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WELL-POSEDNESS AND CONVERGENCE ANALYSIS OF A

NONLOCAL MODEL WITH SINGULAR MATRIX KERNEL

MENGNA YANG AND YUFENG NIE∗

Abstract. In this paper, we consider a two-dimensional linear nonlocal model involving a singular
matrix kernel. For the initial value problem, we first give well-posedness results and energy

conservation via Fourier transform. Meanwhile, we also discuss the corresponding Dirichlet-type
nonlocal boundary value problems in the cases of both positive and semi-positive definite kernels,
where the core is the coercivity of bilinear forms. In addition, in the limit of vanishing nonlocality,
the solution of the nonlocal model is seen to converge to a solution of its classical elasticity local

model provided that ct = 0.
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1. Introduction

In this paper, we consider a two-parameter nonlocal model as follows,

(1) utt(t,x) = Lδu(t,x) + b(t,x), (t,x) ∈ (0, T )× S,

where the nonlocal integral operator Lδ is given by

(2)
Lδu(t,x) : =

∫
S∪Ωδ

(
cn(x

′ − x)⊗ (x′ − x)

|x′ − x|2
+

ct
[
(x′ − x)⊗ (x′ − x)

]∗
|x′ − x|2

)
×
(
u(t,x′)− u(t,x)

)
χδ(x

′ − x)dx′,

S ⊆ R2 is an open domain (S = Ω or S = R2), Ωδ = {x ∈ R2 \Ω : dist(x, ∂Ω) ≤ δ}
is a collar domain surrounding a bounded open set Ω ⊆ R2. u : (0, T ) × S ∪ Ωδ

represents displacement, and b is the external force density. cn, ct denote the tensile
parameter and shear parameter, their expressions can be derived as

(3) cn =
8E(1 + ν)

πδ4(1− ν2)
, ct =

8E(1− 3ν)

πδ4(1− ν2)
,

here E, ν are the Young’s modulus and Poisson’s ratio, and we note that 0 ≤
ν ≤ 1/3. The horizon parameter δ characterizes the effective range of nonlocal
interaction between the material point x′ and point x, and χδ(·) is the standard
canonical function, i.e.,

χδ(x
′ − x) =

{
1, |x′ − x| ≤ δ,

0, otherwise.

In recent years, there have been lots of works done on nonlocal equation of the type
(1) and relevant variational problems, including theory analysis [1, 2, 3], numerical
methods [4, 5, 6, 23], model development and applications [8, 20, 29]. Regarding
the well-posedness theory for equations similar to (1), Emmrich and Weckner [13,
14] proved the well-posedness of the initial problem on bounded domains by using
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semigroup theory of operators. In [17], the well-posedness of a scalar nonlocal
evolution problem is obtained by utilizing properties of Neumann series and Volterra
integral equations, where the boundary data is proposed on the classical boundary
domain ∂Ω. In particular, Du and Zhou [21] established the well-posedness results
for a nonlocal initial problem in the Fourier space, which takes into account the
non-integrable kernels. In addition, Aksoylu and Parks [15] considered scalar linear
stationary nonlocal problems, and gave the well-posedness results, the key step
is to utilize domain decomposition methods to prove the coercivity, (see also [16]
for a similar discussion). More generally, Mengesha and Du [12] proved the well-
posedness for a nonlinear stationary nonlocal problem based on variational methods.
We refer to [10, 17, 18] for an exhaustive introduction of well-posedness results.

On the other hand, observe that δ acts as a bridge between nonlocal models and
the corresponding local models, so the study of reduction of nonlocal models to local
models in the limit of δ → 0 has attracted much attention. In [10], the authors
proved that the nonlocal integral operator applied to smooth functions converges
asymptotically to the corresponding classical differential operator by using using
Taylor expansion. In particular, based on Fourier transform, Mikata [11] analyzed
the limit behaviors of solutions for a kinds of peristatic and peridynamic nonlocal
problems, where solutions of these nonlocal equations approach solutions of the
corresponding local equations with horizon vanishes. More results can be found in
[7, 9, 19, 21] and references therein.

Inspired by the above papers [10, 15, 21], we will prove the well-posedness and
convergence results for the initial and stationary cases of equation (1), which are
the focus of our paper. For the well-posedness results of stationary nonlocal prob-
lems, the coercivity of bilinear forms is ensured by using relative compactness and
some key inequalities. In particular, we don’t rely on the proof in [10, 21] for con-
vergence results as δ → 0, but made some modifications, and introduce some other
techniques.

This paper is organized as follows. In Section 2, for the initial value problem
associated to equation (1), we prove the well-posedness results and energy conser-
vation via Fourier transform. In Section 3, for the corresponding Dirichlet-type
nonlocal boundary problems, the well-posedness results of solution are established
in the cases of positive definite kernel and semi-positive definite kernel. In Section
4, we shall analyze the limit behaviors of solutions of nonlocal problems as δ → 0.
Finally, we complete the paper with an appendix.

Notation 1.1. Throughout the paper, we will denote various generic positive con-
stants by the same letter C, although the constants may differ from line to line.
Moreover, relevant dependencies on parameters will be emphasized using parenthe-
ses, i.e., C ≡ C(T, δ) means that C depends only on T, δ. The notation ⊗ denotes
the dyadic product and [(x′−x)⊗(x′−x)]∗ = I−(x′−x)⊗(x′−x), here I is a second
order identity matrix. (·, ·) is the inner product defined as (u,v) =

∫
R2 u(x)·v(x)dx.

M is a finite number.

To achieve our main results, let us first give a brief review of model equation
(1). Equation (1) can be deduced from the following two-parameter nonlocal peri-
dynamic model by a series of simplification,

(4) utt(t,x) =

∫
Bδ(x)

(cnηnên + ctηtêt)dx
′ + b(t,x), (t,x) ∈ (0, T )× S.
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Figure 1. The components within the peridynamic horizon.

