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A FINITE VOLUME ELEMENT SOLUTION BASED ON

POSTPROCESSING TECHNIQUE OVER ARBITRARY CONVEX

POLYGONAL MESHES

YANLONG ZHANG AND YANHUI ZHOU∗

Abstract. A special finite volume element method based on postprocessing technique is proposed
to solve the anisotropic diffusion problem on arbitrary convex polygonal meshes. The shape
function of polygonal finite element method is constructed by Wachspress generalized barycentric
coordinate, and by adding some element-wise bubble functions to the finite element solution, we

get a new finite volume element solution that satisfies the local conservation law on a certain dual
mesh. The postprocessing algorithm only needs to solve a local linear algebraic system on each
primary cell, so that it is easy to implement. More interesting is that, a general construction of
the bubble functions is introduced on each polygonal cell, which enables us to prove the existence

and uniqueness of the post-processed solution on arbitrary convex polygonal meshes with full
anisotropic diffusion tensor. The optimal H1 and L2 error estimates of the post-processed solution
are also obtained. Finally, the local conservation property and convergence of the new polygonal
finite volume element solution are verified by numerical experiments.

Key words. Finite volume element solution, postprocessing technique, convex polygonal meshes,
existence and uniqueness, H1 and L2 error estimates.

1. Introduction

Finite volume method (FVM) is a popular and practical numerical method for
solving partial differential equations, and it is widely used in computational fluid
dynamics, computational heat transfer and other fields. The local conservation is
an important property of FVM, and it is desirable in multiphase flow in porous
media, energy conservation in thermodynamics and many other problems. Finite
volume element method (FVEM) is usually regarded as a special type of FVM,
where the solution space is the same as the classical finite element method. The
mathematical development of FVEM can be found in [18, 20, 37]. For the two
dimensional diffusion problems, most existing works of FVEM are only concentrat-
ed on triangular meshes (e.g. [1, 5, 6, 7, 9, 34, 36, 39]) or quadrilateral meshes
(e.g. [14, 15, 19, 21, 23, 28, 38]). Polygonal meshes offer greater flexibility in mesh
generation, merging and refinement, and they have been applied in many fields,
such as computational fluid dynamics, topology optimization, analysis of fractured
materials and crack propagation and so on. Thus, the construction of FVEM on
polygonal meshes is an interesting and important research topic. Recently, [42] pro-
posed a finite volume element method to solve the anisotropic diffusion equation on
general convex polygonal meshes, and under the coercivity assumption, the authors
proved the optimal H1 error estimate. To our knowledge, the theoretical analysis
of FVEM on arbitrary convex polygonal meshes still lags far behind. For instance,
even though for the classical isoparametric bilinear FVEM, the corresponding co-
ercivity result and optimal L2 error analysis have not been established on arbitrary
trapezoidal meshes.
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As we all know, since the bilinear form of classical finite element method (FEM)
is symmetry, the coercivity result can be easily obtained (e.g. [2, 3]). Once the
optimal interpolation error estimate is established, the optimal error analysis (e.g.
H1 and L2) of FEM can also be proved by some standard techniques (e.g. Aubin-
Nitsche). In recent decades, based on various generalized barycentric coordinates,
some researchers extend the classical FEM to polygonal meshes, where the gen-
eralized barycentric coordinates are studied in [10, 11, 12, 16, 25, 33] for incom-
plete references. In [30], the polygonal FEMs based on Wachspress, mean value
or Laplace generalized barycentric coordinates were developed. For more studies
and applications about polygonal finite element method, the readers are referred
to [24, 26, 29, 32, 35] and so on. At the same time, [13] (resp. [27]) studied the
interpolation error estimates of triangulation, harmonic, Wachspress and Sibson
(resp. mean value) coordinates, which is crucial to the optimal error estimates in
polygonal FEM and FVEM.

Regrettably, the aforementioned polygonal FEM doesn’t satisfy the local con-
servation property in general. Thus, some researchers try to postprocess the FEM
solution to obtain a new FVEM solution with the local conservation property. By
postprocessing the continuous Galerkin finite element solution, [43] presented a high
order finite volume element solution for the elliptic problem on triangular and quasi-
parallelogram meshes, which has the local conservation property and preserves the
H1 and L2 error estimates. Later, [40] generalized the theoretical results in [43]
to the anisotropic diffusion equation on arbitrary trapezoidal meshes. Recently, by
introducing some new bubble functions, [41] improved the postprocess technique in
[43, 40], such that the new theoretical findings cover arbitrary triangular and convex
quadrilateral meshes for the anisotropic diffusion equation with any full diffusion
tensor. In addition, there are many other research results for the local conservative
method based on FEM, e.g. [4, 8, 17, 22, 31].

Compared with the previous works, this article has several contributions. Firstly,
by introducing a unified construction of bubble functions, we establish the existence
and uniqueness, optimal H1 and L2 error estimates of the post-processed solution
for the anisotropic diffusion equation on arbitrary convex polygonal meshes. Sec-
ondly, we note that the coercivity result in [42] does not cover general convex polyg-
onal meshes, and the L2 error estimate of it has not been established. Different
from [42], here we present another routine to obtain a new polygonal finite volume
element solution for solving the anisotropic diffusion equation, and the stability and
convergence are verified on arbitrary convex polygonal meshes.

