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WEAK GALERKIN FINITE ELEMENT METHODS FOR

PARABOLIC PROBLEMS WITH L2 INITIAL DATA

NARESH KUMAR AND BHUPEN DEKA

Abstract. We analyze the weak Galerkin finite element methods for second-order linear
parabolic problems with L2 initial data, both in a spatially semidiscrete case and in a fully
discrete case based on the backward Euler method. We have established optimal L2 error
estimates of order O(h2/t) for semisdiscrete scheme. Subsequently, the results are extend-
ed for fully discrete scheme. The error analysis has been carried out on polygonal meshes
for discontinuous piecewise polynomials in finite element partitions. Finally, numerical
experiments confirm our theoretical convergence results and efficiency of the scheme.
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1. Introduction

There are various applications of parabolic partial differential equations
(PDEs) with non-smooth data arising in sciences and engineering such as
chemical diffusion, heat conduction processes, thermodynamics, and medical
science [6,7,14,16]. Classical finite element methods for parabolic problems
with non-smooth initial data have been studied broadly so far, an exten-
sive literature for the same can be obtained from [19,23–25,31]. Developing
numerical algorithms of parabolic equations with non-smooth initial data
has been a flourishing concern. Recently, the weak Galerkin finite element
method has attracted much attention in the field of numerical PDEs. As
referred to in [28], the weak Galerkin finite element methods (WG-FEMs)
have been established as a new finite element technique for solving PDEs,
which are derived from weak formulations of problems to replace the classical
differential operators (e.g., gradient, divergence, curl) by weak differential
operators which is approximated in suitable polynomial spaces and adding
the stabilizer term. There is no need to select the parameters of the stabiliz-
er broadly. More precisely, the WG-FEMs have a simple and parameter-free
formulation and the flexibility of using general polygonal meshes. With the
new concepts of weak function and weak gradient, the WG-FEMs allow
discontinuous function space as the approximation space on each element.
Unlike the classical finite element method, the WG-FEM is applicable for
unstructured polygonal meshes making it more suitable for complex geom-
etry that usually appears in real-life problems. The WG approach has been
developed for various types of PDEs in existing literature, such as elliptic
equations [18, 21, 26, 29], parabolic equations [9, 10, 17, 33, 34], and the hy-
perbolic problems [15, 32]. The hybrid high-order (HHO) method is closely
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related to WG finite element method as the reconstruction operator in the
HHO method corresponds to the weak gradient in WG methods [5,11]. The
only difference between HHO and WG methods lies in the choice of the dis-
crete unknowns and the stabilization pattern. However, the links between
HHO and WG methods are not fully explored yet; nevertheless, they share
something in their roots. (cf. [3, 8, 11]). It is noteworthy that WG and H-
HO are based on different devising viewpoints and use somewhat different
analysis techniques.

We know that the higher order of convergence of finite element approx-
imations depends on the higher smoothness of the true solutions, which
demands higher regularity of the initial functions. The main concern of
this work is to study the convergence of weak Galerkin finite element ap-
proximations for homogeneous equations with non-smooth initial data using
polygonal meshes. The error analysis is highly motivated by the fact that
the solutions of parabolic problems have the so-called smoothing property
(cf. [19]). The solution is smooth for positive time t, even when the initial
data are not H1 regular. Under the low regularity of solutions, convergence
analysis has remained a significant part of mathematical study up to the
present day. To derive optimal O(hr+1) (r ≥ 1) in the L2 norm for WG-
FEM, the minimum regularity assumption on the exact solution u should be
u ∈ H1(0, T ;Hr+1(Ω)) (for instance, see [17, 34, 35]). More recently, in [9],
the authors have shown the convergence of WG finite element solution to
the true solution at an optimal rate in L2(L2) norm under the assumption
that u ∈ L2(0, T ;Hr+1(Ω)) ∩ H1(0, T ;Hr−1(Ω)). In the case of piecewise
linear WG-FEM (i.e., r = 1), the optimal error estimate requires the initial
value to be in H1 (see, Theorem 3.2 in [9]) and for L2 initial data error anal-
ysis in [9] leads to sub-optimal order of convergence in L2(L2) norm (see,
Remark 3.2). In fact, optimal L∞(L2) error estimate in [10] for linear weak
Galerkin elements demands initial data u0 ∈ H3(Ω) (see, Remark 3.4). In
this work, assuming initial data in L2, we have shown the convergence of WG
finite element solution to the true solution at an optimal rate in L2 norm on
WG finite element space (P1, P1, P2

0 ) (see, Theorem 3.2 and Theorem 4.1).
The non-smooth data error analysis heavily depends on the newly derived
optimal L2 norm error estimates with smooth initial data u0 ∈ H1

0 ∩ H2

(see, Lemma 3.8 and Lemma 4.1). The obtained results intend to enhance
the numerical analysis of linear parabolic equations on polygonal meshes
with non-smooth initial data. To the best of our knowledge, the smoothing
property of the WG-FEM and HHO methods for the parabolic equation has
not been studied earlier.

The rest of this work is organized as follows. In Sec. 2, we have introduced
some commonly used notations and reviewed the weak Galerkin discretiza-
tion. Sec. 3 is concerned with the error analysis of the semidiscrete WG
finite element algorithm. In Sec. 4, the backward Euler scheme is proposed,
and optimal a priori error bounds in L∞(L2) norm is established. Sec. 5
discusses several numerical examples which demonstrate the robustness of
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the WG-FEMs. Finally, in Sec. 6, results are summarized with some future
extensions of this work.

2. Preliminaries and weak Galerkin discretization

2.1. Basic notation and model problem. This paper uses the standard
notation for Sobolev spaces and norms [1]. Denoted Hm(K) the typical
Sobolev space for a domain K ⊆ Ω ⊂ R2 and non-negative integer m.
Notations ∥ · ∥m,K and | · |m,K are used to denote the norm and semi-norm in
the Sobolev space Hm(K), respectively. The space L2(K) are used instead
of H0(K), whose inner product and norm are denoted by (·, ·)K and ∥ · ∥K,
respectively. For simplicity of notation, we skip the subscript K in the norm
and inner product notation when K = Ω. H1

0 (Ω) is a closed subspace of
H1(Ω), which is also closure of C∞

0 (Ω) (the set of all C∞ functions with
compact support) with respect to the norm of Hm(Ω). In addition, the
standard Bôchner spaces L2(J ;B) and L∞(J ;B), where B is a real Banach
space with norm ∥.∥B and J = [0, T ], consisting of all measurable functions
ϕ : J → B for which,

∥ϕ∥L2(J ;B) :=
(∫ T

0
∥ϕ(t)∥2Bdt

) 1
2
<∞ and

∥ϕ∥L∞(J ;B) := ess sup
t∈[0,T ]

∥ϕ(t)∥B <∞,

respectively. We denote H1(J ;B) as the space of all measurable functions
ϕ : J → B such that ϕ′, the derivative of ϕ with respect to time variable
exists and belongs to L2(J ;B), endowed with the norm

∥ϕ∥H1(J ;B) =

(
∥ϕ∥2L2(J ;B) + ∥ϕ′∥2L2(J ;B)

) 1
2

.

For our convenience, we use L2(B) for L2(J ;B), L∞(B) for L∞(J ;B) and
H1(B) for H1(J ;B).

Further, H−m(Ω) denotes the space of all bounded linear functionals on
Hm

0 (Ω). For a functional f ∈ H−m(Ω), its action on a function ϕ ∈ Hm
0 (Ω)

is denoted by (f, ϕ), which represents the duality pairing between H−m(Ω)
and Hm

0 (Ω). The negative Sobolev norm is defined as

∥f∥−m = sup
0 ̸=ϕ∈Hm

0 (Ω)

(f, ϕ)

∥ϕ∥m
.(1)

Throughout our work, C denotes a positive generic constant and indepen-
dent of the mesh parameters {h, τ}.

In this article, we consider a second-order linear parabolic equation of the
form

ut −∇ · (α∇u) = f in Ω× (0, T ], T <∞,(2)

with initial and boundary conditions

u(x, 0) = u0 in Ω, u(x, t) = 0 on ∂Ω× (0, T ],(3)
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where Ω is a convex polygonal domain in R2 with boundary ∂Ω. We assume

that the coefficient matrix α = (αij(x))2×2 ∈
[
L∞(Ω)

]2×2
is symmetric,

uniformly positive definite in Ω. Further, f : Ω × (0, T ] → R denotes the
source function and u0 ∈ L2(Ω) is the initial function.