We write η := u(x′, t)−u(x, t) and ξ := x′−x, which denote the relative displace-
ment and bond. ηn and ηt are the components of η along the normal direction
ên and tangential direction êt, respectively. Here ên is in the bond ξ while êt is
orthogonal to ên. The integrand term cnηnên + ctηtêt is the force density function
that characterizes the interaction between the material point x′ and point x, and
Bδ(x) is the ball centered at x ∈ S with radius δ. The mentioned components
above are illustrated in Figure 1. In fact, equation (4) was first proposed in [22] to
expand the range of Poisson’s ratios for bond-based nonlocal peridynamic models,
and retain the simplicity of the bond-based models in form. More precisely, it is
suited to model the materials whose Poisson’s ratio belongs to the interval [0, 1

3 ].

Lemma 1.2. The nonlocal integral operator −Lδ : L2(S ∪ Ωδ) → L2(S ∪ Ωδ) is
self-adjoint, bounded and nonnegative.

Proof. It’s easy to see that the linearity of Lδ from (2). Then for simplicity, we
write u(t,x) as u(x) and rewrite the kernel function k(·) as

(5)

k(x′ − x) = cn
(x′ − x)⊗ (x′ − x)

|x′ − x|2
+ ct

[
(x′ − x)⊗ (x′ − x)

]∗
|x′ − x|2

=:

(
cn cos

2 θ + ct sin
2 θ (cn − ct) cos θ sin θ

(cn − ct) cos θ sin θ cn sin
2 θ + ct cos

2 θ

)
, θ ∈ [0, 2π].

Then cn, ct are two eigenvalues of the symmetric matrix function k(·) exactly, thus
there exists an orthogonal matrix function O, such that

(6) k(x′ − x) = OT

(
cn 0
0 ct

)
O.

For any u(x),v(x) ∈ L2(S ∪ Ωδ), inserting (5)-(6) into (2) yields(
−Lδu(x),v(x)

)
=
(
u(x),−Lδv(x)

)
,(7a) (

−Lδu(x),u(x)
)
≥ 0.(7b)
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By Hölder inequality, we have
(8)(

−Lδu(x),v(x)
)

≤1

2

(∫
S∪Ωδ

∫
S∪Ωδ

(u(x′)− u(x))TOT

(
cn 0
0 ct

)
O(u(x′)− u(x))χδ(x

′ − x)dx′dx

) 1
2

×
(∫

S∪Ωδ

∫
S∪Ωδ

(v(x′)− v(x))TOT

(
cn 0
0 ct

)
O(v(x′)− v(x))χδ(x

′ − x)dx′dx

) 1
2

≤1

2

(∫
S∪Ωδ

∫
S∪Ωδ

cn|u(x′)− u(x)|2χδ(x
′ − x)dx′dx

)1/2

×
(∫

S∪Ωδ

∫
S∪Ωδ

cn|v(x′)− v(x)|2χδ(x
′ − x)dx′dx

)1/2

≤cn

(∫
S∪Ωδ

∫
S∪Ωδ

(u2(x′) + u2(x))χδ(x
′ − x)dx′dx

)1/2

×
(∫

S∪Ωδ

∫
S∪Ωδ

(v2(x′) + v2(x))χδ(x
′ − x)dx′dx

)1/2

≤2πcnδ
2∥u∥L2(S∪Ωδ)∥v∥L2(S∪Ωδ),

where we have used the fact that
∫
S∪Ωδ

χδ(x
′−x)dx′ ≤ πδ2, cn ≥ ct and symmetry.

This completes the proof.
�

2. Initial value problem

In this section, we consider the following initial value problem,

utt(t,x) = Lδu(t,x) + b(t,x), (t,x) ∈ (0, T )× R2,(9a)

u(0,x) = u0(x), ut(0,x) = v0(x), x ∈ R2.(9b)

Observe that functions on the whole space R2 is suitable to take Fourier transform,
then we prove the existence results of problem (9a)-(9b) via Fourier transform.

Theorem 2.1. Let u0(x)∈L2(R2),v0(x)∈L2(R2), b(t,x)∈L2(0, T ;L2(R2)), then
for a given finite T > 0, there exists a solution u(t,x) ∈ C2(0, T ;L2(R2)) to the
initial value problem (9a)-(9b).

Proof. Applying Fourier transform to (9a)-(9b) with respect to space variable x, it
follows that

(10)

{
ūtt(t,ω) +Aδ(ω)ū(t,ω) = b̄(t,ω), (t,ω)∈(0, T )×R2,

ū(0,ω) = ū0(ω), ūt(0,ω) = v̄0(ω), ω∈R2,

where

Aδ(ω) := cn

∫
Bδ(0)

(1− cos(ξ,ω))

|ξ|2
ξ ⊗ ξdξ + ct

∫
Bδ(0)

(1− cos(ξ,ω))

|ξ|2
[
ξ ⊗ ξ

]∗
dξ

is the Fourier symbol of the nonlocal operator −Lδ, and

(11) ω = (ω1, ω2)∈R2, ξ = (ξ1, ξ2)∈R2.
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Directly from Duhamel’s principle, we have

(12)

ū(t,ω) = cos(
√
Aδ(ω)t)ū0(ω) +

sin(
√
Aδ(ω)t)√
Aδ(ω)

v̄0(ω)

+

∫ t

0

sin(
√

Aδ(ω)τ)√
Aδ(ω)

b̄(t− τ,ω)dτ.

Using the convolution property and the inverse Fourier transform yields an integral
expression of the solution, i.e.,

(13)

u(t,x) =

∫
R2

u0(x− ξ)gt(t, ξ)dξ +

∫
R2

v0(x− ξ)g(t, ξ)dξ

+

∫ t

0

∫
R2

b(t− τ,x− ξ)g(t, ξ)dξdτ,

here

g(t, ξ) := F−1

{
sin(

√
Aδ(ω)t)√
Aδ(ω)

}
=

1

2π

∫
R2

sin(
√

Aδ(ω)t)√
Aδ(ω)

ei(ξ,ω)dω

is a Green’s function.
Consequently, u ∈ C(0, T ;L2(R2)). From (9a), we obtain u ∈ C2(0, T ;L2(R2)).

