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HIGH ORDER METHOD FOR VARIABLE COEFFICIENT

INTEGRO-DIFFERENTIAL EQUATIONS AND INEQUALITIES

ARISING IN OPTION PRICING

PRADEEP KUMAR SAHU AND KULDIP SINGH PATEL∗

Abstract. In this article, the implicit-explicit (IMEX) compact schemes are proposed to solve the

partial integro-differential equations (PIDEs), and the linear complementarity problems (LCPs)
arising in option pricing. A diagonally dominant tri-diagonal system of linear equations is achieved
for a fully discrete problem by eliminating the second derivative approximation using the variable

itself and its first derivative approximation. The stability of the fully discrete problem is proved
using Schur polynomial approach. Moreover, the problem’s initial condition is smoothed to ensure
the fourth-order convergence of the proposed IMEX compact schemes. Numerical illustrations for
solving the PIDEs and the LCPs with constant and variable coefficients are presented. For each

case, obtained results are compared with the IMEX finite difference scheme, and it is observed
that proposed approach significantly outperforms the finite difference scheme.

Key words. Schur polynomials, implicit-explicit schemes, partial integro-differential equations,
jump-diffusion models, option pricing.

1. Introduction

The assumptions of log-normal distribution of underlying assets and constan-
t volatility considered by Black and Scholes [1] to derive the partial differential
equation (PDE) have been proven inconsistent with the real market scenario. Con-
sequently, the research community came up with advanced models to elaborate
the term like negative skewness, heavy tails, and volatility smile. In one of those
efforts, the jumps phenomenon was incorporated into the dynamics of the under-
lying asset by Merton [2] to surpass the shortcomings of the Black-Scholes model,
and the model is termed as Merton’s jump-diffusion model. The PIDEs for pricing
European options and the LCPs for pricing American options were obtained under
Merton’s jump-diffusion model. Since the analytical solution for these PIDEs and
LCPs does not exist in general, it is inevitable to apply numerical methods to solve
these equations.

Let us now briefly review the existing finite difference based numerical methods
for solving PIDEs and LCPs. An IMEX finite difference method (FDM) has been
developed in [3] for pricing European and Barrier options. The convergence of the
proposed IMEX method has also been proved. In [4], a fully implicit FDM has
been proposed for solving the PIDEs, and the stability of the method has also been
proved. Three time levels implicit FDM were proposed for pricing European and
American options in [5] and [6] respectively. All these numerical methods are at-
most second order accurate, and it is one of those concerns where further research
is required.
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It is observed that substantial increment in the number of grid points of computa-
tional stencil may result in high-order accurate FDM, however the implementation
of boundary conditions would become tedious in such a case. Moreover in such
a case, the discretization matrices with more bandwidth appears in fully discrete
problem and it may also suffer from restrictive stability conditions. Therefore,
FDMs have been developed using compact stencils at the expense of some compli-
cation in their evaluation and these are commonly known as compact schemes. The
compact schemes provide high-order accuracy and they are also parsimonious while
solving the problems on hypercube computational domains as compared to FDMs.
Apart from this advantage, another exception is that compact schemes can be de-
veloped in three ways. In the first approach, original equation is considered as an
auxiliary equation and each of the derivative of leading term of truncation error is
compactly approximated, see [7, 8]. The second approach is known as the operator
compact implicit (OCI) method. In this approach, a relationship on three adja-
cent points between PDE operator and unknown variable is obtained and resulting
fourth order accurate relationship is derived by Taylor series expansion, see [9, 10].
In the third approach, Hermitian schemes are considered for spatial discretization
of PDEs, see [11, 12]. Although compact schemes have already been proposed for
option pricing in [13, 14] and in many other papers using first approach, we consider
third approach for developing IMEX compact scheme in this manuscript because
of the following reasons:

• It is comparatively easy to develop a compact scheme for solving high-
dimensional PDEs using the third approach (see [15] for reference) as com-
pared with the first approach (see [16] for reference).

• Recently, a fourth order accurate compact scheme is developed for space
fractional advection-diffusion reaction equations with variable coefficients
using the third approach in [17]. It is also explained there that first and
second approaches are either not feasible or very tedious for such equations.

• It is straightforward to develop the compact scheme for the variable coef-
ficient problems using the third approach just by discretizing the variable
coefficients at each grid point, see [15, 18] for more details. However, it is
cumbersome with the first approach because one has to take care of the
compact discretization of the coefficient term also, see [8, 19] for detailed
discussion.

In this manuscript, an IMEX compact scheme is proposed for solving the fol-
lowing PIDE governing the price of European options under jump-diffusion model
(see [5]):

∂u

∂τ
(x, τ) = Lu, (x, τ) ∈ (−∞,∞)× (0, T ],

u(x, 0) = f(x) ∀ x ∈ (−∞,∞),
(1)

where
(2)

Lu =
σ2

2

∂2u

∂x2
(x, τ)+

(
r − σ2

2
− λζ

)
∂u

∂x
(x, τ)−(r+λ)u(x, τ)+λ

∫
R
u(y, τ)g(y−x)dy,

τ = T − t, x = ln
(
S
K

)
, u(x, τ) = V (Kex, T −τ), λ is the intensity of the jump sizes,

ζ =
∫
R(e

x−1)g(x)dx, and V (S, 0) is the option price. In this manuscript, Merton’s
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model is discussed, and the probability density function g(x) for the same can be
written as

(3) g(x) =
1√
2πσ2

J

e
− (x−µJ )2

2σ2
J .