The standard weak formulation of the problem (2)-(3) is stated as follows:
Find u : [0,∞) → H1

0 (Ω) such that

(ut, v) +A(u, v) = (f, v) ∀v ∈ H1
0 (Ω) and(4)

u(0) = u0 in Ω,

where A(·, ·) is a bilinear form on H1
0 (Ω)×H1

0 (Ω) and given by

A(u, v) =

∫
Ω
α∇u · ∇vdx.

We end this section with the following regularity result for the initial
boundary value problem (2)-(3) (see, [13], p. 363, Theorem 3).

Theorem 2.1. Assume that f ∈ L2(Ω) and u0 ∈ L2(Ω). Then the solution
of (2)-(3) satisfies

u ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;H−1(Ω)).

2.2. Weak Galerkin discretization. This section describes the weak
Galerkin finite element discretization for the problem (2)-(3) and reviews
the definition of weak gradient operator.

For some h0 > 0 and h ∈ (0, h0], let Th be a partition of the domain
Ω consisting of polygons in two dimension satisfying a set of conditions
specified in [29]. Denote by Fh the set of all edges in Th and let F0

h = Fh\∂Ω
be the set of all interior edges. For every element K ∈ Th, we denote by |K|
the measure of K and by hK its diameter, and mesh size h = maxK∈Th hK
for Th.

Let K be any polygonal domain with interior K0 and boundary ∂K. A
weak function on the region K refers to a pair of scalar-valued functions
v = {v0, vb} such that v0 ∈ L2(K) and vb ∈ L2(∂K). Here, vb may not
necessarily be related to the trace of v0 on ∂K. Weak gradient operators
and their discrete versions are introduced in [28,29].

Denoted by V(K) the space of weak scalar-valued functions on K, i.e.,

(5) V(K) = {v = {v0, vb} : v0 ∈ L2(K), vb ∈ L2(∂K)}.

Denoted by V the weak scalar-valued function space on Th given by

(6) V =
∏

K∈Th

V(K).

Let V ⊂ V be a subspace of V consisting of weak valued functions which are
continuous across each interior edge, i.e.,

(7) V = {v ∈ V : [v]e = 0 ∀e ∈ F0
h}.

Here, [v]e denotes the jump of v ∈ V across an interior edge e ∈ F0
h .
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For k ≥ 1, now, we define weak Galerkin finite element space Vh ⊂ V as

(8) Vh = {vh = {v0, vb} : v0|K0 ∈ Pk(K), vb|e ∈ Pk(e), e ∈ ∂K, K ∈ Th}

and

V 0
h = {vh = {v0, vb} ∈ Vh : vb = 0 on ∂Ω}.(9)

For each vh = {v0, vb} ∈ Vh, the weak gradient of it, denoted by ∇w, is
defined as the unique polynomial (∇wvh) ∈ [Pk−1(K)]2 that satisfies the
following equation

(10) (∇wvh,q)K = −
∫
K
v0(∇ · q)dK +

∫
∂K

vb(q · n)ds ∀q ∈ [Pk−1(K)]2.

The usual L2-inner product can be written locally on each element as follows

(∇wvh,∇wwh) =
∑
K∈Th

(∇wvh,∇wwh)K .(11)

For each elementK ∈ Th, Q0 and Qb are the usual L
2 projection operators

onto Pk(K) and Pk(∂K), respectively. We shall combine Q0 with Qb by
writing Qh = {Q0, Qb}. More precisely, for w ∈ H1(K), we write Qhw =
{Q0w,Qbw}.

We recall the following crucial approximation properties for local projec-
tions Q0. For details, we refer to (Lemma 4.1, [29]).

Lemma 2.1. Let Th be a finite element partition of Ω satisfying the shape
regularity assumption as specified in [29]. Then, for v ∈ Hk+1(Ω), we have∑

K∈Th

(
∥v −Q0v∥2K + h2K∥∇(v −Q0v)∥2K

)
≤ Ch2(k+1)∥v∥2k+1.

To introduce WG finite element approximation, we introduce a bilinear
map Aw(·, ·) on Vh × Vh, which is defined as follows

Aw(wh, vh) :=
∑
K∈Th

(
α∇wwh,∇wvh

)
K
+ S(wh, vh) ∀wh, vh ∈ Vh,(12)

where S(·, ·) is known as stabilizer, which is a semi-positive definite bilinear
form defined on Vh × Vh. Stabilizer S(·, ·) is often chosen in such a way
that it fits well into the theory and implementation of the WG numerical
scheme [27]. Here, for wh = {w0, wb}, vh = {v0, vb} ∈ Vh, the stabilizer
S(·, ·) is defined as

S(wh, vh) =
∑
K∈Th

h−1
K ⟨w0 − wb, v0 − vb⟩∂K .(13)

Here, ⟨·, ·⟩∂K denotes the L2 inner product on ∂K and symbolically, we have

⟨·, ·⟩∂K =
∑
e∈∂K

⟨·, ·⟩e,

where ⟨·, ·⟩e denotes the L2 inner product on e ∈ Fh.
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The weak finite element space V 0
h is a normed linear space with a triple-

bar norm given by (cf. [27])

(14) |||vh|||2 =
∑
K∈Th

∥α
1
2∇wvh∥2K +

∑
K∈Th

h−1
K ∥v0 − vb∥2∂K = Aw(vh, vh).

Let K be an element with e as an edge. For any function φ ∈ H1(K),
the following trace inequality holds true (see, [29] for details)

(15) ∥φ∥2e ≤ C(h−1
K ∥φ∥2K + hK∥∇φ∥2K).

It is easy to verify the equivalency of the triple-bar norm (14) and following
discrete H1 norm (cf. [27])

(16) ∥vh∥1,h =
( ∑

K∈Th

(∥∇v0∥2K + h−1
K ∥v0 − vb∥2∂K)

) 1
2
, vh = {v0, vb} ∈ V 0

h .

More precisely, there exist constants C1, C2 > 0 such that for any vh ∈ V 0
h ,

the following inequality holds true

(17) C1∥vh∥21,h ≤ Aw(vh, vh) ≤ C2∥vh∥21,h.

Moreover, the following Poincaŕe-type inequality holds true (cf. [22])

(18) ∥v0∥ ≤ C|||vh|||, vh = {v0, vb} ∈ V 0
h .

3. Error analysis for the semidiscrete scheme

In this section, we have obtained the optimal order of convergence with
L2 initial data for the spatially discrete scheme in L2 norm.

A time-dependent weak function vh : [0, T ] → Vh is written as vh(t) :=
{v0(t), vb(t)} and subsequently we define vht(t) := {v′0(t), v′b(t)}, where ‘′’
denotes the time derivatives. For simplicity, we use vh = {v0, vb} for vh(t)
and vht = {v′0, v′b} for vht(t). It is easy to note from the definition of weak
gradient (10) that (∇wvh)

′ = ∇wv
′
h and (∇wvh)|t=0 = ∇wvh(0) for all vh ∈

Vh.
The semidiscrete weak Galerkin finite element approximation for (2)-(3)

is to find uh(t) = {u0(t), ub(t)} ∈ V 0
h satisfying uh(0) = {Q0u

0, Qb(Q0u
0)}

such that

(uht, v0) +Aw(uh, vh) = (f, v0) ∀vh = {v0, vb} ∈ V 0
h , t > 0,(19)

where the bilinear map Aw(·, ·) is as defined in (12).

Remark 3.1. For u0 ∈ L2(Ω), restriction of u0 on the boundary of a ele-
ment K ∈ Th is not defined. Therefore, we first project u0 in the interior
K0 via the L2 projection and then extend it to the boundary through the L2

projection Qb. Now, the initial approximation

uh(0) = {Q0u
0, Qb(Q0u

0)}

is well defined. Next, we have to make sure that Qb(Q0u
0) takes unique value

on interior edges. For an interior edge e ∈ Fh shared by the two elements
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T1 and T2, we define Qb(Q0u
0) in the following way:

Qb(Q0u
0) =

{
Qb(Q0u

0|T1∩e) on T1 ∩ e,
Qb(Q0u

0|T2∩e) +Qb(
[
Q0u

0
]
e
) on T2 ∩ e,

(20)

where
[
Q0u

0
]
e
denotes the jump of Q0u

0 along the edge e.

