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ADAPTIVE CENTRAL-UPWIND SCHEME ON TRIANGULAR

GRIDS FOR THE SHALLOW WATER MODEL WITH VARIABLE

DENSITY

THUONG NGUYEN

Abstract. In this paper, we construct a robust adaptive central-upwind scheme on
unstructured triangular grids for two-dimensional shallow water equations with variable
density. The method is well-balanced, positivity-preserving, and oscillation free at the
curve where two types of fluid merge. The proposed approach is an extension of the
adaptive well-balanced, positivity-preserving scheme developed in Epshteyn and Nguyen
(arXiv preprint arXiv:2011.06143, 2020). In particular, to preserve “lake-at-rest” steady
states, we utilize the Riemann Solver with appropriately rotated coordinates to obtain
the point values in neighborhood of the fluid interface. In addition, to improve the effi-
ciency of an adaptive method in the multi-fluid flow, the curve of density discontinuity is
reconstructed by using the level set method and volume fraction method. To demonstrate
the accuracy, high-resolution, and efficiency of the new adaptive central-upwind scheme,
several challenging tests for Shallow water models with variable density are performed.

Key words. Shallow water equations with variable density, central-upwind scheme,
well-balanced and positivity-preserving scheme, adaptive algorithm, interface tracking,
Riemann solver, weak local residual error estimator, unstructured triangular grid.

1. Introduction

The main goal of this paper is to develop an adaptive well-balanced positivity-
preserving central-upwind scheme on triangular grids for shallow water equations
with variable density (SWEDs). The two-dimensional (2-D) system of SWEDs can
be written as,

wt + (hu)x + (hv)y = 0,(1a)

(hu)t +
(
hu2 +

g

2ρ0
h2ρ
)
x
+ (huv)y = − g

ρ0
hρBx,(1b)

(hv)t + (huv)x +
(
hv2 +

g

2ρ0
h2ρ
)
y
= − g

ρ0
hρBy,(1c)

(hρ)t + (huρ)x + (hvρ)y = 0,(1d)

where t is the time, x and y are spatial coordinates ((x, y) ∈ Ω), h(x, y, t) is the
water height, B(x, y) is the bottom topography, w(x, y, t) := h + B is the water
level, ρ(x, y, t) is the density, u(x, y, t) and v(x, y, t) are the x- and y-components of
the flow velocity, g is the constant gravitational acceleration, and ρ0 is the reference
density. The system (1a)–(1d) was proposed in [10, 36, 37, 15] as a variation of
the Saint-Venant equations to model multi-phase flows in estuaries or deep ocean
currents. The derivation of the system is based on hydrostatic approximation which
eliminates the variability in the z-direction. The design of robust and accurate
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numerical algorithms for computing the solutions of SWEDs system is an important
and challenging problem that has been extensively studied in the recent years.

A number of numerical schemes for balance laws have been introduced in recent
years, [28, 25, 21, 6, 27, 8, 7, 9, 24, 23, 3, 26, 4, 5, 40, 29]. Most of them utilize a
Riemann problem solver for the upwind evolution of the calculated solution. How-
ever, as discussed in [9], the eigensystem of the system (1a)–(1d) may be incomplete
due to the resonance phenomenon. Hence, it may be very difficult to design a reli-
able upwind scheme for the SWEDs. In our paper, we therefore use central-upwind
schemes which are Riemann-problem-solver free methods, [22, 25, 29]. Central-
upwind schemes have been referred to “black-box” solvers for general multidimen-
sional systems of hyperbolic systems of conservation laws. In our prior work [13], we
have derived a successful adaptive central-upwind method for Saint-Venant system
on triangular grids. We then adapt the developed adaptive scheme in [13] to the
new system (1a)–(1d).

Similar to the Saint-Venant system, a good method for SWEDs system should
preserve the non-negativity of h and ρ, which is called the positivity-preserving
property. In addition, the scheme must ensure a well-balanced property obtained
when the numerical method preserve “lake-at-rest” steady-state solutions. Other-
wise, the numerical method may lead to significant oscillations. Note that, the
system (1a)–(1d) admits the following two “lake-at-rest” steady-state solutions, [9]:

(2) w := h+B = max
{
C,B(x, y)

}
, C = Const, ρ = P ≡ Const, u ≡ v ≡ 0,

and

(3) B ≡ Const, h2ρ ≡ Const, u ≡ v ≡ 0.

Preserving the solution (3) is a big challenge for numerically solving the system
(1a)–(1d) since using the conventional central-upwind methods may not ensure the
variable h2ρ, so-called variable pressure, to be constant at the contact waves. It is
more difficult to prevent the density oscillation when working on the unstructured
triangular grids. Several numerical methods have been proposed for compressible
flows, see [46, 31, 9], but only a few efforts, see [9], can simultaneously ensure two
types of lake-at-rest states. Therefore, we consider the approach in [9] which is
derived to solve the shallow water model with horizontal temperature gradients on
rectangular meshes (the system in [9] has similar properties with the SWEDs). In
[9], the proposed second-order semi-discrete central-upwind scheme is capable of
preserving the ↩ařlake at rest ↩aś steady state (2) and (3) as well as the positivity
of the water depth and the temperature (the variable temperature is equivalent to
the variable density in our work). In particular, to preserve the second type of

↩ařlake at rest ↩aś steady state (3) and suppress the pressure oscillations across the
interface, an efficient interface tracking method is performed. The main idea of
the interface approach in [9] is to completely avoid to use the information from
the cells where two types of fluids are numerically mixed, so-called “mixed” cells
when evolving the solution in the neighborhood of the interface. The data in the

↩ařmixed ↩aś cells is replaced by the interpolated values that are calculated using
the reliable information from the nearby ↩ařsingle fluid ↩aś cells. Namely, the point
values in “mixed” cells are obtained by using the approximated solution of the 1-D
Riemann problems between the reliable ↩ařsingle fluid ↩aś cell averages. However, the
central-upwind method and the interface tracking in [9] are designed for structured
rectangular grids. In practice, one needs to deal with complicated geometries, where
the use of triangular grids could be advantageous or even unavoidable. Hence, in
this study, we extend the interface tracking method [9] from the rectangular grids
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to unstructured triangular grids by utilizing the idea of the rotated coordinates
proposed in [2]. The developed central-upwind scheme in our work is then well-
balanced, positivity-preserving, and applicable on triangular meshes.

In addition to achieving the accuracy of the solution, minimizing computational
cost is also one of the major challenge in the modeling and numerical analysis
of hydrodynamics. The traditional numerical schemes for the system (1a)–(1d)
are based on the use of very fine fixed meshes to reconstruct delicate features of
the solution. However, this can lead to high computational cost, as well as poor
resolution of all small scale features of the problem. In many engineering and
scientific applications, it is beneficial to use adaptive meshes for improving the
accuracy of the approximation at a much lower cost. There is some very recent
effort on the design of adaptive well-balanced and positivity-preserving central-
upwind schemes on quad-tree grids for shallow water models [38, 15, 14], but no
research has been done for the development of such adaptive schemes for the shallow
water with variable density on unstructured triangular grids. Therefore, another
goal of this work is to design an adaptive numerical algorithm for the shallow water
equations with variable density.

As a part of the mesh reconstruction, we will need to project the data from
the old mesh onto a new adaptive mesh. Since we avoid using the cell averages
of mixed cells, the data of a new cell which is reconstructed from an old mixed
cell is calculated based on the location of the density jumps and the data from
the nearby “reliable” cells. Therefore, the interface separating different fluid phases
must be accurately tracked or captured. In each “mixed” cell, we will reconstruct
an approximate interface, which is called “interface reconstruction”. Many methods
have been developed for this purpose in the last two decades, such as the level
set methods [32, 39], the volume of fluid methods [17, 35], and the front tracking
methods [45, 44]. The key idea is to firstly approximate the normal vector of the
interface segment and then find its endpoints in each “mixed” cell. In particular, in
the level set methods, the level set function is defined at each point as the signed
distance from that point to the interface. Since the level set function is continuous,
it is then possible to accurately compute its gradients which is essential for finding
the normal vector of the interface. However, the level set method may not conserve
the mass or the volume of the fluid, see [32, 39, 49]. Hence, in order to obtain
more conservative interface reconstruction, some approaches [17, 35] consider the
volume of fraction function which is the ratio of the volume of one type of fluid to
the total volume of the cell. Though the volume of fraction approaches are able
to efficiently conserve the mass, it is hard to capture the interface normal vectors
with a high order of accuracy due to the discontinuities at the fluid jumps. In
summary, each method has its own strengths and drawbacks. Therefore, the coupled
level set/volume of fraction methods have been developed in [42, 49, 18, 17, 41].
Different from previous works, the coupled methods incorporate both the level set
and the volume fraction methods for reconstructing the interface and is therefore
superior to either method alone. Namely, in [42, 49, 18, 17, 41], this approach has
a second-order accuracy by using level set method to obtain the interface normal
vectors and is also conservative thanks to utilizing the volume of fraction method
for tracking the endpoints of the interface. In addition, this interface tracking
method is applicable on different types of grid. Notable previous works on this
method have been performed on 1D grids, see [1], on 2D grids such as structured
rectangular grids, see [18, 17, 41], and unstructured triangular grids, see [49], and
also on 3D grids, see [42]. Here, in our work on the unstructured triangular meshes,
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we will use the interface reconstruction proposed in [49] as a part of the adaptive
mesh reconstruction.

In summary, we first design the well-balanced positivity-preserving central-upwind
scheme to accurately simulate the multi-phase flows on unstructured triangular
grids. The well-balanced property is achieved by considering the point value re-
constructions proposed in [9] at the fluid interfaces. Next, we adapt the adaptive
algorithm in space and time in [13] from the Saint-Venant system to the SWEDs
system to obtain high accuracy with low cost. The interface reconstruction devel-
oped in [49] and and some special techniques are performed at the interface of fluids
to prevent pressure oscillation.

The developed scheme in this research clearly verifies the high versatility and effi-
ciency of the adaptive scheme which was proposed in our prior work [13]. Moreover,
the proposed adaptive central-upwind method can be extended to apply for different
models of multi-phase flows as well as for various types of geometrical discretization.
This research also opens many posibilities of developing high-resolution, accurate,
and efficient schemes for the system (1a)-(1d). For example, most of current numer-
ical simulations of multi-phase flows fail to preserve the lake-at-rest states and the
positivity of water height h and density ρ in the problems containing both wet and
dry states. In [29], some special techniques were derived to handle such wet/dry
states, but they are used for the Saint-Venant system and are applicable only on
triangular grids. Hence, it is urging to obtain efficient numerical methods on tri-
angular meshes for the compressible shallow water models; such task is fulfilled in
this research.

