1.
Thus, the above experiments show that the orders of convergence given in this
paper are sharp.

We present the global effectivity indices Θu in Table 3. We see that Θu is near
unity and converges to one under h-refinement. Finally, the errors |Θu − 1| and
their orders of convergence shown in right figure of Figure 1 suggest that |Θu − 1|
is O(h). Thus, the numerical convergence rate is the same as the theoretical rate
derived in Theorem 4.1.

We repeat the previous example with all parameters kept unchanged except that
we use the periodic boundary conditions i.e., we consider

(74) u′′ = u− 2 sin(x), x ∈ [0, 2π], u(0) = u(2π), u′(0) = u′(2π).
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Figure 1: Convergence rates for ∥uh −Πhu∥ (left) and ∥Θu − 1∥ (right) for the
BVP (73) on uniform meshes having N = 4, 8, 16, 32, 64 elements using p = 2-5.
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Figure 2: Convergence rates for ∥eu − Eu∥ (left) and |∥eu∥ − ∥Eu∥| (right) for the
BVP (73) on uniform meshes having N = 4, 8, 16, 32, 64 elements using p = 2-5.

Table 3. Global effectivity indices for Example 5.1 on uniform
meshes having N = 4, 8, 16, 32, 64 elements using p = 2− 5.

p\N N = 4 N = 8 N = 16 N = 32 N = 64
p = 2 1.1368 1.0316 1.0078 1.0019 1.0005
p = 3 1.0483 1.0129 1.0033 1.0008 1.0002
p = 4 1.0241 1.0062 1.0016 1.0004 1.0001
p = 5 1.0143 1.0036 1.0009 1.0002 1.0001

We use the uniform mesh with N = 4, 8, 16, 32, 64 elements and we find the
UWDG solution uh ∈ V p

h with p = 2, 3, 4, 5. The L2 errors presented in the
right figure of Figure 3 indicate that the UWDG solution uh is O(hp+2) super close
to Πhu. This is in full agreement with the theory. In the left figure of Figure 4,
we present the L2-norm of the errors between eu and Eu. These results indicate
that ∥eu − Eu∥ = O(hp+2). The results shown in the right figure of Figure 4
indicate that |∥eu∥ − ∥Eu∥| = O(hp+2) as h → 0. Once again we observe that our
a posteriori error estimate Eu converges to the actual error eu as h → 0. These
results are in full agreement with the theoretical estimate of Theorem 4.1. Next,
we present the global effectivity indices Θu in Table 4. We observe that Θu is near
unity and converges to one under h-refinement. Finally, the errors |Θu − 1| and their
orders of convergence shown in the right figure of Figure 3 suggest that |Θu − 1|
is O(h). Thus, the numerical convergence rate is the same as the theoretical rate
derived in Theorem 4.1.
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Figure 3: Convergence rates for ∥uh −Πhu∥ (left) and ∥Θu − 1∥ (right) for the
BVP (74) on uniform meshes having N = 4, 8, 16, 32, 64 elements using p = 2-5.

4 8 16 32 64
10-15

10-10

10-5

100

p=2, slope =4.0276
p=3, slope =5.1151
p=4, slope =6.0375
p=5, slope =7.0058

4 8 16 32 64

10-15

10-10

10-5

100

p=2, slope =5.0373
p=3, slope =5.9509
p=4, slope =6.9791
p=5, slope =7.8948

Figure 4: Convergence rates for ∥eu − Eu∥ (left) and |∥eu∥ − ∥Eu∥| (right) for the
BVP (74) on uniform meshes having N = 4, 8, 16, 32, 64 elements using p = 2-5.

Table 4. Global effectivity indices for the BVP (74) on uniform
meshes having N = 4, 8, 16, 32, 64 elements using p = 2− 5.

p\N N = 4 N = 8 N = 16 N = 32 N = 64
p = 2 1.1291 1.0284 1.0068 1.0017 1.0004
p = 3 1.0472 1.0129 1.0033 1.0008 1.0002
p = 4 1.0241 1.0062 1.0016 1.0004 1.0001
p = 5 1.0143 1.0036 1.0009 1.0002 1.0001

Example 5.2. In this example, we consider the following nonlinear BVP

(75) u′′ = tan(u)− cos(x)− tan(cos(x)), x ∈ [0, 2π], u(0) = 1, u′(2π) = 0,

where the analytical solution is u(x) = cos(x). Here, f(x, u) = tan(u) − cos(x) −
tan(cos(x)), which does not satisfy the assumptions in the theorems. We uniformly
discretize the spatial interval [0, 2π] through vertices xi = ih, i = 0, 1, . . . , N ,
h = 2π/N . The errors ∥uh −Πhu∥, ∥eu − Eu∥, |∥eu∥ − ∥Eu∥|, and |Θu − 1| are
shown in Figure 5 and Figure 6 for p= 2, 3,4 ,5. The rates of convergence obtained
agree with the theoretical rates of convergence stated in Theorems 3.2 and 4.1, i.e.,
our estimates are sharp. Finally, Table 5 displays the global effectivity index Θ.
We can observe that the global effectivity indices stay close to unity and converge
to unity under h-refinement.

