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NUMERICAL ANALYSIS OF A STRUCTURE-PRESERVING

SPACE-DISCRETIZATION FOR AN ANISOTROPIC AND

HETEROGENEOUS BOUNDARY CONTROLLED

N-DIMENSIONAL WAVE EQUATION AS

A PORT-HAMILTONIAN SYSTEM
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Abstract. The anisotropic and heterogeneous N -dimensional wave equation, controlled and ob-

served at the boundary, is considered as a port-Hamiltonian system. A recent structure-preserving

mixed Galerkin method is applied, leading directly to a finite-dimensional port-Hamiltonian sys-
tem: its numerical analysis is carried out in a general framework. Optimal choices of mixed finite

elements are then proved to reach the best trade-off between the convergence rate and the num-

ber of degrees of freedom for the state error. Exta compatibility conditions are identified for the
Hamiltonian error to be twice that of the state error, and numerical evidence is provided that

some combinations of finite element families meet these conditions. Numerical simulations are

performed in 2D to illustrate the main theorems among several choices of classical finite element
families. Several test cases are provided, including non-convex domain, anisotropic or heteroge-

neous cases and absorbing boundary conditions.

Key words. Port-Hamiltonian systems, N -dimensional wave equation, finite element method,

structure-preserving discretization, numerical analysis.

1. Introduction

The present work addresses the numerical analysis of a structure-preserving
space-discretization of an N -dimensional wave equation with boundary control in
the formalism of port-Hamiltonian systems. Since it is intended to merge several
points of view on the same subject, the authors have taken care to be pedagogical
in each section, hence trying to talk to several scientific communities. This choice
of presentation will certainly lead readers to find some parts related to his/her
domain(s) of research unnecessary. Roughly speaking, this paper is intended to
port-Hamiltonian specialists, numerical analysts, and scientific computing users.

1.1. Port-Hamiltonian systems. In the last two decades, infinite-dimensional
port-Hamiltonian systems (pHs) [57, 46] have proved to be a very accurate way
to model and control complex multi-physics open systems. This framework enjoys
several advantages, such as a relevant physical meaning and a useful underlying
geometrical structure (namely Stokes-Dirac structure). It has to be pointed out
that, even if known Partial Differential Equations (PDEs) are often only rewrit-
ten in the pHs formalism in general, this powerful tool also allows a direct mod-
elling of physical systems (see for instance [17, 48, 3]) which proves useful to derive
PDEs. Furthermore, it is intrinsically modular: interaction systems (such as fluid-
structure interactions [14], heat-wave interactions [32], plasma in a tokamak [58],
etc.) can be described through the interconnection of several subsystems with a
port-Hamiltonian structure, leading to a more complex pHs [15, 40]. It finally leads
to a power balance, expressing the variation of the Hamiltonian functional (often
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chosen as the system total energy), especially via boundary controls and boundary
observations.

1.2. Structure-preserving discretisation. A recent topic of research is to pro-
vide accurate (space-) discretization methods to preserve this powerful formalism.
Roughly speaking, mainly two non-exclusive communities work on the issue of
structure-preserving discretization. The first one makes use of exterior calculus,
while the other makes use of vector calculus. It is known that the two points of
view are well-founded, and several strategies to merge their advantages efficiently
have already been proposed for several discretization issues (see e.g. [36] and the
many references therein).

In the present work, a method for the preservation of the power balance of the
Hamiltonian (encoded in an underlying Stokes-Dirac structure) is studied. In the
wide literature, several strategies have been proposed: we can cite e.g. [33, 52, 38]
for geometric discretizations, [41, 18] for Galerkin methods and [54] for finite dif-
ferences method. However, some of these strategies seem difficult to carry over
to N -dimensional systems or to apply to complex geometries, while others re-
quire post-processing to construct the finite-dimensional Dirac structure. Another
structure-preserving community works on the preservation of the de Rham coho-
mology and related decompositions (such as the Hodge-Helmholtz decomposition).
This topic is older and finds its origins in problems such as electromagnetism (see
e.g. [44] and references therein). It is often written in the exterior calculus for-
malism, allowing for more abstraction, hence more generality, for the construction
of discrete differential operators: see e.g. [34, 9, 5, 6, 27] for theoretical aspects,
and [22, 21, 28] for some applications to partial differential equations.

According to these definitions of structure-preserving discretization, a numerical
method for port-Hamiltonian systems should be able to take into account the afore-
mentioned continuous properties at the discrete level. Indeed, this would lead to a
relevant physical meaning for the computed quantities (without post-processing),
together with an obvious manner to distribute the computations thanks to the
modularity property: in particular, each sub-system could be reduced through a
structure-preserving model reduction [30, 19, 31] prior to their interconnections.
Furthermore, in the field of automatic control, several methodologies for efficient
control or stabilisation rely on the pHs form of the approximate finite-dimensional
system [53]: this encourages research for efficient structure-preserving methods of
infinite-dimensional pHs, and even more those related to boundary-controlled-and-
observed PDEs.

A special case of the mixed Galerkin method, called the Partitioned Finite Ele-
ment Method (PFEM) [13], seems to be one of the most adapted scheme to build
a mimetic finite-dimensional Dirac structure [46].

In [35], the numerical method proposed for the spatial discretization of closed
hyperbolic systems, based on the primal-dual or dual-primal formulations given in
[35, Eqs. (15) and (16)], and making use of an abstract mixed Galerkin method, can
be seen as the starting point of the PFEM for closed systems. Indeed, the idea of
partitioning the system to choose on which equation an integration by parts should
be applied was already mentioned: “the principle is to multiply the two equations
[...] by test functions and to integrate over Ω, but the key point this time is to
apply integration by parts only for one of the two equations.”, see [35, p. 207]. The
new difficulty for port-Hamiltonian systems lies in the boundary terms, namely the
control and the observation. The present work investigates the issue of accurate
approximations at the boundary.
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Indeed, the numerical analysis of boundary controlled wave-like systems dis-
cretized via the Mixed Finite Element Method (MFEM) often makes use of known
results on elliptic systems. This is an easy way to obtain convergence rates, but
it definitely strengthens the conditions on the finite element families that can be
used, for instance by introducing an artificial need of so-called inf–sup condition.
In the case of Dirichlet boundary control, this makes the numerical schemes arti-
ficially complicated, requiring the discretization of a lifting operator (i.e. solving
an elliptic system at each time step) or the addition of Lagrange multipliers. To
the best of our knowledge, numerical analysis without these difficulties has only
been performed on particular choices of finite elements for the former case, see e.g.
[35, Remark 6] and for instance [7, 8], where new families of mixed finite elements
are constructed on purpose. The present work extends this result to open dynam-
ical systems for all conforming finite elements and both Neumann and Dirichlet
boundary controls, without such an inf–sup condition, neither the discretization of
a lifting operator, nor the use of Lagrange multipliers. The less restrictive conform-
ing conditions (for closed systems) have already been stated in [35, Eq. (31)], and
claimed to be required in [10, Section 7.9] for efficient convergence (with usual finite
elements); in [42] a similar result has already been obtained for the Timoshenko
beam in 1-D. Furthermore, it is shown that adding compatibility conditions be-
tween the finite element families in order to preserve de Rham cohomology results
in a better convergence rate for the discrete Hamiltonian towards the continuous
one, see Theorem 4.4.

1.3. Statement of the main results. The objective of this section is to provide
an informal statement of the main result. In this work, the aim is to analyse
the convergence of the PFEM, applied on the following system, associated to the
N -dimensional anisotropic and heterogeneous wave equation

(1)

{
ρ(−→x ) ∂2

tw(t,−→x )− div
(
T (−→x )

−−−→
grad(w(t,−→x ))

)
= 0, ∀−→x ∈ Ω, t ≥ 0,

w(0,−→x ) = w0(−→x ), ∂tw(0,−→x ) = w1(−→x ), ∀−→x ∈ Ω,

together with the following collocated boundary control u and boundary observation
y

(2)

{
u(t,−→x ) =

(
T (−→x )

−−−→
grad(w(t,−→x ))

)> −→n (−→x ), ∀−→x ∈ ∂Ω, t ≥ 0,

y(t,−→x ) = ∂tw(t,−→x ), ∀−→x ∈ ∂Ω, t ≥ 0.

In these equations

• Ω is an open bounded domain of RN , N = 1, 2, 3, . . . , with Lipschitz bound-
ary ∂Ω;

• −→n is the outward normal at the boundary ∂Ω;
• w(t,−→x ) is the deflection from the equilibrium position at point −→x ∈ Ω and

time t ≥ 0;
• u is the boundary control corresponding to forces applied at the boundary;
• y is the collocated boundary observation corresponding to the measured

velocities on ∂Ω;
• ρ is the mass density, supposed to be bounded from above and below (almost

everywhere) by ρ+ and ρ− > 0 respectively;

• T is Young’s elasticity modulus, supposed to be a real symmetric tensor
bounded from above and below (almost everywhere, in the matrix-norm

sense) by T+I and T−I respectively, where T− > 0 and I is the identity
tensor;
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• > stands for the transpose of vectors or matrices.

