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Abstract. Nesterov’s accelerated forward-backward algorithm (AFBA) is an efficient algorithm
for solving a class of two-term convex optimization models consisting of a differentiable function
with a Lipschitz continuous gradient plus a nondifferentiable function with a closed form of its
proximity operator. It has been shown that the iterative sequence generated by AFBA with a

modified Nesterov’s momentum scheme converges to a minimizer of the objective function with

an o
(

1
k2

)
convergence rate in terms of the function value (FV-convergence rate) and an o

(
1
k

)
convergence rate in terms of the distance between consecutive iterates (DCI-convergence rate). In

this paper, we propose a more general momentum scheme with an introduced power parameter
ω ∈ (0, 1] and show that AFBA with the proposed momentum scheme converges to a minimizer

of the objective function with an o
(

1
k2ω

)
FV-convergence rate and an o

(
1
kω

)
DCI-convergence

rate. The generality of the proposed momentum scheme provides us a variety of parameter

selections for different scenarios, which makes the resulting algorithm more flexible to achieve
better performance. We then employ AFBA with the proposed momentum scheme to solve the
smoothed hinge loss ℓ1-support vector machine model. Numerical results demonstrate that the
proposed generalized momentum scheme outperforms two existing momentum schemes.

Key words. Nesterov’s momentum, forward-backward algorithm, convergence rate, support
vector machine.

1. Introduction

In this paper, we consider fast algorithm with a generalized Nesterov momentum
scheme for solving a class of two-term optimization problems of the form

(1) min
x∈Rn

{f(x) + g(x)},

where f : Rn → R is a convex and differentiable function with a Lipschitz con-
tinuous gradient, g : Rn → R is a proper lower-semicontinuous convex function
which may not be differentiable. This two-term optimization model has important
applications in machine learning (e.g. LASSO regression, support vector machine)
[23, 25, 26], image processing (e.g. image denoising, image restoration) [10, 11, 12],
compressed sensing [13, 24] and so on.

The possible nondifferentiability of g in model (1) precludes the use of classical
gradient type algorithms. Under these circumstances, the Forward-Backward Algo-
rithm (FBA) [16, 20] was developed to solve the model when the proximity operator
of g has a closed-form. The FBA is easily-implemented and robust. However, for
large scale ill-conditioned problems, it has been shown to be too slow no matter in
practice or in the sense of asymptotic rate of convergence [3, 5]. To address this
issue, various modifications of FBA have been developed [3, 4, 9]. One of the most
popular strategies is the utilization of momentum technique, such as Nesterov’s
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momentum scheme [19]. Beck and Teboulle showed that FBA has an O
(
1
k

)
con-

vergence rate in terms of the function value (FV-convergence rate), and FBA with
Nesterov’s momentum (Fast Iterative Shrinkage-Thresholding Algorithm, FISTA)
can improve the FV-convergence rate to O( 1

k2 ). However, the convergence of the
iterative sequence generated by FISTA is unclear in their work [3]. Chambolle and
Dossal proved in [6] not only the O( 1

k2 ) FV-convergence rate but also the conver-
gence of the iterative sequence for the momentum accelerated forward-backward
algorithm with a new setting of momentum parameters (AFBA-CD). Later, At-
touch and Peypouquet showed that AFBA-CD can actually achieve an o

(
1
k2

)
FV-

convergence rate and an o
(
1
k

)
convergence rate in terms of the distance between

consecutive iterates (DCI-convergence rate) [1]. Although AFBA-CD is theoreti-
cally guaranteed to be faster than FISTA, it does not always give a distinguishingly
improved performance on practical applications.

In this work, we propose a more general setting of momentum parameters in the
Accelerated Forward-Backward Algorithm (AFBA). A power parameter ω ∈ (0, 1]
is introduced in our momentum scheme. We shall show that the setting of momen-
tum parameters in [6] is a special case of the proposed generalized scheme with
ω = 1. More importantly, the iterative sequence generated by AFBA with the gen-
eralized momentum scheme converges to a minimizer of the objective function with
an o

(
1
k2ω

)
FV-convergence rate and an o

(
1
kω

)
DCI-convergence rate. This result

provides a wider class of momentum algorithms with various convergence rates.
Numerical results demonstrate that the proposed momentum scheme outperforms
the existing momentum schemes used in [3] and [6] for classification problems using
Support Vector Machine (SVM).

We organize this paper in six sections. In section 2, we describe the accelerated
forward backward algorithm and three types of momentum schemes, including two
existing schemes and the proposed generalized scheme. We analyze in section 3
the convergence of the iterative sequence and both the FV-convergence rate and
the DCI-convergence rate for AFBA with the proposed momentum scheme. In
section 4, we formulate the smoothed hinge loss ℓ1-SVM model as the two-term
optimization model (1), and then employ AFBA to solve this model. Section 5
presents the numerical results for comparison of the proposed momentum scheme
with the other two schemes mentioned in section 2. Section 6 offers a conclusion.

2. Accelerated forward-backward algorithm

In this section, we first review the Accelerated Forward-Backward Algorithm
(AFBA) for solving model (1) and two existing momentum schemes. Inspired by
these two schemes, we then propose a more general setting of momentum param-
eters. To better describe the iteration scheme of AFBA, we recall the definition
of proximity operator of a convex function [18]. For x, y ∈ Rn, the inner prod-
uct is defined by ⟨x, y⟩ :=

∑n
i=1 xiyi, and the corresponding ℓ2 norm is given by

∥x∥ := ⟨x, x⟩ 1
2 .

Definition 2.1. Let ψ : Rn → R ∪ {+∞} be a proper convex function. The
proximity operator of ψ at x ∈ Rn is defined by

(2) proxψ(x) := argmin
u∈Rn

{
1

2
∥u− x∥2 + ψ(u)

}
.

Throughout this paper, we define F := f + g and

(3) T := proxβg ◦ (I − β∇f),
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where I denotes the identity operator. We will always assume that the minimizer of
F exists and let β ∈

(
0, 1

L

]
. We say that an operator T : Rn → Rn is nonexpansive if

∥T x−T y∥ ≤ ∥x− y∥ for all x, y ∈ Rn. If there exist α ∈ (0, 1) and a nonexpansive
operator N : Rn → Rn such that T = (1 − α)I + αN , then we say that T
is α-averaged nonexpansive. According to the proof of Theorem 26.14 in [2], we
know that operator T in (3) is averaged nonexpansive, which implies that the
sequence generated by the fixed-point iteration xk+1 = Txk (forward-backward
iteration) converges to a fixed point of T (see Proposition 5.16 in [2]). In addition,
by employing Fermat’s rule (Theorem 16.3 of [2]) and Proposition 2.6 of [17], we
have the following equivalence between the fixed point of T and the minimizer of
F .