Further, IMEX compact scheme is also applied to solve the following LCP governing
the price of American options (see [6]):

∂u

∂τ
(x, τ)− Lu(x, τ) ≥ 0, u(x, τ) ≥ f(x),(

∂u

∂τ
(x, τ)− Lu(x, τ)

)
(u (x, τ)− f(x)) = 0.

(4)

The initial conditions for European and American options are as follows:

Put options: f(x) = max(K −Kex, 0) ∀ x ∈ R.(5)

Call options: f(x) = max(Kex −K, 0) ∀ x ∈ R.(6)

The asymptotic behaviour for both type of options may be described as

European put options: lim
x→−∞

[u(x, τ)− (Ke−rτ −Kex)] = 0 and lim
x→∞

u(x, τ) = 0,

European call options: lim
x→−∞

u(x, τ) = 0 and lim
x→∞

[u(x, τ)− (Kex −Ke−rτ )] = 0,

American put options: lim
x→−∞

[u(x, τ)− (K −Kex)] = 0 and lim
x→∞

u(x, τ) = 0,

American call options: lim
x→−∞

u(x, τ) = 0 and lim
x→∞

[u(x, τ)− (Kex −K)] = 0.

For most of the numerical methods referred in this manuscript, the stability has
been proved using von-Neumann stability analysis. However in this manuscript,
Schur polynomial approach is considered to prove the stability of the proposed
IMEX compact scheme. The advantages of using Schur-polynomial approach over
von-Neumann technique for proving the stability of any numerical scheme have al-
ready been explained in [20] on page 8. Moreover, it is well known fact that the
fourth-order convergence rate can not be achieved using proposed IMEX compact
scheme because of the non-smooth initial condition (a.k.a. payoff) (5). Several
approaches, for example, local mesh refinement (see [21]) and co-ordinate transfor-
mation (see [22]) have already been considered in literature to achieve high-order
convergence rate even for non-smooth initial conditions. These approaches suffer
with certain drawbacks, for example, it may not be possible to define a coordinate
transformation for all PIDEs and LCPs. Further, manual inclusion of grid points
near singularity to accomplish local mesh refinement becomes tedious in certain
cases. In order to avoid these limitations of local mesh refinement and co-ordinate
transformation, smoothing operator from [23] is employed to smooth the initial
condition which helps us to achieve fourth order convergence rate.

Conclusively, the IMEX compact schemes are proposed in present manuscript
for pricing European and American options under jump-diffusion model considering
the following concerns:

(1) Stability of the proposed IMEX compact scheme for solving PIDEs using
Schur polynomial approach.

(2) Accuracy of proposed IMEX compact scheme for computing the prices of
European and American options, and greeks.
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(3) Fourth-order convergence rate of the proposed IMEX compact scheme and
effect of non-smooth initial condition on the convergence rate.

(4) Location and nature of the spurious oscillations present in the obtained
numerical solutions.

(5) Comparison of CPU time taken using IMEX compact scheme and FDM in
price computation.

Moreover, following are some new contributions to the literature presented in this
manuscript which have already been interpreted in the third and fifth paragraphs
of this section:

(1) Stability of proposed numerical scheme using Schur polynomial approach.
(2) Solving variable coefficients equation using Hermitian approach based com-

pact scheme.

The rest of the paper is organized as follows. In Sec. 2, IMEX compact scheme is
proposed for pricing European options and stability of the fully discrete problem is
proved. Operator splitting technique along with IMEX compact scheme for pricing
American options is discussed in Sec. 3. Numerical illustrations are presented to
validate the theoretical claims in Sec. 4. Conclusion and some future directions are
discussed in Sec. 5.

2. IMEX compact scheme for PIDEs

In this section, compact approximations for first and second derivatives are dis-
cussed. The fully discrete problem for the PIDE (1) is obtained, and the stability
of fully discrete problem is also proved.

2.1. Compact approximations. The compact approximations for first, second,
third, and fourth derivatives have been discussed in [24]) using Hermitian approach.
Let δx and δτ denote the equispaced step size in the spatial and temporal domain,
respectively and if uxi and uxxi represents the first and the second derivative ap-
proximations of variable u at grid point xi, then following expression are taken from
[24];

1

4
uxi−1 + uxi +

1

4
uxi+1 =

1

δx

[
−3

4
ui−1 +

3

4
ui+1

]
,(7)

1

10
uxxi−1 + uxxi +

1

10
uxxi+1 =

1

δx2

[
6

5
ui−1 −

12

5
ui +

6

5
ui+1

]
.(8)

Moreover, second-order accurate finite difference approximation can be written as

(9) ∆xui =
ui+1 − ui−1

2δx
, ∆xxui =

ui+1 − 2ui + ui−1

δx2
,

where ∆xui and ∆xxui denote the first and second derivative approximations re-
spectively. Taking uxi instead of ui in Eq. (7), we write

(10)
1

4
uxxi−1 + uxxi +

1

4
uxxi+1 =

1

δx

[
−3

4
uxi−1 +

3

4
uxi+1

]
.

If uxxi−1 and uxxi+1 are eliminated from Eqs. (8) and (10), then Eq. (9) gives

(11) uxxi = 2∆xxui −∆xuxi .

In this way, compact approximation for the second derivative has been expressed in
terms of unknown and its first derivative approximation. In Eq. (11), the value of
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uxi is obtained from Eq. (7). As we have non-periodic boundary conditions for the
PIDE (1) and the LCP (4), fourth order accurate one-sided compact approximations
discussed in [25] are used to compute the derivatives at boundary points. More-
over, a detailed discussion about the resolution characteristics of above discussed
compact approximations is presented in [26, 27]. It has been shown in these works
that resolution characteristics of compact approximation (11) are better than the
compact approximation (8). Thus, it is another advantage of splitting the second
derivative approximation apart from the fact that it also gives us a diagonally dom-
inant tri-diagonal system of linear equations for the fully discrete problem which
will be shown later in this manuscript.