We associate to system (1)–(2) the Hamiltonian

H(t) :=
1

2

∫
Ω

[ ( −−−→
grad

(
w(t,−→x )

))>
T (−→x )

−−−→
grad

(
w(t,−→x )

)
+ ρ(−→x )

(
∂tw(t,−→x )

)2 ]
d−→x ,

made of the potential and kinetic energies of the physical system.
The following statement is an abridged and informal version of Theorems 4.2

and 4.4.
Main results. Let us denote the strain −→α q :=

−−−→
grad(w), the linear momentum

αp := ρ∂tw, and their discrete counterparts −→αd
q and αdp obtained by the Partitioned

Finite Element Method. The Hamiltonian then rewrites
(3)

H(t) := H(−→α q(t), αp(t)) :=
1

2

∫
Ω

[(−→α q(t,
−→x )
)>

T (−→x ) −→α q(t,
−→x ) +

αp(t,
−→x )2

ρ(−→x )

]
d−→x .

Let us define the discrete Hamiltonian Hd(t) := H(−→αd
q(t), α

d
p(t)) and the two errors:

• EX (t) :=

∥∥∥∥(−→α q(t)
αp(t)

)
−
(−→αd

q(t)
αdp(t)

)∥∥∥∥
X

the absolute error in a suitable energy

space X ;
• EH(t) := H(t) − Hd(t) the error between the continuous and the discrete

Hamiltonians.

Under suitable assumptions (regularity, conformity and order given by a parameter
κ) on the three finite element families (for −→α q in Ω, αp in Ω, and (u, y) on ∂Ω),
for all T > 0, all initial data smooth enough and all u smooth enough, there exist
C > 0, independent of h the mesh size parameter, and h∗ > 0 such that

EX (t) ≤ C hκ, ∀t ∈ [0, T ], h ∈ (0, h∗).

Furthermore, under compatibility assumptions between the three finite element fam-
ilies, the Hamiltonian error satisfies

(4) EH(t)− EH(0) =
1

2

( (
EX (t)

)2 − (EX (0)
)2 )

, ∀t ∈ [0, T ],

giving a convergence rate of order 2κ.

1.4. Organization of the paper. The paper is organized as follows: in Section 2,
the well-posedness of the physical system (1)–(2) is recalled, and some assumptions
on the regularity of the solutions are made. In Section 3, the PFEM is applied
and discussed, and the resulting finite-dimensional Dirac structure is highlighted.
The case of Dirichlet boundary control, i.e. switching control and observation, is
addressed in Section 3.2. In Section 4, the main convergence results are proved for
a general Galerkin approximation method, namely Theorem 4.2 for the state error,
and Theorem 4.4 for the Hamiltonian error. In Section 5, accurate combinations
of finite elements are proposed for a given rate of convergence, by minimizing the
number of degrees of freedom. In Section 6, 2D simulations are provided to exhibit
the proven convergence rates and its optimality (i.e. maximizing the convergence
rate with the minimal number of degrees of freedom); several test cases are provided
to illustrate the flexibility of the method. Finally, Section 7 concludes this work
with a summary of the results and draws some perspectives.
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2. The N-dimensional wave equation as a pHs

In this section, the boundary-controlled-and-observed wave system (1)–(2) is
firstly recast as a port-Hamiltonian system. This system has already been studied
in the pHs framework in [39], in a more general context, i.e. with several boundary
conditions on a partition of ∂Ω and internal fluid damping. Secondly, well-posedness
is recalled [39] and a refined regularity result is conjectured, assuming a higher
regularity of the physical parameters, the initial data, and the control.

Although it should be possible to prove the regularity assumptions making use
of Boundary Control Systems theory [55, Chapter 10.] or by adapting the results
in [39] to the uniform boundary control case considered here, it goes beyond the
scope of this work.

2.1. The distributed-parameters port-Hamiltonian system. From now on,
Hκ(Ω) denotes the usual Sobolev space for κ ∈ R, and H0(Ω) is identified with
L2(Ω) (the same notations are used on the boundary ∂Ω). We also write L2(Ω) :=
(L2(Ω))N and Hκ(Ω) := (Hκ(Ω))N .

Definition 2.1 (Traces [16, Chapter 2]). The linear trace operators are defined as
follows

• the Dirichlet trace operator γ0, defined by γ0(v) := v|∂Ω for v ∈ C∞(Ω),

extends continuously from H1(Ω) onto H
1
2 (∂Ω);

• the normal trace operator γ⊥, defined by γ⊥(−→v ) := (−→v > −→n )|∂Ω on

(C∞(Ω))N , extends continuously from

H(div; Ω) :=
{−→v ∈ L2(Ω) | div

(−→v ) ∈ L2(Ω)
}
,

onto H−
1
2 (∂Ω).

The so-called Green’s formula then reads: for all −→v ∈ H(div; Ω), v ∈ H1(Ω),

(5)

∫
Ω

v(−→x )div(−→v (−→x )) d−→x = −
∫

Ω

( −−−→
grad(v(−→x ))

)> −→v (−→x ) d−→x

+
〈
γ⊥(−→v ), γ0(v)

〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

.

The last term in (5) is the duality bracket between H
1
2 (∂Ω), and H−

1
2 (∂Ω). Note

that as soon as γ⊥(−→v ) ∈ L2(∂Ω), this bracket reduces to the usual L2(∂Ω)-inner
product [55, 2.9].

Let us define the strain −→α q :=
−−−→
grad(w) and the linear momentum αp := ρ ∂tw.

Then one can rewrite the first line of System (1) as

(6)

(
∂t
−→α q

∂tαp

)
=

(
0

−−−→
grad

div 0

)
︸ ︷︷ ︸

=:J

(
T 0
0 ρ−1

)
︸ ︷︷ ︸

=:Q

(−→α q

αp

)
.

The boundary control and observation (2) then read

(7) u = γ⊥

(
T −→α q

)
, y = γ0

(
ρ−1αp

)
.

We already define in (3) the Hamiltonian of (6)–(7)

H(t) := H(−→α q(t), αp(t)) :=
1

2

∫
Ω

[(−→α q(t,
−→x )
)>

T (−→x ) −→α q(t,
−→x ) +

αp(t,
−→x )2

ρ(−→x )

]
d−→x ,
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corresponding to the sum of the potential and kinetic energy, i.e. the total mechan-
ical energy of the system. Making use of Green’s formula (5) together with (6)–(7),
one gets that for all t ≥ 0

(8)
d

d t
H(t) = 〈u(t), y(t)〉

H−
1
2 (∂Ω),H

1
2 (∂Ω)

,

meaning that the variation of energy is the power supplied to the system at the
boundary [57].

Remark 2.1. In the Hamiltonian formalism, −→α are called the energy variables
while −→e := δ−→αH(−→α ), the variational derivative of H with respect to −→α [57] are the
co-energy variables. The relations between −→e and −→α , linear in the present case, are
known as the constitutive relations, which enable to close the system of equations.

Remark 2.2. The co-energy variables −→e q := δ−→αqH and ep := δαpH are physically

meaningful: −→e q = T −→α q = T
−−−→
grad (w) is the stress, and ep = ρ−1αp = ∂tw

is the deflection velocity. Furthermore, as seen in (8), a relevant way to control
and observe the system through the boundary is related to both the traces of these
co-energy variables.

2.2. Existence and uniqueness of solutions. Let X := L2(Ω)× L2(Ω) be the
energy space, endowed with the inner product〈−→z 1,

−→z 2

〉
X :=

〈
Q
(−→α q1
αp1

)
,

(−→α q2
αp2

)〉
L2(Ω)×L2(Ω)

=

∫
Ω

((
T (−→x ) −→α q1(−→x )

)> −→α q2(−→x )

+
(
ρ(−→x )−1αp1(−→x )

)
αp2(−→x )

)
d−→x ,

for all (−→z 1,
−→z 2) :=

((−→α q1
αp1

)
,

(−→α q2
αp2

))
∈ X 2. It is clear from the assumption on

ρ and T that the norm inherited from this inner product is equivalent to the usual
L2(Ω)× L2(Ω)-norm.

In addition, let Z := Q−1

[
H(div; Ω)
H1(Ω)

]
be the solution space, U := H−

1
2 (∂Ω) the

control space and Y := U ′ = H
1
2 (∂Ω) the observation space. It has been shown

in [39, Corollary 4.3] that this leads to an internally well-posed strong impedance
conservative boundary control system on (U ,X ,Y).

Theorem 2.1 (Corollary 4.3 in [39]).

For all u ∈ C2([0,∞);U), −→z 0 :=

(−→α q0
αp0

)
:=

( −−−→
grad(w0)
ρ−1w1

)
∈ Z such that u(0) =

γ⊥

(
T
−−−→
grad(w0)

)
, there exists a unique solution to (6)–(7) with

−→z =

(−→α q

αp

)
∈ C1([0,∞);X ) ∩ C([0,∞);Z), y ∈ C([0,∞);Y).

Remark 2.3. The compatibility condition u(0) = γ⊥

(
T
−−−→
grad(w0)

)
is well-known

in boundary control systems theory. See for instance [55, Chapter 10] for more
details.
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With this material at hand, we are now able to define properly what is meant
by formally skew-symmetric: the operator JQ restricted to H0(div; Ω) × H1(Ω),
where H0(div; Ω) :=

{−→v ∈ H(div; Ω) | γ⊥
(−→v ) = 0

}
, is skew-adjoint on X . This

follows from Green’s formula (5).

As is often the case in numerical analysis, sufficient regularity of the solution
of the continuous problem is required to be allowed to use the interpolation error
inequalities and prove convergence. The following development is formal, and its
usefulness for the rest of this work will be enlightened in Remark 2.4.