We repeat the previous example with all parameters kept unchanged except that
we use the periodic boundary conditions i.e., we consider
(76)
u′′ = tan(u)− cos(x)− tan(cos(x)), x ∈ [0, 2π], u(0) = u(2π), u′(0) = u′(2π).
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Figure 5: Convergence rates for ∥uh −Πhu∥ (right) and ∥Θu − 1∥ (left) for the
BVP (75) on uniform meshes having N = 4, 8, 16, 32, 64 elements using p = 2-5.
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Figure 6: Convergence rates for ∥eu − Eu∥ (left) and |∥eu∥ − ∥Eu∥| (right) for the
BVP (75) on uniform meshes having N = 4, 8, 16, 32, 64 elements using p = 2-5.

Table 5. Global effectivity indices for Example 5.2 on uniform
meshes having N = 4, 8, 16, 32, 64 elements using p = 2− 5.

p\N N = 4 N = 8 N = 16 N = 32 N = 64
p = 2 1.1484 1.0338 1.0083 1.0021 1.0005
p = 3 1.0861 1.0327 1.0086 1.0022 1.0005
p = 4 1.0453 1.0090 1.0022 1.0006 1.0001
p = 5 1.0285 1.0099 1.0025 1.0006 1.0002

In Figures 7 and 8, we list the errors ∥uh −Πhu∥, ∥eu − Eu∥, |∥eu∥ − ∥Eu∥|, and
|Θu − 1| on logarithmic scales. We also show the numerical orders of convergence.
We observe that ∥uh −Πhu∥ = O(hp+2), ∥eu − Eu∥ = O(hp+2), |∥eu∥ − ∥Eu∥|
= O(hp+2), and |Θu − 1| = O(h). The results showing in Table 6 indicate that the
global effectivity index Θ → 1 under mesh refinement. Once again, the computed
order of convergence matches with the theoretical order of convergence derived in
Theorems 3.2 and 4.1.

Example 5.3. In this example, we consider the following BVP

(77) u′′ + e−u = ex + e−ex , x ∈ [0, 3], u(0) = 1, u′(3) = e3.

The exact solution is given by u(x) = ex. In this example f(x, u) = ex+e−ex −e−u,
which does not satisfy the Lipschitz condition (8). We implement the UWDG
scheme using uniform mesh with N = 5, 10, 15, 20, 25, 30 elements and p =
2, 3, 4, 5. We present the errors ∥uh −Πhu∥, ∥eu − Eu∥, |∥eu∥ − ∥Eu∥|, and
|Θu − 1| in Figure 9 and Figure 10. Clearly, we observe ∥uh −Πhu∥ = O(hp+2),
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Figure 7: Convergence rates for ∥uh −Πhu∥ (left) and ∥Θu − 1∥ (right) for the
BVP (76) on uniform meshes having N = 4, 8, 16, 32, 64 elements using p = 2-5.
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Figure 8: Convergence rates for ∥eu − Eu∥ (left) and |∥eu∥ − ∥Eu∥| (right) for the
BVP (76) on uniform meshes having N = 4, 8, 16, 32, 64 elements using p = 2-5.

Table 6. Global effectivity indices for the BVP (76) on uniform
meshes having N = 4, 8, 16, 32, 64 elements using p = 2− 5.

p\N N = 4 N = 8 N = 16 N = 32 N = 64
p = 2 1.1931 1.0381 1.0090 1.0022 1.0006
p = 3 1.0934 1.0335 1.0087 1.0022 1.0005
p = 4 1.0460 1.0090 1.0022 1.0006 1.0001
p = 5 1.0285 1.0099 1.0025 1.0006 1.0002

∥eu − Eu∥ = O(hp+2), |∥eu∥ − ∥Eu∥| = O(hp+2), and |Θu − 1| = O(h). The global
effectivity indices Θu are shown in Table 7. We observe that Θu is near unity and
converges to one under h-refinement. These results are in full agreement with our
theoretical results.