2.2. Localization to Bounded Domain. In order to solve the PIDE (1) and the
LCP (4) numerically, the spatial domain (−∞,∞) must be truncated to a finite
domain Ω = [−L,L] for sufficiently large L. It has already been proved in [3] that
localization error (arisen by truncating the infinite domain to a finite one) decreases
exponentially point-wise. Moreover, an exponential bound on localization error has
also been proposed in [28]. Now, we take δx = 2L/N and δτ = T/M , where N
and M are two positive integers. Thus, we define xn = −L+ nδx (n = 0, 1, ...., N)
and τm = mδτ (m = 0, 1, ...,M). Let us first discuss the temporal and spatial
discretization of PIDE (1) by writing it in the following way:

∂u(x, τ)

∂τ
= Du(x, τ) + Iu(x, τ), (x, τ) ∈ Ω× (0, T ],

u(−L, τ) = Ke−rτ −Ke−L and u(L, τ) = 0,
(12)

where D and I are the following differential and integral operators respectively

Du(x, τ) =
σ2

2

∂2u

∂x2
(x, τ) +

(
r − σ2

2
− λζ

)
∂u

∂x
(x, τ)− (r + λ)u(x, τ),

Iu(x, τ) = λ

∫
R
u(y, τ)g(y − x)dy.

(13)

2.3. Temporal semi-discretization. The time derivative in Eq. (12) can be
discretized using IMEX backward differentiation formula (BDF) as follows:

3um+1 − 4um + um−1

2δτ
= Dum+1 + λI(Eum), m ≥ 1,

um+1(−L) = K(e−rτm+1 − e−L) and um+1(L) = 0,

(14)

where Eum = 2um − um−1. For all u(., τ) ∈ L2(Ω), a new variable û(x, τ) can be
defined as follows:

û(x, τ) =

{
u(x, τ) : (x, τ) ∈ Ω× [0, T ],
0 : (x, τ) ∈ Ωc × [0, T ].

Note that the integral operator satisfies the condition ∥Iû(., τ)∥ ≤ B∥u(., τ)∥, where
B is a constant independent of τ . If um is solution of Eq. (12) and ũm is solution
of the following perturbed equation:

3ũm+1 − 4ũm + ũm−1

2δτ
= Dũm+1 + λI(Eũm) + ϵm+1, m ≥ 1,

ũm+1(−L) = K(e−rτm+1 − e−L) and ũm+1(L) = 0,

(15)
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then let us define error at any time level τm as em := um − ũm. The following
theorem in [29] proves the stability of the semi-discrete problem (14) as follows:

Theorem 1. For δτ < 1
2λB+4Z+2 , we have

(16) ∥ek∥2 ≤ C

(
∥e0∥2 + ∥e1∥2 + max

2≤i≤k
∥ϵi∥2

)
, ∀ 2 ≤ k ≤ T

δτ
,

where Z =

∣∣∣∣∣
(
r−σ2

2 −λζ
)2

−2(r+λ)σ2

2σ2

∣∣∣∣∣, and C is a parameter depending on r, σ, and

B.

Remark 1. Throughout this article, various constant notations will be used. These
generic constants do not necessarily have the same meaning at each occurrence
unless it is clearly specified.

2.4. The Fully Discrete Problem. The differential and integral operators D and
I given in Eq. (13) are approximated by discrete operators Dδ and Iδ. Let us write
Dumn ≈ Dδu

m
n , Iumn ≈ Iδumn , and therefore Lumn ≈ Lδu

m
n , where umn = u(xn, τm).

Note that Dδu
m
n = σ2

2 u
m
xxn

+
(
r − σ2

2 − λζ
)
umxn

− (r+ λ)umn and using (11) we get

(17) Dδu
m
n =

σ2

2

(
2∆xxu

m
n −∆xu

m
xn

)
+

(
r − σ2

2
− λζ

)
umxn

− (r + λ)umn .

In order to compute Iδumn , the integral operator Iu(x, τ) is divided in two parts,
i.e. Iu(x, τ) defined on the interval Ω, and Iu(x, τ) defined on R\Ω, where R is
set of real numbers. The value of Iu(x, τ) on the interval Ω is obtained using the
approach discussed in [30]. Moreover, the value of Iu(x, τ) on R\Ω is obtained from
[5] for European options, and from [6] for American options.

We find Um
n , the approximate value of umn , which is the solution of following

problem:
(18)
3Um+1

n − 4Um
n + Um−1

n

2δτ
= DδU

m+1
n + Iδ(EUm

n ), 1 ≤ m ≤M − 1, 1 ≤ n ≤ N − 1,

with initial condition given in Eq. (5) and boundary conditions given in Eq. (12).
Substituting the value of Dδu

m
n in Eq. (18), we get

3Um+1
n − 4Um + Um−1

n

2δτ
=
σ2

2

(
2∆xxU

m+1
n −∆xU

m+1
xn

)
+

(
r − σ2

2
− λζ

)
Um+1
xn

− (r + λ)Um+1
n + Iδ(EUm

n ).(19)

Rearrangement of the terms in above Eq. (19) gives(
3− 4

σ2

2
δτ∆xx + 2δτ(r + λ)

)
Um+1
n = 2δτ

[(
r − σ2

2
− λζ

)
− σ2

2
∆x

]
Um+1
xn

+ 4Um
n − Um−1

n + 2δτIδ(EUm
n ).(20)

Let us denote Um = (Um
1 , U

m
2 , ..., U

m
N−1)

T and Um
x = (Um

x1
, Um

x2
, ..., Um

xN−1
)T , where

(., ., .)T denotes the transpose of the vector. Then, resulting system of equations
corresponding to the difference scheme (20) can be written as

(21) AUm+1 = F (Um,Um−1,Um+1
x ),
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where A is a matrix, and F is a function of matrices and vectors. The presence
of Um+1

x on right hand side of Eq. (21) bind us to employ following correcting to
convergence approach discussed in [31]:
Correcting to Convergence Algorithm
1. Start with Um.
2. Obtain Um

x using equation (7).
3. Take Um+1

old = Um, Um+1
xold

= Um
x .