The following result deals with the existence and uniqueness of the WG
solution uh.

Theorem 3.1. For each h ∈ (0, h0], there exists a function uh ∈ C1(0, T ;V 0
h )

satisfying (19).

Proof. For a given element K ∈ {Th}0<h≤h0 , let {ϕ0,i : i = 1, 2, . . . , N0}
be a set of basis functions for Pk(K) and {ϕb,i : i = 1, 2, . . . , Nb} be a set
of basis function for Pk(e). Then every vh = {v0, vb} ∈ {V 0

h }0<h≤h0 can be
written as

vh|K =

{
N0∑
i=1

d0,i(t)ϕ0,i,

Nb∑
j=1

db,j(t)ϕb,j

}
,

where d0,i, db,j : (0, T ] → R are the coefficient functions for 1 ≤ i ≤ N0 and

1 ≤ j ≤ Nb. For 1 ≤ i ≤ N0 +Nb, we write ϕ̂i,h = {ϕ̂0,i, ϕ̂b,i} with

ϕ̂0,i = ϕ0,i for 1 ≤ i ≤ N0 & ϕ̂0,i = 0 for N0 + 1 ≤ i ≤ N0 +Nb,

ϕ̂b,i = 0 for 1 ≤ i ≤ N0 & ϕ̂b,i = ϕb,i−N0 for N0 + 1 ≤ i ≤ N0 +Nb,

and similarly to capture the unknown coefficient functions, we define

d̂i,h = d0,i for 1 ≤ i ≤ N0 & d̂i,h = db,i−N0 for N0 + 1 ≤ i ≤ N0 +Nb.

Then, we seek our semidiscrete solution uh = {u0, ub} ∈ V 0
h such that

uh|K =

N0+Nb∑
i=1

d̂i,h(t)ϕ̂i,h =

{
N0+Nb∑
i=1

d̂i,h(t)ϕ̂0,i,

N0+Nb∑
j=1

d̂j,h(t)ϕ̂b,j

}
, K ∈ Th.

Now, set vh = ϕ̂j,h, j = 1, 2, . . . , N0 +Nb in (19) to obtain(
N0+Nb∑
i=1

d̂ ′
i,h(t)ϕ̂0,i, ϕ̂0,j

)
+Aw

(
N0+Nb∑
i=1

d̂i,h(t)ϕ̂i,h, ϕ̂j,h

)
= (f, ϕ̂0,j), j = 1, . . . , N0 +Nb.

We can rearrange the above equations as

N0+Nb∑
i=1

d̂ ′
i,h(t)

(
ϕ̂0,i, ϕ̂0,j

)
+

N0+Nb∑
i=1

d̂i,h(t)Aw

(
ϕ̂i,h, ϕ̂j,h

)
= (f, ϕ̂0,j), j = 1, . . . , N0 +Nb.

On each elementK, the local stiffness matrixAK associated with the bilinear
map Aw(·, ·) defined by (12) can thus be written as a block matrix

AK =

[
A0,0 A0,b

Ab,0 Ab,b

]
,(21)
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where A0,0 is a N0 ×N0, A0,b is a N0 ×Nb, Ab,0 is a Nb ×N0, and Ab,b is a
Nb ×Nb matrices. More precisely, these matrices are given by

A0,0 = [Aw(ϕ0,j , ϕ0,i)K ]i,j , A0,b = [Aw(ϕ0,j , ϕb,i)K ]i,j

Ab,0 = [Aw(ϕb,j , ϕ0,i)K ]i,j , Ab,b = [Aw(ϕb,j , ϕb,i)K ]i,j ,

where i, j are the row and column indices, respectively.
We denote by

d̂h,0 = [d̂1,h(0), . . . , d̂N0+Nb,h(0)]
T

the components of given initial approximation uh(0). Then, for our semidis-

crete solution, we need to find unknown vector d̂h(t) = [d̂1,h(t), . . . , d̂N0+Nb,h(t)]
T

such that {
CK d̂ ′

h(t) +AK d̂h(t) = FK(t),

d̂h(0) = d̂h,0 for t ∈ (0, T ],
(22)

where the coefficient matrix CK is given by

CK = [Cj,i], Cj,i = (ϕ̂0,j , ϕ̂0,i)K , 1 ≤ i, j ≤ N0 +Nb

and the source vector is given by

FK = [F1, . . . , FN0+Nb
], Fj = (f, ϕ̂0,j)K , 1 ≤ i, j ≤ N0 +Nb.

For all t ∈ J = (0, T ], it is easy to note that

|(ϕ̂0,i, ϕ̂0,j)| ≤ ∥ϕ̂0,i∥∥ϕ̂0,j∥, |(f, ϕ̂0,j)| ≤ ∥f∥∥ϕ̂0,j∥ &

|Aw(ϕ̂i,h, ϕ̂j,h)| ≤ C∥ϕ̂i,h∥1,h∥ϕ̂j,h∥1,h.
Furthermore, for any v ∈ RN0+Nb \ {0}, we have

vTCKv = (v̂, v̂)K > 0, v̂ =

N0+Nb∑
i=1

viϕ̂0,i.

Hence, the matrix CK is invertible for all t ∈ J and the equation (22) can
be restated as {

d̂′h(t) + C−1
K AK d̂h(t) = C−1

K FK(t),

d̂h(0) = d̂h,0.

Now, the existence of the solution uh ∈ C1(0, T ;V 0
h ) follows from the stan-

dard ODE theory. The proof is completed. �
We have adopted following few results from [19] to state some a priori

bounds for the solution u satisfying (4) under appropriate regularity as-
sumptions on the initial data u0 and source function f .

Lemma 3.1. Let u satisfies (2). If u0 ∈ L2(Ω) and f ∈ L2(Ω), then

∥u(t)∥2 +
∫ t

0
∥u(s)∥21ds ≤ C

(
∥u0∥2 +

∫ t

0
∥f(s)∥2ds

)
.

Moreover, when u0 ∈ H1
0 (Ω) and f ∈ L2(Ω), we have

∥u(t)∥21 +
∫ t

0
{∥us(s)∥2 + ∥u(s)∥22}ds ≤ C

(
∥u0∥21 +

∫ t

0
∥f(s)∥2ds

)
.
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Lemma 3.2. Let u satisfies (2) with f = 0, and let 0 ≤ i, j, s ≤ 2. If
0 ≤ s+ 2j − i ≤ 2, then

ti
∥∥∥∂ju
∂tj

(t)
∥∥∥2
s
≤ C∥u0∥2s+2j−i.

Further, if 0 ≤ s+ 2j − i− 1 ≤ 2, then∫ t

0
ϑi
∥∥∥∂ju
∂ϑj

(ϑ)
∥∥∥2
s
dϑ ≤ C∥u0∥2s+2j−i−1.

For the error analysis, we split our semidiscrete error eh = u − uh into
two components using an intermediate operator. We write

eh = u− uh := (u−Qhu) + (Qhu− uh).

The following estimate for eh is derived over the time interval [0, t], which
is imperative for further analysis.

Lemma 3.3. Let u0 ∈ H1
0 (Ω) ∩Hr(Ω), r ∈ {1, 2} and f = 0, then∫ t

0
∥eh∥2ds ≤ Cth2r∥u0∥2r .(23)

Proof. To derive L2 error estimate over the time interval [0, t], we recall the
following estimate from earlier work (cf. [9], Theorem 3.2)∫ t

0
∥eh∥2ds ≤ Ch2r

∫ t

0
∥u∥2rds.(24)

Now, apply Lemma 3.2 with i = 0 = j and s = r in the above estimate to
have ∫ t

0
∥eh∥2ds ≤ Ch2r

∫ t

0
∥u0∥2rds

≤ Cth2r∥u0∥2r. �

Remark 3.2. For u0 ∈ L2(Ω) and f = 0, let u solves (2)-(3). Then, from
the Lemma 3.1, we have u ∈ L2(0, T ;H1(Ω)). As a consequence, we obtain∫ t

0
∥eh∥2ds ≤ Ch2

∫ t

0
∥u∥21ds.(25)

Here, we have used (24) with r = 1. Finally, a priori estimate in Lemma
3.1 yields ∫ t

0
∥eh∥2ds ≤ Ch2∥u0∥2.(26)

Clearly, L2(L2) error estimate (26) is not optimal for non-smooth initial
data u0. The rest of the section is devoted to deriving optimal L∞(L2) norm
estimate for the WG finite element approximation with u0 ∈ L2(Ω).