Table 7. Global effectivity indices for Example 5.3 on uniform
meshes having N = 5, 10, 15, 20, 25, 30 elements using p = 2− 5.

p\N N = 5 N = 10 N = 15 N = 20 N = 25 N = 30
p = 2 1.0066 1.0033 1.0022 1.0017 1.0013 1.0011
p = 3 1.0044 1.0022 1.0015 1.0011 1.0009 1.0007
p = 4 1.0028 1.0014 1.0010 1.0007 1.0006 1.0005
p = 5 1.0019 1.0009 1.0006 1.0005 1.0004 1.0003
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Figure 9: Convergence rates for ∥uh −Πhu∥ (left) and ∥Θu − 1∥ (right) for the
BVP (77) on uniform meshes having N = 5, 10, 15, 20, 25, 30 elements using p =
2-5.
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Figure 10: Convergence rates for ∥eu − Eu∥ (left) and |∥eu∥ − ∥Eu∥| (right) for the
BVP (77) on uniform meshes having N = 5, 10, 15, 20, 25, 30 elements using p =
2-5.

Example 5.4. In the last example, we consider the following BVP

(78) u′′ − ln(1 + u2) = ex − ln(1 + 22x), x ∈ [0, 3], u(0) = 1, u′(3) = e3,

where the exact solution is u(x) = ex. In this example f(x, u) = ln(1 + u2) +
ex − ln(1 + 22x), which satisfies the assumptions used in our theorems. We use the
uniform mesh with N = 4, 8, 12, 16, 20, 24 elements. The results in the left figure
of Figure 11 clearly show that ∥uh −Πhu∥ = O(hp+2). From the results shown in
the left figure of Figure 12 it is clear that ∥eu − Eu∥ = O(hp+2). The results shown
in the right figure of Figure 12 again demonstrate that |∥eu∥ − ∥Eu∥| = O(hp+2)
as h → 0. Thus, our a posteriori error estimate Eu converges to the actual error eu
as h → 0. The global effectivity indices Θu presented in Table 8 indicate that Θu is
near unity and converges to one under h-refinement. Finally, the results presented
in the right figure of Figure 11 suggest that |Θu − 1| = O(h). Thus, the numerical
convergence rates are sharp.

Table 8. Global effectivity indices for Example 5.4 on uniform
meshes having N = 4, 8, 12, 16, 20, 24 elements using p = 2− 5.

p\N N = 4 N = 8 N = 12 N = 16 N = 20 N = 24
p = 2 1.0125 1.0052 1.0032 1.0023 1.0018 1.0015
p = 3 1.0080 1.0034 1.0021 1.0015 1.0012 1.0010
p = 4 1.0048 1.0021 1.0013 1.0010 1.0008 1.0006
p = 5 1.0031 1.0013 1.0009 1.0006 1.0005 1.0004
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Figure 11: Convergence rates for ∥uh −Πhu∥ (left) and ∥Θu − 1∥ (right) for the
BVP (78) on uniform meshes having N = 4, 8, 12, 16, 20, 24 elements using p =
2-5.
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Figure 12: Convergence rates for ∥eu − Eu∥ (left) and |∥eu∥ − ∥Eu∥| (right) for the
BVP (78) on uniform meshes having N = 4, 8, 12, 16, 20, 24 elements using p =
2-5.

6. Concluding remarks

In this paper, we developed and analyzed an a posteriori error estimator for the
ultra-weak discontinuous Galerkin (UWDG) method for nonlinear boundary-value
problems of the form u′′ = f(x, u) with suitable boundary conditions. We first
proved that the dominant part of the discretization error for the p-degree UWDG
solution is proportional to a (p + 1)-degree polynomial. We used these results
to construct asymptotically exact a posteriori error estimates. The proposed a
posteriori error estimator is computationally simple, efficient, and asymptotically
exact. This estimator is obtained by solving a local residual problem on each
element. The proposed a posteriori error estimate is shown to converge to the
actual error in the L2-norm under mesh refinement. The order of convergence is
proved to be p + 2, when piecewise polynomials of degree p ≥ 2 are used. Our
numerical experiments demonstrate that the results in this paper hold true for
nonlinear problems with general function f(x, u), indicating that the restriction on
f(x, u) is artificial. The generalization of our proofs to nonlinear equations with
general function f involves several technical difficulties and will be investigated in
the future. We are currently investigating the superconvergence properties and the
asymptotic exactness of a posteriori error estimates for UWDG methods applied
to two-dimensional elliptic, parabolic, and hyperbolic equations on rectangular and
triangular meshes. Our future work will focus on extending our a posteriori error
analysis to linear and nonlinear problems on tetrahedral meshes.
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