For all integer κ ≥ 0, assume that ∂Ω is Cκ+2 and define

• H0(div; Ω) := L2(Ω) and

Hκ(div; Ω) :=
{−→v ∈ Hκ−1(Ω) | div

(−→v ) ∈ Hκ−1(Ω)
}
,

when κ ≥ 1, endowed with the inner product〈−→v 1,
−→v 2

〉
Hκ(div;Ω)

:=
〈−→v 1,

−→v 2

〉
Hκ−1(Ω)

+
〈
div(−→v 1),div(−→v 2)

〉
Hκ−1(Ω)

;

• Xκ := Hκ(div; Ω) × Hκ(Ω) endowed with the following bilinear form, for

all −→z i :=

(−→v i

vi

)
∈ Xκ, i = 1, 2〈−→z 1,

−→z 2

〉
Xκ

:=
〈
Q−→z 1,

−→z 2

〉
Hκ(div;Ω)×Hκ(Ω)

:=
〈
T −→v 1,

−→v 2

〉
Hκ(div;Ω)

+
〈
ρ−1 v1, v2

〉
Hκ(Ω)

,

the energy space;

• Zκ := Q−1

[
Hκ+1(div; Ω)
Hκ+1(Ω)

]
the solution space;

• Uκ := Hκ− 1
2 (∂Ω) the control space;

• Yκ := Hκ+ 1
2 (∂Ω) the observation space.

It is known from [16, Chapter 2; Theorem 1 & Proposition 10] that the traces of
Definition 2.1 satisfy

• γ0 is continuous from Hκ+1(Ω) onto Hκ+ 1
2 (∂Ω);

• γ⊥ is continuous from Hκ+1(div; Ω) onto Hκ− 1
2 (∂Ω).

Assume furthermore that ρ and T are smooth enough for Xκ to be a Hilbert
space.

Conjecture 2.1. With the above notations and assumptions, it holds

∀ −→z 0 :=

( −−−→
grad(w0)
ρ−1w1

)
∈ Zκ, ∀ u ∈ C2([0,∞);Uκ) : u(0) = γ⊥

(
T
−−−→
grad(w0)

)
,

there exists a unique solution −→z satisfying

(H0) −→z ∈ C1([0,∞);Xκ) ∩ C([0,∞);Zκ), and y ∈ C([0,∞);Yκ).

Roughly speaking, it claims that increasing the regularity on ρ, T , ∂Ω, w0,
w1, and u, increases the space regularity of solutions (using the continuity and
surjectivity of γ0 and γ⊥). This seems legitimate according to [39, Corollary 4.3]
(which includes the above case κ = 0). Although this is not proved, this seems to be
a reasonable conjecture at the mathematical level, i.e. for existence and uniqueness
of smooth solutions.
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Remark 2.4. The main purpose of (H0) is to provide a relation between the
maximal H`(div; Ω)- and Hk(Ω)-regularities of −→α q and αp respectively, allowing
for an optimal choice of the order of the finite-dimensional spaces of approximation.
Finally, it has to be kept in mind that Conjecture 2.1 implies that if κ is supposed

to be the maximal regularity (in space) of −→α q, i.e. −→α q(t) ∈ T
−1

Hκ(div; Ω) but
−→α q(t) 6∈ T

−1
Hκ+1(div; Ω), then κ is also the maximal regularity (in space) of αp,

i.e. αp(t) ∈ ρHκ(Ω) but αp(t) 6∈ ρHκ+1(Ω), and reciprocally.

2.3. The weak co-energy formulation. As it is intended to apply a conforming
finite element method, it is mandatory to use a formulation which enables the use
of available finite elements in numerical softwares without destroying the sparsity
property of the FEM, e.g. avoiding matrix inversion.

A simple way to achieve this is to work on the co-energy formulation, which
transfers the physical parameters from the right-hand side of (6) to its left-hand
side, by inverting them at the continuous level. More precisely, rewriting the initial

system (6) by making use of the relations −→α q = T
−1 −→e q and αp = ρep, one obtains

the equivalent port-Hamiltonian system, known as the co-energy formulation

(9)

(
T
−1

0
0 ρ

)(
∂t
−→e q

∂tep

)
= J

(−→e q

ep

)
, u = γ⊥

(−→e q

)
, y = γ0 (ep) .

At the discrete level, this gives rise to weighted mass matrices, carrying all the
physical parameters.

Multiplying (9) in L2(Ω)× L2(Ω) by arbitrary test functions

(−→v q

vp

)
, one gets

〈(
T
−1

0
0 ρ

)(
∂t
−→e q

∂tep

)
,

(−→v q

vp

)〉
L2(Ω)×L2(Ω)

=

〈(
0

−−−→
grad

div 0

)(−→e q

ep

)
,

(−→v q

vp

)〉
L2(Ω)×L2(Ω)

.

which also reads
〈
∂t
−→e q,T

−1 −→v q

〉
L2(Ω)

=
〈 −−−→

grad (ep) ,
−→v q

〉
L2(Ω)

,

〈∂tep, ρ vp〉L2(Ω) =
〈
div
(−→e q

)
, vp
〉
L2(Ω)

.

At this stage, the boundary control in (9) does not appear in the formulation yet.
To this end, we apply Green’s formula (5) on the second line only and obtain

(10)


〈
∂t
−→e q,T

−1 −→v q

〉
L2(Ω)

=
〈 −−−→

grad (ep) ,
−→v q

〉
L2(Ω)

,

〈∂tep, ρ vp〉L2(Ω) = −
〈−→e q,

−−−→
grad (vp)

〉
L2(Ω)

+ 〈u, γ0 (vp)〉U,Y ,

remembering that U = H−
1
2 (∂Ω) and Y = H

1
2 (∂Ω). These equations make sense

if −→v q ∈ L2(Ω) and vp ∈ H1(Ω). Altogether, the test functions have to belong to
L2(Ω)×H1(Ω) (note that this is neither X nor Z defined in Section 2.2).

3. Structure-preserving discretisation

The aim of this section is to show how a simple integration by part on a partition
of the state space, as in the MFEM, is able to transforms a distributed-parameters
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port-Hamiltonian system (i.e. infinite-dimensional) into a lumped-parameters port-
Hamiltonian system (i.e. finite-dimensional). The main difference with the MFEM
is the non-homogeneous boundary condition (i.e. the boundary control) applied to
the partition to be integrated by part. The major interest of this scheme, known as
the Partitioned Finite Element Method (PFEM) [13], is that it directly leads to a
discrete version of the power-balance satisfied by the discrete Hamiltonian, defined
as the continuous one evaluated on the approximations of energy variables.

3.1. Discrete weak formulation and matrix form. We are now in a position
to discretize the system in space. Assume that we have at our disposal three
finite dimensional spaces, typically given by finite elements respectively L2(Ω)-

conforming, H1(Ω)-conforming and H
1
2 (∂Ω)-conforming

Hq := Span
{(−→ϕ i

q

)
i=1,...,Nq

}
⊂ L2(Ω) of dimension Nq ∈ N,

Hp := Span
{(
ϕkp
)
k=1,...,Np

}
⊂ H1(Ω) of dimension Np ∈ N,

and

H∂ := Span
{

(ψm)m=1,...,N∂

}
⊂ H 1

2 (∂Ω) of dimension N∂ ∈ N.

Remark 3.1. Note that the boundary basis (ψm)m=1,...,N∂
, used to approximate

both u and y for simplicity, is chosen to be H
1
2 (∂Ω)-conforming, while u only

required H−
1
2 (∂Ω) to be approximated in a conforming manner. This is a conve-

nient assumption which leads to the usual L2(∂Ω)-inner product at the boundary,
without loss of generality as soon as κ ≥ 1.

Let us approximate the function −→e q in Hq by

−→e q(t,
−→x ) ' −→e d

q(t,
−→x ) :=

Nq∑
i=1

eiq(t)
−→ϕ i
q(
−→x ) =

(−→
ΦΦΦ q(
−→x )
)>

eq(t), ∀t ≥ 0,−→x ∈ Ω,

where for all t ≥ 0 and −→x ∈ Ω, we introduce the compact notations

−→
ΦΦΦ q(
−→x ) :=


(−→ϕ 1

q(
−→x )
)>

...(−→ϕNq
q (−→x )

)>
 ∈ RNq×N , eq(t) :=

 e1
q(t)
...

e
Nq
q (t)

 ∈ RNq .

In the same way, ep is approximated in Hp by

ep(t,
−→x ) ' edp(t,

−→x ) :=

Np∑
k=1

ekp(t)ϕkp(−→x ) =
(
Φp(
−→x )
)>

ep(t), ∀t ≥ 0,−→x ∈ Ω,

where for all t ≥ 0 and all −→x ∈ Ω, we have the compact notations

Φp(
−→x ) :=

 ϕ1
p(
−→x )
...

ϕ
Np
p (−→x )

 ∈ RNp , ep(t) :=

 e1
p(t)
...

e
Np
p (t)

 ∈ RNp .

Finally, u is approximated in H∂ by

u(t,−→s ) ' ud(t,−→s ) :=

N∂∑
m=1

um(t)ψm(−→s ) =
(
Ψ(−→s )

)>
u(t), ∀t ≥ 0,−→s ∈ ∂Ω,
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where for all t ≥ 0 and all −→s ∈ ∂Ω, we also use the compact notations

Ψ(−→s ) :=

 ψ1(−→s )
...

ψN∂ (−→s )

 ∈ RN∂ , u(t) :=

 u1(t)
...

uN∂ (t)

 ∈ RN∂ .

