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NUMERICAL APPROXIMATIONS FOR THE NULL

CONTROLLERS OF STRUCTURALLY DAMPED PLATE

DYNAMICS

PELIN G. GEREDELI, CARSON GIVENS AND AHMED ZYTOON*

Abstract. In this paper, we consider a structurally damped elastic equation under hinged bound-

ary conditions. Fully-discrete numerical approximation schemes are generated for the null con-
trollability of these parabolic-like PDEs. We mainly use finite element method (FEM) and finite
difference method (FDM) approximations to show that the null controllers being approximated
via FEM and FDM exhibit exactly the same asymptotics of the associated minimal energy func-

tion. For this, we appeal to the theory originally given by R. Triggiani [20] for construction of null
controllers of ODE systems. These null controllers are also amenable to our numerical implemen-
tation in which we discuss the aspects of FEM and FDM numerical approximations and compare
both methodologies. We justify our theoretical results with the numerical experiments given for

both approximation schemes.

Key words. Null control, finite element method, finite difference method.

1. Introduction

The partial differential equations (PDEs) of plate dynamics ubiquitously arise
in elasticity to model and describe the oscillations of thin structures with large
transverse displacements [10]. Moreover, researchers of PDE control theory are
often interested in devising control input methodologies by which one can elicit
some pre-assigned behavior with respect to solutions of a given controlled plate
or bean PDE system. In the course of constructing such a control theory for the
given damped or undamped plate PDE, its underlying characteristics -hyperbolic
or parabolic- must necessarily be taken into account [13].

For example, whereas in hyperbolic equations, we have the notion of finite speed
of propagation and evolution of singularities, the parabolic equations posses infinite
speed of propagation and smoothing effect. In consequence, the notion of exact
controllability-i.e., steering initial data to any finite energy state at some time (large
enough) - is a reasonable object of study for hyperbolic problems. On the other
hand, the null controllability problem- steering the initial data to the zero state at
any time- makes sense for parabolic problems due to their smoothing effects.

In particular, there has been a great interest in studying the null controllability
of infinite dimensional systems [1, 2, 3, 7, 11, 20] with a view towards attaining
optimal estimates for norms of minimal norm steering controls. In particular, null-
controllability for deterministic parabolic-like PDE dynamics plays a crucial role in
connection with corresponding stochastic parabolic differential equations. For ex-
ample, it is known that the notion of null-controllability is equivalent to the strong
Feller property of the semigroup of transition of the corresponding stochastic differ-
ential equation, which is obtained from the deterministic one by simply replacing
the deterministic control with stochastic noise [5, 6, 8].
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This manuscript considers certain PDE dynamics which exhibit analytic, or
parabolic-like features. Since these dynamics are associated with an infinite speed
of propagation (see [12]), it seems natural to ask: “Is there any control function
which steers the solution to the zero state after some certain time T > 0?” This is
the problem of null controllability. However, we must distinguish the “null control-
lability” concept between finite and infinite dimensional (PDE) systems since while
the issue of finding asymptotics for the associated minimal energy function defined
in (5) has completely been characterized in the finite dimensional ODE case [17, 18],
the infinite dimensional PDE case is in general an open problem. [17] provides a
formula which describes the growth of the minimal norm control, as time T → 0
for ODE dynamics. This result depends on the Kalmans rank condition, which is
the sufficient and necessary controllability condition in finite dimensions. In the
case of interior boundary control, it was proved in [20] there is a relation between
the infinite dimensional asymptotics and finite dimensional truncations such that
a priori bounds manifested by the approximating sequence of null controllers (for
finite dimensional system) will lead to the conclusion of a null controller for the (in-
finite dimensional) analytic PDE systems under consideration. It was also shown
in [20] that infinite dimensional null controllers will capture the sharp asymptotics
of the associated minimal energy function, which is defined through the means of
minimal norm controls (see (5)).

The numerical approximation of controlled PDEs has been a topic of longstand-
ing interest [7] however in contrast to the growing literature on theoretical results
obtained for the null controllability of parabolic-like plate equations, the knowledge
about numerical approximation of the null controllability of PDE dynamics which
exhibit analytic, or parabolic-like features is relatively limited. In [1] semidiscrete
finite element method (FEM) approximation scheme were presented for the null
controllability of non-standard parabolic PDE systems. The key feature in [1] is
that the approximating null controllers exhibit the asymptotics of the associated
minimal energy function for the fully infinite dimensional system.

In this manuscript, our main goals are to derive fully-discrete Finite Elemen-
t Method (FEM) and Finite Difference Method (FDM) numerical approximation
schemes for a certain (nonstandard) analytic and parabolic-like PDE system, give
numerical implementation, and compare the respective FEM and FDM approxima-
tions for this controlled structurally damped elastic equation. The main novelties
of the current work are:

(i) Fully discrete FEM Approximation: The PDE model given in (1) below
was firstly studied in [1]. It was proved that certain finite element method (FEM)
approximations {u∗N} and their limiting controller {u∗} for the structurally damped
PDE (1) manifest the asymptotics (given in Theorem 1.1) of Emin(T ) defined in
(5). However, in this work no numerical implementation was provided for the de-
rived FEM scheme. In the present work, unlike the semi-discrete approximations,
we use “fully-discrete” FEM approximation and provide a numerical experiment
to justify that the approximation of the null controllers, within FEM numerical
scheme framework, obey the same blow up rate of O(T−3/2) given in Theorem 1.1.
Moreover, we give an explicit formula for the approximate control functions.

(ii) Fully discrete FDM Approximation: We numerically analyze the null
controllability problem for the given PDE (1) below by means of the finite differ-
ence method approximation scheme. We see that Theorem 1.2 can be employed
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to justify the use of finite difference method (FDM) approximations to numerically
recover a solution to the said null controllability problem. In particular, we provide
a theoretical proof for our main result Theorem 3.1 which essentially states that
the approximating null controllers are uniformly bounded “in N” by the minimal
energy asymptotics for the fully infinite dimensional controlled PDE system (1).
Subsequently, using fully discrete FDM approximation scheme, we construct ex-
plicit control functions and give the numerical implementation.

(iii) Comparison of FEM vs. FDM: Since the numerical approximation of
controlled PDEs is a topic of longstanding interest, a natural question arises: which
numerical approximation method would give a better result to see that the infinite
dimensional control u∗, a control which inherits the finite dimensional asymptotics?
Our numerical implementations for FEM and FDM approximations yield that while
the finite difference method scheme (FDM) gives better results in approximating
the control function at terminal time T , the finite element method scheme (FEM)
is more stable in computing the control across different values of T .

Plan of the Paper. In Section 1, we introduce the PDE model under consider-
ation and describe the mathematical setting to be used throughout the manuscript.
We also recall the key theory given in [20] to which we will appeal in proving our
results. Since one of our main results is the numerical implementation of the finite
element method approximation scheme, we will refer to the semi-discrete varia-
tional formulations generated within this framework in [1]. We provide the reader
the entire FEM scheme in Section 2. Then in Section 3, we consider the applica-
tion of Theorem 1.2 within the Finite Difference approximation scheme. For this,
we prove Theorem 3.1 which guarantees the existence of null controllers for the
finite difference method (FDM) approximating system. Section 4 is devoted to
the numerical implementation of the both finite element method (FEM) and finite
difference method (FDM) approximation schemes. We also give the algorithmic
description of those schemes. In Section 5 and 6, we give our numerical experi-
ments and conclusions, respectively. We mainly compare the two FEM and FDM
numerical approximation schemes to understand which method is more stable and
gives better results in approximating the null controllers of corresponding systems.
In section 7, we give a very clean and easy to follow recipe to construct a numerical
test problem to the (homogeneous part) PDE (1) below. For this, we appeal to
algebraic theory to compute the matrix exponential that represents the solution to
the PDE (1).