The rest of this article is organized as follows. In Section 2, we define some
notations and introduce the polygonal finite element method based on Wachspress
generalized barycentric coordinate. By postprocessing the polygonal finite element
solution, in Section 3 we reach a polygonal finite volume element solution, and
the local conservation, existence and uniqueness of the post-processed solution are
verified in Section 4. The optimal error estimates in H1 and L2 norms are proved in
Section 5. In Section 6, we present some numerical results to validate the accuracy,
local conservation property and mesh flexibility of the proposed method. Some
conclusions are given in the last section.

2. A polygonal finite element method

Consider the following anisotropic diffusion problem

−∇ · (Λ∇u) = f in Ω,(1)

u = g on ∂Ω,(2)
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Figure 1. Notations of a general convex polygon.

where Ω is an open bounded polygonal domain in R2, and f ∈ L2(Ω) is the source
term. Here Λ is a symmetric and positive definite matrix,

(3) λ∥v∥2 ≤ vTΛv ≤ λ∥v∥2, ∀v ∈ R2,

where λ, λ are two positive constants, and ∥·∥ is the Euclidean norm. For simplicity
of the proof, we assume the Dirichlet boundary condition g = 0 in the theoretical
analysis.

2.1. The primary mesh and Wachspress shape function. In order to intro-
duce the primary mesh, we firstly present the following notations and assumptions.

• M, the set of disjoint polygonal cells, satisfying Ω = ∪K∈MK. K, a
generic cell in M, is an open and connected subset of Ω. Throughout, we
suppose that K is strictly convex in the sense that all interior angles of
K are less than π. xK , hK and ρK denote the position vector of the cell
center, the diameter of K and the radius of the largest circle inscribed in
K respectively, and h = maxK∈M hK .

• E , the set of disjoint edges. σ, a generic edge of E , is an open line segment.
• V, the set of vertices. ν, a generic vertex of V, is a vertex of the cellK ∈ M.
We also use the same notation ν to denote the position vector of the vertex
ν, and let Vint = V ∩ Ω be the interior vertices of Ω.

Based on the above notations, the primary mesh Th of Ω is defined by the triplet
(M, E ,V). In this paper, we suppose that the primary mesh is conforming in the
sense that the intersection of the enclosures of any two cells in M is either empty
or a common vertex or a common edge.

Next, we begin to construct the Wachspress shape functions on a single polygonal
cell K ∈ M. Assume that νi (i = 1, · · · , nK) are the nK vertices of K, see Figure
1, where the vertices are arranged by anticlockwise. In the following discussion, if
there is no ambiguity, we will drop the subscriptK in nK for simplicity of exposition.
For any x ∈ K, let Ai(x) be the area of the triangle with vertices x, νi and νi+1,
namely

(4) Ai(x) =
1

2
(νi+1 − νi)

T R (x− νi) , ∀x ∈ K,

where

R =

(
0 1

−1 0

)
.
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Here and hereafter, without special mention, the subscripts such as i and j related
to the vertices of K will be understood as periodic ones with period n such that
ν0 = νn, νn+1 = ν1. It is easy to verify that Ai(x) is a linear scalar function with
respect to x. Moreover, we suppose that wi(x) is the so-called weight function
associated with νi. In particular, the following weight functions are proposed by
Wachspress [33]

(5) wi(x) = Ai(νi−1)
∏

j ̸=i−1,i

Aj(x), i = 1, · · · , n,

which are the polynomials of degree not greater than n−2 with respect to x. Then,
the Wachspress shape function associated with νi on K is defined by

(6) ϕi(x) =
wi(x)∑n
j=1 wj(x)

, x ∈ K.

The properties of Wachspress shape functions are similar to the classical nodal
basis functions of Lagrange type on triangular or quadrilateral cells, here we list
some of them.

Proposition 1. ([12, 25]) Assume that K is a strictly convex polygon. Let the
weight function wi(x) and shape function ϕi(x) be defined by (5) and (6), respec-
tively. Then, we have

ϕi(x) ∈ C∞(K), 1 ≤ i ≤ n,

ϕi(x) > 0, 1 ≤ i ≤ n, ∀x ∈ K,

(7)
n∑

i=1

ϕi(x) = 1, ∀x ∈ K,

(8)

n∑
i=1

ϕi(x)νi = x, ∀x ∈ K.

Moreover, ϕi(x) has a unique continuous extension to ∂K, satisfying (7), (8) and
ϕi(x) ≥ 0 for all x ∈ K, and it is linear on each edge of K, satisfying the Lagrange
property ϕi(νj) = δij , 1 ≤ i, j ≤ n, where δij denotes the Kronecker delta.

Proposition 2. ([12, 13]) The Wachspress shape functions on convex polygons have
the invariance property: if the transformation T : R2 → R2 is a translation, rota-

tion, reflection, uniform scaling, or combination of these, then ϕi(x) = ϕ̂i(T (x)),

where K̂ = T (K) and ϕ̂i is the Wachspress shape function defined on K̂.

Once the Wachspress shape functions ϕi (i = 1, · · · , n) are well defined in each
cell K, then by a way similar to the construction of the classical P1 (resp. Q1)
nodal basis functions of Lagrange type on triangular (resp. quadrilateral) meshes,
we can extend ϕi to the whole domain Ω. In particular, let ϕν(x), x ∈ Ω be the
Wachspress shape function associated with the vertex ν ∈ V, then for any vertex
ν ′ ∈ V, we have

ϕν(ν
′) =

{
1, if ν ′ = ν,

0, if ν ′ ̸= ν.

Obviously, we have ϕν ∈ C(Ω).
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2.2. A finite element method on polygonal meshes. With respect to the
primary mesh Th, the finite element space for (1) and (2) is defined by

Uh = Span{ϕν : ν ∈ Vint}.