4. Correct to Um+1
new using equation (20).

5. If ∥Um+1
new −Um+1

old ∥ < ϵ, then Um+1
new = Um+1

old .

6. Obtain Um+1
xnew

using equation (7).

7. Take Um+1
old = Um+1

new , Um+1
xold

= Um+1
xnew

and go to step 4.

The stopping criterion for the inner iteration is set at ϵ = 10−12 for the above
approach.

Remark 2. The fully discrete problem (21) is obtained for the constant coefficient
case. In case of variable coefficient problems, it is straightforward to develop the
compact scheme using the Hermitian approach just by discretizing the variable co-
efficients at each grid point; see [15] on page 7 for more details. Specifically, if we

take σ as a function of x & τ, in Eq. (20), the coefficients
(
r − σ2

2 − λζ
)
will also

become a matrix. This is the difference while solving a variable coefficient problem
with the proposed comapct scheme. However, it is cumbersome with the auxiliary
equation based approach because one has to take care of the compact discretization
of the coefficient term also; see [19] on pages 10 and 11 for a detailed discussion.
This is the major advantage of the Hermitian approach based compact schemes; we
can use the same discretized equation for a variable coefficient problem that has been
derived for constant coefficient, with slight modifications in the coefficient matrices
and vectors. The Examples 2 and 4 in this manuscript are handled by discretizing
the variable coefficients at each grid point.

Remark 3. Note that the fully discrete problem given in Eq. (21) for solving the
PIDE (12) requires solution vectors at two initial time steps. Therefore, the solution
vector at τ = 0 is obtained from the initial condition, and the fully implicit scheme
given in [3] provides the solution vector at time δτ .

Remark 4. It can be easily pointed out that for each time step, the number of
iterations vary while solving the fully discrete problem (21) using correcting to con-
vergence approach. Therefore, an upper bound is obtained for computational com-
plexity rather than giving an exact number of iterations. Let number of iterations
required by above approach be nm at a fixed time level τm and ns:= max

1≤m≤M
nm.

Using the fact that a tri-diagonal system of equations takes O(N) operations and
integral operator exhibits O(NlogN) computational cost (see [30]), the upper bound
for complexity of the fully discrete problem (21) would be O ((ns + logN)NM).

2.5. Consistency.

Theorem 2. For sufficiently small δx and δτ , we have

(22)
∂u

∂τ
−Lumn −

(
3um+1

n − 4umn + um−1
n

2δτ
− Lδu

m
n

)
= O(δτ2+δx4), for m ≥ 1.
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2.6. Stability. As discussed in Sec. 1, let us now prove the stability of the pro-
posed IMEX compact scheme (20) using Schur polynomial approach. Consider a
single node Um

n = pmeInθ, where pm is amplitude at time level τm, I =
√
−1, and

θ = 2π/N . The integral operator (13) can be rewritten in an equivalent form as

Iu(x, τ) = λ
∫ L

−L
u(y+x, τ)g(y)dy. Fourth order accurate composite Simpson’s rule

for Iu(x, τ) yields

IδUm
n = δx

N∑
k=0

wkU
m
k+ngk = δx

N∑
k=0

wkp
meIθ(k+n)gk = pmeiθnGk,

where Gk = δx
∑N

k=0 wke
Iθkgk and gk = g(xk). The following Lemma is proved in

[30] for the numerical quadrature Gk.

Lemma 1. The numerical quadrature Gk satisfies

|Gk| ≤ 1 + Cδx4,

where C is a constant.

For simplicity, σ2

2 and
(
r − σ2

2 − λζ
)

will be denoted by a and b respectively.

Consequently, Eq. (20) can be written as follows:

[3− 4aδτ∆xx + 2δτ(r + λ)]Um+1
n = 2δτ [b− a∆x]U

m+1
xn

+ 2δτλGk(2U
m
n − um−1

n )

+ 4Um
n − Um−1

n .(23)

From [32], the following relations are obtained
(24)

∆xU
m
n = I

sin(θ)

δx
Um
n , ∆2

xU
m
n =

2 cos(θ)− 2

δx2
Um
n , Um

xn
= I

3 sin(θ)

δx(2 + cos(θ))
Um
n .

Using equation (24) in difference scheme (23), we get[
3− 8aδτ

(
cos(θ)− 1

δx2

)
+ 2δτ(r + λ)

]
Um+1
n

=2δτ

[(
a
sin(θ)

δx
+ Ib

)
3 sin(θ)

δx(2 + cos(θ))

]
Um+1
n

+ 2δτλGk(2U
m
n − Um−1) + 4Um

n − Um−1
n ,(25)

which implies[
3− 2δτa

(
4 cos θ − 4

δx2
+

3 sin2 θ

δx2(2 + cos θ)

)
− I2δτb

3 sin θ

δx(2 + cos θ)
+ 2δτ(r + λ)

]
Um+1
n

= (4 + 4δτλGk)U
m
n − (1 + 2δτλGk)U

m−1
n ,[

3− 2δτa

(
cos2 θ + 4 cos θ − 5

δx2(2 + cos θ)

)
− I2δτb

3 sin θ

δx(2 + cos θ)
+ 2δτ(r + λ)

]
Um+1
n

= (4 + 4δτλGk)U
m
n − (1 + 2δτλGk)U

m−1
n .