Throughout the paper the norms || · || are taken to be L2(D) for the domain D,
and the inner products in L2(D) is written (·, ·). The space Hs(D) will denote the
Sobolev space of order s, defined on a domain D, and Hs

0(D) denotes the closure
of C∞

0 (D) in the Hs(D) norm which we denote by ∥ · ∥s,D. Also, C will denote a
generic positive constant. For any T > 0, we recall the space

L2(0, T ;L2(D)) :=
{
w : D × [0, T ] 7→ R : w(., t) ∈ L2(D), ∀t ∈ [0, T ],∫ T

0

∥w(t)∥2L2(D) dt <∞

}
.

In what follows, Ω ⊂ R2 will be a bounded polygonal convex domain with Lipschitz
continuous boundary ∂Ω = Γ and we consider the following controlled PDE system:
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ωtt +∆2ω − ρ∆ωt = u, on Ω× (0, T ),(1a)

ω = ∆ω = 0, on Γ× (0, T ),(1b)

[ω(0), ωt(0)] = [ω0, ω1].(1c)

Here ω = ω(x, t) is the elastic plate variable which satisfies the “hinged boundary
conditions”, and the constant ρ > 0 (ρ ̸= 2). The associated finite energy (Hilbert)
space is given as

H = [H2(Ω) ∩H1
0 (Ω)]× L2(Ω).

We observe that the system (1) can be rewritten as the ODE

(2)
d

dt

[
ω
ωt

]
=

[
0 I

−A2 −ρA

] [
ω
ωt

]
+

[
0
u

]
,

[
ω(., 0)
ωt(., 0)

]
∈ H,

where A : D(A) ⊂ L2(Ω) 7→ L2 is the (homogeneous) “Dirichlet Laplacian”

(3) Af = −∆f, D(A) = H2(Ω) ∩H1
0 (Ω).

Alternatively, the system (2) will be equivalent, via the change of variables

v = Aω, w = ωt,

to the following ODE:
(4)
d

dt

[
v
w

]
=

[
0 A

−A −ρA

] [
v
w

]
+

[
0
u

]
,

[
v(0)
w(0)

]
=

[
v0
w0

]
=

[
Aω0

ω1

]
∈ L2(Ω)× L2(Ω).

An easy application of the Lumer-Phillips Theorem yields that there exists a unique
solution [v, w] ∈ L2(Ω) × L2(Ω) to (4) given that u ∈ L2(0, T ;L2(Ω)), and subse-
quently [A−1v, w] = [ω, ωt] in (2) (or (1)) have the regularity [ω, ωt] ∈ C([0, T ];H).
The dynamical system (4) was also shown to generate an analytic semigroup [9,10]
which implies that the null controllability problem is the steering problem to be
considered. In this regard, it was proved in [20, 11, 2] that the following problem
is solvable:

NC: “Let terminal time T > 0 be arbitrary. Given initial data [ω0, ω1] ∈ H, find
u ∈ L2(0, T ;L2(Ω)) such that the corresponding solution [ω, ωt] of (1) satisfies

[ω(T ), ωt(T )] = [0, 0].

What is more, one can find the minimal norm control asymptotics relative to
(4). That is, –find u∗T (0, T ; [ω0, ω1]) ∈ L2(0, T ;L2(Ω)) such that u∗T solves the null
controllability problem and minimizes the L2-cost with respect to all possible null
controllers– Thus, the following “minimal energy function” is well defined:

(5) Emin(T ) = sup
x0∈H,∥x0∥H=1

∥u∗T (x0)∥L2(0,T ;L2(Ω)).

The reader is referred to the references [20, 3] for detailed information, however we
will recall the following theorem that is related to the blow up rate of Emin(T ).

Theorem 1.1. ([20, 3]). The null controllability problem (NC) admits of a so-
lution, and the associated minimal energy function Emin(T ) given in (5) obeys the
blow up rate O(T−3/2) as T → 0. That is;

(6) Emin(T ) = sup
x0∈H,∥x0∥H=1

∥u∗T (x0)∥L2(0,T ;L2(Ω)) = O(T− 3
2 ).
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The proof of Theorem 1.1 was given in [20, 2, 3] via using different techniques.
While the weighted operator theoretic multiplier method and the analyticity of the
corresponding semigroups –based on a continuous line of argument– are utilized
in [2, 3], the proof in [20] depends upon a discrete approach which was also used
for the validation of the spectral truncations to the controlled dynamical system
(1). Since our main goal here is to show “numerically” that each finite dimensional
approximating null controller (in the FEM and FDM approximation scheme) and
their limiting controller manifest the same asymptotics as the minimal energy func-
tion Emin(T ) for the infinite dimensional system (1), for the sake of clarity, we will
provide below the following detailed theory that we will utilize:

Consider the following finite dimensional control system:

(7) Y
′

N = ANYN + BNUN , YN (0) = YN,0 ∈ R(k+1)N , N = 1, 2, ...,

where AN is (k+1)N × (k+1)N and BN is (k+1)N ×N matrices, and the control
UN ∈ L2(0, T ;RN×1). Also, define the following (k + 1)N × (k + 1)N Kalman
matrix KN as

(8) KN = [BN ,ANBN ,A2
NBN , ...,Ak

NBN ].

It was shown in [21] that if KN has full rank for any N = 1, 2, ..., then the system
(7) is exactly controllable by means of controls in L2(0, T ;RN ). Also, the control
function u∗N (t) which steers the initial data YN,0 to the origin in given time T > 0
was constructed in [19] as follows:

Define the scalar-valued function fT (t) and the (k + 1)N vector µ(t) as

(9) fT (t) =
tk(T − t)k

CT,k
, CT,k =

∫ T

0

tk(T − t)k dt,

and

(10) µN (t) =


µ0(t)
µ1(t)
µ2(t)
...

µk(t)

 = −K−1
N eAN tYN,0fT (t), 0 ≤ t ≤ T,

where each component µj is an N−vector. It was proved in [19] that the choice of
the following type of control function in (7) will indeed steers the initial data YN,0

to the origin.

(11) u∗N (t) = µ0(t) + µ
′

1(t) + µ
′′

2 (t) + · · ·+ µ
(k)
k (t).

That is, the solution YN of (7) with control u∗N (t) satisfies the terminal condition
YN (T ) = 0.With this type of control function u∗N (t) in mind, we recall the following
result from [20] which will be the main ingredient in the application of our numerical
schemes:

Theorem 1.2. With reference to the system (7), assume that the following condi-
tions hold:

(A1) The Kalman matrix KN satisfies the Kalman rank condition with index k.
That is,

Rank(KN ) = (k + 1)N for N = 1, 2, ...
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(A2) There exists Ck > 0 independent of N such that

(12) ∥K−1
N ∥ ≤ Ck,

(A3) There exists a constant Dk such that

(13) ∥Aj
Ne

AN t∥ ≤ Dk

tj
, (uniformly in N) j = 0, 1, ..., k.