�

Remark 2.2. Eigenvalues of the matrix function Aδ(ω) are positive (see the Ap-
pendix for details), which guarantees that 1√

Aδ(ω)
is well-defined. Moreover, the

matrix functions

cos(
√

Aδ(ω)t) :=

∞∑
n=0

(−1)n(
√
Aδ(ω)t)2n

(2n)!
,

sin(
√
Aδ(ω)t) :=

∞∑
n=0

(−1)n(
√
Aδ(ω)t)2n+1

(2n+ 1)!
.

Remark 2.3. Physically, nonlocal peridynamic framework permits the disconti-
nuity of the solution with respect to the space variable x, which matches with the
existence results of solution in L2(R2).

Proposition 2.4. Under the conditions of Theorem 2.1, then for any t ∈ (0, T ),
the solution obtained above is unique in C2(0, T ;L2(R2)), and satisfies

(14) ∥u(t)∥L2(R2) ≤ C(T,
1

δ
)
(
∥u0∥L2(R2) + ∥v0∥L2(R2) + ∥b∥L2(0,T ;L2(R2))

)
.

Proof. To shorten notation, we suppress x and write u(t) instead of u(t,x). Multi-
plying both sides of (9a) by ut(t) and integrating over R2 in space variable x, then
by Hölder inequality, we have

(15)

d

dt

{
∥ut(t)∥2L2(R2) +

(
−Lδu(t),u(t)

)
L2(R2)

}
≤∥ut(t)∥2L2(R2) + ∥b(t)∥2L2(R2)

≤∥ut(t)∥2L2(R2) +
(
−Lδu(t),u(t)

)
L2(R2)

+ ∥b(t)∥2L2(R2),
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where we have used the fact that
(
−Lδu(t),u(t)

)
L2(R2)

≥ 0. Let φ(t) := ∥ut(t)∥2L2(R2)

+
(
−Lδu(t),u(t)

)
L2(R2)

, then (15) becomes

d

dt
φ(t) ≤ φ(t) + ∥b(t)∥2L2(R2),

using Gronwall’s inequality, we obtain

φ(t) ≤ e
∫ t
0
1ds

[
φ(0) +

∫ t

0

∥b∥2L2(R2)ds

]
, ∀t ∈ [0, T ].

Thus,

(16)
max
0≤t≤T

φ(t) = max
0≤t≤T

{
∥ut(t)∥2L2(R2) + (−Lδu(t),u(t))L2(R2)

}
≤C(T )

(
∥b∥2L2(0,T ;L2(R2)) + ∥v0∥2L2(R2) + (−Lδu0,u0)L2(R2)

)
.

Assume that u,v ∈ C2(0, T ;L2(R2)) are the solutions of (9a)-(9b) with u ̸= v. Let
w = u− v, then w satisfies{

wtt(t,x) = Lδw(t,x), (t,x) ∈ (0, T )× R2,

w(0,x) = 0, wt(0,x) = 0, x ∈ R2.

From (16), we can deduce that

∥wt(t)∥2L2(R2) +
(
− Lδw(t),w(t)

)
L2(R2)

= 0.

Observe that
(
− Lδw(t),w(t)

)
L2(R2)

≥ 0, then we have ∥wt(t)∥L2(R2) = 0, and so

∥w(t)∥L2(R2) = ∥w(t)−w(0)∥L2(R2) ≤
∫ t

0

∥ws(s)∥L2(R2)ds = 0.

Thus w(t) = 0 for all t ∈ (0, T ), i.e., u = v. This implies that the uniqueness of
the solution. Due to

(17) (−Lδu0,u0) ≤ 2πcnδ
2∥u0∥2L2(R2) ≤

16E(1 + ν)

(1− ν)δ2
∥u0∥2L2(R2),

together with calculus basic formulas, we can obtain the desired the estimate (14)
with the constant C ≡ C(T, 1

δ ). �

Observe that ut ∈ C(0, T ;L2(R2)), then we have an immediate corollary as
follows.

Corollary 2.5. The solution u(t,x) of problem (9a)-(9b) is uniformly Lipschitz in
time.

Proof. Directly from (16), for any t1, t2 ∈ (0, T ), we can deduce that

(18) ∥u(t1)− u(t2)∥L2(R2)=

(∫
R2

∣∣∣ ∫ t1

t2

ut(τ)dτ
∣∣∣2dx)1/2

≤C(T,
1

δ
)|t1 − t2|.

�

Remark 2.6. For the spatial domain S = R2, applying the Fourier transform is
a natural choice. But for the spatial domain S = Ω, extending the solution by 0
outside Ω, that is,

ũ(x) =

{
u(x), x ∈ Ω,

0, x ∈ R2 \ Ω,
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it is impossible to extend the above developed results to study the problem on a
finite domain by the extension method, since we don’t know the right-hand side of
the equation −Lδũ(x) = b̃(x) for x ∈ R2 \Ω, then the existence of its solution can’t
be guaranteed necessarily.

Energy conservation usually plays a key role in the study of properties of the
solution. Next, we give the conditions of energy conservation for initial problem
(9a)-(9b).

Theorem 2.7. Under the conditions of Theorem 2.1, then the total energy Φ(t) is
a constant in [0, T ] provided b(t,x) = b(x), where Φ(t) contains potential energy
and kinetic energy, i.e.,

(19) Φ(t) :=
1

2
∥ut(t)∥2L2(R2) +

1

2

(
−Lδu(t),u(t)

)
−
∫
R2

b(t,x)u(t,x)dx.

Proof. Multiplying both sides of (9a) by ut(t) and integrating over space R2 with
respect to the variable x gives

(20)
1

2

d

dt

{
∥ut(t)∥2L2(R2) +

(
−Lδu(t),u(t)

)}
=

∫
R2

b(t)ut(t)dx.

Integrating over time from 0 to t and integrating by parts, we have
(21)
dΦ(t)

dt
=

∫
R2

ut(t)utt(t)dx−
∫
R2

u(t)bt(t)dx−
∫
R2

ut(t)b(t)dx+
(
−Lδu(t),ut(t)

)
= −

∫
R2

u(t)bt(t)dx,

it follows that the total energy Φ(t) is conserved if the external force does not
change with the time, i.e., b(x, t) = b(x). �

3. Stationary problems

In this section, we assume S = Ω and consider nonlocal Dirichlet problems
associated to equation (1).