Using Um
n = pmeInθ in above and divide above equation by pm−1eInθ, following

amplification polynomial is obtained:

(26) Θ(p) = γ0p
2 + γ1p+ γ2,
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where

γ0 =

[
3− 2δτ

(
a
cos2(θ) + 4 cos(θ)− 5

δx2(2 + cos(θ))
+ Ib

3 sin(θ)

δx(2 + cos(θ))
− (r + λ)

)]
,

γ1 = − [4 + 4λδτGk] ,(27)

γ2 = [1 + 2δτλGk] .

In order to prove the stability, a direct determination of the roots of these polyno-
mial is not advised. Instead, a well established theory based on Schur polynomials
is considered to prove the stability of the proposed IMEX compact scheme (20).
A detailed discussion on stability analysis for advection-diffusion equations using
Schur polynomials is given in [20]. Let us consider p1 and p2 as roots of ampli-
fication polynomial Θ(p) and introduce the following polynomials, definitions and
theorems from [20]:

Θ∗(p) = γ̄2p
2 + γ̄1p+ γ̄0 = γ2p

2 + γ1p+ γ̄0,(28)

Θ1(p) =
Θ∗(0)Θ(p)−Θ(0)Θ∗(p)

p
,(29)

where γ̄i, i = 0, 1, and 2 is complex conjugate of γi.

Definition 1. Polynomial Θ(p) is called Schur polynomial if |pi| < 1 ∀ i. Further,
polynomial Θ(p) is called simple von Neumann polynomial if |pi| ≤ 1, and if pi = 1,
it must be a simple root.

Definition 2. Proposed Compact scheme (20) is stable if its amplification polyno-
mial Θ(p) is a simple von Neumann polynomial.

Theorem 3. Θ(p) is a Schur polynomial iff |Θ∗(0)| > |Θ(0)| and Θ1(p) is a Schur
polynomial.

Theorem 4. Θ(p) is a simple von Neumann polynomial iff either |Θ∗(0)| > |Θ(0)|
and Θ1(p) is a simple von Neumann polynomial or Θ1(p) ≡ 0 and first derivative
of Θ(p) (with respect to its independent variable) is a Schur polynomial.

Note that, the question of whether a nth degree polynomial is a simple von Neu-
mann polynomial is now reduced to that for a first degree polynomial by using
above two theorems repeatedly. The results in above theorems are immensnely
useful, as compared to first finding explicitly the roots of the characteristic poly-
nomial and then determining their absolute values. Now, the stability of proposed
IMEX compact scheme (20) will be proved in the following theorem using above
definitions and theorems.

Theorem 5. Proposed compact scheme (20) is stable if λ < 1, and

(30) |(γ2 − γ̄0) γ1| ≤
∣∣|γ0|2 − γ22

∣∣.
Proof. From (28), we have |Θ∗(0)|2 = |γ̄0|2. Since a > 0 and

(
cos2(θ)+4cos(θ)−5

δx2(2+cos(θ))

)
≤

0, therefore |Θ∗(0)| > 3. Further, |Θ(0)| = |γ̄2|. If λ < 1, then Lemma 1 gives
|Θ(0)| < 3. Therefore |Θ∗(0)| > |Θ(0)|. Hence, first part of Theorem 4 is proved.
For second part, let us write Θ1(p) from (29) as follows:

Θ1(p) =
γ̄0Θ(p)− γ2Θ

∗(p)

p
.
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Using values of Θ(p) and Θ∗(p) from (26) and (28), we get

Θ1(p) =
(
|γ̄0|2 − γ22

)
p+ γ1 (γ̄0 − γ2) .

It can be observed that Θ1(p) is simple von Neumann polynomial if (30) holds.
Further, Theorem 4 gives that Θ(p) is simple von Neumann polynomial and result
follows from Definition 2. �

Algorithm 1: Algorithm for American options.

for m = 0
for n = 1, 2, ·, N − 1

Um+1
n −Um

n

δτ = DδU
m+1
n + IδUm

n +Ψm
n

end
Solve for n = 1, 2, ..., N − 1

Um+1
n = max

(
f(xn), U

m+1
n − δτΨm

n

)
Ψm+1

n =
Um+1

n −Um+1
n

δτ +Ψm
n

end
for m ≥ 1

for n = 1, 2, ..., N − 1
3Um+1

n −4Um
n +Um−1

n

2δτ = DδU
m+1
n + Iδ(EUm

n ) + Ψm
n

end
Solve for n = 1, 2, ..., N − 1

Um+1
n = max

(
f(xn), U

m+1
n − 2δτ

3 Ψm
n

)
Ψm+1

n = 3
2
Um+1

n −Um+1
n

2δτ +Ψm
n

end

3. IMEX compact scheme for LCPs

Let us now discuss the discretization of the LCP (4) using the proposed IMEX
compact scheme. To this end, Ikonen et al. [33] proposed an operator splitting
technique for pricing American options under Black-Scholes model and it was ex-
tended by Toivanen [34] for jump-diffusion models. In operator splitting technique,
a new auxiliary variable ψ is taken to change the inequality (4) in an equation form
such that ψ = uτ − Lu, and the LCP (4) is rewritten as follows:

uτ − Lu = ψ,

ψ ≥ 0, u ≥ f, ψ(u− f) = 0.
(31)

Application of operator splitting technique in (31) introduces a new variable Ûm
n

and gives the following two discrete equations:

3Ûm+1
n − 4Um

n + Um−1
n

2δτ
= DδÛ

m+1
n + Iδ(EUm

n ) + Ψm
n ,

3Um+1
n − 4Um

n + Um−1
n

2δτ
= DδÛ

m+1
n + Iδ(EUm

n ) + Ψm+1
n .