Then the steering controls provided in (11) obey the estimate

(14)
(∫ T

0

∥u∗N (t)∥2 dt
) 1

2 ≤ C∗
k

∥YN,0∥
T k+ 1

2

,

where C∗
k is a positive constant independent of N = 1, 2, ....

2. Preliminaries

As mentioned in Section 1, it was theoretically (without any numerical experi-
ment) shown in [1] that Theorem 1.2 can be employed to justify the use of finite
element method approximations to numerically recover a solution to the null con-
trollability problem (NC). Our main goal here is to compare two numerical ap-
proximation schemes FEM vs FDM to see that the approximations {u∗N} and their
limiting controller u∗ manifest the same asymptotics of the minimal energy function
Emin(T ) given in (5). For this, we will apply the FEM and FDM methodologies to
the finite dimensional control system (7) separately. The theoretical justification of
the use of FEM approximation was already given in [1, Theorem 4]. Since we will
refer to this scheme in the FEM numerical implementation, for the completeness
and the convenience of the readers, we will remind it here:

2.1. Finite Element Method (FEM) Approximation Scheme for (7):

Application of Theorem 1.2. Let TN be a triangulation (mesh) of Ω, where
N is the number of vertices (nodes) in the triangulation TN . For a triangle (ele-
ment) K ∈ TN , we denote by hK = diam(K) and set h = maxK∈TN

hK . We make
the classical assumptions on the family of meshes on Ω (we refer the reader [4] for
details): there exist constants c0, c1, c2, c3 and c4, independent of any given mesh
in the family, such that the following hold

• For any given mesh TN in the family, let pTN denotes the greatest number
of elements to which any of the nodes belongs. Then

pTN
≤ c0.

• For any triangle (or element) K ∈ TN with area RK ,
c1
N

≤ RK ≤ c2
N
.

• For any triangle in the given mesh with diameter hK ,
c3

N
1
2

≤ hK ≤ c4

N
1
2

.

Also assume that {ϕ1, ..., ϕN} are the standard basis functions for the conforming
H1-finite element space VN , that is

(15) VN = Span{ϕ1, ..., ϕN} ⊂ H1
0 (Ω).

The restriction of any basis function ϕi(x, y), i = 1, 2, ..., N to any element K ∈ TN
is a polynomial on K, i.e. ϕi(x, y), i = 1, 2, ..., N is a piecewise polynomial in
Ω̄. Also, if {(xi, yi)}Ni=1 are the nodes of TN , then {ϕ1, ..., ϕN} can be arranged
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such that ϕi(xj , yj) = δij , i, j = 1, 2, ..., N . Define the following positive definite
symmetric matrices

(16) (Mass)MN =

 (ϕ1, ϕ1) · · · (ϕ1, ϕN )
...

...
(ϕN , ϕ1) · · · (ϕN , ϕN )

 ,

(17) (Stiffness) SN =

 (∇ϕ1,∇ϕ1) · · · (∇ϕ1,∇ϕN )
...

...
(∇ϕN ,∇ϕ1) · · · (∇ϕN ,∇ϕN )

 .
Then the FEM approximating matrix to the generator

(18) A =

[
0 A

−A −ρA

]
of the system (4) is given by

(19) AFE,N =

[
0N M−1

N SN

−M−1
N SN −ρM−1

N SN

]
where 0N is the N × N zero matrix. Given arbitrary [f, g] ∈ R2N and ζ ∈
L2(0, T ;RN ), if we set

(20)

[
ξ(t)

ξ̃(t)

]
= eAFE,N t

[
f
g

]
+

∫ t

0

eAFE,N (t−s)

[
0
ζ(s)

]
ds,

then the variables [ξ(t), ξ̃(t)] satisfy the following ODE system:

ξ
′
(t) =M−1

N SN ξ̃(t),(21a)

ξ̃
′
(t) = −M−1

N SNξ(t)− ρM−1
N SN ξ̃(t) + ζ(t),(21b)

[ξ(0), ξ̃(0)] = [f, g] ∈ R2N .(21c)

Observe that (21) is equivalent to the semidiscrete variational formulation of (4).
That is,

(v
′

N (t), ψN ) = (∇wN (t),∇ψN ), ∀ψN ∈ VN ,

(22a)

(w
′

N (t), φN ) = −(∇vN (t),∇φN )− ρ(∇wN (t),∇φN ) + (uN (t), φN ), ∀φN ∈ VN ,

(22b)

[vN (0), wN (0)] = [v0,N , w0,N ] ∈ VN × VN ,

(22c)

where

vN (t) =
N∑
i=1

ξi(t)ϕi; wN (t) =
N∑
i=1

ξ̃i(t)ϕi; uN (t) =
N∑
i=1

ζi(t)ϕi,

and

v0,N =

N∑
i=1

fiϕi; w0,N =

N∑
i=1

giϕi.

The following Theorem for the approximating system (22) was given in [1, Theorem
4]:
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.

Figure 1. Finite difference grid hx × hy with n = 6.

Theorem 2.1. Suppose the classical mesh assumptions above are in place. Let also
time T > 0 be arbitrarily small. Then for the finite dimensional system (22) which
approximates (4) there exists a sequence of null controllers {u∗N} ⊂ L2(0, T ;RN ),
built upon the recipe provided in [19], that converges weakly to u∗ as N → ∞ and
obtains the following estimate uniformly in N:

(23)
(∫ T

0

∥u∗N (t)∥2 dt
) 1

2 ≤ CT− 3
2 ∥[v0,N , w0,N ]∥L2(Ω)×L2(Ω),

where the constant C is independent of N.

3. Finite Difference Method (FDM) Approximation Scheme for (7)

Application of Theorem 1.2 Let Ω = (0, a)2, a > 0, and h = a
n+1 for a positive

integer n. Also, let hx × hy be the uniform grid of Ω, where hx : 0 = x0 < x1 <
· · · < xn < xn+1 = a, and hy : 0 = y0 < y1 < · · · < yn < yn+1 = a.

The finite difference method approximates the values of v and w in (4) at the
grid points {(xi, yj) : i, j = 1, ..., n}. In particular, we use central difference formula
to discritize the spatial derivatives in (4) to get

v
′

i,j =
4wi,j − wi−1,j − wi+1,j − wi,j−1 − wi,j+1

h2
,(24a)

w
′

i,j =
−4vi,j + vi−1,j + vi+1,j + vi,j−1 + vi,j+1

h2
(24b)

+ ρ
−4wi,j + wi−1,j + wi+1,j + wi,j−1 + wi,j+1

h2
+ ui,j ,

where vi,j , wi,j , ui,j are the approximations of v, w, u at (xi, yj), respectively. With
respect to the finite difference (FDM) scheme, the FDM approximating matrix to
the generator

(25) A =

[
0 A

−A −ρA

]
of the system (4) is given as

(26) AFD,N =

[
0N DN

−DN −ρDN

]
,
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where N = n2 and DN is the N ×N block matrix given by

(27) DN =
1

h2



Fn −In 0n · · · 0n

−In
. . .

. . .
. . .

...

0n
. . .

. . .
. . . 0n

...
. . .

. . .
. . . −In

0n · · · 0n −In Fn


.

Here, In and 0n are the n × n identity and zero matrices, respectively, and Fn is
the n× n matrix given by

Fn =



4 −1 0 · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 4


.