In the following Lemmas, we have proved basic stability results for the
weak Galerkin solution uh satisfying (19).
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Lemma 3.4. Assume that uh is a solution of (19). Let f ∈ L2(Ω) and
u0 ∈ L2(Ω) with initial approximation uh(0) = (Q0u

0, Qb(Q0u
0)), then

∥uh(t)∥2 +
∫ t

0
∥uh∥21,h ≤ C

(
∥uh(0)∥2 +

∫ t

0
∥f(s)∥2ds

)
.(27)

Proof. Taking vh = uh in (19), we get

1

2

d

dt
∥uh(t)∥2 +Aw(uh, uh) = (f, uh).

Now, integrate the above equation with respect to t to obtain

1

2
∥uh(t)∥2 +

∫ t

0
Aw(uh, uh)ds =

1

2
∥uh(0)∥2 +

∫ t

0
(f, uh)ds

Then, Young’s inequality and (17) leads to

1

2
∥uh(t)∥2 +

∫ t

0
∥uh∥21,hds ≤ 1

2
∥uh(0)∥2 + Cν

∫ t

0
∥f(s)∥2ds

+C(ν)

∫ t

0
∥uh(s)∥2ds,

for some ν > 0. Finally, suitable ν > 0 and (18) yield desired result. �
Lemma 3.5. Assume that uh is a solution of (19). Let f = 0 and u0 ∈
L2(Ω) with initial approximation uh(0) = (Q0u

0, Qb(Q0u
0)), then

t∥uh(t)∥21,h +
∫ t

0
s∥uhs∥2ds ≤ C∥uh(0)∥2.(28)

Proof. Setting vh = uht in (19), we get

∥uht(t)∥2 +
1

2

d

dt
Aw(uh, uh) = 0.

Multiplying the above equation by t, we obtain

t∥uht(t)∥2 +
1

2

d

dt
{tAw(uh(t), uh(t))} =

1

2
Aw(uh, uh).

Then, integrate the above equation over [0, t] to get

t∥uh(t)∥21,h +
∫ t

0
s∥uhs(s)∥2ds ≤ C

∫ t

0
∥uh(s)∥21,hds,

which together with estimate (27) yields (28). �
Lemma 3.6. Assume that uh is a solution of (19). Let f = 0 and u0 ∈
H1

0 (Ω) ∩H2(Ω) with suitable initial approximation uh(0) ∈ V 0
h , then

∥uht∥2 +
∫ t

0
∥uhs∥21,hds ≤ C∥uht(0)∥2.(29)

Further, if u0 ∈ L2(Ω) and f = 0 with uh(0) = (Q0u
0, Qb(Q0u

0)), then

t2∥uht(t)∥2 +
∫ t

0
s2∥uhs∥21,hds ≤ C∥uh(0)∥2.(30)
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Proof. We differentiate (19) with respect to time t to obtain

(uhtt, vh) +Aw(uht, vh) = 0.

Now, set vh = uht in the above equation to have

1

2

d

dt
∥uht∥2 +Aw(uht, uht) = 0.(31)

Integrating above equation from 0 to t and applying (17), we arrive at (29).
In the case u0 ∈ L2(Ω), like earlier, we multiply (31) by t2 and obtain

1

2

d

dt
{t2∥uht∥2}+ t2Aw(uht, uht) = t∥uht∥2,

which upon integrating over [0, t] leads to

t2

2
∥uht∥2 +

∫ t

0
s2Aw(uhs, uhs)ds =

∫ t

0
s∥uhs∥2ds.

Now, apply the coercive property (17) to obtain

t2∥uht∥2 +
∫ t

0
s2∥uhs∥21,hds ≤ C

∫ t

0
s∥uhs∥2ds.(32)

Finally, estimates (28) and (32) lead to desire result. �
Next, we applied elliptic projection to derive optimal L2 error estimates.

For w ∈ H2(Ω) ∩H1
0 (Ω), we define

fw = −∇ · (α∇w) in Ω.

Now, define Eh : H2(Ω) ∩H1
0 (Ω) → V 0

h by

Aw(Ehw, vh) = (fw, v0) ∀vh = {v0, vb} ∈ V 0
h .(33)

It is easy to observe from the definition of elliptic projection and equation
(19) that

(34) (uht, vh) +Aw(uh − Ehu, vh) = (f, vh) + (∇ · (a∇u), vh) = (ut, vh),

for all vh = {v0, vb} ∈ V 0
h . Here, we have used equation (2).

Remark 3.3. For u0 ∈ H1
0 (Ω) ∩ H2(Ω) and f = 0 with uh(0) = Ehu0,

identity (34) yields

(uht(0), vh) = (ut(0), vh) ∀vh = {v0, vb} ∈ V0
h,

which implies

∥uht(0)∥ ≤ ∥ut(0)∥ ≤ C∥u0∥2.(35)

Hence, a priori estimate (29) reduces to

∥uht∥2 +
∫ t

0
∥uhs∥21,hds ≤ C∥u0∥22.(36)

We can derive the following lemma from the literature (see proof of The-
orem 3.1.2 in [10] and [27]) directly. We omit the details.
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Lemma 3.7. For v ∈ H1(0, T ;Hλ+1(Ω) ∩H1
0 (Ω)), 0 ≤ λ ≤ k, we have

∥Qhv − Ehv∥+ h∥Qhv − Ehv∥1,h ≤ Chλ+1∥v∥λ+1 and∫ t

0
s2
(
∥(v −Qhv)t∥2 + ∥

(
Qhv − Ehv

)
t
∥2
)
ds ≤ Ch2(λ+1)

∫ t

0
s2∥vt∥2λ+1ds.

Corollary 3.1. For u0 ∈ H1
0 (Ω) ∩H2(Ω) and f = 0, Lemma 2.1, Lemma

3.2 and Lemma 3.7 yield

∥u−Qhu∥+ ∥Qhu− Ehu∥ ≤ Ch2∥u∥2 ≤ Ch2∥u0∥2
and ∫ t

0
s2
(
∥(u−Qhu)t∥2 + ∥

(
Qhu− Ehu

)
t
∥2
)
ds

≤ Ch4
∫ t

0
s2∥ut∥22ds ≤ Ch4t∥u0∥22.

Remark 3.4. Theorem 3.1.2 in [10] and Lemma 2.1, for the weak Galerkin

space (P1(K), P1(∂K),
[
P0(K)

]2
), yields

∥(u− uh)(t)∥2 ≤ Ch4

(
∥u∥22 +

∫ t

0
∥ut∥22dϑ

)
,(37)

which demands u ∈ H1(0, T ;H2(Ω)). Again, due to Theorem 2.10 in [20],
solution u ∈ H1(0, T ;H2(Ω)) provided initial data u0 ∈ H3(Ω). Thus, for
u0 ∈ H1

0 (Ω) ∩H2(Ω), we can not directly use estimate (37).

Next result illustrates optimal L∞(L2) norm error estimate for the semidis-

crete approximation on linear weak Galerkin space (P1(K), P1(∂K),
[
P0(K)

]2
)

with u0 ∈ H1
0 (Ω) ∩H2(Ω).

Lemma 3.8. If u0 ∈ H1
0 (Ω) ∩H2(Ω) and f = 0, then

∥eh(t)∥ ≤ Ch2∥u0∥2.(38)

Proof. First, we split our error into three components and we write

eh = u− uh = (u−Qhu) + (Qhu− Ehu) + (Ehu− uh) := ρ+ η + ξ,(39)

where ρ := u−Qhu, η := Qhu− Ehu and ξ := Ehu− uh.
According to the definition of projection Ehu, we have

(ξt, vh) +Aw(ξ, vh) = (Ehut, vh) +Aw(Ehu, vh)− (uht, vh)−Aw(uh, vh)

= −(ηt, vh)− (ρt, vh).