3.1. Positive definite kernel (ct > 0). The nonhomogeneous Dirichlet-type
nonlocal boundary value problem is posed as follows,

(22)

{
−Lδu(x) = b(x), x ∈ Ω,

u(x) = g(x), x ∈ Ωδ.

We set

(23) g̃(x) :=

{
0, x ∈ Ω,

g(x), x ∈ Ωδ,
and ũ(x) := u(x)− g̃(x).

Then nonlocal problem (22) can be reformulated as

(24)

{
− Lδũ(x) = b̃(x), x ∈ Ω,

ũ(x) = 0, x ∈ Ωδ,

where

(25) b̃(x) =: b(x) +

∫
Ωδ

k(x′ − x)g(x′)χδ(x
′ − x)dx′,

and k(x′ − x) is defined as (5).
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The weak formulation of (24) is given by

(26)

{
given b̃ ∈ L2(Ω), seek ũ ∈ L2(Ω ∪ Ωδ),

such that ũ = 0 for x ∈ Ωδ and Aδ(ũ,v) = F (v), ∀v ∈ Vδ.

Here Aδ(·, ·) denotes the bilinear form, i.e.,
(27)

Aδ(ũ,v) :=
1

2

∫
Ω∪Ωδ

∫
Ω∪Ωδ

(
ũ(x′)−ũ(x)

)T
k(x′−x)

(
v(x′)−v(x)

)
χδ(x

′−x)dx′dx.

Vδ :=
{
v ∈ L2(Ω ∪ Ωδ) : v|Ωδ

= 0
}
and F (v) :=

∫
Ω
b̃(x)v(x)dx.

Theorem 3.1. Assume that b(x) ∈ L2(Ω) and g(x) ∈ L2(Ωδ), then there exists a
unique solution u(x) ∈ L2(Ω ∪ Ωδ) to problem (22), and the estimate

(28) ∥u∥L2(Ω∪Ωd) ≤ C
(
∥b∥L2(Ω) + ∥g∥L2(Ωδ)

)
holds for some constant C = C(l, δ) > 0.

Proof. By Hölder inequality, we have

(29) |F (v)| ≤ ∥b∥L2(Ω)∥v∥L2(Ω) + cnπδ
2∥g∥L2(Ωδ)∥v∥L2(Ωδ).

From Lemma 1.2, we can see that
(
−Lδũ(x),v(x)

)
= Aδ(ũ,v), and so Aδ : L2(Ω∪

Ωδ)× L2(Ω ∪ Ωδ) → R is a symmetric, bounded bilinear form.
The remaining proof is an adaptation of the the process of [24] dealing with the

nonlocal p-Laplace evolution problem, we present the proof for completeness. Let
us construct a finite number of non-empty sets Bj as follows,

(30)



B−1 =
{
x ∈ Ωδ :

δ

2
≤ d(x, ∂Ω) ≤ δ

}
,

B0 =
{
x ∈ Ωδ : d(x, ∂Ω) ≤ δ

2

}
,

B1 =
{
x ∈ Ω : d(x,B0) ≤

δ

2

}
,

B2 =
{
x ∈ Ω : d(x,B1) ≤

δ

2

}
,

Bj =
{
x ∈ Ω \

j−1
∪

k=1
Bk : d(x,Bj−1) ≤

δ

2

}
, j = 2, 3, ...l,

where Bj−1 ∩ Bj = ∅ and Bj−1 ∩ Bδ(x) ̸= ∅ for x ∈ B̄j(j = 1, 2, ...l.), l is a finite
integer, see Figure 2 for details. Then we have
(31)

Aδ(ũ, ũ) ≥
ct
2

∫
Ω∪Ωδ

∫
Ω∪Ωδ

|ũ(x′)− ũ(x)|2χδ(x
′−x)dx′dx

≥ct
4

∫
Bj

∫
Bj−1

|ũ(x)|2χδ(x
′−x)dx′dx− ct

2

∫
Bj

∫
Bj−1

|ũ(x′)|2χδ(x
′−x)dx′dx.

Define a linear continuous function in B̄j by

(32) Hj(x) :=

∫
Bj−1

χδ(x
′ − x)dx′ for x ∈ B̄j .

Clearly, it attains the minimum in B̄j , and write as

(33) αj := min
x∈B̄j

Hj(x) > 0.
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Figure 2. Domain Decomposition.

Inserting (33) into (31) yields a key inequality as follows,

(34) Aδ(ũ, ũ) ≥
ct
4
αj∥ũ(x)∥2L2(Bj)

− ctπδ
2

2
∥ũ(x′)∥2L2(Bj−1)

.

Further, for j = 1, 2, ..., l, we derive that in turn

(35) ∥ũ∥2L2(B1)
≤ 4

ctα1
Aδ(ũ, ũ) +

2πδ2

α1
∥ũ∥2L2(B0)

.

(36) ∥ũ∥2L2(B2)
≤
( 4

ctα2
+

2× 4πδ2

ctα1α2

)
Aδ(ũ, ũ) +

(2πδ2)2

α1α2
∥ũ∥2L2(B0)

.

(37) ∥ũ∥2L2(B3)
≤
( 4

ctα3
+

2× 4πδ2

ctα2α3
+

(4πδ2)2

ctα1α2α3

)
Aδ(ũ, ũ) +

(2πδ2)3

α1α2α3
∥ũ∥2L2(B0)

.

By the standard method of induction, we can deduce that there exists a constant
γ = γ(ct, α1, α2, ..., αj) > 0, such that for j = 1, 2, ..., l, the estimate

(38) ∥ũ∥2L2(Bj)
≤ γAδ(ũ, ũ) +

(2πδ2)j

α1 × α2 × · · · × αj
∥ũ∥2L2(B0)

is valid. Due to ũ|Ωδ
= 0 and B0 ⊆ Ωδ, then the second term of the right-hand side

in (38) vanishes, thus summing for j = 1, 2, 3, ..., l, we have

(39)
1

lγ
∥ũ∥2L2(Ω) =

1

lγ
∥ũ∥2L2(Ω∪Ωd)

≤ Aδ(ũ, ũ),

which follows that the coercivity of Aδ(·, ·) on L2(Ω ∪ Ωδ)× L2(Ω ∪ Ωδ).
Lax-Milgram theorem, we obtain existence results of problem (24) and the esti-

mate

(40) ∥ũ∥L2(Ω∪Ωδ) ≤ lγ
(
∥b∥L2(Ω) + cnπδ

2∥g∥L2(Ωδ)

)
.