Given arbitrary [f, g] ∈ R2N and ζ ∈ L2(0, T ;RN ), if we set

(28)

[
ξ(t)

ξ̃(t)

]
= eAFD,N t

[
f
g

]
+

∫ t

0

eAFD,N (t−s)

[
0
ζ(s)

]
ds,

then the variables [ξ(t), ξ̃(t)] satisfy the following ODE system:

ξ
′
(t) = DN ξ̃(t),(29a)

ξ̃
′
(t) = −DN (ξ(t) + ρξ̃(t)) + ζ(t),(29b)

[ξ(0), ξ̃(0)] = [f, g] ∈ R2N .(29c)

Observe that (29) is equivalent to the semidiscrete finite difference scheme of (4),
that is [vN ,wN ]

v
′

N (t) = DNwN (t),(30a)

w
′

N (t) = −DN (vN (t) + ρwN (t)) + uN (t),(30b)

[vN (0),wN (0)] = [v0,N ,w0,N ] ∈ R2N ,(30c)

where

vN (t) =



ξ1,1(t)
...

ξ1,n(t)
ξ2,1(t)

...
ξ2,n(t)

...

...
ξn,1(t)

...
ξn,n(t)



; wN (t) =



ξ̃1,1(t)
...

ξ̃1,n(t)

ξ̃2,1(t)
...

ξ̃2,n(t)
...
...

ξ̃n,1(t)
...

ξ̃n,n(t)



; uN (t) =



ζ1,1(t)
...

ζ1,n(t)
ζ2,1(t)

...
ζ2,n(t)

...

...
ζn,1(t)

...
ζn,n(t)



;
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v0,N =



f1,1(t)
...

f1,n(t)
f2,1(t)

...
f2,n(t)

...

...
fn,1(t)

...
fn,n(t)



; w0,N =



g1,1(t)
...

g1,n(t)
g2,1(t)

...
g2,n(t)

...

...
gn,1(t)

...
gn,n(t)



.

Here, ξi,j(t), ξ̃i,j(t), ζi,j(t), fi,j(t), gi,j(t) are the approximations of ξ, ξ̃, ζ, f, g at
(xi, yj , t), respectively. In the following Theorem, we state our first result which
gives the existence of null controllers for the finite difference method (FDM) ap-
proximating system (30) that satisfies the required blow up estimate in Theorem
1.1.

Theorem 3.1. Let terminal time T > 0 be arbitrarily small. Then for the finite
dimensional system (30) which approximates (4) there exists a sequence of null con-
trollers {u∗N} ⊂ L2(0, T ;RN ), built upon the recipe provided in [19], that converges
weakly to u∗ as N → ∞ and obtains the following estimate uniformly in N:

(31)
(∫ T

0

∥u∗N (t)∥2RN dt
) 1

2 ≤ CT− 3
2 ∥[v0,N ,w0,N ]∥R2N ,

where the constant C is independent of N.

Proof. Our proof hinges on showing that the hypotheses of Theorem 1.2 are satisfied
under the setting of finite difference (FDM) approximation scheme.

The Kalman matrix of the system (30) is defined as the 2× 2 block matrix

(32) KN = [BN ,AFD,NBN ] =

[
0N DN

IN −ρDN

]
where BN =

[
0N

IN

]
, AFD,N is the FDM approximating matrix given in (26), DN is

the matrix in (27). In order to show that the requirements (A1)-(A3) of Theorem
1.2 holds, we will give the proof in two steps:

Step 1: Appealing to the theory of invertibility of 2× 2 block matrices in [15], we
observe that the Kalman matrix KN defined in (32) will be invertible provided that
the matrix DN (see (27)) is invertible. Since it can easily be proved that DN is a
symmetric positive definite matrix it will be invertible which also yields that KN is
invertible with inverse

(33) K−1
N =

[
ρIN IN
D−1

N 0N

]
.

Using the Invertible Matrix Theorem we also infer that KN will have the full rank
2N which proves the first requirement (A1) of Theorem 1.2 with index k = 1. To
show that the matrix norm of the inverse matrix K−1

N has a uniform bound that is
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independent of N , we use the special characterization of the matrix DN (see [14]
for details)

(34) DN =
1

h2
(In ⊗ En + En ⊗ In),

where En is the n× n matrix defined as

En =



2 −1 0 · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2


.

The eigenvalues of DN [14] are given as

{λi,j =
1

h2
(
4− 2

(
cos

( iπ

n+ 1

)
+ cos

( jπ

n+ 1

)))
: 1 ≤ i, j ≤ n}.

It can be observed that λi,j > 0 for all 1 ≤ i, j ≤ n, and the smallest eigenvalue for
DN is

λ1,1 =
4

h2
(
1− cos

( π

n+ 1

))
=

8 sin2
(
hπ
2a

)
h2

→ 2π

a2
as h→ 0,

which yields that the eigenvalues of the symmetric positive definite matrix D−1
N will

be bounded above uniformly in N and

∥D−1
N ∥ ≤ C,

where the constant C is independent of N . Consequently, if

[
x1
x2

]
∈ R2N , then we

have that∥∥∥∥K−1
N

[
x1
x2

]∥∥∥∥2
R2N

= ∥ρx1 + x2∥2RN + ∥D−1
N x1∥2RN

≤ max(1, ρ)(∥x1∥2RN + ∥x2∥2RN ) + ∥D−1
N ∥2∥x1∥2RN

≤ max(1, ρ)(∥x1∥2RN + ∥x2∥2RN ) + C2(∥x1∥2RN + ∥x2∥2RN )

≤ C̃(∥x1∥2RN + ∥x2∥2RN )

where C̃ = 2max(1, ρ, C2) is independent of N . This finishes the proof of require-
ment (A2) in Theorem 1.2.

Step 2: Since the Kalman rank condition is satisfied with index k = 1, in this
step, we will show that there are constants Dj (j = 0, 1) which satisfy (uniformly
in N) the following inequalities:

(35) ∥Aj
FD,Ne

AFD,N t∥ ≤ Dj

tj
, j = 0, 1.

We start with the case j = 0 : For this, we will show that the operator AFD,N is
maximal disipative:

a) Dissipativity: For [f, g] ∈ R2N ,⟨
AFD,N

[
f
g

]
,

[
f
g

]⟩
= ⟨DNg, f⟩ − ⟨DNf, g⟩ − ρ ⟨DNg, g⟩

= −ρ
∥∥∥D1/2

N g
∥∥∥ ≤ 0
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(b) Maximality: Given [f, g] ∈ R2N , we consider the equation

[λI2N −AFD,N ]

[
vN
zN

]
=

[
f
g

]
.

This becomes

λvN −DNzN = f

λzN +DNvN + ρDNzN = g

which after applying −DN to the first equation, and multiplying the second one by
λ gives

−λDNvN +D2
NzN = −DNf

λ2zN + λDNvN + ρλDNzN = λg

and we get

λ2zN +D2
NzN + ρλDNzN = λg −DNf.

Since Null(λ2IN +D2
N + ρλDN ) is empty then

zN = (λ2IN +D2
N + ρλDN )−1[λg −DNf ]

and

vN =
1

λ
DN (λ2IN +D2

N + ρλDN )−1[λg −DNf ] +
1

λ
f

this finishes the maximality of AFD,N . Since {eAFD,N t}t∈R is a group of contrac-
tions, then

(36)
∥∥eAFD,N t

∥∥ ≤ 1, for every t > 0, n ∈ N

and the required estimate for the case j = 0 is obtained with the constant D0 = 1.