It is now possible to formulate the discrete variational formulation from the con-
tinuous one (10) on Hq ×Hp ×H∂ : for all j = 1, . . . , Nq and all ` = 1, . . . , Np, we
are seeking for (−→e d

q , e
d
p) ∈ Hq ×Hp such that

(11)
〈
∂t
−→e d
q ,T

−1 −→ϕ j
q

〉
L2(Ω)

=
〈 −−−→

grad
(
edp
)
,−→ϕ j

q

〉
L2(Ω)

,〈
∂te

d
p, ρ ϕ

`
p

〉
L2(Ω)

= −
〈−→e d

q ,
−−−→
grad

(
ϕ`p
)〉

L2(Ω)
+
〈
ud, γ0

(
ϕ`p
)〉
L2(∂Ω)

.

From the definition of −→e d
q , e

d
p and ud, this leads to

(12)

Nq∑
i=1

d

d t
eiq

〈
−→ϕ i
q,T

−1 −→ϕ j
q

〉
L2(Ω)

=

Np∑
k=1

ekp

〈 −−−→
grad

(
ϕkp
)
,−→ϕ j

q

〉
L2(Ω)

,

Np∑
k=1

d

d t
ekp
〈
ϕkp, ρ ϕ

`
p

〉
L2(Ω)

= −
Nq∑
i=1

eiq

〈−→ϕ i
q,
−−−→
grad

(
ϕ`p
)〉

L2(Ω)

+

N∂∑
m=1

um
〈
ψm, γ0

(
ϕ`p
)〉
L2(∂Ω)

.

Now, denoting

−−−→
grad (Φp) :=


( −−−→

grad
(
ϕ1
p

))>
...( −−−→

grad
(
ϕ
Np
p

))>
 ∈ RNp×N ,

the gradient of the p-type family (which is H1(Ω)-conforming by hypothesis),

M
T
−1 :=

∫
Ω

−→
ΦΦΦ q(
−→x ) T

−1
(−→x )

(−→
ΦΦΦ q(
−→x )
)>

d−→x ∈ RNq×Nq ,

Mρ :=

∫
Ω

ρ(−→x ) Φp(
−→x )

(
Φp(
−→x )
)>

d−→x ∈ RNp×Np ,

the mass matrices taking the metric of X into account,

D :=

∫
Ω

−→
ΦΦΦ q(
−→x )

( −−−→
grad

(
Φp(
−→x )
))>

d−→x ∈ RNq×Np ,

the averaged gradient and

B∂ :=

∫
∂Ω

γ0 (Φp) (−→s )
(
Ψ(−→s )

)>
d−→s ∈ RNp×N∂ ,

the discrete boundary control operator, we get the following finite-dimensional dy-
namical system from (12)
(13)(

M
T
−1 0

0 Mρ

)
d

d t

(
eq(t)

ep(t)

)
=

(
0 D
−D> 0

) (
eq(t)

ep(t)

)
+

(
0
B∂

)
u(t), ∀t ≥ 0.
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Finally, defining

M∂ :=

∫
∂Ω

Ψ(−→s ) (Ψ(−→s ))> d−→s ∈ RN∂×N∂ ,

the boundary mass matrix and

B∂ :=

(
0
B∂

)
∈ R(Nq+Np)×N∂ ,

the extended boundary control operator, the output is given for all t ≥ 0 by

(14) M∂ y(t) := B>∂
(
eq(t)

ep(t)

)
= B>∂ ep(t).

Now, system (13)–(14) is a finite-dimensional port-Hamiltonian system.

Remark 3.2. One can gather equations (13)–(14) under the flows–efforts formu-
lation often used in the port-Hamiltonian systems community

(15)

MT
−1 0 0

0 Mρ 0
0 0 M∂




d

d t
eq(t)

d

d t
ep(t)

−y(t)

 =

 0 D 0
−D> 0 B∂

0 −B>∂ 0

 eq(t)ep(t)

u(t)

 .

The block diagonal symmetric positive-definite matrix constituted by the mass
matrices on the left-hand side carry the physical parameters by taking the induced
metric into account. On the right-hand side, the skew-symmetric matrix is known
as the extended structure matrix. Together, they give a kernel representation [56]
of the underlying Dirac structure [50].

At this stage, the co-energy formulation (9) of the infinite-dimensional port-
Hamiltonian system (6)–(7) has been accurately discretized as a finite-dimensional
port-Hamiltonian system (13)–(14). The next step is to define a discrete version of
the Hamiltonian H in order to perfectly mimic the power balance (8).

Definition 3.1. The discrete Hamiltonian Hd is defined as the evaluation of H on

the approximations −→αd
q := T

−1 −→e d
q , and αdp := ρ edp, namely

Hd(t) := H(−→αd
q(t), α

d
p(t)).

Proposition 3.1. The discrete Hamiltonian Hd reads

(16) Hd(t) =
1

2

(
eq(t)

)>
M
T
−1 eq(t) +

1

2

(
ep(t)

)>
Mρ ep(t).

For all t ≥ 0, the following power balance holds

(17)

d

d t
Hd(t) = (u(t))

>
M∂ y(t),

=
〈
ud(t), yd(t)

〉
L2(∂Ω)

,

which is the discrete counterpart of (8).

Proof. The equality (16) is straightforward.
Clearly

d

dt
Hd(t) =

(
eq(t)

)>
M
T
−1

(
d

d t
eq(t)

)
+
(
ep(t)

)>
Mρ

(
d

d t
ep(t)

)
,

thanks to the symmetry of the mass matrices.
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Multiplying (15) by

eq(t)ep(t)

u(t)

> on the left leads to

(
eq(t)

)>
M
T
−1

(
d

d t
eq(t)

)
+
(
ep(t)

)>
Mρ

(
d

d t
ep(t)

)
= (u(t))

>
M∂ y(t),

thanks to the skew-symmetry of the extended structure matrix, and the result
follows. �

3.2. Other causalities. The proposed strategy can handle other causalities, i.e.
other collocated boundary control and observation, in a straightforward manner.
Let us focus on the other uniform causality, i.e. with deflection velocity control.

It only consists on switching the role played by u and y, i.e. replace (2) by

(2S)

{
ũ(t,−→x ) = ∂tw(t,−→x ), ∀−→x ∈ ∂Ω, t ≥ 0,

ỹ(t,−→x ) =
(
T (−→x )

−−−→
grad(w(t,−→x ))

)> −→n (−→x ), ∀−→x ∈ ∂Ω, t ≥ 0,

leading to
(10S)

〈
∂t
−→e q,T

−1 −→v q

〉
L2(Ω)

= −
〈
ep,div

(−→v q

)〉
L2(Ω)

+
〈
γ⊥
(−→v q

)
, ũ
〉
L2(∂Ω)

,

〈∂tep, ρ vp〉L2(Ω) =
〈
div
(−→e q

)
, vp
〉
L2(Ω)

,

instead of (10). The PFEM would then provide the following matrices

D̃ = −
∫

Ω

div
(−→

ΦΦΦ q(
−→x )
) (

Φp(
−→x )
)>

d−→x , B̃∂ =

∫
∂Ω

Ψ(−→s )
(
γ⊥

(−→
ΦΦΦ q

)
(−→s )

)>
d−→s ,

such thatMT
−1 0 0

0 Mρ 0
0 0 M∂




d

d t
eq(t)

d

d t
ep(t)

−ỹ(t)

 =

 0 D̃ B̃∂
−D̃> 0 0

−B̃>∂ 0 0


eq(t)ep(t)

ũ(t)


In this case, Hq is chosen H(div; Ω)-conforming and Hp only L2(Ω)-conforming.

Remark 3.3. More complex causalities, such as mixed boundary controls, bound-
ary damping, etc., can be handled in the same manner, as it will be done in Sec-
tion 6.5 for absorbing boundary condition. We refer to [51, 11] for more details.

4. Numerical analysis

This section is the core of this work: we state the main theorems and provide
their proof. They are given under usual assumptions for Galerkin methods, gathered
below from (H1) to (H5), that prove classical for the finite element method (see e.g.
[10, 26]). The aim of such an abstract numerical analysis is to propose a general
framework to deal with several kinds of approximation families at the same time.
This allows for recent developments such that, e.g. , conforming discontinuous
Galerkin elements on rectangular mesh [23], or even for meshfree methods [45].
Next, Section 5 shall focus on well-known examples of suitable choices of such
families of conforming finite elements.

Let us consider the following

• EX (t) :=

∥∥∥∥(−→α q(t)
αp(t)

)
−
(−→αd

q(t)
αdp(t)

)∥∥∥∥
X

the absolute error in X between the

continuous and the discrete energy variables;



104 G. HAINE, D. MATIGNON, AND A. SERHANI

• EH(t) := H(t) − Hd(t) the error between the continuous and the discrete
Hamiltonians.

The aim is to analyse the asymptotic behaviour of those errors, when the values of
Nq, Np and N∂ tend towards ∞ (e.g. when the mesh size parameter tends towards
0). Furthermore, the best trade-off between the discretization orders of Hq, Hp

and H∂ are provided: the number of degrees of freedom is minimized for each fixed
desired convergence rate.

Remark 4.1. Thanks to (17), it holds EH(t) := H(t)−Hd(t) = H(0)−Hd(0) for
all t ≥ 0, as soon as the system is closed (i.e. with u ≡ 0). This result is well-known
since several decades using the MFEM [35].

Remark 4.2. Theorem 4.2 could be obtained by considering the homogeneous
isotropic case only (corresponding to an identification between energy and co-energy
variables). However, anisotropy and heterogeneity induce mandatory modifications
about the compatibility conditions allowing for preserving de Rham cohomology,
as will be shown in Theorem 4.4.