Proposition 2.1 ([15, 20]). Vector x∗ ∈ Rn is a minimizer of F if and only if x∗

is a fixed point of T .

To sum up, the sequence generated by the fixed-point iteration of T converges to
a minimizer of F . Based on this fixed-point iteration, an accelerated version with
momentum technique (AFBA) can be written as follows:

(4)

{
yk = xk + θk(x

k − xk−1),

xk+1 = Tyk.

To proceed the above iteration, two initial vectors x0, x1 ∈ Rn should be given.
Next, we review two existing momentum schemes. We denote the set of all

nonnegative integers and the set of all positive integers by N0 and N+, respectively.
Let R+ denote the set of all positive real numbers. For two sequences {ak}k∈N0 ⊂
R+ ∪ {0} and {bk}k∈N0 ⊂ R+, both tending to zero, if lim

k→∞
ak
bk

= 0, we write

ak = o(bk). If there exist constants c > 0 and K ∈ N0 such that ak ≤ cbk for all
k > K, we write ak = O(bk).

The most popular way of setting the momentum parameters {θk}k∈N+ is given
by Nesterov [19] as follows:

(5) θk =
tk−1 − 1

tk
with tk =

1 +
√
1 + 4t2k−1

2
, k ∈ N+,

where t0 = 1. When {θk}k∈N+ in algorithm (4) is set to Nesterov’s momentum
scheme (5), the algorithm reduces to the well-known Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [3]. It has been shown that the convergence rate
in terms of the function value (FV-convergence rate) of FISTA is O

(
1
k2

)
. Later,

Chambolle and Dossal [6] proved the convergence of the iterative sequence gener-
ated by AFBA with the following setting of momentum parameters

(6) θk =
k − 1

k + α− 1
, α > 3, k ∈ N+.

We note that the setting (5) of {θk}k∈N+ is asymptotically equivalent to (6) with
α = 3 by Proposition 2 of [14]. In the recent work [1], Attouch and Peypou-
quet proved that AFBA with momentum scheme (6) can achieve an o

(
1
k2

)
FV-

convergence rate and an o
(
1
k

)
convergence rate in terms of the distance between

consecutive iterates (DCI-convergence rate).
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This paper investigates the convergence, FV-convergence rate and DCI-convergence
rate of AFBA with a more general setting of θk:

(7) θk =
tk−1 − 1

tk
with tk−1 = a(k − 1)ω + b, k ∈ N+,

where ω ∈ (0, 1] and a ∈ R+. To avoid division by zero, without further mentioning,
we always set b ∈ R\{−akω : k ∈ N+} throughout the paper. It is easy to see that
the setting (6) is a special case of (7) with ω = 1, a = 1

α−1 and b = 1. In subsequent
section, we shall show that both the FV-convergence rate and the DCI-convergence
rate of AFBA with the generalized momentum scheme (7) depend on the order of
tk−1.

3. Convergence and convergence rate analysis

In this section, we always let {xk}k∈N0 and {yk}k∈N+ be two sequences generated
by algorithm (4) for any two initial vectors x0, x1 ∈ Rn, and let x∗ be any fixed
point of T , that is, any minimizer of the objective function F . We shall show that
if the sequence of momentum parameters {θk}k∈N+ is given by (7), the sequence

{xk}k∈N0 converges to a minimizer of F with an o
(

1
k2ω

)
FV-convergence rate and

an o
(

1
kω

)
DCI-convergence rate. We begin with stating our main theorem of this

section.

Theorem 3.1. Suppose that {θk}k∈N+ is given by (7). If either ω ∈ (0, 1), a ∈ R+

or ω = 1, a ∈
(
0, 12

)
holds, then we have the following facts:

(i) ∥xk − xk−1∥ = o
(

1
kω

)
,

(ii) F (xk)− F (x∗) = o
(

1
k2ω

)
,

(iii) {xk}k∈N0 converges to a minimizer of F .

We postpone the proof of Theorem 3.1 until we finish the establishment and
verification of Momentum-Condition, which is sufficient to ensure the convergence
and the desired convergence rate of AFBA. We first recall Lemma 2.3 of [3].

Lemma 3.1. Let x, y be any two vectors in Rn and set z := Ty. Then

F (z) ≤ F (x) +
1

β
⟨y − x, y − z⟩ − 1

2β
∥y − z∥2.

For notational simplicity, throughout this section, we let

(8) ηk := F (xk)− F (x∗), τk :=
1

2β
∥xk − xk−1∥2, k ∈ N+,

and define the sequence {zk}k∈N+ ⊂ Rn by

(9) zk := tky
k + (1− tk)x

k, k ∈ N+.

By employing Lemma 3.1, we next establish the following proposition that serves
as an important tool in the analysis of convergence and convergence rate.

Proposition 3.1. Let θk = tk−1−1
tk

, where tk ̸= 0 for all k ∈ N+, and define

(10) εk := 2βt2k−1ηk + ∥zk − x∗∥2, k ∈ N+.

If there exists K ∈ N+ such that tk(tk− 1) ≤ t2k−1 for all k > K, then the following
facts hold:

(i) εk+1 ≤ εk for all k > K and lim
k→∞

εk exists,
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(ii) ηk ≤ εK
2βt2k−1

for all k > K,

(iii)
∑∞
k=1

[
t2k−1 − tk(tk − 1)

]
ηk ≤ ε1

2β .

Proof. We first prove Fact (i). For k ∈ N+, by letting x = xk, y = yk and x = x∗,
y = yk, respectively, in Lemma 3.1, we have that

F (xk+1) ≤ F (xk) +
1

2β

(
2⟨yk − xk, yk − xk+1⟩ − ∥yk − xk+1∥2

)
,(11)

F (xk+1) ≤ F (x∗) +
1

2β

(
2⟨yk − x∗, yk − xk+1⟩ − ∥yk − xk+1∥2

)
.(12)

Let pk := 2tk⟨zk − x∗, yk − xk+1⟩ − t2k∥yk − xk+1∥2, k ∈ N+. By noting that(
1− 1

tk

)
(yk − xk) +

1

tk
(yk − x∗) =

1

tk

[
tky

k + (1− tk)x
k − x∗

]
=

1

tk
(zk − x∗),

the combination
(
1− 1

tk

)
· (11)+ 1

tk
· (12) gives that

F (xk+1) ≤
(
1− 1

tk

)
F (xk) +

1

tk
F (x∗) +

1

2βt2k
pk,

that is,

(13) ηk+1 ≤
(
1− 1

tk

)
ηk +

1

2βt2k
pk, for all k ∈ N+.