Consequently, according to (23), we can derive that the existence and uniqueness
of weak solution u(x) to the problem (22), as well as the desired estimate (28). �
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3.2. Semi-positive definite kernel (ct = 0). In this subsection, we consider the
following homogenous Dirichlet-type nonlocal boundary problem,

(41)

{
−Lδu(x) = b(x), x ∈ Ω,

u(x) = 0, x ∈ Ωδ,

where

(42) Lδu(x) := cn

∫
Ω∪Ωδ

(x′ − x)⊗ (x′ − x)

|x′ − x|2
(u(x′)− u(x))χδ(x

′ −x)dx′.

The bilinear form Aδ(·, ·) and linear functional F (·) associated to (41) are as
follows,

Aδ(u,u) :=
3E

4πδ4

∫
Ω∪Ωδ

∫
Ω∪Ωδ

χδ(x
′−x)

∣∣∣∣ (x′ − x)

|x′−x|
· (u(x′)−u(x))

∣∣∣∣2dx′dx,(43a)

F (u) :=

∫
Ω

b(x)u(x)dx.(43b)

Observe that in (42), the kernel k(x′−x) reduces to a semi-positive definite ker-
nel, then the coercivity of Aδ(·, ·) can’t be directly deduced from the key inequality
(34), which needs other compactness arguments to establish. To verify that the
coercivity of Aδ(·, ·) in L2(Ω ∪Ωδ)× L2(Ω ∪Ωδ) holds, we first recall a key lemma
from Bourgain, Brezis and Mironescu, for more details on this lemma, we refer to
[25], [26] and the references therein.

Lemma 3.2. ([25], Lemma 2) Let g(τ), h(τ) : (0, δ) → R+. Assume g(τ) ≤ g(τ/2)
for τ ∈ (0, δ), and that h(τ) is nonincreasing. Then there exists a constant C =
C(N) > 0, such that

(44)

∫ δ

0

τN−1g(τ)h(τ)dτ ≥ Cδ−N

∫ δ

0

τN−1g(τ)dτ

∫ δ

0

τN−1h(τ)dτ,

where N denotes a positive constant.

Lemma 3.3. If there exists a uniformly bounded sequence ūj = (ūj,1, ūj,2) ∈
L2(R2) satisfying

(45) lim
j→∞

∥Qδ ∗ ūj − ūj∥L2(R2) = 0.

Then for any open bounded subset D of R2, ūj

∣∣
D is relatively compact in L2(D),

where

(46) Qδ(x′ − x) :=
2

πδ2
(x′ − x)⊗ (x′ − x)

|x′ − x|2
χδ(x

′ − x) =:

(
Q11 Q12

Q21 Q22

)
.

Proof. Without loss of generality, we may assume that ∥ūj∥L2(R2) = 1. Due to

Qδ ∈ L1(R2), then every component elementQik(i, k = 1, 2) also belongs to L1(R2).
Using compact arguments in [27, p.74, Corollary 4.27], it follows that Qik ∗ ūj,k is

relatively compact in L2(D) for any open bounded subset D ⊂ R2, and so
(
Qδ ∗

ūj

)
i
=

2∑
k=1

Qik ∗ ūj,k is also relatively compact in L2(D). Since L2(D) is a complete

Banach space, so
(
Qδ ∗ ūj

)
i
is totally bounded, and has a finite ε-cover. Together

with (45), we have

(47) ∥ūj,i∥L2(D) ≤ ∥
(
Qδ ∗ ūj

)
i
∥L2(D) + ∥

(
Qδ ∗ ūj

)
i
− ūj,i∥L2(D).
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Hence, each component ūj,i of ūj has a finite ε-cover, and so do ūj . This completes
the proof. �

The next lemma reveals that conditions of the coercivity of bilinear form Aδ(·, ·)
in L2(Ω∪Ωδ)×L2(Ω∪Ωδ) holds. This lemma is a modified version of the Proposition
1 in [12] for complicated form of cn = 12E

πδ4 . But due to its importance, we present
the proof here.

Lemma 3.4. There exists a positive constant ϑ independent of δ, such that

(48) Aδ(u,u) ≥ ϑ∥u∥2L2(Ω∪Ωδ)
.

Proof. In fact, it suffices to show ϑ > 0, since (48) is equivalent to

(49) inf
∥u∥L2(Ω∪Ωδ)=1

Aδ(u,u) ≥ ϑ.

Clearly, ϑ ≥ 0. Let us prove ϑ > 0 by contradiction. Assume that ϑ = 0, then
there exists a sequence uj ∈ L2(Ω ∪ Ωδ), such that

(50) ∥uj∥L2(Ω∪Ωδ) = 1,

and

(51) lim
j→∞

3E

4πδ4

∫
Ω∪Ωδ

∫
Ω∪Ωδ

χδ(x
′ − x)

∣∣∣∣ (x′ − x)

|x′ − x|
·
(
uj(x

′)− uj(x)
)∣∣∣∣2dx′dx = 0.

We define a radial function sequence ρj as

(52) ρj(|ξ|) :=
4j4

2π
|ξ|2χ[0,1](j|ξ|), ξ ∈ R2.

Then it is easy to check that ρj(|ξ|) satisfies

(53)



ρj(|ξ|) ≥ 0 a.e in R2,∫
R2

ρj(|ξ|)dξ = 1 for all j ∈ N,

lim
j→∞

∫
|ξ|>κ

ρj(|ξ|)dξ = 0 for every κ > 0.