Choose vh = ξ to have

1

2

d

dt
∥ξ∥2 +Aw(ξ, ξ) = −(ηt, ξ)− (ρt, ξ).(40)

Multiplying (40) by t, we get

1

2

d

dt
{t∥ξ∥2}+ tAw(ξ, ξ) = −t(ηt, ξ)− t(ρt, ξ) +

1

2
∥ξ∥2.(41)



WG METHODS FOR PARABOLIC PROBLEMS WITH L2 INITIAL DATA 211

Integration of (41) over [0, t] yields

t

2
∥ξ∥2 +

∫ t

0
sAw(ξ, ξ)ds = −

∫ t

0
s(ηs, ξ)ds−

∫ t

0
s(ρs, ξ)ds+

1

2

∫ t

0
∥ξ∥2ds.

Next, standard inequality and positivity of Aw(·, ·) lead to

t

2
∥ξ∥2 ≤ C

∫ t

0
s2{∥ηs∥2 + ∥ρs∥2}ds+ C

∫ t

0
∥ξ∥2ds.(42)

Now, from (39) and estimate (42), we have

t∥eh∥2 ≤ C
(
t∥ρ∥2 + t∥η∥2 + t∥ξ∥2

)
≤ Ct(∥ρ∥2 + ∥η∥2) + C

∫ t

0
∥ξ∥2ds+ C

∫ t

0
s2(∥ηt∥2 + ∥ρt∥2)ds.

≤ Ct(∥ρ∥2 + ∥η∥2) + C

∫ t

0

(
∥η∥2 + s2∥ηt∥2

)
ds

+C

∫ t

0

(
∥ρ∥2 + s2∥ρt∥2

)
ds+ C

∫ t

0
∥eh∥2ds.(43)

Finally, Lemma 3.3 and Corollary 3.1 yield

t∥eh(t)∥2 ≤ Cth4∥u0∥22. �
Next, we proceed with the error analysis with non-smooth initial data.

Lemma 3.9. If u0 ∈ L2 and f = 0. Then, for t > 0, we have

∥eh(t)∥ ≤ C
h

t1/2

∥∥u0∥∥.(44)

Proof. We first recall the estimate (43)

t∥eh∥2 ≤ Ct(∥ρ∥2 + t∥η∥2) + C

∫ t

0

(
∥η∥2 + s2∥ηt∥2

)
ds

+C

∫ t

0

(
∥ρ∥2 + s2∥ρt∥2

)
ds+ C

∫ t

0
∥eh∥2ds.(45)

Then apply Lemma 3.7 with λ = 0 to arrive at

t∥eh∥2 ≤ Ch2t∥u∥21 + Ch2
∫ t

0

(
∥u∥21 + s2∥ut∥21

)
ds+ C

∫ t

0
∥eh∥2ds.

Then, using Lemmas 3.1-3.2 and estimate (26), we obtain

t∥eh∥2 ≤ Ch2∥u0∥2.

This completes the rest of the proof. �
We now use a dual parabolic argument considering a backward problem to

obtain optimal L∞(L2) norm error estimate. For fixed t > 0 and g ∈ L2(Ω),
define w : [0, t) → H1

0 (Ω) by

(ϕ,ws)−A(ϕ,w) = 0 ∀ϕ ∈ H1
0 (Ω), s ≤ t,

w(t) = g,(46)
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and define wh = {w0, wb} : [0, t) → V 0
h by

(v0, whs)−Aw(vh, wh) = 0 ∀vh = {v0, vb} ∈ V 0
h , s ≤ t,

wh(t) = gh.(47)

Then, by construction, we have

d

ds
{(u,w)− (uh, wh)} = (f, w − wh).(48)

Integrating above from 0 to t and setting ẽh := w − wh, we obtain

(u(t), w(t))− (uh(t), wh(t)) = (u0, w(0))− (uh(0), wh(0))

+

∫ t

0
(f, ẽh)ds.(49)

Further, if uh(0) = (Q0u
0, Qb(Q0u

0) and gh = (Q0g,Qb(Q0g)), we arrive at
following crucial identity

(eh(t), g) = (u0, ẽh(0)) +

∫ t

0
(f, ẽh)ds.(50)

Lemma 3.10. If u0 ∈ L2 and f = 0, then

∥eh(t)∥−2 ≤ Ch2
∥∥u0∥∥.(51)

Proof. From the equation (50) with f = 0, we have

(eh(t), g) = (u0, ẽh(0)).

Thus, applying estimate (38) to the backward error ẽh(t) yields

|(eh(t), g)| ≤ Ch2∥u0∥∥g∥2, g ∈ H1
0 (Ω) ∩H2(Ω).

Then, definition (1) with m = 2 leads to desire estimate. �
Now, we are in a position to discuss the main result of this section.

Theorem 3.2. Let u be the solution of (2)-(3) and uh ∈ V 0
h be the solution

of (19). Assume that u0 ∈ L2(Ω) and f = 0, then there is a positive constant
C independent of h such that

(52) ∥eh(t)∥ ≤ C
h2

t
∥u0∥, t > 0.

Proof. Integrating the equation (48) from t/2 to t and using the fact gh =
(Q0g,Qb(Q0g)), we get

(eh(t), g) =
(
u
(

t
2

)
, w
(

t
2

))
−
(
uh

(
t
2

)
, wh

(
t
2

))
=
(
eh

(
t
2

)
, w
(

t
2

))
−
(
eh

(
t
2

)
, ẽh

(
t
2

))
+
(
u
(

t
2

)
, ẽh

(
t
2

))
≤
∥∥∥eh( t

2

)∥∥∥
−2

∥∥∥w( t
2

)∥∥∥
2
+
∥∥∥eh( t

2

)∥∥∥∥∥∥ẽh( t
2

)∥∥∥
+
∥∥∥u( t

2

)∥∥∥
2

∥∥∥ẽh( t
2

)∥∥∥
−2
.(53)
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Applying estimate (51) for the terms ∥eh( t2)∥−2 and ∥ẽh( t2)∥−2, we obtain

(54)
∥∥∥eh( t

2

)∥∥∥
−2

≤ Ch2∥u0∥ &
∥∥∥ẽh( t

2

)∥∥∥
−2

≤ Ch2∥g∥.

Further, using estimate (44) for the terms
∥∥∥eh( t

2

)∥∥∥ and ∥ẽh
(

t
2

)
∥, we get

(55)
∥∥∥eh( t

2

)∥∥∥ ≤ C
h

t1/2
∥u0∥ &

∥∥∥ẽh( t
2

)∥∥∥ ≤ C
h

t1/2
∥g∥.

Again, setting i = 2, s = 2 and j = 0 in Lemma 3.2, we arrive at

(56)
∥∥∥u( t

2

)∥∥∥
2
≤ C

t
∥u0∥ and

∥∥∥w( t
2

)∥∥∥
2
≤ C

t
∥g∥.

Finally, g = eh(t) and estimates (53)-(56) lead to desired result. �

4. Fully discrete scheme

In this section, we have extended the classical finite element error analysis
technique [19] to WG-FEMs with L2 initial data for a first-order backward
time fully discrete scheme. It is worth noting that the algorithms present-
ed in [19] are only valid for finite linear elements with triangular meshes.
Optimal order error estimates in L∞(L2) norm is shown to hold even if the
initial data is in L2(Ω).

First, we divide the time interval J = [0, T ] into M equally spaced subin-
tervals In = (tn−1, tn], n = 1, 2, . . . ,M with t0 = 0, and tM = T and
τ = tn − tn−1, the time step. For a continuous mapping χ : [0, T ] → L2(Ω),
we define χn = χ(·, tn). Then, for a sequence {pn}Mn=0 ⊂ L2(Ω), we define

∂τp
n =

pn − pn−1

τ
, n ≥ 1.

We now introduce the fully discrete weak Galerkin finite element approx-
imation to the problem (2)-(3). Let U0

h = (Q0u
0, Qb(Q0u

0)) and Un
h =

{Un
0 , U

n
b } ∈ V 0

h be the fully discrete solution of u at t = tn, which we have
defined through the following scheme

(57) (∂τU
n
h , v0) +Aw(U

n
h , vh) = (f

n
, v0) ∀vh = {v0, vb} ∈ V 0

h , n ≥ 1,

where

(58) f
n
= τ−1

∫ tn

tn−1

f(x, t)dt.

We now present the main result of this section in the following theorem.