(32)

A pair (Ψm+1
n , Um+1

n ) is to be found satisfying (32), and the following constraints

(33) Um+1
n ≥ f(xn), Ψm+1

n ≥ 0, Ψm+1
n

(
Um+1
n − f(xn)

)
= 0.



548 P. K. SAHU AND K. S. PATEL

The approach to solve (32)-(33) is given in Algorithm 1. The system of linear equa-
tions obtained from Algorithm 1 is solved using correcting to convergence approach
discussed in Sec. 2.4.

4. Numerical Illustrations and Discussion

In this section, the applicability of the proposed IMEX compact scheme for
pricing European and American options under Merton’s jump-diffusion models is
demonstrated. It has always been challenging to achieve high-order accuracy for
the problems with non-smooth initial conditions. A thorough discussion is mani-
fested in [23] to obtain high-order accuracy for parabolic problems with the initial
conditions having low regularity. Accordingly, technique given in [23] is applied in
this manuscript to achieve fourth order convergence rate using the proposed IMEX
compact schemes, and the detailed explanation about this technique can be found
in [30]. Since proposed compact scheme is second order accurate in time variable
and fourth order accurate in spatial variable, the parabolic mesh ratio

(
δτ
δx2

)
is fixed

as 0.4 in all the computations. The parameters considered for pricing European and
American options under Merton jump-diffusion model are listed in Table 1. For all
the computation, L is taken 1.5, i.e. the computational domain is [−1.5, 1.5]. Here,
L is chosen in a way that the interval [−L,L] provides a sufficiently large interval
for stock price S after the inverse transformation S = Kex. The value of L is taken
1.5 & K = 100; throughout the examples, it implies that the lower limit for stock
price is Ke−L = 22.31 and the upper limit for stock price is KeL = 448.17, which
gives a sufficiently large interval for the stock price, i.e. (22.31, 448.17). Moreover,

the rate of convergence RC is computed with the following formula RC =
log

(
ξ1
ξ2

)
log

(
δx1
δx2

) ,
where ξ1 and ξ2 are relative errors with respect to the reference solution in discrete

l2 norm

(
∥Uref−Uc∥

∥Uref∥

)
corresponding to the mesh sizes δx1 and δx2, respectively.

Here, Uref is the reference solution computed on a fine grid with N = 6144 and
U c is the solution obtained from the proposed IMEX compact scheme.

Parameters λ T r K σ µJ σJ
Values 0.10 0.25 0.05 100 0.15 -0.90 0.45

Table 1. The values of various parameters to compute the op-
tion price and greeks for European and American options under
Merton’s jump-diffusion models.

Moreover, the discussion on option pricing is always incomplete without analysing
the behaviour of the certain function of option price (commonly known as Greeks).
Therefore, the Greeks are also studied in this manuscript to understand and analyse
the risk. The Greeks may be defined as follows:

• The rate of change of option price w.r.t the change in underlying asset’s
price is known as Delta (∆).

• The rate of change in the ∆ w.r.t change in the underlying asset price is
known as Gamma (Γ).

Therefore, the applicability of proposed IMEX compact scheme is also demonstrated
for the computation of Greeks in the first example.
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Example 1. (European put option: Constant volatility case)

Values (S, t) =
(90,0)

(S, t) =
(100,0)

(S, t) =
(110,0)

Option price (analytical) 9.28541807 3.14902574 1.40118588
Option price (IMEX scheme) 9.28541752 3.14902381 1.40118482

Delta (analytical) -0.84671538 -0.35566306 -0.05810123
Delta (IMEX scheme) -0.84671683 -0.35566292 -0.05810323
Gamma (analytical) 0.03486014 0.04882567 0.01212941

Gamma (IMEX scheme) 0.03486198 0.04882482 0.01212874

Table 2. The comparison between the analytical values of option
prices, Delta, and Gamma obtained from the series solution pre-
sented in [2] and the values achieved using proposed IMEX compact
scheme for N = 6144 and parameters given in Table 1.

The first example comprises the PIDE (12) along with the parameters in Table
(1). For this example, the analytical solution is given by Merton’s formula [2]

U(S, τ) =
∞∑
i=0

[λ(w + 1)(T − τ)n exp(−λ(w + 1))(T − τ)]

n!
BSM(S, T,K, ri, σi),

where, w := −1+exp(µJ +
1
2σ

2
J ), ri := r−λw+ i log(w+1)

T−τ , σi :=
√
σ2 +

iσ2
J

T−τ . Here,

BSM(S, τ,K, ri, σi) is the solution of classical Black–Scholes PDE [1], and

BSM(S, τ,K, ri, σi) = K exp(−ri(T − τ))N (−d2)− SN (−d1),

d1(S, τ) =
ln
(
S
K

) (
ri +

1
2σ

2
i

)
(T − τ)

σi
√
T − τ

, d2(S, τ) = d1(S, τ)− σi
√
T − τ ,

N (y) =
1√
2π

∫ y

−∞
exp

(
−x2

2

)
dx.

Therefore, analytical solution will be used as reference solution Uref for this ex-
ample. The values of option prices and the Greeks at a particular stock price S
are computed from the obtained numerical solution using cubic spline interpola-
tion. For the sake of completeness and comparison of results, the PIDE (12) is also
solved using FDM discussed in [5].