The case j = 1 is analyzed in a similar way to the argument given in the proof of
[1, Theorem 4 (b)]. �

Remark 3.2. By means of a limiting process, it can be justified from Theorem 2.1
that there exists a null controller u∗ = limn→∞u

∗
N to the elastic plate system that

satisfies (23). Moreover, this control function will manifest the same asymptotics
as that for the associated minimal energy function Emin(T ).

4. Implementations of Numerical Schemes

This section is devoted to providing the algorithmic description of the finite
element method (FEM) and finite difference method (FDM) schemes applied mainly
on the system (4) or the finite dimensional systems (22) and (30), respectively. We
start with the FEM approximations.

4.1. Implementation of the finite element method (FEM). Approximating
solutions to (4), using the finite element method will require time discretization
of the variational formulation (22). For this, let ∆t > 0 be a given time step

and assume that uj+1
N ∈ VN represents an approximation of u∗N (t) at t = tj+1 :=

(j + 1)∆t. Then the fully-discrete scheme of (22) reads: for j = 0, 1, 2, ..., let

vjN , w
j
N , u

j+1
N ∈ VN be given. Find vj+1

N , wj+1
N such that

(vj+1
N , ψN ) = ∆t(∇wj+1

N ,∇ψN ) + (vjN , ψN ), ∀ψN ∈ VN ,(37a)

(wj+1
N , φN ) = (wj

N , φN )−∆t((∇vj+1
N ,∇φN )(37b)

+ ρ(∇wj+1
N ,∇φN )− (uj+1

N , φN )), ∀φN ∈ VN .



NULL CONTROLLABILITY FEM VS FDM 341

It is easy to show that (37) has a unique solution vj+1
N , wj+1

N provided that ∆t < 1
ρ ,

and this solution is the approximation to the solution of (4) at t = tj+1. The crux

of the computations is to compute the approximation to the null controller uj+1
N .

With respect to the recipe given in (10) to construct the approximate controllers,
we remind the following notation: In finite element method (FEM) approximation
scheme, with respect to (21), the Kalman matrix KN and its inverse K−1

N are given
by

(38) KN = [BN ,AFE,N ] =

[
0N M−1

N SN

IN −ρM−1
N SN

]
, K−1

N =

[
ρIN IN

S−1
N MN 0N

]
where BN =

[
0N

IN

]
, AFE,N is the FEM approximation matrix (see (19)) to the

generator defined in (18), and MN , SN are the mass and stiffness matrices defined
in (16) and (17), respectively. With the above notation now, referring to the formula
(10) for the construction of approximate controllers, we use the following:

Taking AN = AFE,N as the FEM approximation matrix, the scalar valued func-
tion fT (t) as

(39) fT (t) =
tk(T − t)k

CT,k
, CT,k =

∫ T

0

tk(T − t)k dt,

and

(40) µN (t) =


µ0(t)
µ1(t)
µ2(t)
...

µk(t)

 = −K−1
N eAFE,N t

[
v0,N
w0,N

]
fT (t), 0 ≤ t ≤ T,

where each component µj is an N−vector, we have then the approximate controllers

(41) u∗N (t) = µ0(t) + µ
′

1(t) + µ
′′

2 (t) + · · ·+ µ
(k)
k (t).

We know that eAFE,N t

[
v0,N
w0,N

]
represents the solution to the homogeneous varia-

tional formulation (22) (without the null controller term). That is,

eAFE,N t

[
v0,N
w0,N

]
=

[
vN,h(t)
wN,h(t)

]
where vN,h(t), wN,h(t) ∈ VN satisfies (for all t > 0):

(v
′

N,h(t), ψN ) = (∇wN,h(t),∇ψN ), ∀ψN ∈ VN ,(42a)

(w
′

N,h(t), φN ) = −(∇vN,h(t),∇φN )− ρ(∇wN,h(t),∇φN ), ∀φN ∈ VN ,(42b)

[vN,h(0), wN,h(0)] = [v0,N , w0,N ] ∈ VN × VN .(42c)

To approximate vN,h(t), wN,h(t) in (42) at t = tj+1 , we discretize (42) in time with
the same time stepping ∆t used in (37) to get the following variational formulation:

For j = 0, 1, 2, ..., let vjN,h, w
j
N,h ∈ VN be given. Find vj+1

N,h , w
j+1
N,h such that

(vj+1
N,h , ψN ) = ∆t(∇wj+1

N,h ,∇ψN ) + (vjN,h, ψN ), ∀ψN ∈ VN ,

(43a)
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(wj+1
N,h , φN ) = (wj

N,h, φN )−∆t((∇vj+1
N,h ,∇φN ) + ρ(∇wj+1

N,h ,∇φN )), ∀φN ∈ VN .

(43b)

Then, by the above setting, we get

µN (t) =

[
µ0(t)
µ1(t)

]
=

[
−ρIN −IN

−S−1
N MN 0N

] [
vN,h(t)
wN,h(t)

]
fT (t)(44)

=

[
−(ρvN,h(t) + wN,h(t))fT (t)

−S−1
N MNvN,h(t)fT (t)

]
,

where

fT (t) =
6t(T − t)

T 3
,

and T is a given terminal time. Since

u∗N (t) = µ0(t) + µ
′

1(t),

we turn our attention to approximate µ0(t) and µ
′

1(t) at t = tj+1, j = 0, 1, 2, ....
We approximate µ0(t) at t = tj+1 by

(45) µ0(tj+1) ≈ µj+1
0,N := −(ρvj+1

N,h + wj+1
N,h)fT (tj+1).

Since

µ
′

1(t) = −S−1
N MN (v

′

N,h(t)fT (t) + vN,h(t)f
′

T (t)),

then for a fixed t > 0, µ
′

1(t) can be understood as the solution to the following

variational formulation: Find µ
′

1(t) ∈ VN such that

(46) (∇µ
′

1(t),∇ψN ) = −(G(t), ψN ), ∀ψN ∈ VN ,

where

G(t) = v
′

N,h(t)fT (t) + vN,h(t)f
′

T (t).

Because we are interested in approximating µ
′

1(t) at t = tj+1, j = 0, 1, 2, ..., we
approximate G(t) at t = tj+1 by

(47) G(tj+1) ≈ Gj+1
N :=

(vj+2
N,h − vj+1

N,h)

∆t
fT (tj+1) + vj+1

N,hf
′

T (tj+1),

hence, we approximate µ
′

1(t) at t = tj+1 by (µj+1
1,N )′, where (µj+1

1,N )′ solves the

following variational formulation : Find (µj+1
1,N )′ ∈ VN such that

(48) (∇(µj+1
1,N )′,∇ψN ) = −(Gj+1

N , ψN ), ∀ψN ∈ VN .

Finally, we take uj+1
N := µj+1

0,N+(µj+1
1,N )′ to be the approximation of the null controller

at t = tj+1 and use it in (37). Now, we provide an algorithm to summarize our
implementation of the finite element method to solve (4):

Algorithm 1 : Let T > 0 (terminal time), m ∈ N (m ≥ 2 is number of
time stepping), and ρ > 2 be user selected. Set ∆t = T

m , and [v0N , w
0
N ] =

[v0N,h, w
0
N,h] = [v0,N , w0,N ]. Then for j = 0, 1, 2, ...,m− 1:
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(1) Construction of uj+1
N : Solve (43) to find a solution [vj+1

N,h , w
j+1
N,h ]

and then use it again in (43) to find [vj+2
N,h , w

j+2
N,h ], that is: Find

[vj+2
N,h , w

j+2
N,h ] ∈ VN × VN such that

(vj+2
N,h , ψN ) = ∆t(∇wj+2

N,h ,∇ψN ) + (vj+1
N,h , ψN ), ∀ψN ∈ VN ,

(49a)

(wj+2
N,h , φN ) = (wj+1

N,h , φN )−∆t((∇vj+2
N,h ,∇φN ) + ρ(∇wj+2

N,h ,∇φN )), ∀φN ∈ VN .