To prove Fact (i), we also need to verify the following equality

(14) zk+1 = zk − tk(y
k − xk+1), for all k ∈ N+.

Substituting yk+1 = xk+1 + θk+1(x
k+1 − xk) into the definition of zk+1 in (9), and

then using the facts tk+1θk+1 = tk − 1 and (1− tk)x
k = zk − tky

k, we get that

zk+1 = tk+1

[
xk+1 + θk+1(x

k+1 − xk)
]
+ (1− tk+1)x

k+1

= (1 + tk+1θk+1)x
k+1 − tk+1θk+1x

k

= tkx
k+1 + (1− tk)x

k(15)

= tkx
k+1 + zk − tky

k,

which implies (14). Since pk = ∥zk−x∗∥2−∥(zk−x∗)− tk(yk−xk+1)∥2, it follows
from (14) that

(16) pk = ∥zk − x∗∥2 − ∥zk+1 − x∗∥2.
Substituting (16) into (13) yields that

(17) ηk+1 ≤
(
1− 1

tk

)
ηk +

1

2βt2k

(
∥zk − x∗∥2 − ∥zk+1 − x∗∥2

)
.

Multiplying both sides of (17) by 2βt2k gives that

2βt2kηk+1 ≤ 2βtk(tk − 1)ηk + ∥zk − x∗∥2 − ∥zk+1 − x∗∥2

= 2βt2k−1ηk + ∥zk − x∗∥2 − ∥zk+1 − x∗∥2 − 2β
[
t2k−1 − tk(tk − 1)

]
ηk,

that is,

(18) εk+1 + 2β
[
t2k−1 − tk(tk − 1)

]
ηk ≤ εk, for all k ∈ N+.

Since ηk ≥ 0 and there exists K ∈ N+ such that tk(tk − 1) ≤ t2k−1 for all k > K,
Fact (i) follows from (18) immediately.
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According to the definition of εk and Fact (i), we have that

2βt2k−1ηk ≤ εk ≤ εK for all k > K,

which implies Fact (ii). Summing (18) for k = 1, . . . ,K and using the fact εK+1 ≥ 0,
we obtain that

K∑
k=1

2β
[
t2k−1 − tk(tk − 1)

]
ηk ≤ ε1 − εK+1 ≤ ε1,

which proves Fact (iii).
As a direct result of Fact (ii) in Proposition 3.1, the following corollary can

recover the O
(

1
k2

)
FV-convergence rate of FISTA shown in [3].

Corollary 3.1. Let θk = tk−1−1
tk

, where tk ̸= 0 for all k ∈ N+. If tk > 0 and

tk(tk − 1) = t2k−1 for all k ∈ N+, then F (x
k)− F (x∗) = O( 1

k2 ).

Proof. Solving the quadratic equation tk(tk − 1) = t2k−1 with unknown tk, we

obtain that tk =
1±

√
1+4t2k−1

2 . Since tk > 0, it is necessary to choose

(19) tk =
1 +

√
1 + 4t2k−1

2
, k ∈ N+.

According to (19), we can verify by mathematical induction that tk >
k+1
2 holds for

all k ∈ N+, which together with Fact (ii) in Proposition 3.1 implies that F (xk) −
F (x∗) = O

(
1
k2

)
.

To obtain the convergence and convergence rate results of AFBA with momen-
tum setting (7), we need some hypotheses on the momentum parameters, which
shall be used frequently in the rest of this section. For a sequence {tk}k∈N0

⊂ R, we
say that it satisfies Momentum-Condition if the following hypotheses are satisfied:

(i) tk ̸= 0 for all k ∈ N+.
(ii) There exist ρ ∈ R+ and K1 ∈ N+ such that

(20) 1 ≤ tk−1 < ρ
[
t2k−1 − tk(tk − 1)

]
, for all k > K1.

(iii) There exist c1, c2 ∈ R+ and K2 ∈ N+ such that

(21) c1tk ≤ tk−1 ≤ c2tk, for all k > K2.

(iv) lim
k→∞

tk = +∞ and
∑∞
k=1

1
tk

= +∞.

We now establish the boundedness of two series
∑∞
k=1 tk−1ηk and

∑∞
k=1 tk−1τk,

which is crucial for the proof of higher-order infinitesimal o(·) convergence rate.
The boundedness of the former series is a direct result of Fact (iii) in Proposition
3.1.

Proposition 3.2. Let θk = tk−1−1
tk

, k ∈ N+, where {tk}k∈N0 ⊂ R satisfies Item (i)

and (ii) of Momentum-Condition. Then
∑∞
k=1 tk−1ηk < +∞.

Proof. Multiplying both sides of the second inequality of (20) by ηk and summing
the resulting inequality for k from K1 + 1 to infinity yields that

∞∑
k=K1+1

tk−1ηk < ρ
∞∑

k=K1+1

[
t2k−1 − tk(tk − 1)

]
ηk,

which implies the desired result by using Fact (iii) in Proposition 3.1.
We next prove the boundedness of the other series as follows.
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Proposition 3.3. Let θk = tk−1−1
tk

, k ∈ N+, where {tk}k∈N0 ⊂ R satisfies Item

(i)–(iii) of Momentum-Condition. Then
∑∞
k=1 tk−1τk < +∞.

Proof. We first show that

(22) ηk+1 + τk+1 ≤ ηk + θ2kτk, for all k ∈ N+.

From the proof of Proposition 3.1, we know that (11) holds. Substituting yk =
xk + θk(x

k − xk−1) into (11) yields that

F (xk+1) ≤ F (xk) +
1

β
⟨θk(xk − xk−1), (xk − xk+1) + θk(x

k − xk−1)⟩

− 1

2β
∥(xk − xk+1) + θk(x

k − xk−1)∥2

= F (xk) +
1

2β
θ2k∥xk − xk−1∥2 − 1

2β
∥xk+1 − xk∥2.(23)

Subtracting F (x∗) from both sides of (23) and recalling the definitions of ηk and
τk in (8), we obtain (22).

Multiplying both sides of (22) by t2k yields that

(24) t2k(ηk+1 + τk+1) ≤ t2kηk + (tk−1 − 1)2τk,

that is,

(25) (2tk−1 − 1)τk +
(
t2kτk+1 − t2k−1τk

)
≤ t2k(ηk − ηk+1), for all k ∈ N+.