Note that, the accuracy of the proposed IMEX compact scheme is evident from
Table 2 since the values of option prices and the Greeks obtained from the proposed
IMEX compact scheme are almost equal to the values obtained from analytical
solution. Here, the comparison is done for three different stock price S = 90, 100,
and 110 to analyse the behaviour of proposed IMEX compact scheme in the vicinity
of strike price value, which is 100.

Next concern is to validate the fourth-order convergence rate of the proposed
IMEX compact scheme. To claim this, the relative ℓ2-errors with proposed IMEX
compact scheme (using smooth and non-smooth payoffs) and with FDM (smoothing
of payoff does not affect rate of convergence in this case) are presented in Table 3.
It is evident that proposed IMEX compact scheme is fourth order accurate when
payoff is smoothed according to the technique given in [23]. However, only second
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N IMEX Compact
scheme with smooth

payoff

IMEX compact
scheme with

non-smooth payoff

IMEX finite
difference scheme
with non-smooth

payoff
Error RC Error RC Error RC

24 2.395e-02 - 1.683e-02 - 9.317e-02 -
48 1.524e-03 3.97 4.187e-03 2.00 2.362e-02 1.97
96 9.631e-05 3.98 9.988e-04 2.05 5.815e-03 2.02
192 5.931e-06 4.02 2.495e-04 2.00 1.425e-03 2.02
384 3.678e-07 4.01 6.121e-05 2.02 3.521e-04 2.01

Table 3. The comparison of errors and rate of convergence
achieved using proposed IMEX compact scheme with non-smooth
and smooth initial conditions (payoffs) with the error and rate of
convergence achieved using FDM for European put options with
constant volatility.

order convergence rate is achieved with IMEX compact scheme while using non-
smooth payoff. Moreover, second order convergence rate is achieved with FDM
irrespective of smoothing the payoff.

Now, the location and nature of the spurious oscillations present in the numerical
solution will be explained. This very phenomenon arising in the case of FDM
has already been noticed and explained by several authors, for example see [35]
and references therein. In order to depict this graphically, the difference between
analytical and numerical solutions is plotted in Figures 1(a) and 1(b) as a function
of time and stock prices without smoothing payoffs using FDM and proposed IMEX
compact scheme respectively. It can be observed that maximum error at strike price
is comparatively smaller with the proposed IMEX compact scheme, which again
proves the better damping properties of compact approximations as compared to
finite difference approximations, see [19] for more details. The same difference is
again plotted in Figures 1(c) and 1(d) after smoothing the payoffs, and the results
obtained from IMEX compact scheme seems better again as compared to the results
from FDM. Moreover, it can be observed in Figures 1(c) and 1(d) that spurious
oscillations are further damped when smooth payoffs are used, which gives another
advantage of using smoothing operator apart from achieving high convergence rate
for solving the PIDEs.

Efficiency is one of the desirable property for any numerical method developed.
Therefore, the CPU time taken in proposed IMEX compact scheme is compared
with the time taken in FDM to solve this example. In order to show this, the error
between numerical and analytical solutions, and corresponding CPU times at grid
points N=12, 24, 48, 96, 192, 384 are computed and plotted in Figure 2. The numer-
ical computation is done using MATLAB on a computer with Intel(R) Core(TM)i5-
8400 CPU @ 2.80GHz. It can be noticed that proposed IMEX compact scheme is
taking less time to achieve a particular accuracy as compared to time taken by
FDM. Thus, all the claims asserted in Sec.1 have been illustrated and validated via
this first example.

Example 2. (European put option: Local volatility case)
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Figure 1. The location and nature of the spurious oscillations
present in the obtained numerical solutions are depicted via this
figure in the error (the difference between the analytical and nu-
merical values) form using: (a) FDM with non-smooth initial con-
dition, (b) IMEX compact scheme with non-smoothing initial con-
dition, (c) FDM with smoothed initial condition, and (d) IMEX
compact scheme with smoothed initial condition.
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Figure 2. Efficiency: The CPU time (in seconds) and the corre-
sponding errors using proposed IMEX compact scheme and FDM.
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It has always been a challenge to develop the high-order compact schemes for
variable coefficient problems (already discussed in Sec 1). This example is taken to
validate the applicability of proposed IMEX compact scheme for variable coefficient
PIDEs. This example comprises the PIDE (12) along with the parameters in Table
(1), except that local volatility σ(x, τ) is taken instead of constant value of σ, and
σ(x, τ) is defined as follows:

(34) σ(x, τ) = 0.15 + 0.15 (0.5 + 2(T − τ))
((Kex/100)− 1.2)

2

(Kex/100)
2
+ 1.44

.

The discretization of the variable coefficient PIDE is accomplished in a similar
way except that the local volatility σ(x, τ) is also discretized at each grid point
(xn, τm). It can be observed from Table 4 that the option price values are almost
equal to the reference values which in turn proves the accuracy of the proposed
IMEX compact scheme.

The fourth-order convergence rate of the proposed IMEX compact scheme is also
validated for this example in Table 5. Moreover, the effect of smoothing the initial
conditions is also presented in that Table.

Option price (S, t) =
(90,0)

(S, t) =
(100,0)

(S, t) =
(110,0)

Reference values [36] 9.317323 3.183681 1.407745
Proposed IMEX compact

scheme
9.317318 3.183678 1.407741

Table 4. Comparison of the option prices obtained from proposed
IMEX compact scheme with reference values for European put
options with local volatility σ using N = 6144.