This paper is organized as follows. In Section 2, we present a well-balanced
positivity-preserving central-upwind scheme on unstructured triangular grids for
SWEDs which serves as the underlying discretization for the developed adaptive
algorithm. Next, in Section 3.1, we present the procedure to detect mixed cells.
The interface approximation will be briefly reviewed in Section 3.2. In Section 3.3,
we discuss the cell averages correction, which is used to prevent the density diffusion
around the density jumps. We summarize the adaptive central-upwind method in
Section 4.1. We discuss a strategy of adaptive mesh refinement in Section 4.2. In
Section 4.3, we present an adaptive second-order strong stability preserving Runge-
Kutta method, employed as a part of time evolution for the adaptive central-upwind
scheme. We develop a local posteriori error estimator in Section 4.4 which is used
as a robust indicator for the adaptive mesh refinement in our work. Finally, in
Section 5, we illustrate the high accuracy and efficiency of the developed adaptive
central-upwind scheme on a number of challenging tests for multi-fluid shallow
water models.

2. The Central-Upwind Scheme for SWEDs in Triangular Mesh

In this section, we focus on developing the central-upwind method for the SWEDs
system (1a)-(1d), [15]. In particular, we will extend the adaptive scheme from the
Saint-Venant system in [13] to the SWEDs system. The developed scheme will
eliminate the oscillation appearing at the interface and ensure the well-balanced
and positivity-preserving properties.

We first rewrite the SWEDs system (1a)-(1d) into the vector form as,

(4) Ut + F(U, B)x +G(U, B)y = S(q, B),

where
U = (w, hu, hv, hρ),
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and the fluxes and source term are:

(5)

F(U, B) = (hu,
(hu)2

w −B
+

g

2ρ0
ρ(w −B)2,

(hu)(hv)

w −B
, huρ)T ,

G(q, B) = (hv,
(hu)(hv)

w −B
,
(hv)2

w −B
+

g

2ρ0
ρ(w −B)2, hvρ)T ,

S(U, B) = (0,−g
ρ

ρ0
(w −B)Bx,−g

ρ

ρ0
(w −B)By, 0)

T .

In our research, we consider the triangular mesh illustrated in Fig. 2.1 with the
following notations.

Figure 2.1. A typical triangular cell with three neighbors.

T := {Tj}j is an unstructured triangulation of the computational domain Ω;
Tj ∈ T is a triangular cell of size |Tj | with the barycenter (xj , yj);
Vjκ = (x̃jκ, ỹjκ), κ = 12, 23, 31 are the three vertices of Tj ;
Tjk, k = 1, 2, 3 are the neighboring triangles that share a common side with Tj ;
ℓjk is the length of the common side of Tj and Tjk, and Mjk is its midpoint;
njk := (cos(θjk), sin(θjk))

⊤ is the outer unit normal to the kth side of Tj .
Next, the bottom topography B is replaced with its continuous piecewise linear

approximation B̃ given by∣∣∣∣∣∣∣∣
x− x̃j12 y − ỹj12 B̃(x, y)− B̂j12

x̃j23 − x̃j12 ỹj23 − ỹj12 B̂j23 − B̂j12

x̃j13 − x̃j12 ỹj13 − ỹj12 B̂j13 − B̂j12

∣∣∣∣∣∣∣∣ = 0, (x, y) ∈ Tj ,

where, in the case of continuous bottom topography, B̂jκ := B(Vjκ) κ = 12, 23, 31.
Then, denote:

Bjk := B̃(Mjk), Bj := B̃(xj , yj) =
1

3
(B̂j12 + B̂j23 + B̂j13).

At time t, define by Uj(t) the approximation of the cell averages of the solution,

Uj(t) ≈
1

|Tj |

∫∫
Tj

U(x, y, t) dxdy.

From now on, in order to shorten the formula, we suppress the time-dependence
in the algorithm. All indexed quantities used in the following formula will be
computed at time t. Then, as shown in [29, 5], the semi-discrete second-order
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central-upwind scheme for the Saint-Venant system (1a)-(1d) on triangular grids is
written as the following system of ODEs,

(6)
dUj

dt
=− 1

|Tj |
[
Hj1 +Hj2 +Hj3

]
+Sj ,

where the numerical fluxes through the edges of the triangular cell Tj are

Hjk =
ℓjk cos(θjk)

ainjk + aoutjk

[
ainjkF (Ujk(Mjk), Bjk) + aoutjk F (Uj(Mjk), Bjk)

]
(7)

+
ℓjk sin(θjk)

ainjk + aoutjk

[
ainjkG(Ujk(Mjk), Bjk) + aoutjk G(Uj(Mjk), Bjk)

]
(8)

−ℓjk
ainjka

out
jk

ainjk + aoutjk

[
Ujk(Mjk)−Uj(Mjk)

]
, k = 1, 2, 3.(9)

Here, Uj(Mjk) and Ujk(Mjk) are the reconstructed point values of U at the
middle points of the edges Mjk. To obtain these values, first, a piecewise linear
reconstruction of the variables Υ := (w, u, v, ρ)⊤ is computed as,

(10) Υ̃(x, y) =
∑
j

Υj(x, y)χTj
, Υj(x, y) := Υj+(Υ̂x)j(x−xj)+(Υ̂y)j(y−yj),

where χTj
is the characteristic function of the cell Tj ,Υj are the point values ofΥ at

the cell centers, and (Υ̂x)j and (Υ̂y)j are the limited partial derivatives (see Section
3 in [29] for more details of the computation). In order to compute the cell center
point values of the density, ρj ≈ ρ(xj , yj , t) in cell Tj and velocities uj ≈ u(xj , yj , t)
and vj ≈ v(xj , yj , t), we use the desingularization procedure presented in [29]. After
that, the second and third components of the point values Uj(Mjk) and Ujk(Mjk)
are obtained from, Υj(Mjk) and Υjk(Mjk),

(hu)j(Mjk) = (wj(Mjk)−Bjk)uj(Mjk), (hu)jk(Mjk) = (wjk(Mjk)−Bjk)ujk(Mjk),

(hv)j(Mjk) = (wj(Mjk)−Bjk) vj(Mjk), (hv)jk(Mjk) = (wjk(Mjk)−Bjk) vjk(Mjk).

(hρ)j(Mjk) = (wj(Mjk)−Bjk) ρj(Mjk), (hρ)jk(Mjk) = (wjk(Mjk)−Bjk) ρjk(Mjk).

However, in some numerical examples, the oscillation may appear when we use
the piecewise linear approximation (10) to obtain the point values in some cells. It
may occur due to the appearance of local extrema values at middle points or as a
consequence of the density discontinuity. To prevent this oscillation, we will use
some techniques that will be discussed later in Sections 2.1 and 2.2.

In (9), ainjk and aoutjk are the one-sided local speeds of propagation in the directions
±njk. These speeds are related to the largest and smallest eigenvalues of the

Jacobian matrix Jjk = cos(θjk)
∂F
∂U + sin(θjk)

∂G
∂U , denoted by λ+[Jjk] and λ−[Jjk],

respectively, and are defined by

(11)
ainjk = −min{λ−[Jjk(Uj(Mjk))], λ−[Jjk(Ujk(Mjk)], 0},
aoutjk = max{λ+[Jjk(Uj(Mjk))], λ+[Jjk(Ujk(Mjk)], 0},

where

λ±[Jjk(Uj(Mjk))] = cos(θjk)uj(Mjk) + sin(θjk)vj(Mjk)±
√

g

ρ0
hj(Mjk)ρj(Mjk),

λ±[Jjk(Ujk(Mjk))] = cos(θjk)ujk(Mjk) + sin(θjk)vjk(Mjk)

±
√

g

ρ0
hjk(Mjk)ρjk(Mjk).
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Remark: In order to avoid division by 0 (or by a very small positive number),
the numerical flux (9) is replaced with

Hjk =
ℓjk cos(θjk)

2
[F (Ujk(Mjk), Bjk) + F (Uj(Mjk), Bjk)]

+
ℓjk sin(θjk)

2
[G(Ujk(Mjk), Bjk) +G(Uj(Mjk), Bjk)]

wherever ainjk +aoutjk < σ. In all of the reported numerical examples in Section 5, we

have taken σ = 10−6.
Finally, the cell average of the source term Sj in (6),

Sj(t) ≈
1

|Tj |

∫∫
Tj

S
(
U(x, y, t), B(x, y)

)
dxdy,

has to be discretized in a well-balanced manner presented later in Section 2.4

2.1. The Limiter for Piecewise Linear Approximation. As discussed above,
we may observe the oscillation when using piecewise linear approximation (10) due
to the appearance of local extrema at midpoints Mjk, see [29]. Hence, in order to
maintain the numerical stability of the scheme, the following monotonicity condition
must be satisfied.

(12) min
(
Υ

(i)
j ,Υ

(i)
jk

)
≤ Υ

(i)
j (Mjk) ≤ max

(
Υ

(i)
j ,Υ

(i)
jk

)
, k = 1, 2, 3,

where Υ
(i)
j (Mjk) is the i-th component of the point values at midpoint Mjk which

is obtained by the linear reconstruction (10). Here, Υ
(i)
j and Υ

(i)
jk are the center

point value in cell Tj and the neighboring cell Tjk, see [20]. To ensure that the

reconstructed point value Υ
(i)
j (Mjk) is between two cell averages Υ

(i)
j and Υ

(i)
jk , in

[29, 4], the gradients Υ̂x and Υ̂y are set to zero for cells violating at least one of
the inequalities (12). However, using zero gradients may reduce the convergence
rate in numerical simulation. Hence, in our research, instead of zero gradients, we
consider the idea of the positivity-preserving limiter developed in [33, 47] to correct
the piecewise linear reconstruction. The details for this correction are presented as
follows.

Consider an arbitrary cell Tj with the polynomial Υ
(i)
j (x, y) that does not satisfy

at least one of local extrema conditions (12). In that case, we will replace Υ
(i)
j (x, y)

by

(13) (Υ
(i)
j )∗(x, y) = θ(Υ

(i)
j (x, y)−Υ

(i)
j ) +Υ

(i)
j ,

where θ ∈ [0, 1] such that (Υ
(i)
j )∗(x, y) satisfies the inequalities (12) for all k =

1, 2, 3. We then need to solve for the constant θ. Plugging (13) into the inequalities
(12), we have

(14) θ ∈ [min(αjk, βjk),max(αjk, βjk)] , k = 1, 2, 3

or

(15) θ ∈ [max
k

(min(αjk, βjk)),min
k

(max(αjk, βjk))]
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where αjk =
min

(
Υ

(i)
j ,Υ

(i)
jk

)
−Υ

(i)
j

Υ
(i)
j (Mjk)−Υ

(i)
j

, βjk =
max

(
Υ

(i)
j ,Υ

(i)
jk

)
−Υ

(i)
j

Υ
(i)
j (Mjk)−Υ

(i)
j

.