Theorem 4.1. Suppose u and Un
h be the solution of (2)-(3) and (1), respec-

tively. In addition, assume that initial data u0 ∈ L2(Ω) and f = 0. Then,
we have

∥Un
h − un∥ ≤ C

(h2 + τ)

tn
∥u0∥.(59)
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To prove the above theorem, the following preparations are required. Sim-
ilar to (1), we have used the following discrete negative norm

∥χ∥−1,h := sup
0̸=vh∈V 0

h

(χ, vh)

∥vh∥1,h
.

Remark 4.1. By differentiating (19) with respect to t for f = 0, we obtain

(uhtt, vh) +Aw(uht, vh) = 0 ∀vh = {v0, vb} ∈ V 0
h .

Now, apply continuity and coercivity properties of Aw(·, ·) to have

(uhtt, vh) ≤ C∥uht∥1,h∥vh∥1,h ∀vh = {v0, vb} ∈ V 0
h ,

which yields

sup
0 ̸=vh∈V 0

h

(uhtt, vh)

∥vh∥1,h
≤ C∥uht∥1,h,

so that we obtain

∥vhtt∥−1,h ≤ C∥uht∥1,h.(60)

Now, for the fully discrete error analysis, we split our error into two
components using a semidiscrete solution as follows

Un
h − un := (Un

h − unh) + (unh − un).(61)

The rest of the section analyzes error bounds for the first component in
(5).

Lemma 4.1. If f = 0 and u0 ∈ H1
0 (Ω) ∩H2(Ω), then we have

∥unh − Un
h ∥ ≤ Cτ∥uht(0)∥.

Proof. Setting t = tn+1 in (19), we obtain

(∂τu
n+1
h , v0) +Aw(u

n+1
h , vh) = (ζn+1, v0) ∀vh = {v0, vb} ∈ V 0

h ,

where ζn+1 := ∂τu
n+1
h − un+1

ht .
Let ξn = unh − Un

h ∈ V 0
h , then it is easy to note that

(∂τξ
n+1, v0) +Aw(ξ

n+1, vh) = (ζn+1, v0) ∀vh = {v0, vb} ∈ V 0
h ,(62)

with ξ0 = 0.
Set vh = ξn+1 in (6) and apply Young’s inequality with suitable ν > 0 in

the right hand side to obtain

∥ξn+1∥2 + 2τAw(ξ
n+1, ξn+1) + ∥ξn+1 − ξn∥2

= ∥ξn∥2 + 2τ(ζn+1, ξn+1)

≤ ∥ξn∥2 + Cντ∥ζn+1∥2−1,h + C(ν)τ∥ξn+1∥21,h
≤ ∥ξn∥2 + Cντ∥ζn+1∥2−1,h + C(ν)τAw(ξ

n+1, ξn+1).(63)

Note that, in the above estimate, we have used the following fact

(∂τξ
n+1, ξn+1) =

1

2τ
(∥ξn+1∥2 − ∥ξn∥2) + 1

2τ
∥ξn+1 − ξn∥2.
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Then, we sum (7) over n from 1 to l so that

∥ξl+1∥2 ≤ Cτ
l+1∑
m=1

∥ζm∥2−1,h, 1 ≤ l ≤M − 1.(64)

Now, by Taylor’s theorem

ζm =
1

τ

∫ tm

tm−1

(s− tm−1)uhss(s)ds.(65)

Hence

∥ζm∥2−1,h ≤ τ

3

∫ tm

tm−1

∥uhss(s)∥2−1,hds.(66)

Thus, combining (4) and (8), we get

∥ξl+1∥2 ≤ Cτ2
∫ tl+1

0
∥uhs(s)∥21,hds.(67)

Now, apply (29) leads us to

∥ξl+1∥2 ≤ Cτ2∥uht(0)∥2. �
Let {F j}Mj=1 ⊂ V 0

h , and {zmh }Mm=1 ⊂ V 0
h be the solution of the discrete

time backward problem

(68) (v0, ∂τz
m
h )−Aw(vh, z

m−1
h ) = (v0, F

m) ∀vh = {v0, vb} ∈ V 0
h ,

with zMh = 0.
Regarding the stability of zmh , we have the following result.

Lemma 4.2. For zmh satisfying (12), we obtain

max
1≤m≤M

∥zm−1
h ∥21,h +

M∑
m=1

τ∥∂τzmh ∥2 ≤ C
M∑

m=1

τ∥Fm∥2.

Proof. Setting vh = τ∂τz
m
h in (12) and applying Cauchy-Schwarz inequality,

we have

τ∥∂τzmh ∥2 +Aw(z
m−1
h − zmh , z

m−1
h ) ≤ ∥τ∂τzmh ∥∥Fm∥.

Next, applying Young’s inequality for suitable ν > 0, we arrive at

τ∥∂τzmh ∥2 +Aw(z
m−1
h − zmh , z

m−1
h ) ≤ Cντ∥∂τzmh ∥2 + C(ν)τ∥Fm∥2.

Now, selecting ν > 0 appropriately leads us

(69) τ∥∂τzmh ∥2 +Aw(z
m−1
h − zmh , z

m−1
h ) ≤ Cτ∥Fm∥2.

It is easy to verify that

Aw(z
m−1
h − zmh , z

m−1
h ) =

τ2

2
Aw(∂τz

m
h , ∂τz

m
h )

−1

2
Aw(z

m
h , z

m
h ) +

1

2
Aw(z

m−1
h , zm−1

h ).
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This, combined with (13) yields

τ∥∂τzmh ∥2 − 1

2
Aw(z

m
h , z

m
h ) +

1

2
Aw(z

m−1
h , zm−1

h ) ≤ Cτ∥Fm∥2,

and then summing over m from m = l to m =M yields

M∑
m=l

τ∥∂τzmh ∥2 +Aw(z
l−1
h , zl−1

h ) ≤ C

M∑
m=l

τ∥Fm∥2, 1 ≤ l ≤M − 1.

This completes the rest of the proof. �

Lemma 4.3. If f = 0 and u0 ∈ L2(Ω), then we have

∥unh − Un
h ∥ ≤ C

τ1/2

t
1/2
n

∥uh(0)∥.

Proof. We multiply (7) by tn+1 = tn + τ to obtain

tn+1∥ξn+1∥2 ≤ tn∥ξn∥2 + τ∥ξn∥2 + Cτtn+1∥ζn+1∥2−1,h.(70)

Sum (14) over n from 1 to l with 1 ≤ l ≤M − 1 to have

tl+1∥ξl+1∥2 ≤
l∑

n=1

τ∥ξn∥2 + Cτ
l∑

n=1

tn+1∥ζn+1∥2−1,h

=

l∑
n=1

τ∥ξn∥2 + Cτ2
l∑

n=1

∥ζn+1∥2−1,h + Cτ

l∑
n=1

tn∥ζn+1∥2−1,h

=

l∑
n=1

τ∥ξn∥2 + Cτ2
l∑

n=1

∥ζn+1∥2−1,h

+C

l+1∑
m=2

tm−1

m− 1
tm−1∥ζm∥2−1,h.(71)

In order to estimate
∑l

m=1 τ∥ξm∥2, let {zmh }Mm=0 ⊂ V 0
h be the solution of

(12) with Fm = ξm. Set vh = ξm in (12) to obtain

∥ξm∥2 = (ξm, ∂τz
m
h )−Aw(ξ

m, zm−1
h )

= ∂τ (ξ, zh)
m − (∂τξ

m, zm−1
h )−Aw(ξ

m, zm−1
h )

= ∂τ (ξ, zh)
m − (ζm, zm−1

h ).(72)

Here, we have used (6). Since zMh = 0, we obtain by summing (16)

M∑
m=1

τ∥ξm∥2 = −
M∑

m=1

τ(ζm, zm−1
h ).
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Now, apply Cauchy-Schwarz inequality and then Young’s inequality to have

M∑
m=1

τ∥ξm∥2 ≤
M∑

m=1

τ∥ζm∥−1,h∥zm−1
h ∥1,h

≤ max
1≤m≤M

∥zm−1
h ∥1,h

M∑
m=1

τ∥ζm∥−1,h.