It follows from Item (ii) and (iii) of Momentum-Condition that there exist c ∈ R+

and K ∈ N+ such that tk−1 ≥ 1, 0 < tk+1(tk+1 − 1) < t2k and 0 < tk+1 ≤ ctk for all
k > K, which together with (25) give that

tk−1τk +
(
t2kτk+1 − t2k−1τk

)
≤ t2kηk − tk+1(tk+1 − 1)ηk+1

≤
(
t2kηk − t2k+1ηk+1

)
+ ctkηk+1, for all k > K.

Summing the above inequality for k = K + 1,K + 2, . . . ,M , we obtain that

M∑
k=K+1

tk−1τk + t2MτM+1 − t2KτK+1 ≤ t2K+1ηK+1 − t2M+1ηM+1 + c
M∑

k=K+1

tkηk+1,

which yields that

(26)

M∑
k=K+1

tk−1τk ≤ t2KτK+1 + t2K+1ηK+1 + c

M∑
k=K+1

tkηk+1.

Now letting M → ∞ in (26) and using Proposition 3.2, we find that
∞∑

k=K+1

tk−1τk < +∞,

which implies the desired result.
We now apply the boundedness of the above two series to establish the conver-

gence rate, which can be achieved via proving lim
k→∞

t2k−1 (τk + ηk) = 0. For this

purpose, we need the following technical lemma.

Lemma 3.2. Let {ak}k∈N0 ⊂ R be a sequence with a lower bound, and {bk}k∈N+ ⊂
R be a sequence satisfying

∑∞
k=1 bk < +∞. If there exists K ∈ N+ such that bk ≥ 0

and ak − ak−1 ≤ bk hold for all k > K, then lim
k→∞

ak exists.
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Proof. By the facts ak − ak−1 ≤ bk and bk ≥ 0, we have that

ak − aK =
k∑

j=K+1

(aj − aj−1) ≤
k∑

j=K+1

bj ≤
∞∑

j=K+1

bj , for all k > K,

which together with
∑∞
k=1 bk < +∞ implies that {ak}k∈N0 has an upper bound.

Since {ak}k∈N0 also has a lower bound, we know that there exists a subsequence
{akj}j∈N+ of {ak}k∈N0 converging to some a∗ ∈ R. We next prove that {ak}k∈N0

also converges to a∗.
Let ε > 0 be arbitrary. Since lim

j→∞
akj = a∗, there exists J1 ∈ N+ such that

a∗ − ε < akj < a∗ + ε for all j ≥ J1. In addition, we note that
∑∞
k=1 bk < +∞

and bk ≥ 0 for all k > K. There exists J2 ∈ N+ such that
∑∞
i=kJ2

bi < ε. Let

J = max{J1, J2} and k > kJ . Since there exists J ′ ∈ N+ such that kJ ′ > k, we
have that

ak = akJ′ −
kJ′−1∑
i=k

(ai+1 − ai) ≥ akJ′ −
kJ′∑

i=k+1

bi > a∗ − 2ε.

In addition,

ak = akJ +
k∑

i=kJ+1

(ai − ai−1) ≤ akJ +
k∑

i=kJ+1

bi < a∗ + 2ε.

We conclude that for any ε > 0, there exists J ∈ N+ such that |ak − a∗| < 2ε holds
for all k > kJ , which implies that lim

k→∞
ak = a∗.

Proposition 3.4. Let θk = tk−1−1
tk

, k ∈ N+, where {tk}k∈N0 ⊂ R satisfies Momentum-

Condition. Then lim
k→∞

t2k−1 (τk + ηk) = 0.

Proof. To simplify the notation, we let pk := τk + ηk, k ∈ N+. We now prove
the existence of lim

k→∞
t2k−1pk by employing Lemma 3.2 with ak−1 := t2k−1pk and

bk := tkηk, k ∈ N+. It is obvious that {t2k−1pk}k∈N+ has a lower bound. By Item
(ii) and (iii) of Momentum-Condition, there exist c ∈ R+ and K1 ∈ N+ such that
tk ≤ ctk−1 and tk−1 ≥ 1 for all k > K1, which together with Proposition 3.2 give
that

∞∑
k=K1+1

tkηk ≤
∞∑

k=K1+1

ctk−1ηk < +∞,

that is,
∑∞
k=1 tkηk < +∞. It remains to be shown that there exists K ∈ N+ such

that tkηk ≥ 0 and

(27) t2kpk+1 − t2k−1pk ≤ tkηk, for all k > K.

Using Item (ii) of Momentum-Condition again, there exists K > K1 such that
t2k−1 > tk(tk − 1) ≥ 0 for all k > K. The nonnegativity of tkηk for k > K can be
obtained by tk ≥ 1 immediately. We notice from the proof of Proposition 3.3 that
(24) holds for all k ∈ N+. The inequality tk−1 ≥ 1 also gives that (tk−1−1)2 < t2k−1

for all k > K, which together with (24) implies

t2k(ηk+1 + τk+1) ≤ t2kηk + t2k−1τk,

that is,

(28) t2kτk+1 − t2k−1τk ≤ t2k(ηk − ηk+1), for all k > K.
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In addition, we obtain from the fact t2k−1 > tk(tk − 1) > 0 that

(29) t2kηk+1 − t2k−1ηk ≤ t2k(ηk+1 − ηk) + tkηk, for all k > K.

Adding the two inequalities (28) and (29) yields (27). We have now completed the
proof that lim

k→∞
t2k−1pk exists.

Next, we prove that lim
k→∞

t2k−1pk = 0 by contradiction. Suppose that lim
k→∞

t2k−1pk ̸=
0. Then there must be some s > 0 such that lim

k→∞
t2k−1pk = s, since pk ≥ 0 for all

k ∈ N+. This implies that there exists K2 > K1 such that t2k−1pk >
s
2 and tk−1 ≥ 1

for all k > K2. As a result, we have that
∞∑

k=K2+1

tk−1pk =

∞∑
k=K2+1

1

tk−1
· t2k−1pk >

s

2

∞∑
k=K2+1

1

tk−1
,

which tends to +∞ by Item (iv) of Momentum-Condition. However, it follows
from Proposition 3.2 and Proposition 3.3 that

∑∞
k=1 tk−1pk < +∞. We have thus

reached a contradiction. This completes the proof.
With Proposition 3.4, we are able to establish the convergence rate. To further

prove the convergence of the iterative sequence, we also need the following lemma.