Hence we can take

(16) θ = min(min
k

(max(αjk, βjk)), 1),

Note that θ ≥ 0 since θ = 0, which corresponds to the constant approximation for

(Υ
(i)
j )∗(x, y), is one solution of the inequalities (12). Hence, with this optimized

limiter, the point values stay within the given range. In addition, the approx-
imated values of water depth and density at middle points are also positive as

Υ
(i)
j (Mjk) ≥ min

(
Υ

(i)
j ,Υ

(i)
jk

)
> 0. Therefore, the stability is ensured without using

zero-gradients.

2.2. Riemann Solver for Mixed Cells. As mentioned in Section 1 and [9], a
good scheme should not develop spurious pressure oscillations in the neighborhood
of density jumps. The oscillations appear when we numerically solve the compress-
ible multifluid systems by using conventional Godunov-type finite-volume methods.
We define the cells which contains the curves of density discontinuity as “mixed”
cells. Note that the quantities in mixed cells are calculated as an artificial numerical
mixture of two different fluids. Hence, the cell averages of mixed cells may have no
or very little physical sense and become ’unreliable’ [9]. Consequently, using the cell
averages in mixed cells to obtain the linear approximation (10) in the neighborhood
of the interface will lead to unexpected pressure oscillations. In [9], to eliminate
the oscillation, instead of the linear approximation (10), the point values in the
“mixed” cells are calculated by using the approximated solution of 1-D Riemann
problems. Namely, according to this approach, the 1-D Riemann Solver is applied
in the x-direction to approximate the point values on the vertical boundaries of
each rectangular mixed cell. Similarly, for the point values on horizontal sides of
the rectangular, 1-D Riemann problem is considered in y-direction. This leads to
the idea of applying Riemann Solver approach in the direction of the normal vec-
tor, so called “normal direction”, to get the middle point values on each side of
the mixed cells in triangular meshes. We can understand this idea as rotating the
reference coordinate. Recently, a method using rotated coordinate frame to solve
multi-dimensional Riemann problems has been proposed in [2]. In such approach,
the 2-D Riemann Problem is converted to 1-D problem in a particular direction in
order to easily obtain the corresponding solution in 2-D. Therefore, in our research,
we will calculate the point values in triangles based on the intermediate states of
1-D Riemann problem in the normal direction as follows.

Assume that triangle Tj is a mixed cell which has the outward unit normal vector
njk = (cos(θjk), sin(θjk)) on side k. We will consider a new reference frame (x′, y′)
such that the new horizontal axis is in the direction of the outward normal vector
njk and the origin (0, 0) is at the middle point Mjk of side k as shown in Fig. 2.2.

Suppose TL and TR to be the two closest single-fluid cells to Tj such that TL and
TR stay on different sides of the k-th edge of cell Tj . We assume that TR stays on the
side where the outward normal vector njk is pointing. Let ΥL = (wL, uL, vL, ρL)
and ΥR = (wR, uR, vR, ρR) be the center point values of single-fluid cells TL and
TR. Note that (uL, vL) and (uR, vR) are the values of velocities in the Cartesian
coordinate system (x, y). The projections of velocities (uL, vL) and (uR, vR) onto
the rotated frame (x′, y′) are

u′
L = uL cos(θjk) + vL sin(θjk), v′L = −uL sin(θjk) + vL cos(θjk),
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Figure 2.2. An example of the rotated coordinates (x′, y′) where
x′-axis is in the direction of normal vector njk and the new origin
is at midpoint Mjk of side k.

u′
R = uR cos(θjk) + vR sin(θjk), v′R = −uR sin(θjk) + vR cos(θjk).

Similar to [2, 9], to compute the point value at midpoint Mjk on side k of triangle
Tj , we have to solve the following 1-D Riemann problems between states ΥL an
ΥR in direction njk.

(17)



wt + (hu)x′ = 0

(hu)t +
( (hu)2

w −B
+ g

2
ρ
ρ0
(w −B)

)
x′

= −g
ρ

ρ0
(w −B)Bx′ ,

(hv)t +

(
(hu)(hv)

w −B

)
x′

= 0,

(h ρ
ρ0
)t +

(
uh

ρ

ρ0

)
x′

= 0,

subject to the following initial condition

(18) (w, u, v, ρ,B)(x′, 0) =

{
(ΥL)

′ := (wL, u
′
L, v

′
L, ρL, BL) if x′ < 0,

(ΥR)
′ := (wR, u

′
R, v

′
R, ρR, BR) if x′ > 0.

The details of the approximate Riemann solver for the above Riemann prob-
lem can be seen in [9]. Suppose (Υ∗

L)
′ := (w∗

L, (u
∗
L)

′, (v∗L)
′, ρ∗L) and (Υ∗

R)
′ :=

(w∗
R, (u

∗
R)

′, (v∗R)
′, ρ∗R) are the intermediate states calculated by Riemann solver for

(17)-(18) in (x′, y′) coordinates. We recall that in [9], the point values at midpoints
on left and right boundaries of a rectangular mixed cell are obtained respectively
based on the left and right Riemann intermediate states,(Υ∗

L)
′ and (Υ∗

R)
′. Here, in

triangular grids, we can choose either (Υ∗
L)

′ or (Υ∗
R)

′ to calculate the point values
at the middle point Mjk of cell Tj . Note that TL and TR are both single-fluid cells
nearby mixed cell Tj . However, if the neighboring cell Tjk shown in Fig. 2.2 is a
single-fluid cell, then TR ≡ Tjk and Mjk ∈ TR, which means TR is closer to Mjk

compared to TL. Hence, in our work, we select the right intermediate values (Υ∗
R)

′

and the information from TR to compute the point values Υj(Mjk). From [9], we

first calculate the sound of speed c∗R = h2 gρ

2ρ0
. If h∗

R > 0, ρ∗R > 0 and (u∗)′R−c∗R < 0,

then we replace the piecwise linear approximation in (10) by Υj(Mjk) = (Υ∗
R)

′,
otherwise Υj(Mjk) = (ΥR)

′ (more details of the point values correction can be
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seen in [9]). Finally, we convert the computed solution back to original Cartesian
coordinate (x, y) as

(19) Υj(Mjk) =

{
Υ∗

R, if h∗
R > 0, ρ∗R > 0, (u∗)′R − c∗R < 0,

ΥR, otherwise,

where Υ∗
R := (w∗

R, (u
∗
R)

′ cos(θjk)−(v∗R)
′ sin(θjk), (u

∗
R)

′ sin(θjk)+(v∗R)
′ cos(θjk), ρ

∗
R).

From [9], in “lake at rest” solutions (2) and (3), we have Υ∗
R = ΥR and the

steady state solutions are then preserved by using the discretization of the source
term presented in Section 2.4.

2.3. Positivity-preserving condition. Next, we will discuss the restriction of
time step to preserve the positivity of water depth h and the variable hρ. Consider
the Forward Euler (FE) equation

U
n+1

j = U
n

j − 1

|Tj |

3∑
k=1

∆tjkHjk +∆t S̄j .

From [4], the time step condition to guarantee the positivity of water height h is

(20) ∆t <
1

6a
min
jk

(rjk),

where a = maxjk(a
in
jk, a

out
jk ). One can clearly see that the time step size (20) will

also achieve nonnegative water height h in the density shallow water model (1a)-
(1d), see [4, 29]. We now use the idea from [4] to find the CFL-type condition for
the positivity-preserving property of the last variable hρ. To this end, we apply the
forward Euler discretization to the last component of the scheme.
(21)

(hρ)n+1
j = (hρ)nj −

∆t

|Tj |

3∑
k=1

ℓjk cos(ρjk)

ainjk + aoutjk

[
ainjk(hρu)jk(Mjk) + aoutjk (hρu)j(Mjk)

]
− ∆t

|Tj |

3∑
k=1

ℓjk sin(ρjk)

ainjk + aoutjk

[
ainjk(hρv)jk(Mjk) + aoutjk (hρv)j(Mjk)

]
+

∆t

|Tj |

3∑
k=1

ℓjk
ainjka

out
jk

ainjk + aoutjk

[
(hρ)jk(Mjk)− (hρ)j(Mjk)

]
.

Note that

(22)

(hρ)nj = hjρj =

(
1

3

3∑
m=1

hj(Mjm)

)(
1

3

3∑
s=1

ρj(Mjs)

)
=

1

9

∑
m,s

hj(Mjm)ρj(Mjs).

Plug (22) to (21), we have

(hρ)n+1
j =

1

9

∑
m,s

hj(Mjm)ρj(Mjs)

− ∆t

|Tj |

3∑
k=1

ℓjk cos(ρjk)

ainjk + aoutjk

[
ainjkhjk(Mjk)ρjk(Mjk)ujk(Mjk)
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+ aoutjk hj(Mjk)ρj(Mjk)uj(Mjk)
]

− ∆t

|Tj |

3∑
k=1

ℓjk sin(ρjk)

ainjk + aoutjk

[
ainjkhjk(Mjk)ρjk(Mjk)vjk(Mjk)

+ aoutjk hj(Mjk)ρj(Mjk)vj(Mjk)
]

+
∆t

|Tj |

3∑
k=1

ℓjk
ainjka

out
jk

ainjk + aoutjk

[
hjk(Mjk)ρjk(Mjk)− hj(Mjk)ρj(Mjk)

]
=
1

9

∑
m ̸=s

hj(Mjm)ρj(Mjs)

+
3∑

k=1

hj(Mjk)ρj(Mjk)
[1
9
− ∆t

|Tj |
ℓjka

out
jk

ainjk + aoutjk

(
ainjk + u⊥

j (Mjk)
) ]

+
3∑

k=1

hjk(Mjk)ρjk(Mjk)
∆t

|Tj |
ℓjka

in
jk

ainjk + aoutjk

(
aoutjk − u⊥

jk(Mjk)
)
.

From the definitions of the local speeds (11) we obtain that

u⊥
j (Mjk) = cos(θjk)uj(Mjk) + sin(θjk)vj(Mjk) ≤ aoutjk , 0 ≤ ainjk, and0 ≤ aoutjk .