(49b)

Set

µj+1
0,N = −(ρvj+1

N,h + wj+1
N,h)fT (tj+1),(50a)

Gj+1
N =

(vj+2
N,h − vj+1

N,h)

∆t
fT (tj+1) + vj+1

N,hf
′

T (tj+1).(50b)

Use Gj+1
N (obtained in (50b)) to find (µj+1

1,N )′ ∈ VN by solving the
variational formulation

(51) (∇(µj+1
1,N )′,∇ψN ) = −(Gj+1

N , ψN ), ∀ψN ∈ VN .

Then set

(52) uj+1
N = µj+1

0,N + (µj+1
1,N )′.

(2) Find [vj+1
N , wj+1

N ]: Use uj+1
N (obtained in (52)) to find [vj+1

N , wj+1
N ] by

solving the variational formulation (37), that is: Find [vj+1
N , wj+1

N ] such
that ∀ [ψN , φN ] ∈ VN × VN ,

(vj+1
N , ψN ) = ∆t(∇wj+1

N ,∇ψN ) + (vjN , ψN ),

(53a)

(wj+1
N , φN ) = (wj

N , φN )−∆t((∇vj+1
N ,∇φN ) + ρ(∇wj+1

N ,∇φN )− (uj+1
N , φN )).

(53b)

4.2. Implementation of the Finite Difference Method (FDM). Similar to
the FEM implementation, approximating solutions to (4) using the finite difference
method will require time discretization of the finite difference scheme (30). Given

a time step ∆t > 0 assume that uj+1
N ∈ RN is the vector whose components

represent the approximation of u∗N (t) at t = tj+1 and the grid points (xi, yj) as
labelled in (30). Then the fully-discrete scheme of (30) reads: For j = 0, 1, 2, ..., let

vj
N ,w

j
N ,u

j+1
N ∈ RN be given. Find vj+1

N ,wj+1
N ∈ RN such that

vj+1
N −∆tDNwj+1

N = vj
N ,(54a)

wj+1
N +∆tDN (vj+1

N + ρwj+1
N ) = ∆tuj+1

N +wj
N .(54b)

The solution vj+1
N ,wj+1

N to (54) are the vectors whose components represent the
approximation to the solution of (4) at t = tj+1 and the grid points (xi, yj) as
labelled in (30). Observe that (54) can be written as a linear 2 × 2 block system
Ax = b, where

A =

[
IN −∆tDN

∆tDN IN + ρ∆tDN

]
; x =

[
vj+1
N

wj+1
N

]
; b =

[
vj
N

∆tuj+1
N +wj

N

]
.
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The system (54) has a unique solution if the 2N ×2N matrix A is invertible. Since
the Schur complement of A will be the matrix IN + ρ∆tDN + (∆tDN )2 which is
invertible, appealing to the theory of 2× 2 matrices we infer that the matrix A is
invertible. For a detailed discussion, we refer the reader to [15].
Similar to the finite element scheme, the crux of the computations is to compute
the approximation to the null controller uj+1

N .With respect to the recipe given in
(10) to construct the approximate controllers, we define the following matrices:
In finite difference method (FDM) approximation scheme, with respect to (29), the
Kalman matrix KN and its inverse K−1

N can be computed explicitly in terms of the
matrix DN defined in (27):

(55) KN = [BN ,BNAFD,N ] =

[
0N DN

IN −ρDN

]
, K−1

N =

[
ρIN IN
D−1

N 0N

]
.

Here BN =

[
0N

IN

]
, and AFD,N is the FDM approximation matrix (26) to the

generator defined in (25). With the above notation now, referring to the formula
(10) for the construction of approximate controllers, we take AN = AFD,N as the
FDM approximation matrix, the scalar valued function fT (t) as

(56) fT (t) =
tk(T − t)k

CT,k
, CT,k =

∫ T

0

tk(T − t)k dt,

and

(57) µN (t) =


µ0(t)
µ1(t)
µ2(t)
...

µk(t)

 = −K−1
N eAFD,N t

[
v0,N
w0,N

]
fT (t), 0 ≤ t ≤ T.

Observe that eAN tYN,0 in (10) becomes eAFD,N t

[
v0,N

w0,N

]
in the finite difference

setting, and it represents the solution to the finite difference scheme (30) without
the null controller term. That is,

eAFD,N t

[
v0,N

w0,N

]
=

[
vN,h(t)
wN,h(t)

]
,

where vN,h(t),wN,h(t) ∈ RN satisfies (for all t > 0):

v
′

N,h(t) = DNwN,h(t),(58a)

w
′

N,h(t) = −DN (vN,h(t) + ρwN,h(t)),(58b)

[vN (0),wN (0)] = [v0,N ,w0,N ] ∈ R2N .(58c)

To approximate vN,h(t),wN,h(t) in (58) at t = tj+1 , we discretize (58) in time
using the same time stepping ∆t we used in (54) to get the following finite difference

scheme: For j = 0, 1, 2, ..., let vj
N,h,w

j
N,h ∈ RN be given. Find vj+1

N,h ,w
j+1
N,h ∈ RN

such that

vj+1
N,h −∆tDNwj+1

N,h = vj
N ,(59a)

wj+1
N,h +∆tDN (vj+1

N,h + ρwj+1
N,h) = wj

N,h.(59b)
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Observe that the null control formula in the finite difference setting becomes

µ(t) =

[
µ0(t)
µ1(t)

]
=

[
−ρIN −IN
−D−1

N 0N

] [
vN,h(t)
wN,h(t)

]
fT (t)

(60) =

[
−(ρvN,h(t) +wN,h(t))fT (t)

−D−1
N vN,h(t)fT (t)

]
,

where

fT (t) =
6t(T − t)

T 3
,

and T is a given terminal time. Since

u∗N (t) = µ0(t) + µ
′

1(t),

we turn our attention to approximate µ0(t) and µ
′

1(t) at t = tj+1, j = 0, 1, 2, ... We
approximate µ0(t) at t = tj+1 by

(61) µ0(tj+1) ≈ µj+1
0,N := −(ρvj+1

N,h +wj+1
N,h)fT (tj+1).

Since

µ
′

1(t) = −D−1
N (v

′

N,h(t)fT (t) + vN,h(t)f
′

T (t)),

then for a fixed t > 0, µ
′

1(t) can be visualized as the solution to the following finite
difference scheme:

(62) DNµ
′

1(t) = −G(t),

where

G(t) = v
′

N,h(t)fT (t) + vN,h(t)f
′

T (t).