It is easy to verify that Uh ⊂ H1
0 (Ω). Moreover, there holds

uh =
∑

ν∈Vint

uh(ν)ϕν , ∀uh ∈ Uh.

The polygonal finite element method for solving (1) and (2) is to find uh ∈ Uh,
such that

(9) a(uh, vh) = (f, vh), ∀ vh ∈ Uh,

where

a(uh, vh) =

∫
Ω

(Λ∇uh) · ∇vh dxdy, (f, vh) =

∫
Ω

fvh dxdy.

Let the semi-norm and norm of Sobolev space Hm(D) be denoted as | · |m,D and
∥ · ∥m,D, and when D = Ω we omit the subscript Ω. By (3), we find that

(10) a(uh, uh) ≥ λ|uh|21, ∀uh ∈ Uh.

Thus, the coercivity result of polygonal finite element bilinear form a(·, ·) is verified
by noticing (10), and then the existence and uniqueness of (9) can be obtained
immediately.

Let the interior angle at the vertex νi be denoted as αi, i.e., αi = ∠νi−1νiνi+1.
Then, we introduce the geometric assumptions below.

• (G1) There exists a positive constant γ∗ such that

hK
ρK

< γ∗, ∀K ∈ M.

• (G2) There exists a positive constant d∗ such that

1

hK
min
i ̸=j

∥νi − νj∥ > d∗, ∀K ∈ M.

• (G3) There exists a positive constant α∗ such that

max
1≤i≤n

{αi} < α∗ < π, ∀K ∈ M.

• (G4) There exists a positive constant α∗ such that

min
1≤i≤n

{αi} > α∗, ∀K ∈ M.

• (G5) There exists a positive constant n∗ such that n < n∗.

Proposition 3 (Proposition 4 in [42], Proposition 4 in [13]). For the geometric
assumptions (G1)-(G5), we have the following results:

(1) (G2) and (G3) imply (G1); (2) (G1) implies (G4); (3) (G2) or (G3)
implies (G5).

Proposition 3 implies that (G2) and (G3) are basic ones. Moreover, based on
the two assumptions (G2) and (G3), we have the following interpolation error
estimates. Next, we use A . B (resp. A & B) to denote A ≤ CB (resp. A ≥ CB),
where C is a positive constant and independent of K and h. Moreover, A ∼ B
denotes that we have both A . B and A & B.
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Figure 2. The construction of dual cell.

Lemma 1. Let uI ∈ Uh be the Lagrange interpolation of u, satisfying uI(ν) = u(ν),
∀ν ∈ V. Then, under the two geometric assumptions (G2) and (G3), we have the
following interpolation error estimates

(11) ∥u− uI∥m,K . h2−m
K |u|2,K , m = 0, 1, 2, ∀u ∈ H2(K).

Proof. If m = 0, 1 (resp. m = 2), then the proof of (11) can be found in Theorem
1 and Corollary 1 in [13] (resp. Theorem 1 in [42]). �

Lemma 2. Assume that Th is a conforming mesh, which consists of general convex
polygons, and satisfies the same geometric assumptions of Lemma 1. Let u be the
exact solution of (1) and (2), and uh the polygonal finite element solution of (9).
Then, if u ∈ H2(Ω), we have the following optimal L2 and H1 error estimates

(12) ∥u− uh∥m . h2−m∥u∥2, m = 0, 1.

Proof. By using Lemma 1 and the similar discussions (e.g. Aubin-Nitsche tech-
nique) for the classical continuous Galerkin finite element method of Lagrange type
on triangular or quadrilateral meshes (e.g. [2, 3]), we reach (12). �

3. A finite volume element solution based on postprocessing technique

3.1. The dual mesh. For any K ∈ M, suppose that xK is an arbitrary interior
point of K and xi is the midpoint of line segment νiνi+1 (i = 1, · · · , n). Connecting
the cell center with the edge midpoints, we obtain a subdivision ofK, consisting of n
quadrilaterals. For each vertex ν ∈ V, the dual cell associated with ν is a polygonal
domain surrounding ν and denoted as D∗

ν . Precisely, if ν = νi is the i−th vertex
of K, then the contribution of K to D∗

ν is the quadrilateral νixixKxi−1. The dual
cell associated with the interior vertex νi is shown in Figure 2 for an example.

The dual mesh T ′
h consists of all dual cells, given by

T ′
h = {D∗

ν : ν ∈ V},
and the corresponding test function space for FVEM is defined by

Vh = Span{ψν : ν ∈ Vint},
where ψν is the characteristic function on D∗

ν , i.e., ψν(x) = 1 if x ∈ D∗
ν , ψν(x) = 0

if x /∈ D∗
ν . Moreover, let Π be a linear mapping which maps uh ∈ Uh to u∗h :=

Πuh ∈ Vh, and satisfies

(13) u∗h(ν) = uh(ν), ∀ν ∈ Vint.
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Figure 3. The contours of the bubble functions.

If uh is the polygonal finite element solution of (9), then in general, it does not
satisfy the following local conservation property

(14)

∫
∂D∗

ν

(Λ∇uh) · n ds+

∫
D∗

ν

f dxdy = 0

for any ν ∈ Vint, where n denotes the unit normal vector outward to ∂D∗
ν . For ex-

ample, on triangular meshes, the polygonal finite element solution is identical to the
standard P1 finite element solution since the uniqueness of generalized barycentric
coordinates. As a result, uh doesn’t satisfy the local conservation property, even
though n = 3.