Lemma 3.3. Let T : Rn → Rn be a nonexpansive operator such that it has at least
one fixed point. If sequence {vk}k∈N0 ⊂ Rn satisfies the following two conditions:

(i) lim
k→∞

∥T vk − vk∥ = 0,

(ii) lim
k→∞

∥vk − v∗∥ exists for any fixed point v∗ of T ,

then {vk}k∈N0 converges to a fixed point of T .

Proof. We know from Item (ii) that {vk}k∈N0 is bounded. Hence there exists a
subsequence {vkj}j∈N+ of {vk}k∈N0 converging to some v̂ ∈ Rn. We next prove
that v̂ is a fixed point of T . By the nonexpansiveness of T , we have that

lim
j→∞

∥T v̂ − T vkj∥ ≤ lim
j→∞

∥v̂ − vkj∥ = 0,

which implies that T v̂ = lim
j→∞

T vkj . This together with Item (i) implies that

T v̂ − v̂ = lim
j→∞

(T vkj − vkj ) = 0,

that is, v̂ is a fixed point of T . Now using Item (ii) again with v∗ = v̂, we conclude
that

lim
k→∞

∥vk − v̂∥ = lim
j→∞

∥vkj − v̂∥ = 0,

which completes the proof.
We are now in a position to prove a theorem that is more general than Theorem

3.1. We shall show that both the FV-convergence rate and the DCI-convergence
rate of the sequence generated by AFBA with θk = tk−1−1

tk
depend on the order of

tk−1 when {tk}k∈N0 satisfies Momentum-Condition.

Theorem 3.2. Suppose that θk = tk−1−1
tk

, k ∈ N+, where {tk}k∈N0 ⊂ R satisfies
Momentum-Condition. Then the following hold:

(i) ∥xk − xk−1∥ = o
(

1
tk−1

)
,

(ii) F (xk)− F (x∗) = o
(

1
t2k−1

)
,



CONVERGENCE RATE ANALYSIS OF AFBA WITH GN MOMENTUM SCHEME 527

(iii) {xk}k∈N+ converges to a minimizer of F .

Proof. We first prove Item (i) and (ii) together by employing Proposition 3.4.
Since {tk}k∈N0 satisfies Momentum-Condition, we know from Proposition 3.4 that

lim
k→∞

t2k−1 (τk + ηk) = 0.

Recalling the definitions of τk and ηk in (8), we see that

(30) lim
k→∞

t2k−1∥xk − xk−1∥2 = 0 and lim
k→∞

t2k−1

(
F (xk)− F (x∗)

)
= 0.

Then Item (i) and (ii) of this theorem follow from (30) and the fact lim
k→∞

tk = +∞
in Momentum-Condition.

We next employ Lemma 3.3 to prove Item (iii). As mentioned in section 2, T
is averaged nonexpansive, and hence nonexpansive. According to Lemma 3.3, it
suffices to show that lim

k→∞
∥Txk − xk∥ = 0 and lim

k→∞
∥xk − x∗∥ exists for any fixed

point x∗ of T , which shall be presented as follows.
It is easy to see from Momentum-Condition that {θk}k∈N+ is bounded. In ad-

dition, it follows from the first equality in (30) that lim
k→∞

∥xk − xk−1∥ = 0. These

together with the nonexpansiveness of T yield that

lim
k→∞

∥Txk − xk+1∥ = lim
k→∞

∥Txk − T (xk + θk(x
k − xk−1))∥

≤ lim
k→∞

|θk|∥xk − xk−1∥ = 0.

Hence

lim
k→∞

∥Txk − xk∥ ≤ lim
k→∞

(
∥Txk − xk+1∥+ ∥xk+1 − xk∥

)
= 0,

which implies that lim
k→∞

∥Txk − xk∥ = 0.

Let x∗ be any fixed point of T . It remains to be shown that lim
k→∞

∥xk − x∗∥
exists. To this end, we prove the existence of lim

k→∞
∥zk − x∗∥, where {zk}k∈N+ is

defined by (9). We know from Fact (i) of Proposition 3.1 and the second equality in
(30) that both lim

k→∞
εk and lim

k→∞
2βt2k−1ηk exist, where εk is defined by (10). Hence

lim
k→∞

∥zk − x∗∥ exists. We now prove the existence of lim
k→∞

∥xk − x∗∥. From (15)

in the proof of Proposition 3.1, we see that zk+1 = tk(x
k+1 − xk) + xk. Letting

rk := |tk−1|∥xk − xk−1∥ for k ∈ N+ and using the triangle inequality, we have

∥xk − x∗∥ − rk+1 ≤ ∥zk+1 − x∗∥ ≤ ∥xk − x∗∥+ rk+1,

that is,

(31) ∥zk+1 − x∗∥ − rk+1 ≤ ∥xk − x∗∥ ≤ ∥zk+1 − x∗∥+ rk+1, k ∈ N+.

We also see from the first equality in (30) that lim
k→∞

rk = 0. Now, the inequalities

in (31) together with the existence of lim
k→∞

∥zk − x∗∥ and the fact lim
k→∞

rk = 0

imply that lim
k→∞

∥xk−x∗∥ exists. Therefore, Item (iii) of this theorem follows from

Lemma 3.3 and Proposition 2.1.
We next show that {tk}k∈N0 given in (7) satisfies Momentum-Condition. For

this purpose, we need the fact that

(32) lim
k→∞

kω − (k − 1)ω

kω−1
= ω, ω ∈ R,
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which can be verified by using L’Hopital’s Rule.

Proposition 3.5. Let tk := akω + b, k ∈ N0, where ω ∈ (0, 1], a ∈ R and b ∈
R\ {−akω : k ∈ N+}. If either ω ∈ (0, 1), a ∈ R+ or ω = 1, a ∈

(
0, 12

)
holds, then

{tk}k∈N0 satisfies Momentum-Condition.

Proof. It is obvious that Item (i) and (iv) of Momentum-Condition hold for any
ω ∈ (0, 1] and a ∈ R+. Next, we prove that {tk}k∈N0 satisfies Item (iii).

It follows from (32) that for any ω ∈ (0, 1], there exists K1 ∈ N+ such that

(33) 0 < kω − (k − 1)ω < 2 for all k > K1.

Let c1 = 1
2 , c2 = 1. It is obvious that tk−1 ≤ c2tk for all k ∈ N+. Setting

K2 = 1 +
⌈∣∣2− b

a

∣∣ 1
ω

⌉
and K3 = max {K1,K2}, by (33), we have that for all

k > K3,

2tk−1 − tk = tk−1 − a(kω − (k − 1)ω)

> a(K2 − 1)ω + b− 2a ≥ 0,

which implies that tk−1 ≥ c1tk. As a result, for any ω ∈ (0, 1] and a ∈ R+,
c1tk ≤ tk−1 ≤ c2tk holds for all k > K3.