4.1. Notations, hypotheses and basic properties. In the sequel, the following
general hypotheses are assumed. These assumptions are made of

• usual Galerkin estimates on H1 and L2;
• an inverse inequality between the H1- and L2-norms on the finite-dimen-

sional space Hp ⊂ H1(Ω);
• an estimate of the L2-projection in the H1-norm, which proves useful to

get optimality.

4.1.1. Notations. Let us denote

• h ∈ (0, h∗) a parameter vow to tends to 0, where h∗ > 0 (i.e. h is small
enough);
• Pp the L2(Ω)-orthogonal projector from L2(Ω) onto Hp;
• P1,p the H1(Ω)-orthogonal projector from H1(Ω) onto Hp;

•
−→
Pq the L2(Ω)-orthogonal projector from L2(Ω) onto Hq.

In order to take into account the metric induced by the operator Q on X , we also
introduce

•
−→
PPPq the orthogonal projector from L2(Ω) endowed with the weighted inner

product
〈−→v 1,T

−→v 2

〉
L2

for all −→v 1,
−→v 2 ∈ L2(Ω), onto Vq := T

−1
Hq;

• Pp the orthogonal projector from L2(Ω) endowed with the weighted inner
product

〈
v1, ρ

−1v2

〉
L2 for all v1, v2 ∈ L2(Ω), onto Vp := ρHp.

4.1.2. Hypotheses. There exists h∗ > 0 such that for all κ ≥ 0,

(H1) ∃Cp > 0, ∃θp ≥ 0 : ‖Ppvp − vp‖L2(Ω) ≤ Cp h
θp ‖vp‖Hκ+1(Ω) ,

∀vp ∈ Hκ+1(Ω), ∀h ∈ (0, h∗);

(H2) ∃C1,p > 0, ∃θ1,p ≥ 0 : ‖P1,pvp − vp‖H1(Ω) ≤ C1,p h
θ1,p ‖vp‖Hκ+1(Ω) ,

∀vp ∈ Hκ+1(Ω), ∀h ∈ (0, h∗);

(H3) ∃Cq > 0, ∃θq ≥ 0 :
∥∥∥−→Pq
−→v q −−→v q

∥∥∥
L2(Ω)

≤ Cq hθq
∥∥−→v q

∥∥
Hκ+1(div;Ω)

,

∀−→v q ∈ Hκ+1(div; Ω), ∀h ∈ (0, h∗);
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(H4) ∃C1,0 > 0, ∃θ1,0 ≥ 0 :
∥∥∥ −−−→grad

(
vdp
)∥∥∥

L2(Ω)
≤ C1,0 h

−θ1,0
∥∥vdp∥∥L2(Ω)

,

∀vdp ∈ Hp, ∀h ∈ (0, h∗);

(H5)

∃C0,1 > 0, ∃θ0,1 ≥ 0 : ‖Ppvp − vp‖H1(Ω) ≤ C0,1 h
−θ0,1 ‖P1,pvp − vp‖H1(Ω) ,

∀vp ∈ H1(Ω), ∀h ∈ (0, h∗).

Note that in general, (H5) can be deduced from (H4) (see Lemma A.1 in Sec-
tion A). However this estimate can be strengthened (i.e. θ0,1 < θ1,0) in many cases
in practice, typically with simplicial, regular and quasi-uniform meshes, one has
θ0,1 = 0 thanks to the so-called Aubin-Nitsche trick [29, 47, 26]. It is thus given
separately to ensure the optimality of the result.

4.1.3. Basic properties. It is important to notice the obvious properties between
the projectors defined above, and denoted by straight or curly font. These will be
useful in the sequel to get from the metric induced by Q to the usual one on(
L2(Ω)

)N+1
, and conversely.

• T
−1−→

PqT is a projector from L2(Ω) endowed with the inner product〈−→v 1,T
−→v 2

〉
L2

for all −→v 1,
−→v 2 ∈ L2(Ω), onto Vq;

• ρPpρ−1 is a projector from L2(Ω) endowed with the inner product〈
v1, ρ

−1v2

〉
L2 for all v1, v2 ∈ L2(Ω), onto Vp;

• T
−→
PPPqT

−1
is a projector from L2(Ω) onto Hq;

• ρ−1Ppρ is a projector from L2(Ω) onto Hp.

Orthogonality of
−→
Pq in L2(Ω) and Pp in L2(Ω) imply that

(18) ∥∥∥−→v −−→Pq
−→v
∥∥∥
L2
≤

∥∥∥∥−→v − T−→PPPqT
−1−→v

∥∥∥∥
L2

, ∀−→v ∈ L2(Ω),

‖v − Ppv‖L2 ≤
∥∥v − ρ−1Ppρ v

∥∥
L2 , ∀v ∈ L2(Ω),∥∥∥∥T 1

2
(−→v −−→PPPq

−→v
)∥∥∥∥

L2

≤
∥∥∥∥T 1

2

(
−→v − T

−1−→
PqT

−→v
)∥∥∥∥

L2

, ∀−→v ∈ L2(Ω),∥∥∥ρ− 1
2 (v − Ppv)

∥∥∥
L2
≤

∥∥∥ρ− 1
2

(
v − ρPpρ−1v

)∥∥∥
L2
, ∀v ∈ L2(Ω).

Thus, for all

(−→α q

αp

)
∈ X

(19)∥∥∥∥(−→α q

αp

)
−
(−→

PPPq 0
0 Pp

)(−→α q

αp

)∥∥∥∥
X
≤

∥∥∥∥∥
(−→α q

αp

)
−

(
T
−1−→

PqT 0
0 ρPpρ

−1

)(−→α q

αp

)∥∥∥∥∥
X

,

and (H1) to (H5) can be written for the curly projectors Pp and
−→
PPPq in their

respective metric, using the upper and lower bounds of the physical parameters ρ

and T .

4.2. From energy variables to co-energy variables. The main results of this
section are Theorem 4.2 for EX , and Theorem 4.4 for EH giving the convergence
rates in term of those in (H1)–(H5). Theorem 4.4 for the convergence rate of EH
emphasizes the interest of the well-known compatibility conditions, appearing e.g.
for the finite-dimensional spaces to satisfy an exact sequence, mimicking the de
Rham cohomology.
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As to avoid introduction of unnecessary notations, the numerical analysis will be
carried out making use of the energy variables in X , since this is the natural state
space identified in Section 2 [39], thanks to the following (obvious) lemma.

Lemma 4.1. One has

EX (t) :=

∥∥∥∥(−→α q(t)
αp(t)

)
−
(−→αd

q(t)
αdp(t)

)∥∥∥∥
X

=

∥∥∥∥∥
(
T
− 1

2
0

0 ρ
1
2

)[(−→e (t)
ep(t)

)
−
(−→e d

q(t)
edp(t)

)]∥∥∥∥∥
(L2(Ω))N+1

.

Proof. The proof is straightforward thanks to the constitutive relations −→α q = T −→e q

and αp = ρ−1ep. �

4.3. The state absolute error.

Theorem 4.2. Let κ > 0 be an integer and Ω be of class Cκ+2. There exists

a constant CX > 0 such that for all T > 0, all initial data

(−→α q0
αp0

)
∈ Zκ, all

u ∈ C2([0,∞);Uκ) such that u(0) = γ⊥

(
T −→α q0

)
, and all h ∈ (0, h∗)

(20) EX (t) ≤
∥∥∥∥(−→PPPq 0

0 Pp

)(−→α q0
αp0

)
−
(−→αd

q(0)
αdp(0)

)∥∥∥∥
X

+ CX max{1, T} hθ
∗
∥∥∥∥(−→α q

αp

)∥∥∥∥
L∞([0,T ];Zκ)

+ CXT h−θ1,0
∥∥u− ud∥∥

L∞([0,T ];U)
, ∀t ∈ [0, T ],

where

(21) θ∗ := min {θ1,p − θ0,1 ; θp − θ1,0 ; θq − θ1,0} .

Proof. For the sake of readability, two technical lemmas are proved in Appendix A.

Remark first that from (H0),

(−→α q

αp

)
∈ C([0,∞);Zκ), thus estimates (H1)–(H2)–

(H3) can indeed be applied to −→α q and αp for all time t ∈ [0, T ].
Let us decompose

(22)

∥∥∥∥(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥
X
≤
∥∥∥∥(−→α q

αp

)
−
(−→

PPPq 0
0 Pp

)(−→α q

αp

)∥∥∥∥
X︸ ︷︷ ︸

E1

+

∥∥∥∥(−→PPPq 0
0 Pp

)(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥
X︸ ︷︷ ︸

E2

.

The strategy of the proof proceeds in five steps.

• In step 1, the convergence of the first term E1 on the right-hand side of (22)
is proved thanks to (19).
• In step 2, Lemma A.2 is applied in order to get the exact value of

1

2

d

dt
E2

2 = E2
d

dt
E2,

in terms of L2(Ω)-inner products and boundary duality bracket.
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• In step 3, Cauchy-Schwarz inequality and coarse bounds are used so that

E2
d

dt
E2 ≤ E3E2.

Dividing by E2 > 0 leads to

d

dt
E2 ≤ E3.

• In step 4, Lemma A.3 is applied in order to estimate E3.
• Finally, in step 5, the inequality obtained in step 4 is integrated in time,

and all the estimates are gathered to conclude.