However, for the finite volume element solution, it preserves the property (14)
on a certain dual mesh (e.g. [18, 20, 37, 42]). In this paper, we postprocess the
polygonal finite element solution uh of (9) to generate a new continuous function
ûh, such that the new polygonal finite volume element solution satisfies the local
conservation property on the dual mesh T ′

h, and preserves the optimal H1 and L2

error estimates on the primary mesh Th. For this purpose, a general construction of
new n bubble functions for each cellK and a postprocessing algorithm are presented
as follows.

3.2. The postprocessing technique. In order to introduce the postprocessing
technique, we first introduce the new bubble function ψj as below

(15) ψj =

{
λxK

λ2νj
λνj+1 , in △xKνjνj+1,

0, otherwise,
j = 1, · · · , n,

where λxK , λνj and λνj+1 denote three linear nodal basis functions of the triangle
xKνjνj+1. We plot the contours of six bubble functions for the case n = 6 in
Figure 3. Moreover, in each K ∈ M, for the polygonal finite element solution uh
of (9), we define the following trilinear form

RK(f, uh, vh) =

∫
K

f(v∗h − vh) dxdy +

∫
K

(Λ∇uh) · ∇vh dxdy(16)

+

∫
∂K

{Λ∇uh} · n(v∗h − vh) ds,

where vh ∈ Uh, and v
∗
h ∈ Vh is the piecewise constant function defined by (13), n

denotes the unit normal vector outward to ∂K. {·} denotes an averaging operator
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on ∂K, i.e., for any edge σ = K1 ∩K2, vectorial function v satisfies

{v}σ =
1

2

(
v|σ,K1

+ v|σ,K2

)
.

Next, we introduce the postprocessing technique. For each K ∈ M, we define
the post-processed solution as

(17) ûh = uh +

n∑
j=1

cjψj ,

where cj (j = 1, · · · , n) are some coefficients to be determined. We require that ûh
satisfies

−
∫
(∂D∗

νi
)∩K

(Λ∇ûh) · n ds = RK(f, uh, ϕνi), i = 1, · · · , n,(18)

n∑
j=1

ûh(yj) =
n∑

j=1

uh(yj),(19)

where yj is the barycenter of △xKνjνj+1.

Lemma 3. The equations in (18) have linear correlation.

Proof. In each cell K, by (7) and noticing that Λ∇ûh is smooth across each edge
of (∂D∗

νi
) ∩K (i.e. xi−1xK and xixK), then we find that

n∑
i=1

(
RK(f, uh, ϕνi) +

∫
(∂D∗

νi
)∩K

(Λ∇ûh) · n ds

)
= RK(f, uh, 1) = 0,

and complete the proof. �

Lemma 3 shows that, for each K, the local linear algebraic system (18) has linear
correlation, and the coefficient matrix of (18) is AK = (aij)n×n with the entries

(20) aij = −
∫
(∂D∗

νi
)∩K

(Λ∇ψj) · n ds, i, j = 1, · · · , n.

Thus, for the existence and uniqueness of ûh, it needs to satisfy (19) additionally.
Here, we only analyze the one case, which consists in replacing the last equation in
(18) with (19), and the other cases are similar. In this case, the new n × n local
algebraic system is given by

(21) BKcK = bK ,

where cK = (c1, · · · , cn)T , and the entries of BK and bK are

(22) bij = aij , bn,j =
1

81
, i = 1, · · · , n− 1, j = 1, · · · , n,

bi = RHSi, bn = 0, i = 1, · · · , n− 1,

(23) RHSi = RK(f, uh, ϕνi) +

∫
(∂D∗

νi
)∩K

(Λ∇uh) · nds.

If BK is a nonsingular matrix, then we can obtain the existence and uniqueness of
ûh. In brief, we summarize the above postprocessing technique in Algorithm 1.
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Algorithm 1: The FVEM based on postprocessing technique.

Step 1: Compute the polygonal finite element solution uh by (9);
Step 2: Do K ∈ M

Solve the local linear algebraic system (21) on the cell
K to get the coefficients cj (j = 1, · · · , n) of (17);

Enddo
Step 3: Obtain the post-processed solution ûh by (17).

4. Local conservation, existence and uniqueness

Theorem 1. For the post-processed solution ûh defined by (17)-(19), it satisfies
the following local conservation property

(24) −
∫
∂D∗

ν

(Λ∇ûh) · nds =

∫
D∗

ν

f dxdy, ∀ν ∈ Vint.

Proof. Assume that ων =
∪
i

{Ki : ν ∈ Ki, Ki ∈ M}, then for each ν ∈ Vint, we

deduce from (18), (16) and (9) that

−
∑

K∈ων

∫
(∂D∗

ν)∩K

(Λ∇ûh) · n ds =
∑

K∈ων

RK(f, uh, ϕν)

=
∑

K∈ων

(∫
K

f(ϕ∗ν − ϕν) dxdy +

∫
K

(Λ∇uh) · ∇ϕν dxdy

)
=

∫
D∗

ν

f dxdy + [a(uh, ϕν)− (f, ϕν)]

=

∫
D∗

ν

f dxdy.

Noticing

−
∫
∂D∗

ν

(Λ∇ûh) · nds = −
∑

K∈ων

∫
(∂D∗

ν)∩K

(Λ∇ûh) · nds,

and then the desired result (24) is verified. �

Lemma 4. Assume that the diffusion tensor Λ is constant on K. Then, for any
xK ∈ K, we have

(25) aii =
1

96Ai(xK)
(xi − xK)

T RTΛR (xi − xK) , i = 1, · · · , n,

where xi is the midpoint of line segment νiνi+1, see Figure 2, and Ai(x) is defined
by (4). Furthermore, under the assumption (3), we have

(26) aii > 0, i = 1, · · · , n.