It remains to be shown the validity of Item (ii) of Momentum-Condition. For

any ω ∈ (0, 1] and a ∈ R+, we let K4 = 1 +
⌈∣∣ 1−b

a

∣∣ 1
ω

⌉
. Then for all k > K4,

tk−1 ≥ a(K4 − 1)ω + b ≥ |1− b|+ b ≥ 1.

To complete the proof, it suffices to show that there exist ρ ∈ R+ and K ≥ K4 such
that

tk−1 < ρ
[
t2k−1 − tk(tk − 1)

]
,

that is,

(34)
tk
tk−1

−
(

tk
tk−1

+ 1

)
(tk − tk−1) >

1

ρ
, for all k > K.

It has been shown that for any ω ∈ (0, 1] and a ∈ R+,
1
2 tk ≤ tk−1 ≤ tk, that is,

1 ≤ tk
tk−1

≤ 2 holds for all k > K3. If 0 < w < 1, then for any a ∈ R+, it follows

from (32) that

lim
k→∞

(tk − tk−1) = lim
k→∞

a(kω − (k − 1)ω) = 0,

which implies that there exists K5 ∈ N+ such that 0 < tk−tk−1 <
1
4 for all k > K5.

Now by setting ρ = 4 and K = max{K3,K4,K5}, inequality (34) holds.
If ω = 1 and a ∈

(
0, 12

)
, then tk − tk−1 = a. Let ε = 1−2a

2−a . Then a = 1−2ε
2−ε and

ε ∈
(
0, 12

)
. We note that lim

k→∞
tk
tk−1

= 1. Hence there exists K6 ∈ N+ such that

tk
tk−1

> 1− ε for all k > K6. Now by setting ρ = 1
ε and K = max{K4,K6}, we have

that for all k > K,

tk
tk−1

−
(

tk
tk−1

+ 1

)
(tk − tk−1) =

tk
tk−1

− a

(
tk
tk−1

+ 1

)
> (1− a)(1− ε)− a

= (1− ε)− (2− ε)a

= ε =
1

ρ
,
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which completes the proof.
We are now easy to see that Theorem 3.1 is a direct result of Theorem 3.2 and

Proposition 3.5.
Proof of Theorem 3.1. It follows from Proposition 3.5 that {tk}k∈N0 given by
(7) satisfies Momentum-Condition if either ω ∈ (0, 1), a ∈ R+ or ω = 1, a ∈

(
0, 12

)
holds. Then Theorem 3.1 follows from Theorem 3.2 immediately.

From Theorem 3.2, we see that the convergence rate depends on the order of
tk−1. To close this section, we present a proposition showing that a higher order
setting of {tk}k∈N0 by tk := akω+b for ω > 1 does not satisfy the second inequality
of (20) in Momentum-Condition.

Proposition 3.6. Let tk := akω + b, k ∈ N0, where a ̸= 0 and ω, b ∈ R. If ω > 1,
then

lim
k→∞

t2k−1 − tk(tk − 1) = −∞.

Proof. By the definition of tk, we have that

t2k−1 − tk(tk − 1)

= [a(k − 1)ω + b]
2 − (akω + b)2 + akω + b

=− a2
[
k2ω − (k − 1)2ω

]
− 2ab [kω − (k − 1)ω] + akω + b(35)

It follows from (32) that there exists K ∈ N+ such that

k2ω − (k − 1)2ω ≥ ωk2ω−1, for all k > K.

This together with (35) yields that for k > K,

t2k−1 − tk(tk − 1) ≤ −a2ωk2ω−1 − 2ab [kω − (k − 1)ω] + akω + b,

which implies that lim
k→∞

t2k−1 − tk(tk − 1) = −∞ since the first term on the right-

hand side of the above inequality is the highest-order term with respect to k and
with a negative coefficient.

4. AFBA for smoothed hinge loss L1-SVM

Support Vector Machine (SVM) is one of the most important methods for clas-
sification problems. As the data scale in real-world problems grows rapidly, it is
crucial to propose efficient algorithms for SVM. In this section, we use AFBA with
the proposed momentum scheme to solve the smoothed hinge loss ℓ1-SVM model.
The smoothing of the hinge loss function in ℓ1-SVM leads to an optimization model
of the form (1), so that the resulting model can be solved efficiently by AFBA while
preserving the predictive accuracy.

We begin by introducing the original hinge loss ℓ1-SVM model. Let {(x(i), y(i)) :
i ∈ Nm} ⊂ Rn × {−1, 1} be a given training data set, where Nm := {1, 2, . . . ,m}.
Let K : Rn × Rn → R be a positive semi-definite kernel function, and define the
kernel matrix associated with K byK := [K(x(i), x(j))]mi,j=1. The hinge loss function

and ℓ1 norm are defined by h1(t) := max(1− t, 0) for t ∈ R, and ∥x∥1 :=
∑n
i=1 |xi|

for x ∈ Rn, respectively. Then the SVM model with ℓ1 regularization (ℓ1-SVM) is
given by

min
α∈Rm,b∈R

{
m∑
i=1

L(x(i), y(i), α, b) + λ∥α∥1

}
,



530 Y. LIN, S. LI, AND Y. ZHANG

where α ∈ Rm is a vector consisting of the linear combination coefficients, b ∈ R
is a bias term, λ ∈ R+ is the regularization parameter, and the function L in the
fidelity term is defined by

L(x(i), y(i), α, b) := h1

y(i)
 m∑
j=1

αjK(x(j), x(i)) + b

 .

By letting

w :=

[
α
b

]
∈ Rm+1, 1m := [1, 1, . . . , 1]⊤ ∈ Rm,

K̃ :=
[
K 1m

]
, Y := diag{y(1), . . . , y(m)}, B := Y K̃,

(36) Ĩ :=

[
Im 0m
0⊤
m 0

]
and h(u) :=

∑m
i=1 h1(ui) for u ∈ Rm, the ℓ1-SVM model can be rewritten by

(37) min
w∈Rm+1

{h(Bw) + λ∥Ĩw∥1}.