Besides, the corrected reconstruction in Section 2.1 guarantees that hjk(Mjk) ≥ 0
and ρjk(Mjk) ≥ 0 for all j and k = 1, 2, 3. Therefore, all terms in the first and
third sum on the RHS of (2.3) are nonnegative. To enforce the second sum on the
RHS of (2.3) to be nonegative, we then need for all j and k = 1, 2, 3:

∆t

|Tj |
ℓjka

out
jk

ainjk + aoutjk

(
ainjk + u⊥

j (Mjk)
)
≤ ∆t

|Tj |
ℓjka

out
jk

ainjk + aoutjk

(
ainjk + aoutjk

)
=

∆t

|Tj |
ljka

out
jk <

1

9
.

Hence we conclude that all terms in the second sum on the RHS of (2.3) are also
nonnegative under the following CFL-type condition.

(23) ∆t <
1

18a
min
jk

(rjk) =

minjk

(
2|Tj |
ljk

)
18maxjk(ainjk, a

out
jk )

<
1

9
min
jk

(
|Tj |

ljkaoutjk

)
,

where a = maxjk(a
in
jk, a

out
jk ) and rjk =

2|Tj |
ljk

is the k-th altitude of triangle Tj . This

completes the proof. This proof is still valid if one uses a higher-order SSP ODE
solver (either the Runge-Kutta or the multistep one), because such solvers can be
written as a convex combination of several forward Euler steps.

2.4. Well-balanced discretization of source term. In this section, we first
develop a well-balanced discretization of the source terms, which guarantees the
first type of “lake at rest” steady-state solutions,

(24) w = max
{
C,B(x, y)

}
, C = Const, ρ = P ≡ Const, u ≡ v ≡ 0,

are exactly preserved by the resulting central-upwind scheme. This means that
the source discretization Sj should exactly balance the numerical fluxes so that the
right-hand side (RHS) of (1a)-(1d) vanishes at “lake at rest” steady states.
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To this end, we substitute the “lake at rest” state (24) into FE scheme of the
system (it is still correct with the adaptive Runge-Kutta scheme) and conclude that

a well-balanced quadrature for Sj should satisfy the following two conditions:

(25) − g

2|Tj |

3∑
k=1

ℓjk cos(θjk) ·
∆t

(ρ)
jk

∆t
· P
ρ0

[
C −B(Mjk)

]2
+ S̄

(2)
j = 0,

(26) − g

2|Tj |

3∑
k=1

ℓjk sin(θjk) ·
∆t

(ρ)
jk

∆t
· P
ρ0

[
C −B(Mjk)

]2
+ S̄

(3)
j = 0,

where

S̄
(2)
j ≈ − g

|Tj |ρ0

∫∫
Tj

P (C −B(x, y))Bx(x, y) dxdy,

S̄
(3)
j ≈ − g

|Tj |ρ0

∫∫
Tj

P (C −B(x, y))By(x, y) dxdy.

In order to derive a well-balanced quadrature, similar to [4, 29], we first apply

Green’s formula,
∫∫

Tj
div G dxdy =

∫
∂Tj

G·n ds, to the vector field G = (
1

2
ρ(x, y)(w(x, y)

−B(x, y))2, 0) and obtain

(27)

−
∫∫
Tj

ρ(x, y)(w(x, y)−B(x, y))Bx(x, y) dxdy

=
3∑

k=1

∫
(∂Tj)k

ρ(x, y)
(w(x, y)−B(x, y))2

2
cos(θjk) ds

−
∫∫
Tj

ρ(x, y)(w(x, y)−B(x, y))wx(x, y) dxdy

−
∫∫
Tj

ρx(x, y)
(w(x, y)−B(x, y))2

2
dxdy,

where (∂Tj)k is the k-th side of the triangle Tj , k = 1, 2, 3. The double integrals are
approximated using the trapezoidal rule. This results in the following quadrature

for S̄
(2)
j :

(28)

S̄
(2)
j =

g

2|Tj |

3∑
k=1

ℓjk cos(θjk) ·
∆t

(ρ)
jk

∆t
· ρ(Mjk)

ρ0

[
w(Mjk)−B(Mjk)

]2
− g

3ρ0

[
ρj12(wj12 − B̂j12)wx(Vj12) + ρj23(wj23 − B̂j23)wx(Vj23)

+ ρj13(wj13 − B̂j13)wx(Vj13)
]
− g

6ρ0

[
ρx(Vj12)(wj12 − B̂j12)

2

+ ρx(Vj23)(wj23 − B̂j23)
2 + ρx(Vj13)(wj13 − B̂j13)

2
]
.
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A similar quadrature for S̄
(3)
j is

(29)

S̄
(3)
j =

g

2|Tj |

3∑
k=1

ℓjk sin(θjk) ·
∆t

(ρ)
jk

∆t
· ρ(Mjk)

ρ0

[
w(Mjk)−B(Mjk)

]2
− g

3ρ0

[
ρj12(wj12 − B̂j12)wy(Vj12) + ρj23(wj23 − B̂j23)wy(Vj23)

+ ρj13(wj13 − B̂j13)wy(Vj13)
]
− g

6ρ0

[
ρy(Vj12)(wj12 − B̂j12)

2

+ ρy(Vj23)(wj23 − B̂j23)
2 + ρy(Vj13)(wj13 − B̂j13)

2
]
.

Notice that the piecewise linear reconstruction procedure ensures that at the
steady state (24), ∇ρ(Vjκ) = 0, ux = vy = 0 and ∇w(Vjκ) = 0 throughout the

entire computational domain. This implies that (wjκ − B̂jκ)wx(Vjκ) ≡ (wjκ −
B̂jκ)wy(Vjκ) ≡ 0 and ρx(Vjκ)(wjκ − B̂jκ)

2 ≡ ρy(Vjκ)(wjκ − B̂jκ)
2 ≡ 0. Therefore,

the quadratures (28) and (29) satisfy the desired well-balanced requirements (25)
and (26).

Next, we consider the “lake at rest” situation

(30) B ≡ Const, h2ρ = Q ≡ Const, u ≡ v ≡ 0.

Note that in the region occupied by only one fluid, the density ρ is a constant and
water surface w is then also a constant based on (30). Hence, in single-fluid cells,
the steady state (30) is equivalent to the solution (24) which is maintained by the
discretization of source term (28)-(29). In addition, in mixed cells, the point values
are obtained by the data from nearby single-fluid cells thanks to the Riemann Solver
approximation presented in Section 2.2, see also [9]. Therefore, the discretization of
source term (28)-(29), is also capable of preserving the steady state solution (30).

3. Interface Tracking

To achieve an efficient adaptive scheme for multi-fluid flows, it is essential to
accurately capture the curve where two types of fluid join simultaneously with the
flow field evolution. The interface tracking is important in preventing excessive
numerical diffusion of variable density, see Section 3.3. We also need the location of
density jumps to exactly update the cell averages in the adaptive mesh reconstruc-
tion, Section 4. Therefore, we desire a simple and effective interface reconstruction
for the system (1a)-(1d). Over the last two decades, many methods have been
proposed for this purpose such as the level set method [32, 39], the volume of fluid
method [17, 35], and the front tracking method [45, 44]. Among various versions
of interface tracking, we have considered the approach described in [49, 48] for our
work due to its simplicity, robustness, and high efficiency. In particular, the inter-
face is obtained by using both the level set and the volume fraction functions. The
details of the interface reconstruction is described as follows.

3.1. Mixed Cell Detecting by Level Set Function. In the first part of this
section, we will discuss the method of detecting the mixed cells in the triangular
grids. For this end, we consider the level set function ϕ which is defined such that
it is positive in one fluid, is negative in the other fluid, and has zero value at the
interface. Very often, the level set value of each grid point is initialized by the signed
distance from that point to the curve of density discontinuities, see [29, 32, 39, 49].
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As discussed in [29, 32, 39, 49], level set function is evolved by the velocity (u, v)
of the flow field as

(31) ϕt + uϕx + vϕy = 0.

The equation (31) can be rewritten in conservation form as follows.

(32) ϕt + (uϕ)x + (vϕ)y = (ux + vy)ϕ.

We have used the central-upwind scheme presented in Section 2 to solve for ϕ,
where the point values ϕ(Mjk), k = 1, 2, 3 in triangle Tj are approximated by the
piecewise linear reconstruction (10). The integral of the source term in (32) can be
approximated by midpoint rule. Note that using the central-upwind scheme to solve
(31) only give us the cell averages of ϕ in each cell and does not point out which cells
contain the interface ϕ = 0. We have to provide a numerical method for detecting
mixed cells. However, a triangle is a single-fluid cell, also called as “reliable” cell, if
the level set values at its vertices are either all positive or all negative. Hence, we
will locate each node in the grid based on its point value of level set as presented
below.

Without the loss of generality, we assume that ϕ(x, y) is positive in fluid 1 and
ϕ(x, y) is negative in fluid 2. The point value of level set function ϕ∗

jκ at each vertex
Vjκ of cell Tj is approximated by extrapolation [9]

(33) ϕ∗
jκ =

m∗
κ∑

i=0

ciϕ
i
jκ

m∗
κ∑

i=0

ci

,

where ϕi
jκ, is the cell averages of level set function in cells T i

jκ which have common
vertex at Vjκ, and the weight ci is inversely proportional to the distance between
the center of cells T i

jκ, i = 0, 1, ...,m∗
κ and vertex Vjκ. If ϕ

∗
jκ > 0, we have the vertex

Vjκ staying in fluid 1. Otherwise, if ϕ∗
jκ < 0, the vertex Vjκ is in fluid 2. Finally,

based on the physical meaning of the level set function, a triangle Tj is naturally
marked as a mixed cell if it has two vertices staying in different fluids.

3.2. Interface Reconstruction – An overview. In most works of interface
tracking, see [32, 39, 17, 35, 45, 44], the curve of density discontinuity in a mixed
cell is approximated as a linear line segment of the form n · x = α, where n is
the normal vector of the interface, x is the location of a point, and α is the line
constant. A variety of methods for computing normal vector n and parameter α
have been briefly introduced and compared in [49, 34]. Based on the advantages and
disadvantages of conventional interface tracking methods, an innovative approach
has been proposed in [49]. The approach employs both the level set and volume of
fluid methods to denote the density segment in each flagged cell by its two endpoints.
Namely, the interface normal vector is calculated from the level set function while
the exact location of two endpoints of the segment is determined by enforcing mass
conservation based on the volume fraction. In addition, the governing equations of
the level set functions and the volume of fluid function, see equations (31) and (35),
are discretized conservatively. Hence, the interface reconstruction exactly conserves
the volume of fluid. In our work, we will apply this interface tracking method in
the adaptive triangular mesh due to its simplicity, accuracy, and versatility. In the
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following, we will give a brief overview of the interface reconstruction originally
developed in [49]. More details of this method can be seen in [49].