Proof. From (20) and (15), we have

(27) aii = −
∫
xixK

(Λ∇ψi) · nds,

where n = −R (xi − xK) /|xixK |. By direct calculations,

∇ψi(xK) + 4∇ψi

(
xK + xi

2

)
+∇ψi(xi) =

1

16Ai(xK)
R (xi − xK) .
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Since the integrand of (27) is a cubic function, by the Simpson’s rule, one reaches
(25). Recalling that Ai(xK) > 0 and xi ̸= xK , then (26) is a direct consequence of
(3) and (25). �

Theorem 2. Suppose that the diffusion tensor Λ is constant on any cell in M.
Then, there exists a unique ûh, satisfying (17), (18) and (19) simultaneously.

Proof. What we need is to prove that the matrix BK in (21) is nonsingular. Let
an+1,n = a1,n. Then, from (20) and (15), we have

(28) aii + ai+1,i = 0, i = 1, · · · , n

and

(29) aij = 0, j ̸= i− 1, i.

It follows from (22) that

det (BK) =
1

81

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 0 0 · · · 0 0 −an,n
a21 a22 0 · · · 0 0 0

0 a32 a33 · · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · an−2,n−2 0 0

0 0 0 · · · an−1,n−2 an−1,n−1 0

1 1 1 · · · 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

81

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 0 0 · · · 0 0 −an,n
0 a22 0 · · · 0 0 −an,n
0 0 a33 · · · 0 0 −an,n
...

...
...

...
...

...

0 0 0 · · · an−2,n−2 0 −an,n
0 0 0 · · · 0 an−1,n−1 −an,n
1 1 1 · · · 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

81

n∏
i=1

aii

n∑
i=1

1

aii
,

(30)

which implies the nonsingularity of BK and verifies the result of this theorem by
Lemma 4. �

5. Error estimates

To begin with, we introduce the following geometric assumption.

• (G6) There exists a positive constant r∗, independent of h, such that

dK,i > r∗hK , i = 1, · · · , n, ∀K ∈ M,

where dK,i denotes the distance from the cell center xK to the edge νiνi+1.

Proposition 4. Under the geometric assumption (G1), there exists at least one
point xK ∈ K satisfying the geometric assumption (G6).
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Proof. For example, let xK be the center of the largest circle inscribed in K. From
(G1), we find that

dK,i ≥ ρK >
1

γ∗
hK ,

which leads to (G6) with r∗ = 1/γ∗. The proof is complete. �

Lemma 5. Suppose that the diffusion tensor Λ is piecewise constant with respect
to the primary mesh, or alternatively, piecewise W 1,∞ and the mesh size h is small
enough. Then, under the assumptions (3), (G2) and (G6), we have

(31) det (BK) ∼ 1, ∀K ∈ M.

Proof. Firstly, we prove the case when Λ is piecewise constant with respect to the
primary mesh. From (G2) and (G6), we have

1

2
h2K > Ai(xK) =

1

2
dK,i∥νi − νi+1∥ >

1

2
r∗d∗h

2
K ,

hK > ∥xi − xK∥ ≥ dK,i > r∗hK .

It follows from (25) and (3) that

λr2∗
48

<
λ∥xi − xK∥2

96Ai(xK)
≤ aii ≤

λ∥xi − xK∥2

96Ai(xK)
<

λ

48r∗d∗
, i = 1, · · · , n.

Recall that (G2) implies (G5). Hence, combining the above estimate with (30)
leads to (31).

Secondly, we consider the general case where Λ is piecewise W 1,∞ with respect
to the primary mesh. Let

Λ|K = Λ(xK), ∀K ∈ M.

By replacing Λ with Λ in (20), we get the matrix BK = (bij)n×n in a way similar

to that of BK . Similar to the above arguments, we find that (31) also holds for BK .
According to (15), we know ∥∇ψj∥ . h−1

K , ∀x ∈ (∂D∗
νi
) ∩K, where we have used

the facts that in △xKνjνj+1

|λν | . 1, ∥∇λν∥ . h−1
K ,

and λν is any linear nodal basis function. Then we have |bij − bij | . h and∣∣det (BK)− det
(
BK

)∣∣ . h.

Therefore, when the mesh size h is sufficiently small, one can still reach (31). The
proof is complete. �

Lemma 6. Under the assumptions (G2) and (G3), for any K ∈ M with hK = 1,
we have

(32) ∥uh∥0,K ∼ ∥uh∥0,K,h, ∀uh ∈ Uh,

where the discrete norm

∥uh∥20,K,h =
n∑

i=1

u2i , ui = uh(νi).
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K

Ki0

ν i0

ν i0−1

ν i0−2

ν i0+1

x1
x2

Figure 4. A triangle Ki0 used in the proof of Lemma 6.

Proof. On the one hand, we have

∥uh∥0,K ≤
n∑

i=1

|ui|∥ϕi∥0,K <
n∑

i=1

|ui| ≤
√
n∗

(
n∑

i=1

u2i

) 1
2

. ∥uh∥0,K,h.

On the other hand, we denote |ui0 | = max1≤i≤n |ui|, and we first consider the case
n ≥ 4. Set d∗ = min{d∗, 1/2} and

r0 =
d4n

∗−4
∗ β2n∗−2

2n∗
<

1

10
, β = min{sinα∗, sinα∗}.