Since we are interested in approximating µ
′

1(t) at t = tj+1, j = 0, 1, 2, ..., we
approximate G(t) at t = tj+1 by

(63) G(tj+1) ≈ Gj+1
N :=

(vj+2
N,h − vj+1

N,h)

∆t
fT (tj+1) + vj+1

N,hf
′

T (tj+1),

Using (63) we now approximate µ
′

1(t) at t = tj+1 by (µj+1
1,N )′, where (µj+1

1,N )′ solves
the following finite difference scheme:

(64) DN (µj+1
1,N )′ = −Gj+1

N ,

Finally, we take uj+1
N := µj+1

0,N + (µj+1
1,N )′ to be the approximation of the null con-

troller at t = tj+1 and use it in (54). We provide an algorithm to summarize our
implementation of the finite difference method to solve (4):

Algorithm 2 : Let T > 0 (terminal time), m ∈ N (m ≥ 2 is number of
time stepping), and ρ > 2 be user selected. Set ∆t = T

m , and [v0
N ,w

0
N ] =

[v0
N,h,w

0
N,h] = [v0,N ,w0,N ]. Then for j = 0, 1, 2, ...,m− 1:

(1) Construction of uj+1
N : Solve (59) to find the solution [vj+1

N,h ,w
j+1
N,h ]

and then use this solution again in (59) to find [vj+2
N,h ,w

j+2
N,h ]. That is,

find [vj+2
N,h ,w

j+2
N,h ] ∈ RN × RN such that

vj+2
N,h −∆tDNwj+2

N,h = vj+1
N,h ,(65a)

wj+2
N,h +∆tDN (vj+2

N,h + ρwj+2
N,h) = wj+1

N,h .(65b)
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Set

µj+1
0,N = −(ρvj+1

N,h +wj+1
N,h)fT (tj+1),(66a)

Gj+1
N =

(vj+2
N,h − vj+1

N,h)

∆t
fT (tj+1) + vj+1

N,hf
′

T (tj+1).(66b)

Use Gj+1
N (obtained in (66b)) to find (µj+1

1,N )′ ∈ RN by solving

(67) DN (µj+1
1,N )′ = −Gj+1

N .

Then set

(68) uj+1
N := µj+1

0,N + (µj+1
1,N )′.

(2) Find [vj+1
N ,wj+1

N ]: Use uj+1
N (obtained in (68)) to find [vj+1

N ,wj+1
N ]

by solving the system (54). That is, find [vj+1
N ,wj+1

N ] such that

vj+1
N −∆tDNwj+1

N = vj
N ,(69a)

wj+1
N +∆tDN (vj+1

N + ρwj+1
N ) = ∆tuj+1

N +wj
N .(69b)

5. Numerical Experiments

In this section, we perform some numerical experiments and compare the results
with the theoretical ones given in the previous sections. We consider an example
where the data is taken to be Ω = (0, π)2, ρ = 5

2 and the initial condition to (4) is
given as (

v0(x, y)
w0(x, y)

)
=

(
0

3
2 sin(2x) sin(2y)

)
(70)

We use the exact solution to the homogeneous part of the system (4) which is
derived in Section 7.

5.1. Finite element scheme. By the use of Algorithm 1,

(vN,h(t), wN,h(t)) ≈ (vN (t), wN (t)) and u∗h(t) ≈ uN (t),

in tables 1, 2, and 3, denote the computed solution pair and the null controller for
(4), respectively. The mesh size is taken to be h = 1

32 (or N = 3338) on a Delaunay
triangulation using continuous functions on TN that are polynomials of degree one
when restricted to any element K ∈ TN .

Tables 1 and 2 show that (vN,h(T ), wN,h(T )) → 0 when T is relatively big. Recall
that the formula in (10) is an approximation to the control function that will lead
the solution (vN (t), wN (t)) → (0, 0).

Table 3 shows that the computed null control obeys the blowup rate in Theorem
2.1 as T → 0. Also, the logarithmic graph in Figure 2 shows that the blowup rate

for the computed null control u∗h(t) is similar to the graph of y = x
−3
2 .
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Table 1. Errors and rates of convergence for example (70) with
time step ∆t = 0.2 using Algorithm 1.

T ∥vN,h(T )∥2 + ∥wN,h(T )∥2 rate ∥u∗h∥L2(L2(Ω);0,T ) rate

21 5.6144E-02 – 2.8778E-01 –
22 1.5294E-02 1.876 8.0441E-02 1.838
23 3.9255E-03 1.962 2.1203E-02 1.923
24 9.9397E-04 1.981 5.4391E-03 1.962
25 2.5006E-04 1.991 1.3771E-03 1.981
26 6.2713E-05 1.995 3.4646E-04 1.991

Table 2. Errors and rates of convergence for example (70) with
time step ∆t = 0.1 using Algorithm 1.

T ∥vN,h(T )∥2 + ∥wN,h(T )∥2 rate ∥u∗h∥L2(L2(Ω);0,T ) rate

21 4.2633E-02 – 3.0454E-01 –
22 1.1209E-02 1.927 8.4262E-02 1.854
23 2.8385E-03 1.981 2.2117E-02 1.929
24 7.1412E-04 1.991 5.6627E-03 1.966
25 1.7909E-04 1.995 1.4324E-03 1.983
26 4.4843E-05 1.998 3.6021E-04 1.992

Table 3. Errors and rates of convergence for example (70) with
time step ∆t = 1

1536 using Alg. 1.

T ∥vN,h(T )∥2 + ∥wN,h(T )∥2 rate ∥u∗h∥L2(L2(Ω);0,T ) rate

2−4 1.0363E 00 – 2.0955E+01 –
2−5 1.3295E 00 -0.35 3.5071E+01 -0.74
2−6 1.5819E 00 -0.25 5.7895E+01 -0.72
2−7 2.0669E 00 -0.38 1.0233E+02 -0.82
2−8 3.7593E 00 -0.86 2.1864E+02 -1.09
2−9 1.1112E+01 -1.56 6.2465E+02 -1.51

...
..

10−2

.

10−1

.

100

.100 .

101

.

102

.

103

.

T

.

. ..∥vN,h(T )∥2 + ∥wN,h(T )∥2

. ..∥u∗h∥L2(L2(Ω);0,T )

. ..y = x−3/2

Figure 2. Logarithmic plots of ∥vN,h(T )∥2 + ∥wN,h(T )∥2 vs.

∥u∗h∥L2(L2(Ω);0,T ) vs.y = x−3/2 using Alg. 1.
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Table 4. Errors and rates of convergence for example (70) with
time step ∆t = 0.2 using Alg. 2.

T ∥vN,h∥2RN + ∥wN,h∥2RN rate ∥u∗h∥(R2N ;0,T ) rate

21 4.7354E-06 – 2.1344E 00 –
22 0.0000E 00 – 5.8009E-01 1.879
23 0.0000E 00 – 1.5152E-01 1.937
24 0.0000E 00 – 3.8729E-02 1.968
25 0.0000E 00 – 9.7906E-03 1.984
26 0.0000E 00 – 2.4613E-03 1.992

Table 5. Errors and rates of convergence for example (70) with
time step ∆t = 0.1 using Alg. 2.

T ∥vN,h∥2RN + ∥wN,h∥2RN rate ∥u∗h∥L2(L2(Ω);0,T ) rate

21 3.9361E-06 – 3.6379E 00 –
22 0.0000E 00 – 9.5927E-01 1.923
23 0.0000E 00 – 2.4645E-01 1.961
24 0.0000E 00 – 6.2465E-02 1.980
25 0.0000E 00 – 1.5724E-02 1.990
26 0.0000E 00 – 3.9446E-03 1.995

Table 6. Errors and rates of convergence for example (70) with
time step ∆t = 1

1536 using Alg. 2.