The difficulty to develop an efficient algorithm for solving model (37) is that both
the function h and the ℓ1-norm in the model are nondifferentiable. This issue can be
addressed via smoothing the hinge loss function such that the smoothed function is
convex and differentiable with a Lipschitz continuous derivative. For this purpose,
the Moreau envelope of the hinge loss function [8] or the squared hinge loss function
[25] can be used as a surrogate. It was mentioned in [25] that the squared hinge
loss function defined by

(38) h̃1(t) :=

{
(1− t)2, t < 1,

0, t ≥ 1

is a better loss function for capturing the heavy tailed distribution, which is more
appropriate for classification problems. In view of this, we consider in this work
the smoothed hinge loss ℓ1-SVM (SHL-ℓ1-SVM) model given by

(39) min
w∈Rm+1

{h̃(Bw) + λ∥Ĩw∥1},

where h̃(u) :=
∑m
i=1 h̃1(ui) for u ∈ Rm. Model (39) is an instance of model (1)

with

(40) f = h̃ ◦B and g = λ∥ · ∥1 ◦ Ĩ .

Before employing AFBA to solve model (39), we verify that function f in (40) is
convex and differentiable with a Lipschitz continuous gradient. For this purpose,
we first show the convexity of h̃1 and the Lipschitz continuity of its derivative.

Lemma 4.1. Suppose that h̃1 : R → R is defined by (38). Then h̃1 is convex and
differentiable with a 2-Lipschitz continuous derivative.

Proof. To prove the convexity of h̃1, it suffices to show that its derivative is
monotonically increasing (see Exercise 14 in Chapter 5 of [22]). It follows from the

definition of h̃1 that

h̃
′

1(t) =

{
2(t− 1), t < 1,

0, t ≥ 1,
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which is monotonically increasing. We next show that h̃
′

1 is Lipschitz continuous.
For any t1, t2 ∈ R, without loss of generality, we assume that t1 ≤ t2. Then we
have

h̃
′

1(t1)− h̃
′

1(t2) =


2(t1 − t2), t1 ≤ t2 < 1,

2(t1 − 1), t1 < 1 ≤ t2,

0, 1 ≤ t1 ≤ t2,

which implies that |h̃′

1(t1)−h̃
′

1(t2)| ≤ 2|t1−t2|, that is, h̃
′

1 is 2-Lipschitz continuous.

Proposition 4.1. Suppose that f : Rm+1 → R is defined in (40). Then f is convex
and differentiable with a 2∥B∥22-Lipschitz continuous gradient.

Proof. By Theorem 5.7 of [21], to prove the convexity of f , it suffices to show that

h̃ is convex, which is a natural consequence of the convexity of h̃1 (see Lemma 4.1).
We next prove that ∇f is 2∥B∥22-Lipschitz continuous. By using the chain rule

and the 2-Lipschitz continuity of h̃
′

1 (see Lemma 4.1), for any u, v ∈ Rm+1, we have
that

∥∇f(u)−∇f(v)∥ =
∥∥∥B⊤∇h̃(Bu)−B⊤∇h̃(Bv)

∥∥∥
≤ ∥B⊤∥2

[
m∑
i=1

(
h̃

′

1((Bu)i)− h̃
′

1((Bv)i)
)2

] 1
2

≤ 2∥B∥22∥u− v∥,
which completes the proof.

We now give the closed form of proxµ∥·∥1◦Ĩ . The detailed calculation may be

referred to [17].

Proposition 4.2. Suppose that Ĩ is defined by (36) and µ ∈ R+. Then for w ∈
Rm+1,

proxµ∥·∥1◦Ĩ(w) =
[
proxµ|·|(w1), proxµ|·|(w2), · · · , proxµ|·|(wm), wm+1

]⊤
.

The proximity operator of µ| · | is given in Example 2.3 of [17] by

proxµ|·|(t) = max(|t| − µ, 0) · sign(t), for t ∈ R.

Now AFBA for solving model (39) can be given by

(41)

{
vk = wk + θk(w

k − wk−1),

wk+1 = proxβλ∥·∥1◦Ĩ(v
k − βB⊤∇h̃(Bvk)),

where β ∈
(
0, 1

2∥B∥2
2

]
, and w0, w1 ∈ Rm+1 are given initial vectors.

5. Numerical experiments

In this section, we present the performance of the proposed momentum scheme
by comparing it with momentum schemes (5) and (6). The three competing mo-
mentum schemes are used in conjunction with AFBA to solve the SHL-ℓ1-SVM
model. We call setting (6) the Chambolle-Dossal (CD) momentum scheme, and
setting (7) the generalized Nesterov (GN) momentum scheme.

In the numerical experiments, we compare the algorithms on two public datasets
from LIBSVM [7]. The first dataset for the comparison is called “MNIST01”, which
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comes from MNIST handwritting digit database. We only use the digits “0” and
“1” for classification, leading to a database with 12665 samples in the training set
and 2115 samples in the test set, and each sample has 400 features. The second
dataset is “Splice” with 3175 samples and each sample has 60 features. We use
1000 samples to train the model and consider the rest 2175 samples as the test
data. All the numerical experiments are implemented on a personal computer with
a 2.90 GHz Intel Core i7 processor, a 16GB DDR4 memory and a NVIDIA GeForce
GTX 1660 SUPER GPU.

The Gaussian kernel function K(x, y) = e−γ∥x−y∥
2

for x, y ∈ Rn was used in the
SHL-ℓ1-SVM model. Since ∇f is 2∥B∥22-Lipschitz continuous (Proposition 4.1), we
set the algorithmic parameter β to 1

2∥B∥2
2
. As for the Gaussian kernel parameter γ

and the regularization parameter λ, we fine-tune their optimal values according to
the performance of test accuracy. This work focuses on the efficiency comparison
of the competing momentum schemes. We thus employ AFBA with the three
momentum schemes to solve the same SHL-ℓ1-SVM model with the fine-tuned γ
and λ. We present in Table 1 the optimal values of γ and λ for the two datasets.

Table 1. Optimal values of parameters γ and λ for the two datasets.

Dataset MNIST01 Splice

Size (training, test) (12665, 2115) (1000, 2175)

(γ, λ) (2−5, 20) (2−5, 2−7)

The numerical results consist of two parts. In the first part, we compare the
performance of AFBA with the GN momentum scheme (AFBA-GN) with different
ω. In the second part, we show the comparison of FISTA, AFBA with the CD mo-
mentum scheme (AFBA-CD) and the proposed AFBA-GN. Three figure-of-merits
will be used in the comparison, including the Normalized Objective Function Value
(NOFV), the training accuracy and the test accuracy. We define the NOFV by

NOFV(wk) :=
F (wk)− Fref
F (w0)− Fref

,

where F is the objective function, Fref denotes the reference objective function
value. We set Fref to the objective function value at w100000 obtained by performing
100,000 iterations of FISTA. Note that the competing algorithms have almost the
same computational cost at each iteration, hence we evaluate the performance with
respect to the iteration number throughout the numerical section.