N IMEX Compact
scheme with smooth

payoff

IMEX compact
scheme with

non-smooth payoff

IMEX finite
difference scheme
with non-smooth

payoff
Error RC Error RC Error RC

24 3.128e-02 - 3.827e-02 - 6.317e-02 -
48 1.986e-03 3.97 9.414e-03 2.02 1.562e-02 2.01
96 1.231e-04 4.01 2.329e-03 2.01 3.843e-03 2.02
192 7.861e-06 3.96 5.744e-04 2.01 9.725e-04 1.98
384 4.798e-07 4.03 1.439e-04 1.99 2.410e-04 2.01

Table 5. The comparison of errors and rate of convergence
achieved using proposed IMEX compact scheme with non-smooth
and smooth payoffs with the error and rate of convergence achieved
using FDM for European put options with local volatility.

Example 3. (American put option: Constant volatility case)

This example is considered to extend the applicability of the proposed IMEX
compact scheme for pricing American options by solving the LCP (32)-(33) along
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with the parameters in Table 1. The results from Table 6 validates that proposed
IMEX compact scheme is also accurate for pricing American options. We would
like to mention that only third order convergence rate could be achieved in Table
7 for American options using proposed IMEX compact scheme even for smoothed
initial condition. The reason could be the lack of regularity of the problem due to
the free boundary feature of LCP (4), which needs further research to be resolved
(see [37] for the detailed discussion on free boundary problems).

Option price (S, t) =
(90,0)

(S, t) =
(100,0)

(S, t) =
(110,0)

Reference values [36] 10.003866 3.241207 1.419790
Proposed IMEX compact

scheme
10.003857 3.241201 1.419785

Table 6. Comparison of the option prices obtained from proposed
IMEX compact scheme with reference values for American put
options with constant volatility using N = 6144.

N IMEX Compact
scheme with smooth

payoff

IMEX compact
scheme with

non-smooth payoff

IMEX finite
difference scheme
with non-smooth

payoff
Error RC Error RC Error RC

24 4.716e-02 - 5.753e-02 - 8.518e-02 -
48 5.843e-03 3.01 1.417e-02 2.02 2.121e-02 2.00
96 6.851e-04 3.09 3.383e-03 2.06 5.192e-03 2.03
192 8.132e-05 3.07 8.545e-04 1.98 1.252e-03 2.05
384 9.837e-06 3.04 1.985e-04 2.09 3.011e-04 2.05

Table 7. The comparison of errors and rate of convergence
achieved using proposed IMEX compact scheme with non-smooth
and smooth payoffs with the error and rate of convergence achieved
using FDM for American put options with constant volatility.

Option price (S, t) =
(90,0)

(S, t) =
(100,0)

(S, t) =
(110,0)

Reference values [36] 10.008881 3.275957 1.426403
Proposed IMEX compact

scheme
10.008876 3.275951 1.426402

Table 8. Comparison of the option prices obtained from proposed
IMEX compact scheme with reference values for American put
options with local volatility using N = 6144.

Example 4. (American put option: Local volatility case)
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N IMEX Compact
scheme with smooth

payoff

IMEX compact
scheme with

non-smooth payoff

IMEX finite
difference scheme
with non-smooth

payoff
Error RC Error RC Error RC

24 5.281e-02 - 8.517e-02 - 1.821e-01 -
48 6.243e-03 3.08 2.187e-02 1.96 4.391e-02 2.05
96 7.431e-04 3.07 5.155e-03 2.08 1.063e-02 2.04
192 9.142e-05 3.02 1.312e-03 1.97 2.712e-03 1.97
384 1.142e-05 3.00 3.172e-04 2.04 7.026e-04 1.94

Table 9. The comparison of errors and rate of convergence
achieved using proposed IMEX compact scheme with non-smooth
and smooth payoffs with the error and rate of convergence achieved
using FDM for American put options with local volatility.

This final example discusses the solution of variable coefficient LCP (obtained by
taking σ(x, τ) instead of constant σ in Eq. (4)) along with the parameters in Table
1 using proposed IMEX compact scheme. The results from Table 8 validates the
accuracy of the proposed IMEX compact scheme for the variable coefficient LCP
and rate of convergence for this problem can be found in Table 9.

5. Concluding remarks and future directions

In this article, the IMEX compact schemes have been proposed for solving the
PIDEs and LCPs arising in pricing of European and American options respectively
under Merton’s jump-diffusion model. The very known concerns applicable to any
numerical method, for example, stability, accuracy, efficiency, convergence rate,
and spurious oscillation in the solution (if present) were discussed in detail via
numerical illustrations. Based on the proposed method and the advantages of
compact schemes discussed in Sec. 1, following future directions can be observed:

• Since proposed compact scheme suits well for solving high-dimensional com-
plex problems, it can be easily extended for option pricing under more ad-
vanced framework, for example, stochastic volatility jump-diffusion models
(a.k.a. Bates model [38]) and the stochastic volatility with contemporane-
ous jump model (a.k.a. SVCJ model [39]).

• In literature, another established approach to solve the high-dimensional
problems is the alternating direction implicit (ADI) finite difference schemes.
Similarly, the ADI compact schemes can also be developed using the tech-
niques presented in this manuscript to solve the high-dimensional problems
proposed in [38, 39]. The comparison of results with ADI schemes and
without ADI technique would help the community to choose appropriate
method for a particular problem.

• It should be noted that no special property of option pricing theory is used
to develop the IMEX compact scheme for solving the PIDEs and LCPs.
Therefore, proposed IMEX compact scheme can also be applied with little
or no modification to solve such problems arising in other areas, for example,
PIDEs in Mathematical Physics, and LCPs in computational Mechanics.
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