Once the mixed cells are detected, we will first compute the interface normal
vector in each flagged cell based on the level set function and a least square problem.
Namely, for each mixed cell Tj with center at (xj , yj), we consider a stencil that
consists of all centers (xi, yi), i = 1, 2, ..., N of N cells that share at least a vertex
with Tj (to simplify the computation, we do not place the vertices of cell Tj in the
stencil as in [49]). A quadratic function for function ϕ of a point (x, y) is then given
in the generic form

ϕ = ax′2 + bx′y′ + cy′2 + dx′ + ey′ + g,

where (x′ := x−xj , y
′ := x−xj) is the location of point (x, y) in the local coordinate

frame x′ and y′ obtained by shifting the original coordinate such that the new origin
is at the center of Tj . The coefficients a, b, c, d, e, and g are determined by using
the least squares method with the linear system

Qs = r,

where

(34) Q =


x′2
1 x′

1y
′
1 y′21 x′

1 y′1 1

x′2
2 x′

2y
′
2 y′22 x′

2 y′2 1
...

...
...

...
...

...

x′2
N x′

Ny′N y′2N x′
N y′N 1

 , s =



a

b

c

d

e

g


, ϕ =


ϕ1

ϕ2

...

ϕn

 ,

(x′
i = xi − xj , y

′
i = yi − yj), i = 1, ..., N, are the local coordinates of the i−th node

in the stencil and ϕi, i = 1, ..., N, is the cell average of level set function in cell
Ti corresponding to node i-th. Once the coefficients are known, we compute the

unit normal vector by n =

(
d√

d2 + e2
,

e√
d2 + e2

)
. The system (34) is solvable as

explained in [49]. In addition, since the level set function is continuous, the normal
calculation is second-order accurate.

Next, we continue to determine the exact coordinates of two endpoints of the
interface by using the volume of fluid approach (VOF). The VOF method has been
widely used and developed for interface tracking in [17, 35, 48, 49]. In the VOF
method, the volume fraction function, denoted by f , is defined as the ratio of the
volume of one fluid, called fluid 1, in each cell to the total volume of the cell. Hence,
f is unity if the cell is a single-fluid cell in fluid 1, and is zero if the cell only contains
fluid 2. For mixed cells, we have 0 < f < 1. The function f is advected by

(35) ft + ufx + vfy = 0.

The main idea of the VOF method proposed in [48, 49] is to reconstruct the interface
segment by determining the coordinates of its endpoints. In particular, the two
endpoints must form a segment which has the normal vector n as computed above
and the interface truncates the cell with the given volume fraction. Fig. 3.3 is an
illustration for two cases of a mixed cell Tj where the interface I1I2 splits Tj into

two parts, T
(1)
j and T

(2)
j , respectively occupied by fluid 1 and fluid 2.
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Figure 3.3. An example of mixed cell Tj = Vj12Vj23Vj13 with the
interface segment I1I2 and the normal vector n⃗.

We then have

I1I2 · n = 0,
T

(1)
j

Tj
= fj ,

where n is the normal vector of the interface computed by (34) and fj is the
cell average of volume fraction in mixed cell Tj obtained by using the central-
upwind method, see Section 2, to solve (35). This interface reconstruction is explicit,
accurate, and capable of conserving the volume of the fluid. The details of endpoint
calculation can be seen in [49]. Finally, the reconstructed interface will be used in
the adaptive mesh reconstruction as discussed in the following sections.

3.3. The Cell Averages Correction. The idea of correcting the solution in the
neighborhood of the interface has been used in numerical methods for multifluid
flows [9, 49] to improve the computed solution. This technique prevents the diffusion
of density emerging when we use the central-upwind method to solve compressible
systems. In our work, we will also perform the correction procedure such that
the local conservation is ensured based on the location of density jumps. Namely,
suppose we have two types of fluid, fluid 1 and fluid 2, in the flow. After determining
the single-fluid cells and mixed cells by using the point values of the level set
function, see Section 3.1, the cell average correction will proceed as follows.

• If a cell Tj is a single fluid cell in fluid i = 1, 2, we correct the cell averages

of hρ by hρ
new

j = hjρ
(i)
j , where ρ

(i)
j is the value of density in fluid i = 1, 2.

hj = wj −Bj is the cell average of water depth in Tj . To preserve the mass

of hρ in the domain, we equally split the change of hρ in Tj into the nearby
mixed cells. Namely, if the neighboring cell Tjk, k = 1, 2, 3 of Tj is a mixed
cell, we obtain the new cell average of hρ in Tjk by

(36) hρ
new

jk = hρjk +
hρj −hρ

new

j

nmix
,
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where hρj and hρjk are the old cell averages computed by using the central-
upwind scheme in triangles Tj and Tjk, and nmix is the number of mixed
cells surrounding the cell Tj .

• If Tj is a mixed cell, except the update (36) from its nearby single-fluid
cells, no further correction is needed.

Due to the fact that the interface normally moves from one cell to its adjacent cell-
s, only cells surrounding the interface are updated and the loss of mass from this
correction is negligible. In addition, for cells in the “lake at rest” area, this correc-
tion will not change the existing solution therefore maintaining the well-balanced
properties.

4. Adaptive Central-Upwind Scheme –An Overview

The traditional numerical methods for system (1a)–(1d) consider very fine fixed
meshes to reconstruct delicate features of the solution. However, this can lead to
high computational cost, as well as to a poor accuracy of small scale characteristics
of the problem. Therefore, we will use adaptive meshes to improve the accuracy of
the approximation at a much lower cost. More specifically, we apply the adaptive
techniques in space and time originally developed in our prior work [13]. Some
adjustments are made on the adaptive time restriction and error indicator in order
to ensure the stability and the efficiency of the adaptive scheme on the considered
system (1a)-(1d). In this section, we will briefly review the adaptive algorithm in
[13] which we adapt to the system (1a)-(1d).

4.1. Adaptive Central-Upwind Algorithm. From [13], the adaptive central-
upwind algorithm for the system (1a)- (1d) is described briefly by the following
steps.

Step 0. At time t = t0, generate the initial uniform grid T 0,0.

Step 1. On mesh T n,Mn , evolve the cell averages U
n

of the solution from

time tn to U
n+1

at the next time level tn+1 using adaptive central-upwind scheme
(41a)-(41b), see Section 4:

• At time tn, determine the level l = 0, 1, ..., L of each triangle Tn,Mn

j ∈
T n,Mn , (37), Section 4.3.

• At each time level tn,pl , p = 0, 1, ...,Pl−1, perform the piecewise polynomial
reconstruction (10) for single-fluid cells and apply the Riemann Solver (17)
on the mixed cells to calculate the point values, Section 2, Section 3.3.

• At each time level tn,pl , p = 0, 1, ...,Pl − 1, compute the one-sided local
speeds of propagation using (11), Section 2.

• At time tn, calculate the reference time step ∆t using (38), Section 4.3.
• At each time level tn,pl , p = 0, 1, ...,Pl − 1, compute the local time step for
each cell level, (40), Section 4.3.

• At each time level tn,pl , p = 0, 1, ...,Pl − 1, compute numerical fluxes and
source term in the adaptive central-upwind scheme (41a)-(41b), (9), (28)-
(29), Section 2, Section 4.3.

Step 2. On mesh T n,Mn , compute WLR error using (45) in Section 4.4 and
determine the refinement/de-refinement status for each cell, Section 4.4.

Step 3. Generate the new adaptive mesh T n+1,Mn+1 at tn+1, Section 4.2. This
step includes coarsening of some cells, refinement of some cells, and the appropriate
projection of the cell averages from the mesh T n,Mn at tn onto a new adaptive mesh
T n+1,Mn+1 at time tn+1, Section 4.2.

Step 4. Repeat Step 1 - Step 3 until final time.
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4.2. Adaptive Mesh Refinement/Coarsening. The purpose of mesh recon-
struction is to obtain adaptive grids which delivers higher accuracy with a lower
computational cost. An efficient adaptive mesh should have small cells in the re-
gions with large errors and large cells in the other regions. In particular, at time
tn, we start with the given mesh, denoted as T n,m = {Tn,m

j }, where Tn,m
j is a

triangular cell with the barycenter (xn,m
j , yn,mj ), and index m = 0, 1, 2... is the level

of refinement (T n,0 ≡ T 0,0 for all n and T 0,0 represents the initial mesh with no
refinement). The triangular cells in the mesh T n,m are flagged for refinement/de-
refinement based on the weak local residual (WLR) error estimator, see Section
4.4. On grid T n,m, we apply “regular refinement” described in [13] on the triangles
flagged for refinement to obtain a new mesh T n,m+1 with the refinement level m+1.
Namely, each flagged triangle (“parent” triangle) is split into four smaller triangles
(“children” triangles) by inserting a new node at the mid-point of each edge of the
“parent” triangle. Fig. 4.4 (a) is an illustration of the “regular refinement”, where

a flagged cell Tn,m
j is refined to obtain the “children” cells Tn,m+1

js
, s = 1, 2, 3, 4 by

using the mid-points of the sides. In addition, due to the insertion of new nodes
on the edges of the non-flagged triangles adjacent to refined triangles, we must also
refine these neighboring cells by creating a new edge between the hanging node and
the opposite corner as illustrated in Fig. 4.4 (b).

(a) Triangle Tn,m
j (left) is split into four “children” cells Tn,m+1

js , s = 1, 2, 3, 4 (right).

(b) Refinement in the neighboring cells of
Tn,m
j .

Figure 4.4. An outline of the “regular refinement”.

In practice, there may be some cells having very large WLR error (45), and we
need to reach a higher level of refinement for those cells to improve the accuracy.
This can be done by repeating the refinement for the flagged triangles in the refined
mesh T n,m+1 to get the mesh with higher level T n,m+2,m = 0, 1, 2, ...., see [13] for
the illustration of the multi-level refinement.
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Note that in the numerical simulations of the wave phenomena, the region-
s of the domain flagged for refinement changes over time evolution and the re-
finement in some cells may become no longer needed. Hence, in [13], the de-
refinement/coarsening procedure is performed to deactivate unnecessarily fine cell-
s in the grid. Namely, at time tn, we deactivate “children” cells in the mesh
T n,m+1,m = 0, 1, ...,Mn − 1 based on the WLR and activate the corresponding
“parent” cell from the mesh T n,m back. More details of refinement/de-refinement
process can be seen in [13].