T ∥vN,h∥2RN + ∥wN,h∥2RN rate ∥u∗h∥L2(L2(Ω);0,T ) rate

2−4 3.5527E+05 – 8.9903E+05 –
2−5 1.5122E+06 -2.090 2.8531E+06 -1.666
2−6 2.6687E+06 -0.819 7.6917E+06 -1.431
2−7 2.9605E+06 -0.150 1.9956E+07 -1.375
2−8 4.2870E+06 -0.534 5.5401E+07 -1.473
2−9 1.2655E+07 -1.561 1.8020E+08 -1.701

...
..

10−2

.

10−1

.

100

.100 .

102

.

104

.

106

.

108

.

T

.

. ..∥vN,h∥2RN + ∥wN,h∥2RN

. ..∥u∗h∥L2(L2(Ω);0,T )

. ..y = x−3/2

Figure 3. Logarithmic plots of ∥vN,h∥2RN + ∥wN,h∥2RN vs.

∥u∗h∥L2(L2(Ω);0,T ) vs.y = x−3/2 using Alg. 2.
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5.2. Finite difference scheme. By using Algorithm 2,

(vN,h(t), wN,h(t)) ≈ (vN (t), wN (t)) and u∗h(t) ≈ uN (t)

denote the computed solution pair and the null controller for (4), respectively in
tables 4, 5, and 6. The grid size is taken to be n = 32.

Tables 4 and 5 show that (vN,h(T ), wN,h(T )) → 0 as T gets large. Recall that
the formula in (10) is an approximation to the control that will lead the solution
(vN (t), wN (t)) → (0, 0). Table 6 shows that the computed null control fluctuates
around the blowup rate in Theorem 3.1 as T → 0. Also, the logarithmic graph in
Figure 3 shows that the blowup rate for the computed null control u∗h(t) is similar

to the graph of y = x
−3
2 .

6. Conclusion

The approximation of the null controller using both numerical schemes obey the
same blow up rate of O(T−3/2). We also see that while the finite difference scheme
(FD) gives better results approximating the solution at terminal time T , the finite
element scheme (FE) is more stable computing the solution across different values
of T .

7. A Numerical Test Problem

In this section, we will derive an exact solution to problem (4) without the
controller term u, that is

(71)
d

dt

[
v
w

]
= A

[
v
w

]
,

[
v(0)
w(0)

]
=

[
v0
w0

]
=

[
Aω0

ω1

]
∈ L2(Ω)× L2(Ω).

where

(72) A =

[
0 A

−A −ρA

]
and the operator A is the Laplacian defined in (3). The unique solution to (71) is
given by

(73)

[
v(t)
w(t)

]
= eAt

[
v0
w0

]
In order to derive an explicit solution to (73), we need to compute the exponential

matrix eAt. Let {λi, ϕi}∞i=1 be the eigenvalues and orthonormal eigenvectors for
the operator A defined in (72). Then

y(t) =

[
v(t)
w(t)

]
must solve y

′
(t) = Ay(t). Since

y(t) =

[∑
i αi(t)ϕi∑
i βi(t)ϕi

]
for some functions αi, βi we then have

(74)
d

dt

[∑
i αi(t)ϕi∑
i βi(t)ϕi

]
=

[
0 A

−A −ρA

] [∑
i αi(t)ϕi∑
i βi(t)ϕi

]
.

By orthonormality, ∀i = 1, 2, 3, ...,

(75)
d

dt

[∑
i αi(t)ϕi∑
i βi(t)ϕi

]
=Mi

[
αi(t)ϕi
βi(t)ϕi

]
,
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where

(76) Mi =

[
0 λi

−λi −ρλi

]
i = 1, 2, 3, ...

The eigenpairs for Mi are

(77) {ηi,1,
[
−ρ

2 + 1
2

√
ρ2 − 4

1

]
} ∪ {ηi,2,

[
−ρ

2 − 1
2

√
ρ2 − 4

1

]
}

where

ηi,1 = −λi
2

(
ρ+

√
ρ2 − 4

)
,

ηi,2 = −λi
2

(
ρ−

√
ρ2 − 4

)
.

Denoting the similarity matrix

(78) S =

[
−ρ

2 + 1
2

√
ρ2 − 4 −ρ

2 − 1
2

√
ρ2 − 4

1 1

]
using the change of variables Sz = y, and the diagonalization argument gives us

Sz
′
= y

′
=MiSz.

or

z
′
= S−1MiSz = Λz

where

Λ =

[
ηi,1 0
0 ηi,2

]
, z =

[
ci,1e

ηi,1t

ci,2e
ηi,2t

]
Here [

ci,1
ci,2

]
= z(0) = S−1y(0)

are constants. Observe that the constants ci,1, ci,2 can be found explicitly for i =
1, 2, ... as

(79)

[
ci,1
ci,2

]
= S−1

[
αi(0)
βi(0)

]
=

1√
ρ2 − 4

[
αi(0) +

βi(0)
2

(
ρ+

√
ρ2 − 4

)
−αi(0)− βi(0)

2

(
ρ−

√
ρ2 − 4

)] .
Subsequently, we have an explicit formula for

[
αi(t)
βi(t)

]
as

(80)

[
αi(t)
βi(t)

]
= S

[
ci,1e

ηi,1t

ci,2e
ηi,2t

]
,

From (80), the solution y(t) in (73) can be written explicitly as

(81) y(t) =

[
v(t)
w(t)

]
= eAt

[
v0
w0

]
=

∞∑
i=1

[
αi(t)ϕi
βi(t)ϕi

]
.

Now, let Ω = (0, π)2 and consider the problem

(82)
d

dt

[
v(t)
w(t)

]
= A

[
v(t)
w(t)

]
,

[
v(., 0)
w(., 0)

]
=

[
0

sin(2x) sin(2y)

]
.

Recall that the Dirichlet Laplacian eigenpairs in Ω are

{λmn = m2 + n2, ϕmn =
2

π
sin(mx) sin(ny)}∞m,n=1.
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The initial data will be associated with

λ22 = 22 + 22 = 8, ϕ22 =
2

π
sin(2x) sin(2y),

and subsequently we have for i, j = 1, 2, ...

αi,j(0) = 0, βi,j(0) =

{
π
2 , i = 0 = j
0, otherwise

Hence, the use of (79) and (80) would give us the functions

[
αi,j(t)
βi,j(t)

]
.

Now, we are in position to explicitly write the exact solution for the problem (82)
which will be used in our numerical experiments:

[
v(t)
w(t)

](83)

=


(
e−4t(ρ−

√
ρ2−4) − e−4t(ρ+

√
ρ2−4)

)
sin(2x) sin(2y)((√

ρ2−4

2 + ρ
2

)
e−4t(ρ+

√
ρ2−4) +

(√
ρ2−4

2 − ρ
2

)
e−4t(ρ−

√
ρ2−4)

)
sin(2x) sin(2y)

 .
If we take ρ = 5

2 , then the expression (83) simplifies to

(84)

[
v(t)
w(t)

]
=

 (
e−4t − e−16t

)
sin(2x) sin(2y)(

2e−16t − 1
2e

−4t
)
sin(2x) sin(2y)

 .
Remark 7.1. We emphasize that the damping parameter restriction ρ ̸= 2 will not
change our conclusion for this section. For example, taking ρ = 2 in (77) will change
the form of the similarity transformation, but not the final conclusion.
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