Inserting (52) into (51) and taking δ = 1
j leads to

(54)

lim
j→∞

Aδ(uj ,uj)

=
3E

8

∫
Ω∪Ω 1

j

∫
Ω∪Ω 1

j

∣∣∣∣ (x′−x)

|x′ − x|
· (uj(x

′)−uj(x))

∣∣∣∣2 ρj(|x′−x|)
|x′−!x|2

dx′dx = 0.

On the other hand, let

(55) ūj(x) :=

{
uj(x), x ∈ Ω,

0, x ̸∈ Ω.

By virtue of (50) and (46), we have ∥ūj∥L2(R2) = 1 and

(56)

∫
R2

∣∣∣∣(Qδ ∗ ūj

)
(x)− ūj(x)

∣∣∣∣2dx
≤ 2

πδ2

∫ δ

0

( ∫
S1

∫
R2

∣∣∣s(ūj(x+ τs)− ūj(x)
)∣∣∣2dxdσ(s)︸ ︷︷ ︸

:=Fj(τ)

)
τdτ.
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Clearly, Fj(2τ) ≤ 22Fj(τ). By Lemma 3.2 with g(τ) =
Fj(τ)
τ2 , h(τ) = ρj(τ) and

N = 2, we obtain

(57)

∫ δ

0

τ
Fj(τ)

τ2
dτ ≤Cδ2

∫ δ

0

τ
Fj(τ)

τ2
ρj(τ)dτ = Cδ2

8

3E
Aδ(ūj , ūj).

Observe that δ > 0 and δ → 0, so we can take δ > 0 small enough, such that

(58)

∫
R2

∣∣∣∣(Qδ ∗ ūj

)
(x)− ūj(x)

∣∣∣∣2dx ≤ 2

πδ2

∫ δ

0

Fj(τ)τdτ ≤ 16Cδ2

3πE
Aδ(ūj , ūj) → 0

as j → ∞. By Lemma 3.3, we have the relative compactness of ūj

∣∣
D in L2(D) with

D = Ω. Thus there exists a function u(x), such that

(59) ∥u∥L2(D) = ∥u∥L2(Ω∪Ωδ) = 1.

Using Lebesgue’s dominated convergence theorem and passing to the limit yields
that

(60)

0 = lim
j→∞

Aδ(ūj , ūj) = lim
j→∞

Aδ(uj ,uj)

= lim
j→∞

3E

4πδ4

∫
Ω∪Ωδ

∫
Ω∪Ωδ

χδ(x
′ − x)

∣∣∣∣ (x′ − x)

|x′ − x|
· (uj(x

′)− uj(x))

∣∣∣∣2dx′dx

=
3Ej4

4π

∫
Ω

∫
Ω

χ 1
j
(x′ − x)

∣∣∣∣ (x′ − x)

|x′ − x|
· (u(x′)− u(x))

∣∣∣∣2dx′dx ≥ 0,

it follows that

(61)
(x′ − x)

|x′ − x|
· (u(x′)− u(x)) = 0 a.e. in Ω× Ω.

By Proposition 1.2 in [28], (61) holds if and only if there exists a vector r ∈ R2 and
a antisymmetric matrix B, such that

(62) u(x) = Bx+ r, ∀x ∈ Ω,

then u is displacement of a rigid body. Since we don’t consider such kinds of
solutions in this paper, so by the uniqueness of limits,

(63) u ≡ 0 a.e. in Ω,

which contradicts with (59). Hence, ϑ > 0. �

We now come to nonlocal problem (41), and establish the corresponding well-
posedness results.

Theorem 3.5. Assume that b ∈ L2(Ω) and the conditions in Lemma 3.4 are
fulfilled, then there exists a unique solution u ∈ L2(Ω) to problem (41), and the
estimate

(64) ∥u∥L2(Ω) ≤
1

ϑ
∥b∥L2(Ω)

is valid.

Proof. This statement immediately follows from Lemma 3.4 and Lax-Milgram the-
orem. �
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Remark 3.6. The above Theorem 3.5 only holds for δ > small enough, which
implies that Ω ∪ Ωδ is towards to Ω. Since the Ω ∪ Ωδ is a closed domain, and the
compact result in Lemma 3.3 only holds for any open subset D ⊂ R2. Together with
u
∣∣
Ωδ

= 0, so here we take D = Ω. Notice that the statement of Lemma 3.4 becomes

invalid in the general case u
∣∣
Ωδ

= g ̸≡ 0, this is because the new right-hand term

cnπδ
2∥g∥L2(Ωδ) → ∞ as δ → 0.

4. Limit behaviour with horizon vanishes

In the previous sections, we have gained the well-posedness of problems (9a)-(9b)
and (41). Then it is desirable to consider the limit behaviour of their solutions as
δ → 0. We first recall a two-dimensional classical (local) elasticity model associated
with (1) as follows,

(65) utt(t,x)− Lu(t,x) = b(t,x), (t,x) ∈ (0, T )× S,

where Lu(t,x) = G∆u(t,x) +G 1+ν
1−ν∇∇ ·u(t,x), G = E

2(1+ν) is the shear modulus.

Once the asymptotic convergence of Lδ to L is established, then the convergence
proof of solutions between such two kinds of models is standard, thus the core here
lies in the proof of the former. For the initial case, we mainly follow the idea in
[21], the main difference of this proof is that we do not rely on commutativity of
the matrix function’s product for diagonalizing matrix functions but direct calcu-
lation. In addition, the convergence result of solutions is deduced from continuous
dependence estimate instead of the difference in the Fourier expression of the so-
lution. Meanwhile, for the stationary case, the main novelty our proof is that we
use integration by parts repeatedly, rather than Taylor expansion. This is the only
part of our proof of convergence which departs from that in [13].

4.1. Initial value case. Observe that Fourier symbol matrix functions of these
two operators L and Lδ are given by

(66) A(ω) := G|ω|2I+G
1 + ν

1− ν
ω ⊗ ω,

(67)

Aδ(ω) :=cn

∫
Bδ(0)

(ξ,ω)2

2

1

|ξ|2
ξ ⊗ ξdξ + ct

∫
Bδ(0)

(ξ,ω)2

2

1

|ξ|2
[ξ ⊗ ξ]∗dξ

+cn

∫
Bδ(0)

cos(κ)(ξ,ω)4

4!