Finally, at time tn, a hierarchical system of grids Sn = {T n,0, T n,1, T n,2, ..., T n,Mn}
is obtained, where T n,m, m = 1, 2, ...,Mn is the grid with the level of refinement
m reconstructed from the grid T n,m−1. We will use the final mesh T n,Mn ∈ Sn

for adaptive central-upwind scheme (41a)-(41b) to evolve the numerical solution
from time tn to time tn+1. Next, at tn+1, we generate a new adaptive grid
T n+1,Mn+1 ∈ Sn+1 from the mesh T n,Mn . After the mesh reconstruction at time

tn+1, the obtained cell averages U
n+1

on the mesh T n,Mn need to be accurate-
ly projected on the new mesh T n+1,Mn+1 , using the ideas as summarized briefly
below.

Case 1. At tn+1, a triangle T
n+1,Mn+1

j ∈ T n+1,Mn+1 is the same cell as in the

grid T n,Mn , we will maintain the cell averages for that triangle at tn+1.

Case 2. A cell T
n+1,Mn+1

j ∈ T n+1,Mn+1 is obtained by de-refining some finer

cells Tn,Mn

js
∈ T n,Mn , s = 1, 2, .., S. The cell average of solution, U

n+1

j in the cell

T
n+1,Mn+1

j , is computed as

U
n+1

j =
1

|Tn+1,Mn+1

j |

S∑
s=1

U
n

js |T
n,Mn

js
|,

where U
n

js is the solution in Tn,Mn

js
.

Case 3. A triangle T
n+1,Mn+1

j ∈ T n+1,Mn+1 is obtained from the refinement of

the cell Tn,Mn

i ∈ T n,Mn . If Tn,Mn

i is a single-fluid cell, the cell averages at tn+1

in T n+1,Mn+1 are approximated by using the the piecewise linear reconstruction

(10) of the solution at tn+1 in the triangle Tn,Mn

i . If Tn,Mn

i contains the density

discontinuity, we will compute the cells averages in the “son” cell T
n+1,Mn+1

j based
on the interface tracking, see Section 3.2, and the information of the nearby single-
fluid cells. For example, suppose that from the reconstructed interface in “dad”

cell Tn,Mn

i , the “child” cell T
n+1,Mn+1

j completely lies in one fluid, called fluid 1.

Hence, triangle T
n+1,Mn+1

j is a single-fluid cell and the cell averages U
n+1

j are set
to be equal to the cell averages of another “reliable” cell which is in fluid 1 and is

the closest cell to the “dad” cell Tn,Mn

i .
Remark:
The update of cell averages in case 3 does not ensure the mass conservation

which means the total mass of “son” cells in the adaptive grid is not equal to the
mass of their “dad” cell. However, the volume of fluid and the exact location of
the interface are conserved. In addition, the reconstructing method also maintains
the steady state solution for “lake at rest” situations, see example 2 Section 5, since
the values of the cell averages are obtained by using the information from nearby
“reliable” cells.

4.3. Second-order Adaptive Time Evolution. Note that using a global time
step in the adaptive algorithm may lead to a very small time step due to the presence
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of much finer cells in the mesh. To reduce the computational cost, we consider the
approach based on the adaptive time step from [13, 11, 12, 30]. The main idea of this
approach is to group cells into different levels based on the cell sizes and applying
local time step on each level to evolve from tn to tn+1. Recently, in our work on
the shallow water model [13], we have derived a simple and efficient adaptive time
evolution algorithm based on the second-order strong stability preserving Runge-
Kutta methods (SSPRK2) in [16, 11, 12, 30]. This method is also capable to perform
on the multi-fluid system (1a)-(1b). The algorithm can be briefly described by an
example as illustrated in Fig. 4.5.

Figure 4.5. The example of SSPRK2 on mesh with three cell
levels, l = 0, 1, 2.

First, we group all cells in the grid T n,Mn at time tn in cell levels l = 0, 1, .., L

based on their sizes. Namely, a cell Tn,Mn

j ∈ T n,Mn belongs to the level l, if l is
the smallest positive integer satisfying,

(37) 2l ≥
max

j

(
min
k

(rjk)

)
min
k

(rj,k)
,

where rjk, k = 1, 2, 3 are three altitudes of triangle Tn,Mn

j . Next, at tn, we define
the reference time step ∆t as the local time step on the coarsest level l = 0 of cells
in the mesh T n,Mn by considering the CFL-type condition (23) locally on level
l = 0.

(38)
∆t ≡ ∆tn,00 =

0.9max
j

(
min
k

(rjk)

)
18amax

,

where

(39) amax := max
j,k

(ainjk, a
out
jk ),

and (ainjk, a
out
jk ) are the local one-sided speeds of propagation (11) at tn for sides

k = 1, 2, 3 in the triangle Tn,Mn

j ∈ T n,Mn . We set, tn+1 = tn +∆t.
Next, assume that Pl is the number of steps needed for the higher levels l = 1, ..L

to evolve from tn to tn+1, namely [tn, tn+1] = ∪[tn,pl , tn,p+1
l ], p = 0, ...,Pl − 1 with

tn,0l ≡ tn, tn,Pl

l ≡ tn+1 ∀l. At tn,pl , the local time step for cells on these levels
l = 1, ..., L is calculated by

(40) ∆tn,pl =
2−l∆t

max(µn,p
l , 1)

,
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where parameter µn,p
l takes into account change in the local one-sided speeds of the

propagation,

µn,p
l =

max
j,k

(ainjk, a
out
jk )n,pl

amax
,

where (ainjk, a
out
jk )n,pl are the local one-sided speeds of propagation of the cell Tn,Mn

j

in the level l at tn,pl . Therefore, on each cell Tn,Mn

j of level l, for each substep

[tn,pl , tn,p+1
l ] ≡ [tn,pl , tn,pl + ∆tn,pl ], p = 0, 1, 2, 3, ...,Pl − 1 of the evolution from tn

to tn+1, we apply the following two adaptive steps of the SSPRK2 method, see
[16, 11, 12, 30],

U
(1)

j =U
n,p

j −∆tn,pl

(
1

|Tn,Mn

j |

3∑
k=1

Hn,p
jk −S

n,p

j

)
:= R(U

n,p

j ,∆tn,pl ),(41a)

U
n,p+1

j =
1

2
U

n,p

j +
1

2
R(U

(1)

j ,∆tn,pl ).(41b)

The flux term Hn,p
jk in (41a) -(41b) is the flux (9) computed at t = tn,pl . The source

term S
n,p

j in (41a) -(41b) is the source (28) - (29) computed at t = tn,pl with the

time step ∆tn,pl . Note that, U
n,0

j ≡U
n

j and U
n,Pl

j ≡U
n+1

j .
Remark:
If cells from different cell levels are neighbors, we use linear interpolation in time

to match the time levels of such cells, see also Fig. 3.6, for the illustration of the
interpolation.

4.4. A Posteriori Error Estimator. To create a robust indicator for the adap-
tive mesh refinement, in our prior work [13], we have derived local error estimator
from the idea of Weak Local Residual (WLR) presented in [43, 19]. This error indi-
cator has shown its advantages in accurately capturing the regions with large error
in numerical simulation for Saint-Venant system of shallow water model. Hence, for
the adaptive central-upwind scheme for SWEDs, we will extend the error estimator
by applying the computation performed in [13] for the last equation in the system
(1d).

Let us recall that from the weak form of the mass conservation equation (1a),

in [13], the WLR errors E
w,n+ 1

2
i at each node Ni on mesh T n,Mn is given by the

formula,

(42)

E
w,n+ 1

2
i =

1

∆
(Uw,n+ 1

2
i + Fw,n+ 1

2
i + Gw,n+ 1

2
i ),

Uw,n+ 1
2

i =

Ci∑
c=1

1

3
|Tn,Mn

jc
|(wn

jc −wn+1
jc

),

Fw,n+ 1
2

i =

Ci∑
c=1

a(i)c

∆t

2
|Tn,Mn

jc
|((hu)njc + (hu)n+1

jc
),

Gw,n+ 1
2

i =

Ci∑
c=1

b(i)c

∆t

2
|Tn,Mn

jc
|((hv)njc + (hv)n+1

jc
),
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where Ci is the number of triangles Tn,Mn

jc
having common vertex at node Ni.

Here, the quantity (a
(i)
c , b

(i)
c ) is the gradient of the linear piece restricted to Tn,Mn

jc
,

(43)

a(i)c =
ỹ2 − ỹ3

(ỹ3 − ỹi)(x̃2 − x̃i)− (ỹ2 − ỹi)(x̃3 − x̃i)
,

b(i)c =
x̃3 − x̃2

(ỹ3 − ỹi)(x̃2 − x̃i)− (ỹ2 − ỹi)(x̃3 − x̃i)
,

where Ni = (x̃i, ỹi), (x̃2, ỹ2), and (x̃3, ỹ3) are the three vertices of triangle Tn,Mn

jc
.

Now, by applying the same calculation in [13] on the weak form of the last
equations in the system (1d), we then define the WLR error of variable hρ at node
Ni in the grid as,

(44)

E
hρ,n+ 1

2
i =

1

∆
(Uhρ,n+ 1

2
i + Fhρ,n+ 1

2
i + Ghρ,n+ 1

2
i ),

Uhρ,n+ 1
2

i =

Ci∑
c=1

1

3
|Tn,Mn

jc
|(hρnjc −hρ

n+1

jc ),

Fhρ,n+ 1
2

i =

Ci∑
c=1

a(i)c

∆t

2
|Tn,Mn

jc
|((huρ)njc + (huρ)n+1

jc
),

Ghρ,n+ 1
2

i =

Ci∑
c=1

b(i)c

∆t

2
|Tn,Mn

jc
|((hvρ)njc + (hvρ)n+1

jc
).

Hence, the error in a cell Tn,Mn

j ∈ T n.Mn takes into account both WLR errors
of water surface w and of variable hρ as,

(45) ej = max
k

(∣∣∣Ew,n+ 1
2

jk

∣∣∣ , ∣∣∣Ehρ,n+ 1
2

jk

∣∣∣) , k = 1, 2, 3,

where E
w,n+ 1

2

jk and E
hρ,n+ 1

2

jk are the WLR errors computed in (42) and (44) at a
node k of triangle Tj .

The error ej in each cell Tn.Mn
j ∈ T n,Mn is compared to the error tolerance

computed by

(46) ω = σmax
j

(ej),

where σ < 1 is a given problem-dependent constant. Based on the error comparison,
the cell is then either “flagged” for refinement/de-refinement or “no-change”.