Step 1 From (19) and using the lower bound T− for T and the upper bound ρ+

for ρ, one gets (with the definition of the weighted norm on X )

∥∥∥(−→α q

αp

)
−

(−→
PPPq 0

0 Pp

)(−→α q

αp

)∥∥∥
X

≤

∥∥∥∥∥
(−→α q

αp

)
−

(
T
−1−→

PqT 0
0 ρPpρ

−1

)(−→α q

αp

)∥∥∥∥∥
X

=

∥∥∥∥∥
(
T
−1
T −→α q

ρρ−1αp

)
−

(
T
−1−→

PqT 0
0 ρPpρ

−1

)(−→α q

αp

)∥∥∥∥∥
X

=

∥∥∥∥∥
(
T
− 1

2
(−→

I q −
−→
Pq

)
0

0
√
ρ (Ip − Pp)

)(
T −→α q

ρ−1αp

)∥∥∥∥∥
L2(Ω)×L2(Ω)

≤ 1√
T−

∥∥∥T −→α q −
−→
PqT

−→α q

∥∥∥
L2(Ω)

+
√
ρ+
∥∥ρ−1αp − Ppρ−1αp

∥∥
L2(Ω)

.

Applying (H1) with ρ−1αp ∈ Hκ+1(Ω) and (H3) with T −→α q ∈ Hκ+1(div; Ω)
leads to

(23) E1 ≤ max

{
Cq√
T−

hθq ,
√
ρ+Cp h

θp

}∥∥∥∥(−→α q

αp

)∥∥∥∥
Zκ
.

Step 2 Applying Lemma A.2 leads to

1

2

d

dt

∥∥∥∥(−→PPPq 0
0 Pp

)(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥2

X

=
〈 −−−→

grad
(
ρ−1 (αp − Ppαp)

)
,T

(−→
PPPq
−→α q −−→αd

q

)〉
L2(Ω)

−
〈
T
(−→α q −

−→
PPPq
−→α q

)
,
−−−→
grad

(
ρ−1

(
Ppαp − αdp

))〉
L2(Ω)

+
〈
u− ud, γ0

(
ρ−1

(
Ppαp − αdp

))〉
U,Y .
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Step 3 From Cauchy-Schwarz inequality and the continuity of the Dirichlet trace
operator on H1(Ω)

1

2

d

dt

∥∥∥∥(−→PPPq 0
0 Pp

)(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥2

X

≤
∥∥∥∥T 1

2 −−−→
grad

(
ρ−1 (αp − Ppαp)

)∥∥∥∥
L2(Ω)

∥∥∥∥T 1
2
(−→
PPPq
−→α q −−→αd

q

)∥∥∥∥
L2(Ω)

+
∥∥∥T (−→α q −

−→
PPPq
−→α q

)∥∥∥
L2(Ω)

∥∥∥ −−−→grad
(
ρ−1

(
Ppαp − αdp

))∥∥∥
L2(Ω)

+ CD
∥∥u− ud∥∥U ∥∥ρ−1

(
Ppαp − αdp

)∥∥
L2(Ω)

+ CD
∥∥u− ud∥∥U ∥∥∥ −−−→grad

(
ρ−1

(
Ppαp − αdp

))∥∥∥
L2(Ω)

.

But ρ−1
(
Ppαp − αdp

)
∈ Vp, thus

∥∥∥ −−−→grad
(
ρ−1

(
Ppαp − αdp

))∥∥∥
L2(Ω)

can be

estimated by (H4),

∥∥∥ −−−→grad
(
ρ−1

(
Ppαp − αdp

))∥∥∥
L2(Ω)

≤ C1,0√
ρ−

h−θ1,0
∥∥∥ρ− 1

2

(
Ppαp − αdp

)∥∥∥
L2(Ω)

,

where we have used the lower bound ρ− for ρ. This leads to

1

2

d

dt

∥∥∥∥(−→PPPq 0
0 Pp

)(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥2

X

≤
∥∥∥∥T 1

2 −−−→
grad

(
ρ−1 (αp − Ppαp)

)∥∥∥∥
L2(Ω)

∥∥∥∥T 1
2
(−→
PPPq
−→α q −−→αd

q

)∥∥∥∥
L2(Ω)

+
C1,0√
ρ−

h−θ1,0
∥∥∥T (−→α q −

−→
PPPq
−→α q

)∥∥∥
L2(Ω)

∥∥∥ρ− 1
2

(
Ppαp − αdp

)∥∥∥
L2(Ω)

+
CD√
ρ−

∥∥u− ud∥∥U ∥∥∥ρ− 1
2

(
Ppαp − αdp

)∥∥∥
L2(Ω)

+
CDC1,0√

ρ−
h−θ1,0

∥∥u− ud∥∥U ∥∥∥ρ− 1
2

(
Ppαp − αdp

)∥∥∥
L2(Ω)

.

Gathering

∥∥∥∥T 1
2
(−→
PPPq
−→α q −−→αd

q

)∥∥∥∥
L2(Ω)

and
∥∥∥ρ− 1

2

(
Ppαp − αdp

)∥∥∥
L2(Ω)

gives

the desired X -norm:

1

2

d

dt

∥∥∥∥(−→PPPq 0
0 Pp

)(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥2

X
≤

(∥∥∥∥T 1
2 −−−→

grad
(
ρ−1 (αp − Ppαp)

)∥∥∥∥
L2(Ω)

+
C1,0√
ρ−

h−θ1,0
∥∥∥T (−→α q −

−→
PPPq
−→α q

)∥∥∥
L2(Ω)

+
CD√
ρ−

(
1 + C1,0 h

−θ1,0
) ∥∥u− ud∥∥U

)∥∥∥∥(−→PPPq 0
0 Pp

)(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥
X
.
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Dividing both sides by

∥∥∥∥(−→PPPq 0
0 Pp

)(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥
X

, we finally get

d

dt
E2 ≤ E3, with

E3 :=

∥∥∥∥T 1
2 −−−→

grad
(
ρ−1 (αp − Ppαp)

)∥∥∥∥
L2(Ω)

+
C1,0√
ρ−

h−θ1,0
∥∥∥T (−→α q −

−→
PPPq
−→α q

)∥∥∥
L2(Ω)

+
CD√
ρ−

(
1 + C1,0 h

−θ1,0
) ∥∥u− ud∥∥U .

Step 4 Using the upper bound T+ for T , we get

E3 :=
√
T+
∥∥∥ −−−→grad

(
ρ−1 (αp − Ppαp)

)∥∥∥
L2(Ω)

+
C1,0√
ρ−

h−θ1,0
∥∥∥T (−→α q −

−→
PPPq
−→α q

)∥∥∥
L2(Ω)

+
CD√
ρ−

(
1 + C1,0 h

−θ1,0
) ∥∥u− ud∥∥U .

From Lemma A.3, one has

(24) E3 ≤
√
T+

(
C0,1C1,p h

θ1,p−θ0,1 +
ρ+C1,0Cp√

ρ−
hθp−θ1,0

)∥∥ρ−1αp
∥∥
Hκ+1(Ω)

+
C1,0√
ρ−

h−θ1,0
∥∥∥T (−→α q −

−→
PPPq
−→α q

)∥∥∥
L2(Ω)

+
CD√
ρ−

(
1 + C1,0 h

−θ1,0
) ∥∥u− ud∥∥U .

It remains to estimate
∥∥∥T (−→α q −

−→
PPPq
−→α q

)∥∥∥
L2(Ω)

. Thanks to the upper

bound T+ for T and the third line of (18), we have∥∥∥T (−→α q −
−→
PPPq
−→α q

)∥∥∥
L2(Ω)

≤
√
T+

∥∥∥∥T 1
2

(
−→α q − T

−1−→
PqT

−→α q

)∥∥∥∥
L2(Ω)

,

or in other words∥∥∥T (−→α q −
−→
PPPq
−→α q

)∥∥∥
L2(Ω)

≤
√
T+

∥∥∥∥T− 1
2
(
T −→α q −

−→
Pq

(
T −→α q

))∥∥∥∥
L2(Ω)

.

With the lower bound T− for T and (H3) with −→v q = T −→α q, this leads to∥∥∥T (−→α q −
−→
PPPq
−→α q

)∥∥∥
L2(Ω)

≤
√
T+√
T−

Cq h
θq
∥∥∥T −→α q

∥∥∥
Hκ+1(div;Ω)

.

By injecting the latter estimate into (24), we get

E3 ≤
√
T+

(
C0,1C1,p h

θ1,p−θ0,1 +
ρ+C1,0Cp√

ρ−
hθp−θ1,0

)∥∥ρ−1αp
∥∥
Hκ+1(Ω)

+

√
T+C1,0Cq√
T−ρ−

hθq−θ1,0
∥∥∥T −→α q

∥∥∥
Hκ+1(div;Ω)

+
CD√
ρ−

(
1 + C1,0 h

−θ1,0
) ∥∥u− ud∥∥U ,

which gives, with a rough majoration, the existence of a constant C3 > 0
such that

E3 ≤ C3 h
min{θ1,p−θ0,1 ; θp−θ1,0 ; θq−θ1,0}

∥∥∥∥(−→α q

αp

)∥∥∥∥
Zκ

+ C3 h
−θ1,0

∥∥u− ud∥∥U ,
for all h small enough.
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Step 5 By integrating
d

dt
E2 ≤ E3 between 0 and T , the latter inequality gives

(25) E2(t) ≤ E2(0) + C3T hmin{θ1,p−θ0,1 ; θp−θ1,0 ; θq−θ1,0}
∥∥∥∥(−→α q

αp

)∥∥∥∥
L∞([0,T ];Zκ)

+ C3T h−θ1,0
∥∥u− ud∥∥

L∞([0,T ];U)
.

Substituting (23) and (25) into (22), noticing that θp ≥ θp − θ1,0 and
θq ≥ θq − θ1,0, gives the desired result for all h small enough.