1

|ξ|2
ξ ⊗ ξdξ + ct

∫
Bδ(0)

cos(κ)(ξ,ω)4

4!

1

|ξ|2
[ξ ⊗ ξ]∗dξ

= : I1 + I2 + I3 + I4

for some κ. From symmetry, we have
(68)

I1 + I2 =cn
πδ4

32

(
3ω2

1 + ω2
2 2ω1ω2

2ω1ω2 3ω2
2 + ω2

1

)
+ ct

πδ4

32

(
3ω2

1 + ω2
2 −2ω1ω2

−2ω1ω2 3ω2
2 + ω2

1

)
.

On the other hand, we set rδ(ω) := I3 + I4, then for any ω ∈ R2,

(69)

rδ(ω) =
cos(κ)δ6cn

144

(
5ω4

1 + 6ω2
1ω

2
2 + ω4

2 4ω1ω
3
2 + 4ω3

1ω2

4ω1ω
3
2 + 4ω3

1ω2 5ω4
2 + 6ω2

1ω
2
2 + ω4

1

)
+

cos(κ)δ6ct
144

(
5ω4

1 + 6ω2
1ω

2
2 + ω4

2 −4ω1ω
3
2 − 4ω3

1ω2

−4ω1ω
3
2 − 4ω3

1ω2 5ω4
2 + 6ω2

1ω
2
2 + ω4

1

)
.
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Together with (3), we can deduce that

(70) rδ(ω) → 0 as δ → 0.

Combining with (66)-(70), then the following relations hold for ν = 1
3 (that is ct =

0),

Aδ(ω) = A(ω) + rδ(ω),(71a)

lim
δ→0

Aδ(ω) = A(ω) a.e. for ω ∈ R2.(71b)

Let {λδ1, λδ2} and {λ1, λ2} be the eigenvalues of the matrix functions Aδ(ω)
and A(ω), respectively. Directly from (71b), we can see that

(72) λδi → λi as δ → 0 (i = 1, 2).

Proposition 4.1. There exists an orthogonal matrix function P, such that matrix
functions A(ω) and Aδ(ω) diagonalize simultaneously.

Proof. Observe that matrix functions Aδ(ω) and A(ω) are symmetric, so they can
diagonalize and we can find an orthogonal matrix P, such that

(73) PTA(ω)P =

(
λ1 0
0 λ2

)
.

Now we claim that P also can diagonalize the Aδ(ω). In light of (71a) and (73),
it suffices to prove that P can diagonalize the matrix rδ(ω). We assume the matrix

P =

(
a b
c d

)
,

then it is not difficult to see that the subdiagonal elements of left-hand side in (73)
satisfy

(74) 3abω2
1 + abω2

2 + 2bcω1ω2 + 2adω1ω2 + 3cdω2
2 + cdω2

1 = 0.

Multiplying (74) by 2ω2
1 and 2ω2

2 , respectively, which follow that

6abω4
1 + 2abω2

2ω
2
1 + 4bcω3

1ω2 + 4adω3
1ω2 + 6cdω2

2ω
2
1 + 2cdω4

1 = 0,(75a)

6abω2
1ω

2
1 + 2abω4

2 + 4bcω1ω
3
2 + 4adω1ω

3
2 + 6cdω4

2 + 2cdω2
1ω

2
2 = 0.(75b)

On the other hand, the subdiagonal elements of the matrix PTrδ(ω)P are the
same, that is,

(76)

(
PTrδ(ω)P

)
12

=
(
PTrδ(ω)P

)
21

=5abω4
1 + 6abω2

1ω
2
2 + abω4

2 + 4bcω3
1ω

2
2 + 4bcω1ω

3
2

+4adω3
1ω2 + 4adω1ω

3
2 + cdω4

1 + 6cdω2
2ω

2
1 + 5cdω4

2 .

Using (75a)-(76) and properties of the orthogonal matrix, we have

(77) −(76) = (75a) + (75b)− (76) = (ab+ cd)(ω2
1 + ω2

2)
2 = 0,

which implies that PTrδ(ω)P is an orthogonal matrix. The proof is completed. �

Theorem 4.2. Let uδ and u0 be the solutions of problems (9a) and (65) under the
same initial value conditions, respectively. Then for every t ∈ (0, T ),

(78) lim
δ→0

∥uδ(t, ·)− u0(t, ·)∥L2(R2) = 0.
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Proof. By Plancherel formula, for the uniformly bounded and smooth function
u(t,x), we have

(79)

∥Lδu− Lu∥L2(R2) = ∥Aδ(ω)ū(t)−A(ω)ū(t)∥L2(R2)

=

∫
R2

ūT(t)[Aδ(ω)−A(ω)]2ū(t)dω

=

∫
R2

ūT(t)PT

(
(λδ1 − λ1)

2 0
0 (λδ2 − λ2)

2

)
Pū(t)dω

≤max
{
(λδ1 − λ1)

2, (λδ2 − λ2)
2
}
∥ū(t)∥2L2(R2) → 0

as δ → 0.
Set v(t,x) := uδ(t,x)− u0(t,x), then it is clear to see that v(t,x) satisfies

(80)

{
vtt(t,x) = Lδv(t,x) + (Lδ − L)u0, (t,x) ∈ (0, T )× R2,

v(0,x) = 0, vt(0,x) = 0, x ∈ R2.

Using the estimate (16), (17) and calculus basic formulas, we have

(81) ∥v(t)∥L2(R2) ≤ C(T )∥Lδu
0 − Lu0∥L2(R2).

Replacing u by u0 in (79) and passing to limit in δ completes the proof. �

4.2. Stationary case. Let ζ : R2 → R be a function with

∇zζ(|z|) =
z

|z|2
k(z) = cn

1

|z|2
(z1, z2)

T = cn
zT

|z|2
,

where

ζ(|z|) :=
∫

z

|z|2
k(z)dz = cn

∫ |z|

δ

1

r2
rdr, k(z) := cn

z⊗ z

|z|2
.

Theorem 4.3. Let u ∈ C4(Ω ∪ Ωδ) with sup
x∈Ω

|u(4)(x)| ≤ M < ∞. If ct = 0, then

(82) lim
δ→0

Lδu(x) = Lu(x) in L2(Ω).