We define two points x1 and x2 which belong to the line segments νi0νi0−1 and
νi0νi0+1 (see Figure 4), satisfying

|νi0x1|
|νi0νi0−1|

=
|νi0x2|

|νi0νi0+1|
= r0,

and denote Ki0 := △x1νi0x2. By Lemma 2 of [42], we have

Ai(νj) ≥
1

2
d4∗β

2, ∀ j ̸= i, i+ 1.

As a result, for any i /∈ {i0 − 2, i0 − 1, i0, i0 + 1}

Ai(x) ≥ min{Ai(νi0−1), Ai(νi0), Ai(νi0+1)} ≥ 1

2
d4∗β

2, ∀x ∈ Ki0 .

Moreover,

Ai0−2(x) ≥min{Ai0−2(x1), Ai0−2(νi0), Ai0−2(νi0+1)}

≥min

{
1

2
d2∗β(1− r0),

1

2
d4∗β

2

}
=

1

2
d4∗β

2, ∀x ∈ Ki0 ,

where the fact 1− r0 > d2∗β is used. Similarly, we have Ai0+1(x) ≥ d4∗β
2/2, ∀x ∈

Ki0 , and

max{Ai0−1(x), Ai0(x)} ≤ 1

2
r0, ∀x ∈ Ki0 .

Then, for any x ∈ Ki0 , we have

wi(x)


≥ 1

2n−1
d4n−4
∗ β2n−2, i = i0,

≤ r0
2n−1

, i = i0 − 1, i0 + 1,

≤ r20
2n−1

<
r0

2n−1
, i ̸= i0 − 1, i0, i0 + 1.
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It follows that ∣∣∣∣∣
n∑

i=1

uiwi(x)

∣∣∣∣∣ ≥|ui0 |wi0(x)−
∑

1≤i≤n,i̸=i0

|ui|wi(x)

≥|ui0 |

wi0(x)−
∑

1≤i≤n,i̸=i0

wi(x)


≥ 1

2n∗ d4n
∗−4

∗ β2n∗−2|ui0 |, ∀x ∈ Ki0 .

Due to
∑n

i=1 wi(x) < n/2n−1 ≤ 1/2, ∀x ∈ K, we have

∥uh∥0,K ≥∥uh∥0,Ki0
≥ 2

∥∥∥∥∥
n∑

i=1

uiwi(x)

∥∥∥∥∥
0,Ki0

≥ d4n
∗−4

∗ β2n∗−2

2n∗−1
|ui0 ||Ki0 |

1
2

≥d
8n∗−7
∗ β4n∗−7/2

2n∗+1/2n∗
|ui0 | ≥

d8n
∗−7

∗ β4n∗−7/2

2n∗+1/2 (n∗)
3/2

∥uh∥0,K,h,

where |Ki0 | denotes the area of Ki0 . For the case n = 3, the Wachspress shape
functions reduce to the classical linear nodal basis functions, and the proof of above
inequality is trivial. Thus, we reach (32) for any n ≥ 3. �

Lemma 7. Under the assumptions (G2) and (G3), for any K ∈ M, we have

(33) |uh|2,K . h−1
K |uh|1,K , ∀uh ∈ Uh.

Proof. By the following scaling transformation

JK(x) := x̂ =
x− xK

hK
,

we can map the cell K to K̂ with hK̂ = 1. According to the facts |ϕi|1,K . 1 (see

Lemma 6 of [13]) and |ϕi|2,K . h−1
K (see Lemma 4 of [42]), we deduce that

∥uh∥2,K̂ ≤
n∑

i=1

|ui|∥ϕi∥2,K̂ .
n∑

i=1

|ui| . ∥uh∥0,K̂,h . ∥uh∥0,K̂ ,

where we have used the fact (32) in the last inequality. Let

ūh =
1

|K̂|

∫
K̂

uh dxdy,

it follows that

|uh|2,K̂ = |uh − ūh|2,K̂ ≤ ∥uh − ūh∥2,K̂ . ∥uh − ūh∥0,K̂ . |uh|1,K̂ ,

where in the last inequality we used the fact (1.11) of [2]. Finally, we obtain

|uh|2,K = h−1
K |uh|2,K̂ . h−1

K |uh|1,K̂ = h−1
K |uh|1,K ,

and complete the proof. �

Theorem 3. Suppose that Th is an arbitrary convex polygonal mesh. Let Λ be
subjected to the same assumptions in Lemma 5, and u be the exact solution of
(1) and (2). Then, under the assumptions (3), (G2), (G3) and (G6), for the
post-processed solution ûh defined by (17)-(19), we have

(34) ∥u− ûh∥m . h2−m∥u∥2, m = 0, 1.
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Proof. By recalling (12), in order to prove (34), we only need to prove

(35) ∥ûh − uh∥m . h2−m∥u∥2, m = 0, 1.

Note that in each K ∈ M, we have

ûh − uh =
n∑

j=1

cjψj .

Moreover, by (28), (29) and Lemma 5, there holds |aij | . 1, i, j = 1, · · · , n. Then,
from (21) and (31),

|cj | . max
1≤i≤n

|RHSi|, j = 1, · · · , n.