5. Numerical Experiments

In this section, we will verify the computational efficiency of the designed adap-
tive central-upwind scheme. We compare the results of the adaptive method with
the results of the central-upwind scheme without the adaptivity, see Section 4,
on uniform triangular meshes (example of such uniform triangular mesh is out-
lined in Fig. 5.6). To this end, in all examples, we calculate the L1-errors and

a ratio, RCPU =
CPUuniform

CPUadaptive
, which is the ratio of the CPU times of the central-

upwind algorithm without the mesh reconstruction to the CPU time of the adaptive
central-upwind algorithm. To compare L1-errors, as well as to compare the CPU
times and to compute RCPU , we consider uniform mesh and the adaptive mesh
with the same size of the smallest cells. Namely, in Tables 5.1-5.8, L1-errors and
RCPU are computed by using the uniform meshes 2 × N × N,N = 100, 200, 400
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and the corresponding adaptive meshes which are reconstructed from the coarser
uniform mesh 2×N/2M×N/2M (M = 1, 2 is the highest level of refinement in the
adaptive mesh). To compute the L1-errors, the reference solution is obtained by
applying the central-upwind method without implementing adaptivity techniques
on the uniform mesh with 2× 800× 800 triangles. In all experiments, we consider
a zero-order extrapolation at all boundaries. In addition, we use the gravitational
acceleration, g = 1.0 and the reference density, ρ0 = 997 [15] for all examples. The
desingularization parameters τ and ε for calculations of the velocity components u

and v are set τ = maxj{|Tn,Mn

j |2} and ε = 10−4 (see Section 2.1 formula (2.6) in

[29]).

Figure 5.6. An outline of uniform triangular mesh.

5.1. Example 1. In the first example taken from [9], we will compare the per-
formance of the adaptive central-upwind scheme and the central-upwind scheme
without adaptivity on uniform triangular meshes. We also verify experimental-
ly the advantages of the interface reconstruction in compressing the diffusion of
variable density at the interface of fluids and improving the accuracy of computed
solutions.

We consider the bottom topography B(x, y, 0) := 0 and the following initial
condition,

(47) (w, u, v, ρ)T (x, y, 0) =

{
(2, 0, 0, 1.5ρ0), if x2 + y2 < 0.5,

(1, 0, 0, ρ0), otherwise.

The data is simulated in the domain [−1, 1]× [−1, 1]. The error tolerance (46) for
the mesh refinement in this example is set to ω = 0.01maxj(ej).

In Fig. 5.7 and Fig. 5.8, we show the numerical solution of the water surface
(first column) and the density (second column) at time t = 0.15. The solution is
calculated by using the central-upwind scheme on uniform meshes on Fig. 5.7 (a,
b) and Fig. 5.8 (a,b) and using the adaptive central-upwind scheme on Fig. 5.7 (c,
d) and Fig. 5.8 (c,d). The adaptive meshes in Fig. 5.7 (third column) are obtained
from the uniform mesh 2×100×100, Fig. 5.7 (a). The adaptive mesh with one level
of refinement M = 1 (as the highest level of refinement) is on Fig. 5.7 (c), and with
two levels of refinement M = 2 (as the highest level of refinement) is on Fig. 5.7
(d). As can be observed in Fig. 5.7, both w and ρ are much sharper resolved
by using the adaptive central-upwind scheme. We note also, that by increasing
the level of refinement from M = 1 to M = 2, the number of cells in the mesh
increases from 40, 292 cells with M = 1 to 60, 326 cells with M = 2, but the
accuracy is clearly improved with higher resolution as seen in Fig. 5.7 (c) and
Fig. 5.7 (d). Also from the adaptive meshes in Fig. 5.7 (third column), one can
easily see that only cells in the region having steep gradients are refined. This
means that the WLR error estimator accurately detects regions in the domain for
adaptive refinement/coarsening.
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(a) Uniform mesh 2× 100× 100.

(b) Uniform mesh 2× 200× 200.

(c) Adaptive mesh with M = 1.

(d) Adaptive mesh with M = 2.

Figure 5.7. Example 1: Contour plots of computational water
surface w(x, y, 0.15) (first column) and density ρ(x, y, 0.15) (second
column) of the IVP (47) with the corresponding meshes (third
column).

Next, in Table 5.1 we calculate the L1-errors obtained on the adaptive grids
and on the fixed uniform grids. The errors obtained in the uniform meshes are
approximate to the errors calculated in the corresponding adaptive meshes (the
adaptive meshes have the same size of the smallest cells with the uniform meshes).
However, the adaptive scheme uses fewer cells than the central-upwind scheme
which does not consider the mesh reconstruction. In addition, in Table 5.2, we also
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(a) Uniform mesh 2× 100× 100.

(b) Uniform mesh 2× 200× 200.

(c) Adaptive mesh with M = 1.

(d) Adaptive mesh with M = 2.

Figure 5.8. Example 1: 3-D plots of computational water sur-
face w(x, y, 0.15) (first column) and density ρ(x, y, 0.15) (second
column) of the IVP (47).

compute the RCPU ratio to compare the computational cost of the two methods.
The results in Table 5.1 and Table 5.2 show that the adaptive scheme produces
similar accuracy as the scheme designed on fixed uniform triangular meshes, but at
a less computational cost.
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Table 5.1. Example 1: L1-errors of the water surface w of the
IVP (47) at t = 0.15, and the convergence rates of the central-
upwind scheme without adaptivity (uniform mesh 2×N ×N,N =
100, 200, 400) and the adaptive scheme (the corresponding adaptive
mesh is reconstructed from the uniform mesh 2×N/2M×N/2M).

algorithm without adaptivity adaptive algorithm

one level M = 1 two levels M = 2

cells L1-error rate cells L1-error rate cells L1-error rate

2× 100× 100 0.0256 13,516 0.0257 12,800 0.0265

2× 200× 200 0.0127 1.01 40,292 0.0128 1.00 38,284 0.0133 0.99

2× 400× 400 0.0047 1.43 153,152 0.0049 1.39 60,326 0.0050 1.41

Table 5.2. Example 1: RCPU ratio for the IVP (47) at t = 0.15,
where for adaptive central-upwind scheme, we consider the total
CPU times and CPU times without the grid generation.

uniform mesh
adaptive
mesh
M = 1

RCPU with M = 1
adaptive
mesh
M = 2

RCPU with M = 2

(cells) (cells) total
without
grid

generation
(cells) total

without
grid

generation

2× 100× 100 13,516 1.81 2.01 12,800 1.83 1.94

2× 200× 200 40,292 1.82 2.14 38,284 2.14 2.30

2× 400× 400 153,152 1.98 2.29 60,326 2.33 2.50

RCPU average: 1.87 2.15 2.10 2.27

In addition, we will use this example to show that interface reconstruction pre-
sented in Section 3.2 plays an important part in preserving the sharpness of the
solution as well as improving the accuracy of the adaptive central-upwind scheme.
On Fig. 5.9 (a), we plot the water surface w (first) and density ρ (second column)
at t = 0.15 by using the adaptive central-upwind method, but implemented without
the interface tracking technique. We then compare the results shown in Fig. 5.9 (a)
to the results calculated by using the adaptive scheme with the interface tracking,
Fig. 5.9 (b). The adaptive meshes on Fig. 5.9 (third column) are reconstructed
from the uniform mesh 2× 100× 100 with one level of refinement. As can be seen
in Fig. 5.9 (a), both w and ρ are very scattered around the contact wave when
we do not track and reconstruct the interface. Meanwhile, in Fig. 5.9 (b), the pro-
posed adaptive scheme, though using an adaptive mesh with fewer cells (10828 cells
fewer), provides more accurate results.

In the next numerical test, we replace the flat bottom with the bottom topogra-
phy that consists of two Gaussian shaped humps as

(48) B(x, y, t) =

{
0.5e−100(x+0.5)2+(y+0.5)2 , if x < 0,

0.6e−100(x−0.5)2+(y−0.5)2 , if x ≥ 0.



ADAPTIVE CENTRAL-UPWIND SCHEME 255

(a) Adaptive scheme without interface tracking on adaptive mesh with 51768 cells.

(b) Adaptive scheme with interface tracking on adaptive mesh with 40940 cells

Figure 5.9. Example 1: Computational water surface
w(x, y, 0.15) (first column), density ρ(x, y, 0.15) (second col-
umn) of the IVP (47), and the corresponding adaptive meshes
(third column) obtained by using the proposed adaptive central-
upwind scheme (bottom) and using the adaptive scheme without
interface tracking (top).

The purpose of this test is to illustrate the performance of the adaptive algorithm
in situations having irregular bottom topography. In Fig. 5.10, we show the contour
plots of the water surface w (first column) and density ρ (second column) obtained
at t = 0.2 by using the central-upwind scheme with and without adaptivity. The
computed solutions of the water surface exhibit reflecting waves where the flow
meets the submerged humps. Clearly, from the plots of the adaptive meshes in
Fig. 5.10 (third column), the meshes are adapted to the behavior of the flow. Hence,
the WLR error estimator is capable to exactly detect the location of the steep local
gradients in the solution.

We then recompute the accuracy of the solution for this example 47-48, see Table
5.3, and the CPU time ratio, see Table 5.4. The results show that the adaptive
scheme uses fewer cells and takes a smaller CPU time to achieve the approximately
small L1-errors as computed by the scheme without adaptivity. Therefore, the
advantages of the adaptive scheme is maintained in examples with irregular bottom
level.

5.2. Example 2. The second numerical example here was proposed in [9] to verify
the capability of the adaptive scheme in preserving the steady state solution in“lake
at rest’ problems, (2) and (3). In particular, the initial data consists of two ↩ařlake
at rest ↩aś states of type (2) connected through the density jump corresponding to
the ↩ařlake at rest ↩aś state of type (3) as
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(a) Uniform mesh 2× 100× 100.

(b) Uniform mesh 2× 200× 200.

(c) Adaptive mesh with M = 1.

(d) Adaptive mesh with M = 2.

Figure 5.10. Example 1: Contour plots of computational water
surface w(x, y, 0.2) (first column) and density ρ(x, y, 0.2) (second
column) of the IVP (47)-(48) with the corresponding meshes (third
column).