Proof. By the fundamental theorem of calculus, for any x ∈ Ω, we have

(83)

Lδu(x) =−
∫
Bδ(0)

k(z)(u(x+ z)− u(x))dz

=− cn

∫
Bδ(0)

z⊗ z

|z|2

∫ 1

0

∇u(x+ sz)zdsdz

=cn

∫
Bδ(0)

∫ 1

0

divz

(
z⊗ z∇u(x+ sz)

)
ζ(|z|)dsdz.

Notice that
(84)

divz

(
z⊗ z∇u(x+ sz)

)
=

(
z21∆u1(x+ sz)s
z22∆u2(x+ sz)s

)
+

(
z1z2∆u2(x+ sz)s
z2z2∆u1(x+ sz)s

)
+

(
2z1

∂u1

∂z1
(x+ sz) + z2

∂u2

∂z1
(x+ sz) + z1

∂u2

∂z2
(x+ sz)

z2
∂u1

∂z1
(x+ sz) + z1

∂u1

∂z2
(x+ sz) + 2z1

∂u2

∂z2
(x+ sz)

)
:=B1(z) +B2(z) +B3(z).



WELL-POSEDNESS AND CONVERGENCE ANALYSIS OF A NONLOCAL MODEL 493

Concerning the first term B1(z), using the fact that ζ(|z|) = 0 on ∂Bδ(0), together
with symmetry and integration by parts, we derive that

(85)

cn

∫
Bδ(0)

∫ 1

0

B1(z)ζ(|z|)dsdz

=− cn

∫
Bδ(0)

∫ 1

0

(
z21ζ(|z|)

(
1−s2

2

)
∆∇u1(x+ sz)z

z22ζ(|z|)
(
1−s2

2

)
∆∇u2(x+ sz)z

)
dsdz

−cnπ

8

∫ δ

0

r3dr∆u(x)

=cn

∫
Bδ(0)

∫ 1

0

(
z21ζ(|z|)

(
1
3 − s2

2 + s3

6

)
∆∇2u1(x+ sz)z · z

z22ζ(|z|)
(
1
3 − s2

2 + s3

6

)
∆∇2u2(x+ sz)z · z

)
dsdz

−cnπ

8

∫ δ

0

r3dr∆u(x),

it follows that

(86)

∣∣∣cn ∫
Bδ(0)

∫ 1

0

B1(z)ζ(|z|)dsdz+
cnπ

8

∫ δ

0

r3dr∆u(x)
∣∣∣

≤5cnπδ
2M

24

∫ δ

0

r3dr.

Arguing as the previous B1(z) for B2(z) and B3(z), we can get

(87) cn

∫
Bδ(0)

∫ 1

0

B2(z)ζ(|z|)dsdz = 0,

and

(88)

∣∣∣cn ∫
Bδ(0)

∫ 1

0

B3(z)ζ(|z|)dzds+
cnπ

8

∫ δ

0

r3dr2∇(∇ · u)(x)
∣∣∣

≤cnMδ2π

∫ δ

0

r3dr.

Inserting (3) into (86)-(88) and taking ν = 1
3 yields to

(89)
Lδu(x) +

E(1 + ν)

4(1− ν2)
[∆u+ 2∇(∇ · u)(x)]︸ ︷︷ ︸
=:−Lu(x)

≤ 2Mδ2cnπ

∫ δ

0

r3dr = O(δ2),

which implies that the nonlocal operator Lδ applied to smooth u approaches the
classical elastic operator L applied to u at a rate of δ2 provided that ct = 0.

Consequently, using Lebesgue’s dominated convergence theorem, we can con-
clude that

(90) lim
δ→0

Lδu(x) = Lu(x) in L2(Ω).

�

Remark 4.4. The condition ct = 0 is need, which meets the results for the initial
case.

More precisely, the following convergence result holds.
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Theorem 4.5. Let uδ be the solution of problem (41), then there exists a limit
function u0 ∈ H1

0 (Ω), which is a weak solution of the following classical elastic
boundary problem exactly,

(91)

{
−Lu(x) = b(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

Proof. Observe that

(92) lim
δ→0

∥Qδ ∗ ūδ − ūδ∥L2(R2) = 0,

where ūδ is obtained by extending uδ outside Ω by 0.
In light of (64) and Lemma 3.3, then uδ is relative compact in L2(Ω) and uδ = 0

on Ωδ. Further, there exists a limit function u0(x) ∈H1
0 (Ω), such that for ∀φ ∈

C∞
c (Ω ∪ Ωδ) with Ω ⊂ supp(φ),

(93) lim
δ→0

(−Lδuδ,φ) = lim
δ→0

(uδ,−Lδφ) = (u0,−Lφ) = (−Lu0,φ) = (b,φ),

which follows that u0(x) satisfies the problem (91) in the sense of distributions.
The proof is completed. �

Appendix

Finally, we analyze eigenvalues of the matrix function Aδ(ω). Note that Aδ(ω)
can be rewritten as the following form,

Aδ(ω) =

∫
Bδ(0)

(1− cos(ξ,ω))

(
cn cos

2 θ + ct sin
2 θ (cn − ct) cos θ sin θ

(cn − ct) cos θ sin θ cn sin
2 θ + ct cos

2 θ

)
dξ,

where the sign of its eigenvalues {λδi}2i=1 can be determined by the following qua-
dratic form.

For any ū(ω) = (ū1(ω), ū2(ω)) ̸≡ 0, we have

ū(ω)Aδ(ω)ū(ω)T =(ū1(ω), ū2(ω))

∫
Bδ(0)

1− cos(ξ,ω)

|ξ|2
ξ ⊗ ξdξ(ū1(ω), ū2(ω))T

=

∫
Bδ(0)

(
ξ1ū1(ω) + ξ2ū2(ω)

)2 1− cos(ξ,ω)

|ξ|2
dξ > 0,

it follows that λδ1 > 0, λδ2 > 0. Hence, the matrix function Aδ(ω) is positive
definite, and so 1√

Aδ(ω)
is well-defined.
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