�

4.4. The Hamiltonian error. In this subsection, the numerical analysis focuses
on the Hamiltonian, main object of interest in the port-Hamiltonian framework.

The next corollary follows easily from Theorem 4.2, despite it does not give the
expected optimal convergence rate: twice that of the state space absolute error.

Corollary 4.3. Under the assumptions of Theorem 4.2, it holds

(26)
∣∣EH(t)

∣∣ ≤ (∥∥∥∥(−→α q

αp

)∥∥∥∥
L∞([0,T ];X )

+
EX (t)

2

)
EX (t), ∀t ∈ [0, T ].

Proof. It is straightforward that∣∣EH∣∣ =
1

2

∣∣∣∣〈(−→α q

αp

)
+

(−→αd
q

αdp

)
,

(−→α q

αp

)
−
(−→αd

q

αdp

)〉
X

∣∣∣∣ ≤ 1

2

∥∥∥∥(−→α q

αp

)
+

(−→αd
q

αdp

)∥∥∥∥
X
EX .

But ∥∥∥∥(−→α q(t)
αp(t)

)
+

(−→αd
q(t)

αdp(t)

)∥∥∥∥
X
≤ 2

∥∥∥∥(−→α q

αp

)∥∥∥∥
L∞([0,T ];X )

+ EX (t), ∀t ∈ [0, T ],

which ends the proof of (26). �

In the following theorem, it is proved that compatibility conditions between Hq,
Hp and H∂ , including but not restricted to those leading to the preservation of the
de Rham cohomology (see e.g. the commutative diagrams [10, page 116]) at the
discrete level, lead to a far better result for EH.

Theorem 4.4. Under the assumptions of Theorem 4.2, assume furthermore that

•
〈 −−−→

grad
(
vp−Ppvp

ρ

)
,−→v d

q

〉
L2(Ω)

= 0, for all −→v d
q ∈ Hq, vp ∈ H1(Ω);

•
〈
T
(−→v q −

−→
PPPq
−→v q

)
,
−−−→
grad

(
vdp
)〉

L2(Ω)
= 0, for all vdp ∈ Hp, −→v q ∈ L2(Ω);

•
〈
u− ud, γ0

(
vdp
)〉
L2(∂Ω)

= 0, for all u ∈ L2(∂Ω), ud approximation of u in

H∂ , vdp ∈ Hp;

•
〈
ud, γ0

(
vdp−Ppvp

ρ

)〉
L2(∂Ω)

= 0, for all ud ∈ H∂ , vp ∈ H1(Ω), vdp approxi-

mation of vp in Hp.

Then

EH(t)− EH(0) =
1

2

((
EX (t)

)2 − (EX (0)
)2)

, ∀t ∈ [0, T ].

Proof. Obviously(
EX
)2

=

∥∥∥∥(−→α q

αp

)∥∥∥∥2

X
− 2

〈(−→α q

αp

)
,

(−→αd
q

αdp

)〉
X

+

∥∥∥∥(−→αd
q

αdp

)∥∥∥∥2

X
.
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Hence

(27) EH =
1

2

(
EX
)2

+

〈(−→α q

αp

)
,

(−→αd
q

αdp

)〉
X
−
∥∥∥∥(−→αd

q

αdp

)∥∥∥∥2

X
.

From (10) and (11) together with Lemma 4.1, it is straightforward that

d

dt

〈(−→α q

αp

)
,

(−→αd
q

αdp

)〉
X

=

〈
−−−→
grad

(
ρ−1αp −

Ppαp
ρ

)
,T −→αd

q

〉
L2(Ω)

+

〈
T
−→
PPPq
−→α q − T −→α q,

−−−→
grad

(
αdp
ρ

)〉
L2(Ω)

+

〈
u, γ0

(
αdp
ρ

)〉
L2(∂Ω)

+

〈
ud, γ0

(
Ppαp
ρ

)〉
L2(∂Ω)

,

which becomes, thanks to the assumptions on the q- and p-type families (remember

that −→αd
q ∈ Vq := T

−1
Hq and αdp ∈ Vp := ρHp)

d

dt

〈(−→α q

αp

)
,

(−→αd
q

αdp

)〉
X

=

〈
u, γ0

(
αdp
ρ

)〉
L2(∂Ω)

+

〈
ud, γ0

(
Ppαp
ρ

)〉
L2(∂Ω)

.

Since by Proposition 3.1

d

dt

∥∥∥∥(−→αd
q

αdp

)∥∥∥∥2

X
= 2

〈
ud, yd

〉
L2(∂Ω)

,

it can be deduced that

d

dt

(〈(−→α q

αp

)
,

(−→αd
q

αdp

)〉
X
−
∥∥∥∥(−→αd

q

αdp

)∥∥∥∥2

X

)

=

〈
u− ud, γ0

(
αdp
ρ

)〉
L2(∂Ω)

+

〈
ud, γ0

(
Ppαp − αdp

ρ

)〉
L2(∂Ω)

.

Now, thanks to the assumptions involving the boundary finite element families, an
integration in time from 0 to t gives〈(−→α q

αp

)
,

(−→αd
q

αdp

)〉
X
−
∥∥∥∥(−→αd

q

αdp

)∥∥∥∥2

X
=

〈(−→α q0
αp0

)
,

(−→αd
q(0)

αdp(0)

)〉
X
−
∥∥∥∥(−→αd

q(0)
αdp(0)

)∥∥∥∥2

X
,

and the result follows from (27) by subtracting EH(0) from both side. �

Remark 4.3. Note that the anisotropy and heterogeneity have a non-negligible

influence for the validity of Theorem 4.4, as these induce curly projectors
−→
PPPq and

Pp. These modifications of the compatibility conditions for this more general case
would be hidden if the analysis was carried out with constant parameters.

4.5. Other causality: the Dirichlet boundary control. Theorem 4.2 has its
counterpart for the other causality, already discussed in Section 3.2, where u and
y have been switched (notation S). For the sake of space saving, since the proof is
quite similar, only the result for the general framework are briefly stated below.

Assuming an existence and regularity result such as (H0) for the case (1)–(2S)
(though not covered in [39]), one can easily adapt the proof of Theorem 4.2.

If

• Hq is H(div; Ω)-conforming (instead of L2(Ω)-conforming);
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• Hp is L2(Ω)-conforming (instead of H1(Ω)-conforming);

• H∂ is H
1
2 (∂Ω)-conforming,

satisfying

(H1S) ∃Cp > 0, ∃θp ≥ 0 : ‖Ppvp − vp‖L2(Ω) ≤ Cp h
θp ‖vp‖Hκ+1(Ω) ,

∀vp ∈ Hκ+1(Ω), ∀h ∈ (0, h∗);

(H2S) ∃Cdiv,q > 0, ∃θdiv,q ≥ 0 :∥∥∥−→Pdiv,q
−→v q −−→v q

∥∥∥
H(div;Ω)

≤ Cdiv,q h
θdiv,q

∥∥−→v q

∥∥
Hκ+1(div;Ω)

,

∀−→v q ∈ Hκ+1(div; Ω), ∀h ∈ (0, h∗);

where
−→
Pdiv,q is the H(div; Ω)-orthogonal projector from H(div; Ω) onto Vq;

(H3S) ∃Cq > 0, ∃θq ≥ 0 :
∥∥∥−→Pq
−→v q −−→v q

∥∥∥
L2(Ω)

≤ Cq hθq
∥∥−→v q

∥∥
Hκ+1(div;Ω)

,

∀−→v q ∈ Hκ+1(div; Ω), ∀h ∈ (0, h∗);

(H4S) ∃Cdiv,0 > 0, ∃θdiv,0 ≥ 0 :∥∥div
(−→v d

q

)∥∥
L2(Ω)

≤ Cdiv→0 h
−θdiv,0

∥∥−→v d
q

∥∥
L2(Ω)

,

∀−→v d
q ∈ Hq, ∀h ∈ (0, h∗);

(H5S) ∃C0,div > 0, ∃θ0,div ≥ 0 :∥∥∥−→Pq
−→v q −−→v q

∥∥∥
H(div;Ω)

≤ C0,div h
−θ0,div

∥∥∥−→Pdiv,q
−→v q −−→v q

∥∥∥
H(div;Ω)

,

∀−→v q ∈ H(div; Ω), ∀h ∈ (0, h∗);

we have the following theorem.

Theorem 4.5. Let κ > 0 be an integer and Ω be of class Cκ+2. There exists

a constant CX > 0 such that for all T > 0, all initial data

(−→α q0
αp0

)
∈ Zκ, all

u ∈ C2([0,∞);Uκ) such that u(0) = γ⊥

(
T −→α q0

)
, and all h ∈ (0, h∗)

ẼX (t) ≤
∥∥∥∥(−→PPPq 0

0 Pp

)(−→α q0
αp0

)
−
(−→αd

q(0)
αdp(0)

)∥∥∥∥
X

+ C̃X max{1, T} hθ̃
∗
∥∥∥∥(−→α q

αp

)∥∥∥∥
L∞([0,T ];Zκ)

+ C̃XT h−θdiv,0
∥∥u− ud∥∥

L∞([0,T ];U)
, ∀t ∈ [0, T ],

where

θ̃∗ := min {θdiv,q − θ0,div ; θq − θdiv,0 ; θq − θdiv,0} .

Remark 4.4. A counterpart of Theorem 4.4 should also be possible to prove under
suitable additional compatibility conditions.
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5. Optimal orders of conforming finite elements

The purpose of this section is to provide optimal combinations of usual finite
elements minimizing the number of degrees of freedom for a given convergence rate,
illustrating the abstract estimates obtained in Theorems 4.2 and 4.4. The errors to
be analysed when the mesh size parameter h > 0 tends towards 0 are those of the
previous section, and will be numerically investigated in the next section.