In the first experiment, we evaluate the performance of FBA and AFBA-GN
with ω = 1

4 ,
1
2 ,

3
4 , 1 in terms of NOFV, training accuracy and test accuracy for the

classification of dataset “MNIST01”. In AFBA-GN, we set a and b to 1
2.01 and

1, respectively, for all cases of ω. From Figure 1 (a), (b) and (c), we see that
AFBA-GN converges more rapidly than FBA in terms of all the three figure-of-
merits. Moreover, larger ω (tk−1 of higher order) gives faster convergence, which is
consistent with the convergence rate results in Theorem 3.1.

The second experiment presents the behavior of FISTA, AFBA-CD and AFBA-
GN with ω = 1 and two different sets of a, b. For parameter α ∈ (3,+∞) in AFBA-
CD, we empirically found that smaller α gives faster convergence. Therefore, we
set α = 3.01. According to the observation from Figure 1, we always set ω = 1
for AFBA-GN. The two sets of parameters a, b for comparison are given by a = 1

4 ,

b = 0 and a = 1
2.01 , b = 5, respectively. We recall that the CD momentum scheme
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(a)

(b) (c)

Figure 1. Comparison of FBA and AFBA-GN with ω = 1
4 ,

1
2 ,

3
4 , 1

using “MNIST01”: (a) normalized objective function value versus
iteration number; (b) training accuracy versus iteration number;
(c) test accuracy versus iteration number.

is a special case of the GN momentum scheme with a = 1
α−1 , b = 1, and we can see

that a = 1
2.01 in the second set is consistent with the value of α in AFBA-CD. We

empirically found that for the three competing momentum accelerated algorithms
with almost the same convergence rate, faster convergence of NOFV may not lead
to faster convergence of training and test accuracies (see Figure 2). As a result,
the first set of parameters a, b was determined based on the best performance of
NOFV, while the second set was determined based on the best performances of
training and test accuracies.

As shown in Figure 2, we observe that the plots of FISTA and AFBA-CD almost
coincide in terms of all the three figure-of-merits. Figure 2 (a) shows that the NOFV
plot of AFBA-GN (a = 1

2.01 , b = 5) converges the fastest at the early iterations,
but is then followed by a mild oscillation. After that, this plot goes a little higher
than that of the other algorithms. AFBA-GN (a = 1

4 , b = 0) converges the slowest
at the early iterations, but achieves the lowest NOFV in subsequent iterations. In
fact, we can see that all the plots of the competing algorithms in Figure 2 (a)
have almost the same convergence speed in the later iterations. The performances
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(a)

(b) (c)

Figure 2. Comparison of FISTA, AFBA-CD, AFBA-GN (a =
1
4 , b = 0) and AFBA-GN (a = 1

2.01 , b = 5) using “MNIST01”: (a)
normalized objective function value versus iteration number; (b)
training accuracy versus iteration number; (c) test accuracy versus
iteration number.

of the competing algorithms in terms of training accuracy and test accuracy are
shown in Figure 2 (b) and (c), respectively. Among these algorithms, AFBA-GN
(a = 1

2.01 , b = 5) achieves both high training and test accuracies faster than the
other algorithms.

In machine learning problems, a model with high training accuracy may have
the issue of overfitting. As a result, we often care more about test accuracy when
a high enough training accuracy is attained. To better evaluate the behaviors of
the competing algorithms in terms of test accuracy, we list in Table 2 the number
of iterations required to achieve various desired levels of test accuracy. We remark
that when the number of iterations required is larger than 100,000, it will be marked
by ‘-’ in the table. This phenomenon appears in obtaining a 99.9% test accuracy
by FBA due to its slowness. From this table, we are able to see that AFBA-GN
(a = 1

2.01 , b = 5) can achieve desired levels of test accuracy at about half of the
iterations, comparing to FISTA and AFBA-CD.

Finally, we show in Figure 3 the performance of FISTA, AFBA-CD and AFBA-
GN (a = 1

2.01 , b = 5) for the classification of the other dataset “Splice”. In this ex-
periment, the three competing algorithms have almost the same convergence speed
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Table 2. The number of iterations required to achieve the desired
levels of test accuracy.

Algorithm
Accuracy

90% 95% 97% 99% 99.5% 99.7% 99.9%

FBA 158 258 385 661 1100 1795 -
FISTA 19 22 25 31 42 51 1259

AFBA-CD 20 23 27 34 45 57 1265
AFBA-GN

(a = 1
2.01 , b = 5)

13 14 16 18 21 24 620

in terms of NOFV. For the training and test accuracies, AFBA-GN (a = 1
2.01 , b = 5)

still outperforms the other two algorithms. We remark that different values of pa-
rameter b in GN momentum scheme are determined for different numerical scenarios
such that the proposed GN momentum scheme outperforms the other competing
schemes in respective case. In fact, for convenience of implementation, one can set
b = 1 for robust performance in various scenarios.

(a)

(b) (c)

Figure 3. Comparison of FISTA, AFBA-CD and AFBA-GN
(a = 1

2.01 , b = 5) using “Splice”: (a) normalized objective func-
tion value versus iteration number; (b) training accuracy versus
iteration number; (c) test accuracy versus iteration number.
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6. Conclusion

This paper proposes a generalized Nesterov (GN) momentum scheme for the
Accelerated Forward-Backward Algorithm (AFBA). We prove the convergence of
the iterative sequence generated by AFBA with the GN momentum scheme (AFBA-
GN). Moreover, we show that AFBA-GN has an o

(
1
k2ω

)
convergence rate in terms of

the function value, and an o
(

1
kω

)
convergence rate in terms of the distance between

consecutive iterates, where ω ∈ (0, 1] is a power parameter introduced in the GN
momentum scheme. The generality of the proposed momentum scheme provides a
wider class of momentum algorithms with various convergence rates depending on
ω. The specific class of GN momentum scheme with ω = 1 is still more general than
the existing Chambolle-Dossal (CD) momentum scheme, which may lead to superior
performance in various scenarios. In the numerical experiments on support vector
machine, the performance of the GN scheme in terms of various figure-of-merits can
be optimized via fine-tuning the momentum parameters. The results demonstrate
that the GN scheme outperforms the Nesterov and the CD momentum schemes.
This shows that AFBA with the GN momentum scheme has great potential for
classification problems.
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