≤ Cν max
1≤m≤M

∥zm−1
h ∥21,h + C(ν)

( M∑
m=1

τ∥ζm∥−1,h

)2
,

where ν is a suitable positive real number. It then follows from Lemma 4.2
with Fm = ξm that

M∑
m=1

τ∥ξm∥2 ≤ C
( M∑

m=1

τ∥ζm∥−1,h

)2
≤ Cτ2∥ζ1∥2−1,h + C

( M∑
m=2

τ2

t2m−1

)( M∑
m=2

t2m−1∥ζm∥2−1,h

)
≤ Cτ2∥ζ1∥2−1,h + C

M∑
m=2

t2m−1∥ζm∥2−1,h.

In the last term, we have used that

M∑
m=2

τ2

t2m−1

=
M∑

m=2

τ2

τ2(m− 1)2
=

M∑
m=2

1

(m− 1)2
≤ π2

6
.

Hence, it follows from (15) that

tl+1∥ξl+1∥2 ≤ Cτ2∥ζ1∥2−1,h + C

M∑
m=2

t2m−1∥ζm∥2−1,h,(73)

for 1 ≤ l ≤M − 1. Now from (9) to get

τ2∥ζ1∥2−1,h =
∥∥∥ ∫ τ

0
suhss(s)ds

∥∥∥2
−1,h

≤ τ

∫ τ

0
s2∥uhss(s)∥2−1,hds

≤ Cτ

∫ τ

0
s2∥uhs(s)∥21,hds

≤ Cτ∥uh(0)∥2.(74)
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Here, we have used estimate (30) and estimate (4). Also, from (10),

t2m−1∥ζm∥2−1,h ≤ τ

3
t2m−1

∫ tm

tm−1

∥uhss(s)∥2−1,hds

≤ τ

3

∫ tm

tm−1

s2∥uhss(s)∥2−1,hds

≤ Cτ

∫ tm

tm−1

s2∥uhs(s)∥21,hds.

Hence,

M∑
m=2

t2m−1∥ζm∥2−1,h ≤ Cτ

∫ tM

0
s2∥uhs(s)∥21,hds

≤ Cτ∥uh(0)∥2.(75)

Now, combining estimates (17)-(19), we obtain

tl+1∥ξl+1∥2 ≤ Cτ∥uh(0)∥2, 1 ≤ l ≤M − 1,(76)

, which completes the rest of the proof. �
Like earlier, we use the parabolic duality argument for the optimal L2

norm error estimate with non-smooth data. For any fixed tn > 0 (1 ≤ n ≤
M) and any function ψh ∈ V 0

h , define wh(s) ∈ V 0
h to be the continuous-time

weak Galerkin solution of the backward problem

(v0, whs)−Aw(vh, wh) = 0 ∀vh = {v0, vb} ∈ V 0
h , s ≤ tn,(77)

with wh(tn) = ψh.
Let {Wm

h }nm=0 ⊂ V 0
h be the solution of discrete time backward problem

(v0, ∂τW
m
h )−Aw(vh,W

m−1
h ) = 0 ∀vh = {v0, vb} ∈ V 0

h , 1 ≤ m ≤ n,(78)

with Wn
h = ψh.

Now, from the discrete analog of (48), we have

∂τ{(uh, wh)− (Uh,Wh)}m = 0.(79)

Sum (23) over m from 1 ≤ m ≤ n, we obtain

(ξn, ψh) = (uh(0), wh(0)−W 0
h ).(80)

Also, by Lemma 4.1 applied to wh(tm)−Wm
h with time reversed, we get

(ξn, ψh) ≤ ∥uh(0)∥∥wh(0)−W 0
h∥ ≤ Cτ∥uh(0)∥∥wht(tn)∥.(81)

Lemma 4.4. If f = 0 and u0 ∈ L2(Ω), then

∥unh − Un
h ∥ ≤ Cτ

tn
∥uh(0)∥.(82)

Proof. Summing (23) over m = q + 1, . . . , n with q = [n/2] and setting
ψh = ξn, we obtain

∥ξn∥2 = (ξq, wq
h) + (U q

h, (wh −Wh)
q)

= −(ξq, (wh −Wh)
q) + (ξq, wq

h) + (uqh, (wh −Wh)
q).
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Next, apply the Cauchy-Schwarz inequality to obtain

∥ξn∥2 ≤ ∥ξq∥∥(wh −Wh)
q∥+ ∥ξq∥∥wq

h∥+ ∥uqh∥∥(wh −Wh)
q∥.(83)

Now by Lemma 4.3, we obtain

∥(wh −Wh)
q∥ ≤ Cτ1/2

t
1/2
q

∥wh(tn)∥.

In the above relation, multiplying and dividing by (tn − tq)
1/2, we get

∥(wh −Wh)
q∥ ≤ Cτ1/2

(tn − tq)1/2
∥wh(tn)∥.

Here, we have used the fact that

(tn − tq)
1/2

t
1/2
q

=
( tn
tq

− 1
)1/2

= (
n

[n/2]
− 1)1/2 ≤

√
2.

Now, we multiply and divide t
1/2
n , we have

∥(wh −Wh)
q∥ ≤ Ct

1/2
n τ1/2

t
1/2
n

(
tn − tq

)1/2 ∥wh(tn)∥ ≤ Cτ1/2

t
1/2
n

∥ξn∥.(84)

Here, we have used the fact that

t
1/2
n

(tn − tq)1/2
=
( n

n− [n/2]

)1/2
≤

√
2.

It follows by (25) with time-reversed and (30) that

(ξq, wq
h) ≤ Cτ∥uh(0)∥∥wht(tq)∥ ≤ Cτ

tn
∥uh(0)∥∥ξn∥,(85)

and

(uqh, (wh −Wh)
q) ≤ Cτ∥wh(tn)∥∥uht(tq)∥ ≤ Cτ

tn
∥uh(0)∥∥ξn∥.(86)

Now, estimates (28)-(30) together with (27) leads to

∥ξn∥ ≤ Cτ1/2

t
1/2
n

∥ξq∥+ Cτ

tn
∥uh(0)∥ ≤ Cτ

tn
∥uh(0)∥. �(87)

5. Numerical Section

In this section, we have tested various numerical examples for the par-
abolic problem (2)-(3) in Ω × J , where Ω ⊂ R2 and J = (0, T ]. Finite
element partitions with different configurations like triangular, rectangular,
and polygonal meshes are used for solving parabolic problems to confirm
the flexibility of the WG method. These numerical results demonstrate that
the scheme is robust and accurate. All computations are carried out using
MATLAB software.

For a given finite number of successive iterations (indexed by i), let ei be
the error corresponding to the L∞(L2)-norm on the i-th iteration, and hi
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is the corresponding mesh size. Then expected order of convergence (EOC)
can be defined by

EOC(ei) = log
(ei+1

ei

)
/ log

(hi+1

hi

)
.

Let Un
h be the weak Galerkin solution defined by (1). Then, we have

calculated the following error

enh := Qhu(x, tn)− Un
h

at final time tn = T with respect to L2-norm for the linear WG space of the

form (P1(K), P1(∂K),
[
P0(K)

]2
).

Example 5.1. Non-smooth data with triangular mesh: This example
is derived from (cf. Exercise 3.7, page 171, [2]). Consider the problem (2)-
(3) in Ω × J , where Ω = (0, 2) × (0, 2). The exact solution of the given
problem is defined as

u(x, y, t) =
200

π2

∞∑
i,j=1

1

ij
{1 + (−1)i+1}{1− cos(

jπ

2
)} exp{−π2t( i

2 + j2

36
)}

× sin(
iπx

2
) sin(

jπy

2
),

with initial data

u0 =

{
50 if y ≤ 1,

0 otherwise.

The right-hand side f can be evaluated from the exact solution u and the
diffusion-coefficient

α =

[
1/9 0
0 1/9

]
.

The triangular mesh is used in this example, depicted in Figure 5.1. The
domain is uniformly partitioned into n × n sub rectangles in such a way
that each rectangular element is further divided into two triangles using a
diagonal line with a negative slope, where the mesh size is h = 1/n. The
errors with respect to L∞(L2) norm for linear WG space is reported in Table
5.1 at final time T = 1.

Example 5.2. Non-smooth data with polygonal mesh: We consider a
second-order parabolic equation on a two-dimensional domain Ω×J , where
Ω = (0, 1)× (0, 1) for which the exact solution possesses non-smooth initial
data. The example discussed here is extracted from [4].

ut −
1

12
∆u = 0 in Ω× J,

u = 0 on ∂Ω× J,(88)

u(x, y, 0) = u0 in Ω.
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Figure 5.1. An initial triangular mesh with h = 1/2 (left),
and its refinement with h = 1/8 (right).