(49) (w, u, v, ρ)T (x, y, 0) =

(3, 0, 0,
4

3
ρ0), if x2 + y2 < 0.25,

(2, 0, 0, 3ρ0), otherwise.
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Table 5.3. Example 1: L1-errors of the water surface w of the
IVP (47)-(48) at t = 0.2, and the convergence rates of the central-
upwind scheme without adaptivity (uniform mesh 2×N ×N,N =
100, 200, 400) and the adaptive scheme (the corresponding adaptive
mesh is reconstructed from the uniform mesh 2×N/2M×N/2M).

algorithm without adaptivity adaptive algorithm

one level M = 1 two levels M = 2

cells L1-error rate cells L1-error rate cells L1-error rate

2× 100× 100 0.0271 16,252 0.0273 16,006 0.0282

2× 200× 200 0.0134 1.01 57,300 0.0136 1.00 42,602 0.0140 0.99

2× 400× 400 0.0050 1.43 213,268 0.0054 1.40 120,654 0.0055 1.41

Table 5.4. Example 1: RCPU ratio for the IVP (47)-(48) at t =
0.2, where for adaptive central-upwind scheme, we consider the
total CPU times and CPU times without the grid generation.

uniform mesh
adaptive
mesh
M = 1

RCPU with M = 1
adaptive
mesh
M = 2

RCPU with M = 2

(cells) (cells) total
without
grid

generation
(cells) total

without
grid

generation

2× 100× 100 16,252 1.69 1.89 16,006 1.84 1.94

2× 200× 200 57,300 2.57 2.95 42,602 3.41 3.68

2× 400× 400 213,268 2.24 2.60 120,654 2.63 2.84

RCPU average: 2.17 2.48 2.63 2.82

In this example, we consider the bottom topography (48) on a computational
domain [−1, 1] × [−1, 1]. To reconstruct the adaptive meshes, the threshold is
set, ω = 0.1maxj(ej). In Fig. 5.11, we present the plots of the computed water
surface (first column) and density (second column) at t = 0.15 obtained by using
the central-upwind scheme, but without adaptivity, Fig. 5.11 (a, b) and by using
the adaptive algorithm Fig. 5.11 (c, d). The adaptive grids plotted on Fig. 5.11
(third column) are generated from the uniform mesh 2 × 100 × 100 with one level
of refinement M = 1, Fig. 5.11 (c), and two levels of refinement M = 2, Fig. 5.11
(d). Fig. 5.12 shows the 3D plots of the numerical solution computed by the two
methods. As expected, in Fig. 5.11 and Fig. 5.12, the adaptive scheme with interface
tracking exactly preserves the steady state. Hence, in Fig. 5.11 (third column), the
WLR error only marks cells surrounding the circle of density jump for refinement.
In addition, no pressure oscillations are observed at the interface.

Next, we will illustrate the advantages of the adaptive central-upwind scheme.
We compute the L1-error, Table 5.5, and the CPU ratio, Table 5.6, by using the
central-upwind method without adaptivity and using the adaptive algorithm pre-
sented in our work. In order to compare the computational costs and calculate
RCPU , we consider uniform and adaptive meshes with the same size of the smallest
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(a) Uniform mesh 2× 100× 100.

(b) Uniform mesh 2× 200× 200.

(c) Adaptive mesh with M = 1.

(d) Adaptive mesh with M = 2.

Figure 5.11. Example 2: Contour plots of computational water
surface w(x, y, 0.15) (first column) and density ρ(x, y, 0.15) with
the corresponding meshes (right column).

cells. Table 5.5 shows that in the adaptive meshes, we achieve L1-errors as small as
the errors obtained in the corresponding uniform meshes. However, the adaptive
algorithm uses fewer cells and reduces the CPU times up to eight times. The com-
putational cost is remarkably cut down since as illustrated in Fig. 5.11 and Fig. 5.12,
only a few cells in the neighborhood of the density discontinuity have large WLR
errors and are therefore marked for refinement. This example has clearly show the
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(a) Uniform mesh 2× 100× 100.

(b) Uniform mesh 2× 200× 200.

(c) Adaptive mesh with M = 1.

(d) Adaptive mesh with M = 2.

Figure 5.12. Example 2: 3-D plots of computational water sur-
face w(x, y, 0.15) (left column) and density ρ(x, y, 0.15) (right col-
umn).

efficiency of the proposed scheme for numerically solving the system of multi-fluid
flow.

5.3. Example 3. The last example is designed to illustrate the capability of the
proposed adaptive algorithm to handle irregular density interfaces. Hence, in a
domain [−1, 1]× [−1, 1], the density jump at t = 0 is given by a curve which consists
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Table 5.5. Example 2: L1-errors of the water surface w at
t = 0.15, and the convergence rates of the central-upwind scheme
without adaptivity (uniform mesh 2 × N × N,N = 100, 200, 400)
and the adaptive scheme (the corresponding adaptive mesh is re-
constructed from the uniform mesh 2×N/2M ×N/2M).

algorithm
without adaptivity

adaptive algorithm

one level M = 1 two levels M = 2

cells L1-error rate cells L1-error rate cells L1-error rate

20, 000 0.0045 6,284 0.0045 5,928 0.0045

80, 000 0.0021 1.10 22,546 0.0021 1.10 11,260 0.0021 1.10

320, 000 7.9252e-04 1.41 85,132 8.5079e-04 1.30 33,904 8.9818e-04 1.23

Table 5.6. Example 2: RCPU ratio at t = 0.15, where for adap-
tive central-upwind scheme, we consider the total CPU times and
CPU times without the grid generation.

uniform mesh
adaptive
mesh
M = 1

RCPU with M = 1
adaptive
mesh
M = 2

RCPU with M = 2

(cells) (cells) total
without
grid

generation
(cells) total

without
grid

generation

2× 100× 100 6,284 3.01 3.54 5,928 3.48 3.75

2× 200× 200 22,546 3.78 4.76 11,260 7.76 8.66

2× 400× 400 85,132 4.46 5.57 33,904 11.13 12.86

RCPU average: 3.75 4.62 7.46 8.42

of a horizontal segment, a vertical segment, and a quarter of a circle connected at
their endpoints as illustrated in Fig. 5.13.

Figure 5.13. Example 3: The interface at initial time t = 0.

The initial condition is described by
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(50) (w, u, v, ρ)T (x, y, 0) =

{
(2, 0, 0, ρ0), if (x, y) ∈ Ω,

(1, 0, 0, 1.5ρ0), otherwise.

where

Ω := {x < −0.5, y < 0} ∪ {(x+ 0.5)2 + (y + 0.5)2 < 0.25} ∪ {x < 0, y < −0.5}.

. We consider a bottom topography with a surbmerged hump as

B(x, y, t) = 0.5e−100(x2+y2).

In this example, we will also perform the same numerical tests which are done in
previous examples. Namely, we first calculate the water surface and density at
t = 0.15 using central-upwind scheme without adaptivity and present the results
in Fig. 5.14 (a, b) and Fig. 5.15 (a, b). In 5.14 (c, d) and 5.15 (c, d), we plot
the results for w (first column) and ρ (second column) obtained by the adaptive
scheme. The adaptive grids in 5.14 (third column) are generated from the uniform
grid 2×100×100 for one level of refinement M = 1 and M = 2 using the threshold
ω = 0.01maxj(ej). As expected, the solutions obtained in the adaptive meshes
with high levels of refinement are much sharper than the solutions computed in
fixed uniform meshes. The density jump moves Northeast and does not diffuse.
There is no non-physical spurious waves generated at the interface. Also, as can be
seen in the adaptive meshes, the WLR error indicator captures subtle features of
the solution.

Finally, we compute the L1-errors in Table 5.7 and the CPU ratio in Table 5.8
by using the adaptive scheme and using the central-upwind method without the
mesh generation. By comparing the results presented in Tables 5.7 and 5.8, one
can easily see that at a reduced computational cost, the proposed adaptive central-
upwind method is still able to obtain the accurate solutions for this example. In
our experiments, we considered only M = 1 and M = 2, but to further enhance
the accuracy of the numerical solution at the lower computational cost, one can
consider higher levels of refinement.

Table 5.7. Example 3: L1-errors of the water surface w at
t = 0.15, and the convergence rates of the central-upwind scheme
without adaptivity (uniform mesh 2 × N × N,N = 100, 200, 400)
and the adaptive scheme (the corresponding adaptive mesh is re-
constructed from the uniform mesh 2×N/2M ×N/2M).

algorithm without adaptivity adaptive algorithm

one level M = 1 two levels M = 2

cells L1-error rate cells L1-error rate cells L1-error rate

2× 100× 100 0.0155 12,164 0.0145 8,994 0.0166

2× 200× 200 0.0074 1.07 40,814 0.0074 0.97 30,263 0.0071 1.23

2× 400× 400 0.0027 1.45 148,473 0.0028 1.40 87,214 0.0028 1.34

6. Conclusion

We have developed a new adaptive well-balanced and positivity preserving central-
upwind scheme on unstructured traingular meshes for shallow water equations with
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(a) Uniform mesh 2× 100× 100.

(b) Uniform mesh 2× 200× 200.

(c) Adaptive mesh with M = 1.

(d) Adaptive mesh with M = 2.

Figure 5.14. Example 3: Contour plots of computational water
surface w(x, y, 0.15) (first column) and density ρ(x, y, 0.15) (second
column) with the corresponding meshes (third column).

variable density. The scheme is designed as an extension the scheme in [13] by uti-
lizing the interface tracking method in [9] and the interface reconstruction in [15].
The proposed scheme is capable to preserve the steady state solutions (2) and (3)
and prevent the oscillation at the density jumps. In addition, to achieve an efficient
strategy for the adaptive mesh reconstruction, we also obtain a robust local error
indicator. We performed several challenging numerical tests for multi-fluid mod-
els and we demonstrated that the new adaptive central-upwind scheme maintains
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(a) Uniform mesh 2× 100× 100.

(b) Uniform mesh 2× 200× 200.

(c) Adaptive mesh with M = 1.

(d) Adaptive mesh with M = 2.

Figure 5.15. Example 3: 3-D plots of computational water sur-
face w(x, y, 0.15) (left column) and density ρ(x, y, 0.15) (right col-
umn).

well-balanced and positivity-preserving properties and obtains high-accuracy at a
reduced computational cost.
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Table 5.8. Example 3: RCPU ratio at t = 0.15, where for adap-
tive central-upwind scheme, we consider the total CPU times and
CPU times without the grid generation.

uniform mesh
adaptive
mesh
M = 1

RCPU with M = 1
adaptive
mesh
M = 2

RCPU with M = 2

(cells) (cells) total
without
grid

generation
(cells) total

without
grid

generation

2× 100× 100 12,164 1.75 1.98 8,994 2.69 2.87

2× 200× 200 40,814 2.71 3.14 30,263 3.57 3.86

2× 400× 400 148,473 2.86 3.38 87,214 4.60 5.03

RCPU average: 2.44 2.83 3.62 3.92
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