By (1) and the Green’s formula, for any i = 1, · · · , n, we have∫
K

fϕ∗νi
dxdy =

∫
D∗

νi
∩K

f dxdy = −
∫
D∗

νi
∩K

∇ · (Λ∇u) dxdy

=−
∫
∂(D∗

νi
∩K)

(Λ∇u) · n ds

and ∫
K

fϕνi dxdy =−
∫
K

∇ · (Λ∇u)ϕνi dxdy

=

∫
K

(Λ∇u) · ∇ϕνi dxdy −
∫
∂K

(Λ∇u) · nϕνi ds.

According to (16) and (23),

RHSi =

∫
K

f(ϕ∗νi
− ϕνi

) dxdy +

∫
K

(Λ∇uh) · ∇ϕνi
dxdy

+

∫
∂K

{Λ∇uh} · n(ϕ∗νi
− ϕνi) ds+

∫
(∂D∗

νi
)∩K

(Λ∇uh) · nds

= E1 + E2 + E3 + E4,

where

E1 =

∫
K

(Λ∇(uh − u)) · ∇ϕνi dxdy, E2 =

∫
(∂D∗

νi
)∩K

(Λ∇(uh − u)) · nds,

E3 =

∫
D∗

νi
∩∂K

({Λ∇uh} − Λ∇u) · n ds, E4 =

∫
∂K

(Λ∇u− {Λ∇uh}) · nϕνi ds.

It follows from the Cauchy-Schwartz inequality and trace inequality that

|E1| . |u− uh|1,K |ϕνi |1,K . |u− uh|1,K , |E2| . |u− uh|1,K + hK |u− uh|2,K ,
where we have used the fact |ϕνi |1,K . 1 (see Lemma 2 of [13]). By the same
arguments,

|E3|+ |E4| .
∫
∂K

|{Λ∇uh} − Λ∇u| ds . |u− uh|1,ωK
+ hK |u− uh|2,ωK

,

where ωK = {K} ∪ {L : L and K have one common edge}. Therefore,
|RHSi| . |u− uh|1,ωK + hK |u− uh|2,ωK , i = 1, · · · , n.

From the triangle inequality, (11) and (33)

|u− uh|2,K < |u− uI |2,K + |uI − uh|2,K . |u|2,K + h−1
K |uI − uh|1,K

. |u|2,K + h−1
K |u− uh|1,K .
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By recalling (15), the bubble function ψj is a polynomial in △xKνiνi+1 and van-
ishes outside of this triangle, then we have

∥ψj∥m,K . h1−m
K , m = 0, 1.

It follows that

∥ûh − uh∥m,K ≤
n∑

j=1

|cj |∥ψj∥m,K . h1−m
K max

1≤j≤n
|cj | . h1−m

K max
1≤i≤n

|RHSi|

. h1−m
K |u− uh|1,ωK

+ h2−m
K ∥u∥2,ωK

, m = 0, 1.

Note that (12), then (35) is obtained by summing up the above inequality over all
polygonal cells. The proof is complete. �

Remark 1. We mention that in our numerical analysis, some bubble functions
cannot be chosen. For instance, in Lemma 4, if ψi = λmxK

λνiλνi+1 (m ≥ 1), then
we find that aii = 0. In other words, we cannot choose λmxK

λνjλνj+1 in (15).
However, similar to the previous discussions, instead of (15), one can choose ψj =
λxKλνjλ

2
νj+1

. For this special case (i.e. aii < 0), the existence, uniqueness and
optimal error estimates of the new polygonal finite volume element solution can be
verified by the same arguments.

6. Numerical experiments

In this section, we present two numerical examples to verify the theoretical find-
ings, where the first (resp. second) one is designed for continuous (resp. discontin-
uous) diffusion tensor. In our numerical experiments, we choose the square domain
Ω = [0, 1]2, and employ four types of meshes, see Figures 5-8. Moreover, the follow-
ing L2 error Eu, H

1 error Eq and local conservation error Ec are used to measure
the errors of new polygonal finite volume element solution ûh

Eu = ∥u− ûh∥0, Eq = ∥∇(u− ûh)∥0,

Ec(ûh) = max
ν∈Vint

∣∣∣∣∣
∫
∂D∗

ν

(Λ∇ûh) · nds+

∫
D∗

ν

f dxdy

∣∣∣∣∣ .

(a) level 1 (b) level 2 (c) level 3

Figure 5. Mesh 1: Triangular mesh.
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(a) level 1 (b) level 2 (c) level 3

Figure 6. Mesh 2: Trapezoidal mesh.

(a) level 1 (b) level 2 (c) level 3

Figure 7. Mesh 3: Kershaw mesh.

(a) level 1 (b) level 2 (c) level 3

Figure 8. Mesh 4: Polygonal mesh.

6.1. Example 1. We consider the anisotropic diffusion equation with the diffusion
tensor and exact solution as follows

Λ =

(
1.0 0.2

0.2 0.5

)
, u(x, y) = e0.1x+0.2y,

where the source term and Dirichlet boundary condition are chosen to match the
exact solution. Table 1 shows theH1 and L2 errors of the new finite volume element
solution ûh on polygonal meshes, the convergence orders are 1 and 2 respectively,
which validates the theoretical results in Theorem 3. More importantly, the local
conservation errors for the finite element (FE) solution (blue lines, Ec(uh)) and new
finite volume element (FVE) solution (red lines, Ec(ûh)) are plotted in Figure 9,
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Table 1. The numerical results for Example 1.