We select the data appearing in (1) by setting the exact solution,

u(x, y, t) =
8

π2

∞∑
i,j=0

cicj exp{−π2t
(2i+ 1)2 + (2j + 1)2

12
}

× sin(πx(2i+ 1)) sin(πy(2j + 1)),

where

ci =

{
(−1)(i/2)(2i+ 1)−1 if i is even,

(−1)(i+1)/2(2i+ 1)−1 otherwise,

with initial data

u0 =

{
1 if 1/4 ≤ x, y ≤ 3/4,

0 otherwise.

In this example, we have used polygonal meshes. A typical polygonal
mesh and its refinement are depicted in Figure 5.2. The errors with respect
to L∞(L2)-norm for linear WG space is represented in Table 5.1 at final
time T = 1. We have achieved optimal order of convergence in L∞(L2)-
norm, which confirms the theoretical prediction as proved in Theorem 4.1.
This can be observed from Table 5.1.
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Figure 5.2. An initial polygonal mesh (left) and its refine-
ment (right).
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Table 5.1. The history of L∞(L2) error convergence with
time step τ = h2.

Example 5.1 (Triangular mesh) Example 5.2 (Polygonal mesh)

h ∥enh∥ EOC ∥enh∥ EOC

1/4 7.127644e-01 - 3.303126e-03 -

1/8 1.762327e-01 2.015943e+00 8.109071e-04 2.026224e+00

1/16 4.407500e-02 1.999450e+00 2.021031e-04 2.004445e+00

1/32 1.102763e-02 1.998837e+00 5.049565e-05 2.000861e+00

1/64 2.757641e-03 1.999617e+00 1.262222e-05 2.000194e+00

1/128 6.894597e-04 1.999896e+00 3.155453e-06 2.000047e+00

Example 5.3. Non-smooth data with rectangular mesh: In the fol-
lowing example, we choose Ω = (0, 1)× (0, 1). We select the data appearing
in (2)-(3) by setting the exact solution, which we have taken from [2] as

u(x, y, t) =
400

π2

∞∑
i,j=1

1

ij
{1− cos(

iπ

2
)}{1− cos(

jπ

2
)} exp(−π2t( i

2 + j2

12
))

× sin(iπx) sin(jπy),

with initial data

u0 =

{
100 if x, y ≤ 1/2,

0 otherwise,

and diffusion-coefficient

α =

[
1/12 0
0 1/12

]
.

In this example, we have used rectangular mesh, as shown in Figure 5.3.
The errors with respect to L∞(L2)-norm for linear WG space is reported in
Table 5.2 at final time T = 1.

Example 5.4. Comparison among smooth data and non-smooth
data: We consider a two-dimensional heat transfer equation with homoge-
neous boundary conditions. The solution to the model problem represents
the temperature distribution in a thin rectangular plate. The temperature
distribution of the insulated edges and faces of the plate is kept at zero.

(P∗)


ut − α∆u = 0 in Ω× J,

u(x, 0) = u0, in Ω,

u(x, t) = 0 on ∂Ω× J,

where α denotes the thermal diffusivity and Ω = (0, 1)× (0, 1).
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Figure 5.3. An initial rectangular mesh with h = 1/2
(left), and its refinement with h = 1/4 (right).

Table 5.2. L∞(L2) error convergence with time step τ = h2.

h ∥enh∥ EOC

1/4 3.915363e+00 -

1/8 8.092984e-01 2.274402e+00

1/16 1.893695e-01 2.095468e+00

1/32 4.647979e-02 2.026528e+00

1/64 1.156529e-02 2.006802e+00

1/128 2.887895e-03 2.001711e+00

Here, we would check the behavior of the given solution with smooth
and non-smooth data. For non-smooth data, we have opted the same exact
solution as given in example 5.3, whereas, for the smooth data, we have
taken the exact solution from (cf. Exercise 3.7, page 171, [2]) as

u(x, y, t) =
1600

π2

∞∑
i,j=odd

sin(iπx) sin(jπy)

ij
× exp(−π2t( i

2 + j2

3
))

with initial data u0 = 100, and the thermal diffusion-coefficient

α =

[
1/3 0
0 1/3

]
.

The uniform triangular mesh is used as taken in example 5.1. The error
with respect to L∞(L2) norm for linear WG space is represented in Table
5.3 at final time T = 1. We have obtained the optimal order of convergence
in L∞(L2) norm as shown in Table 5.3. Figure 5.4 show the temperature
distribution in the plat at t = 1 for smooth initial data. Further, Figure
5.5, and Figure 5.6 shows the temperature distribution in the plat at various
time level t = 0.01, 1, 5, 10 with a fix time step τ = 0.002, when initial
data is non-smooth. It can be demonstrated from the Figures 5.5, 5.6 that
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when time t increases, then solution decays to zero. Here, we can observe
from Table 5.3 that when non-smooth initial data u0 appeared in (P∗),
its convergence behavior is the same as smooth initial data, and we have
achieved an optimal rate of convergence in L∞(L2)-norm.

Table 5.3. The history of L∞(L2) error convergence with
time step τ = h2.

Smooth data Non-smooth data

h ∥enh∥ EOC ∥enh∥ EOC

1/2 6.929241e-01 - 1.435194e+00 -

1/4 2.222611e-01 1.640442e+00 3.429445e-01 2.065199e+00

1/8 4.778263e-02 2.217698e+00 8.387519e-02 2.031659e+00

1/16 1.124189e-02 2.087601e+00 2.085701e-02 2.007712e+00

1/32 2.763636e-03 2.024246e+00 5.207374e-03 2.001905e+00

1/64 6.879407e-04 2.006212e+00 1.301416e-03 2.000474e+00

1/128 1.717990e-04 2.001562e+00 3.155453e-04 2.044163e+00

Figure 5.4. WG solution plot (left), exact solution plot
(right) at t = 1 in example 5.4 for smooth initial data.

Example 5.5. Non-smooth data on rectangular mesh with Hanging
nodes: In this example, we solve the same problem as in example 5.2 on
rectangular mesh with hanging nodes in the finite element partition. The
initial mesh is shown in Figure 5.7 (Left). A uniform refinement procedure
generates the mesh on the right in Figure 5.7. It should be pointed out that
the initial mesh has hanging nodes A,B,C, and D. For the finite element
partition Th with hanging nodes, we notice that the WG algorithm is still
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Figure 5.5. WG solution plot (top left), exact solution plot
(top right) at t = 0.01 and WG solution plot (bottom left),
exact solution plot (bottom right) at t = 1 in example 5.4
for non-smooth initial data

holding on to these refinements. The errors with respect to L∞(L2) norm
for linear WG space is reported in Table 5.4 at final time T = 1.

Table 5.4. L∞(L2) error convergence with time step τ = h2.

h ∥enh∥ EOC

1/4 3.918887e-01 -

1/8 1.554516e-01 1.333979e+00

1/16 4.764673e-02 1.706016e+00

1/32 1.271481e-02 1.905868e+00

1/64 3.234341e-03 1.974966e+00

1/128 7.590261e-04 2.091250e+00

6. Conclusion

In this work, we have developed a fully discrete scheme based on the weak
Galerkin method in space and backward-Euler in time for a linear parabolic
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Figure 5.6. WG solution plot (top left), exact solution
plot (top right) at t = 5 and WG solution plot (bottom left),
exact solution plot (bottom right) at t = 10 in example 5.4
for non-smooth initial data.
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Figure 5.7. An initial rectangular mesh with Hanging n-
odes (left) and its refinement (right).

equation with non-smooth initial data on polygonal meshes. The optimal
order of convergence in the L∞(L2) norm is proved for both semidiscrete
and full-discrete WG schemes for linear WG space. The above-discussed
analysis can also be used for proving non-homogeneous data as well. The
obtained results and numerical scheme can help to solve a wide variety of
heat conduction models with non-homogeneous inner structures. Currently,
we are working on the stabilizer-free WG-FEMs for the following Cahn-
Hilliard equation with non-smooth initial data (cf. [12,30])

ut −∆(−∆u+ ϕ(u)) = 0 x ∈ Ω ⊂ R3, t > 0,

together with appropriate boundary conditions.
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