Mesh level 1 level 2 level 3 level 4 level 5

Mesh 1

h 2.44350E-01 1.19675E-01 6.18235E-02 3.15954E-02 1.60541E-02

Eq 3.32576E-03 1.64382E-03 8.15878E-04 4.09471E-04 2.05044E-04

Order 0.98719 1.06059 1.02700 1.02156

Eu 1.36503E-04 3.35805E-05 8.34939E-06 2.11693E-06 5.30697E-07

Order 1.96463 2.10715 2.04421 2.04348

Mesh 2

h 2.25347E-01 1.12673E-01 5.63367E-02 2.81684E-02 1.40842E-02

Eq 3.05035E-03 1.52185E-03 7.60082E-04 3.79831E-04 1.89863E-04

Order 1.00314 1.00160 1.00080 1.00040

Eu 1.61203E-04 4.03736E-05 1.01036E-05 2.52733E-06 6.32023E-07

Order 1.99739 1.99854 1.99919 1.99956

Mesh 3

h 3.67848E-01 1.93169E-01 9.88984E-02 5.00278E-02 2.51586E-02

Eq 7.83261E-03 4.03550E-03 1.72881E-03 7.75492E-04 3.71155E-04

Order 1.02960 1.26621 1.17634 1.07201

Eu 3.70236E-04 1.19882E-04 3.27233E-05 8.38704E-06 2.11161E-06

Order 1.75071 1.93945 1.99762 2.00652

Mesh 4

h 1.76777E-01 8.83883E-02 4.41942E-02 2.20971E-02 1.10485E-02

Eq 1.75218E-03 8.76234E-04 4.38164E-04 2.19095E-04 1.09551E-04

Order 0.99976 0.99985 0.99991 0.99995

Eu 7.98227E-05 1.99335E-05 4.98168E-06 1.24530E-06 3.11317E-07

Order 2.00160 2.00049 2.00014 2.00003

and the latter one is almost machine precision. In other words, the post-processed
solution satisfies the local conservation law on the dual mesh, which confirms the
findings in Theorem 1.

6.2. Example 2. In this example, the discontinuous diffusion tensor and exact
solution are given by

Λ =

{
Λ1, x ≤ 0.5,

Λ2, x > 0.5,
Λ1 =

(
1 0

0 1

)
, Λ2 =

(
10 3

3 1

)
,

u(x, y) =

{
−2y2 + 4xy + 6x+ 2y + 1, x ≤ 0.5,

−2y2 + 1.6xy − 0.6x+ 3.2y + 4.3, x > 0.5.

The numerical results are given in Table 2, one can observe that the performance
is similar to the previous example.
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Figure 9. The local conservation errors for FE and new FVE
solutions for Example 1.

7. Conclusions

In this article, we provided a new finite volume element solution for solving the
anisotropic diffusion problem on arbitrary convex polygonal meshes. The new so-
lution is obtained by postprocessing the finite element solution of the prescribed
diffusion equation, where the shape function of finite element space is constructed by
Wachspress generalized barycentric coordinate. Precisely, by adding some special
designed element-wise bubble functions to the finite element solution, the existence
and uniqueness of the new solution are verified on arbitrary convex polygonal mesh-
es. Moreover, we proved that the new finite volume element solution satisfies the
local conservation property on a certain dual mesh, and preserves the optimal H1

and L2 error estimates on the primary mesh.
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Table 2. The numerical results for Example 2.

Mesh level 1 level 2 level 3 level 4 level 5

Mesh 1

h 2.44350E-01 1.19675E-01 6.18235E-02 3.15954E-02 1.60541E-02

Eq 2.14845E-01 1.12647E-01 5.59826E-02 2.80591E-02 1.40465E-02

Order 0.90451 1.05863 1.02898 1.02200

Eu 4.75347E-03 1.31272E-03 3.49202E-04 8.79593E-05 2.24836E-05

Order 1.80265 2.00487 2.05398 2.01476

Ec(ûh) 1.87E-013 1.74E-013 2.09E-013 2.30E-013 2.19E-013

Mesh 2

h 2.25347E-01 1.12673E-01 5.63367E-02 2.81684E-02 1.40842E-02

Eq 3.06026E-01 1.53441E-01 7.67431E-02 3.83648E-02 1.91790E-02

Order 0.99597 0.99958 1.00025 1.00026

Eu 1.24795E-02 3.08162E-03 7.66048E-04 1.91018E-04 4.76960E-05

Order 2.01780 2.00818 2.00373 2.00177

Ec(ûh) 1.21E-013 1.53E-013 1.94E-013 1.95E-013 1.92E-013

Mesh 3

h 3.67848E-01 1.93169E-01 9.88984E-02 5.00278E-02 2.51586E-02

Eq 6.80312E-01 2.82764E-01 1.11747E-01 4.56999E-02 2.04676E-02

Order 1.36304 1.38672 1.31200 1.16857

Eu 2.59377E-02 1.01941E-02 3.21009E-03 8.90422E-04 2.35789E-04

Order 1.44990 1.72600 1.88163 1.93308

Ec(ûh) 1.11E-012 1.86E-012 4.53E-012 2.67E-012 3.25E-012

Mesh 4

h 1.76777E-01 8.83883E-02 4.41942E-02 2.20971E-02 1.10485E-02

Eq 1.73084E-01 8.68707E-02 4.35224E-02 2.17833E-02 1.08973E-02

Order 0.99453 0.99711 0.99853 0.99926

Eu 6.10702E-03 1.52119E-03 3.79721E-04 9.48717E-05 2.37115E-05

Order 2.00527 2.00219 2.00089 2.00039

Ec(ûh) 5.02E-014 1.04E-013 1.46E-013 1.58E-013 2.08E-013
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