5.1. Mesh assumptions. These classical assumptions in numerical analysis for
usual finite elements (see e.g. [26, pp. 61, 88, 96] and [10, p. 71]) are recalled for
the sake of completeness.

The mesh family (Th)h∈(0,h∗) of Ω will be supposed to be a collection of simplicial,

regular and quasi-uniform triangularization of Ω, meaning that

(1) It is given by a collection of triangles or tetrahedra, denoted K in the sequel.
(2) If hK > 0 denotes the diameter of K, i.e. hK := max−→x ,−→y∈K

∣∣−→x −−→y ∣∣, and
dK is the diameter of the inscribed circle or sphere in K, there exists a
constant C > 0, independent of h such that

hK
dK
≤ C, ∀K ∈ Th, ∀h ∈ (0, h∗).

The mesh parameter is then defined as h := maxK∈Th hK .
(3) There exists a constant c > 0 independent of h such that minK∈Th hK ≥ ch

for all h ∈ (0, h∗).

5.2. Lagrange element. The three finite element families must be L2(Ω)-,

H1(Ω)- and H
1
2 (∂Ω)-conforming respectively, in order to apply Theorem 4.2. A

first easy choice is to take the usual continuous Galerkin finite elements for families
q and p, i.e.

Hq :=
{−→v d

q ∈
(
C(Ω)

)N | −→v d
q

∣∣∣
K
∈ (Pk(K))

N
, ∀K ∈ Th

}
,

when k ≥ 1, or the piecewise constant functions when k = 0.

Hp :=
{
vdp ∈ C(Ω) | vdp

∣∣∣
K
∈ P`(K), ∀K ∈ Th

}
,

where ` ≥ 1.
In the above definition, Pj(K) is the Lagrange finite element of order j made of

all polynomials of degree less or equal to j on K.
The space Hp is known as continuous Galerkin of order ` as we impose continuity

of basis functions. The space Hq is the vectorial counterpart of Hp, at order k. In
the sequel, we will refer to these spaces via CG` and CGk respectively.

For the discretization space at the boundary H∂ , discontinuous Galerkin finite
elements of order m ≥ 0, denoted DGm, are chosen

H∂ :=
{
vd∂ ∈ L∞(∂Ω) | vd∂

∣∣∣
E
∈ Pm(E), ∀E,

edges of K ∈ Th located at the boundary
}
.

They are indeed in H
1
2 (∂Ω) for all m ≥ 0. Practically, it consists in taking the

Dirichlet trace of discontinuous Galerkin of order m on the whole domain, i.e.
keeping only degrees of freedom located at the boundary.

All error estimates are well-known and can be found e.g. in [10, 26] and references
therein for the global interpolation operators. Obviously, these estimates hold true
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for the orthogonal projectors. Then (H1)–(H2)–(H3)–(H4)–(H5) read

(H1L) ∃Cp > 0, ‖Ppvp − vp‖L2(Ω) ≤ Cp h
`+1 ‖vp‖H`+1(Ω) ,

∀vp ∈ H`+1(Ω), ∀h ∈ (0, h∗);

(H2L) ∃C1,p > 0, ‖P1,pvp − vp‖H1(Ω) ≤ C1,p h
` ‖vp‖H`+1(Ω) ,

∀vp ∈ H`+1(Ω), ∀h ∈ (0, h∗).

The following estimate requires more attention. Nevertheless, a careful analysis
using (H1L), [24, Proposition 1.4], and a density argument, leads to

(H3L) ∃Cq > 0,
∥∥∥−→Pq
−→v q −−→v q

∥∥∥
L2(Ω)

≤ Cq hk+1
∥∥−→v q

∥∥
Hk+1(div;Ω)

,

∀−→v q ∈ Hk+1(div; Ω), ∀h ∈ (0, h∗).

(H4L)

∃C1,0 > 0,
∥∥∥ −−−→grad

(
vdp
)∥∥∥

L2(Ω)
≤ C1,0 h

−1
∥∥vdp∥∥L2(Ω)

, ∀vdp ∈ Hp, ∀h ∈ (0, h∗),

and finally

(H5L) ∃C0,1 > 0, ‖Ppvp − vp‖H1(Ω) ≤ C0,1 ‖P1,pvp − vp‖H1(Ω) ,

∀vp ∈ H1(Ω), ∀h ∈ (0, h∗).

Remark that, with the choice of H∂ , a straightforward but tedious exercise, using
lifting operators, Bramble-Hilbert Theorem [10], continuity of trace operators and
quasi-uniform hypothesis give that

(28)
∥∥u− ud∥∥

H−
1
2 (∂Ω)

≤ Cu hm+1 ‖u‖
Hm−

1
2 (∂Ω)

, ∀u ∈ Hm− 1
2 (∂Ω),

at the boundary.
The following holds true.

Theorem 5.1. Let κ > 0 be an integer, T > 0 a final time,

(−→α q0
αp0

)
∈ Zκ the initial

data, u ∈ C2([0,∞);Hκ− 1
2 (∂Ω)) the control, and

(−→αd
q(0)

αdp(0)

)
and ud their respective

continuous and discontinuous Galerkin interpolations in Vq × Vp and H∂ given by

the finite elements (CGk)
N × CG` ×DGm.

There exists a constant C > 0, independent of T > 0,

(−→α q0
αp0

)
, and u, such that

for all h small enough and all t ∈ [0, T ]

(29) EX (t) ≤ C max{1, T} hmin{` ; k ;m}

×

(∥∥∥∥(−→α q

αp

)∥∥∥∥
L∞([0,T ];Zκ)

+ ‖u‖
L∞([0,T ];Hκ−

1
2 (∂Ω))

)
.

Furthermore, the optimal order is κ, obtained with k = κ, ` = κ and m = κ− 1.

Proof. Since κ ≥ 1, Hκ− 1
2 (∂Ω) = Uκ ⊂ H

1
2 (∂Ω), and u can indeed be approximated

in H∂ .
From (H0), the solution to (1)-(2) belongs to Zκ continuously in time. Recall

that this means

−→α q ∈ T
−1

Hκ+1(div; Ω) :=
{−→v ∈ L2(Ω) | T −→v ∈ Hκ(Ω), div

(
T −→v

)
∈ Hκ(Ω)

}
,



NUMERICAL ANALYSIS OF A STRUCTURED DISCRETIZATION OF N-D WAVE 115

and αp ∈ ρHκ+1(Ω). Hence, following (H1L)–(H2L)–(H3L)–(28), the order of the
finite element families satisfies

θp = `+ 1 ≤ κ+ 1, θ1,p = ` ≤ κ, θq = k + 1 ≤ κ+ 1, θu := m+ 1 ≤ κ.

From (H4L)–(H5L)

θ1,0 = 1, θ0,1 = 0.

One deduces the convergence rate of EX thanks to (20) and (21), i.e. it is given by

θ∗ = min {` ; k ; m+ 1} ,

where we have used (H1L) and (H3L) for the approximation of the initial data.
Now, taking into account the maximal regularities given by (H0) (and the assumed
regularity on u) leads to the maximal rate min {κ ; κ ; κ} = κ.

Finally, one gets this maximal order with the minimal number of degrees of
freedom when we take ` = k = m+ 1 = κ. �

5.3. Other finite element families. Following [10, Proposition 2.5.4.], esti-
mate (H3), and thus Theorem 4.2, hold true for many usual H(div; Ω)-conforming
families (hence L2(Ω)-conforming as required, or even with curl-conforming finite
element), namely: Raviart-Thomas RTk (for an introduction to this important class
of finite element, see e.g. [26]), Brezzi-Douglas-Marini BDMk and discontinuous
Galerkin finite elements DGk.

Proposition 5.2. Let κ > 0 be an integer, T > 0 a final time,

(−→α q0
αp0

)
∈ Zκ

the initial data, u ∈ C2([0,∞);Hκ− 1
2 (∂Ω)) the control, and

(−→αd
q(0)

αdp(0)

)
and ud their

respective interpolations. The optimal rate of convergence is reached with Vq×Vp×
H∂ given by

DGκ−1×CGκ×DGκ−1, RTκ×CGκ×DGκ−1, BDMκ×CGκ×DGκ−1,

CGκ × CGκ × CGκ, DGκ−1 × CGκ × CGκ,

RTκ × CGκ × CGκ, BDMκ × CGκ × CGκ,

all of them leading to the same convergence rate κ.

Proof. This is a direct application of Theorem 4.2. �

Remark 5.1. Care must be taken with the subscript of RT element, which may
differ from one source to another, depending on how the lowest order is denoted:
either RT0 or RT1. In this paper, we stick to the definition given in FEniCS [2],
the software being used for the simulations ran in Section 6, and denote the lowest
order by RT1.

6. Numerical study of the convergence rate in 2D

In this section, simulations are performed to illustrate our results. More precisely,
we intend to verify if the convergence rates are indeed those proved in Theorem 5.1
and claimed in Section 5.3.
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6.1. An analytical solution. In order to study the convergence rate, we propose
to focus on a 2D toy model, isotropic and heterogeneous, for which an analytical
solution is known. This choice is made to avoid the computation of a reference
solution.

Let us consider Ω = (0, 1)×(0, 1). The physical parameters are ρ ≡ 1 and T ≡ I.

Denoting f(t) := 2 sin
(√

2t
)

+ 3 cos
(√

2t
)
, we define

−→α q := f(t)

(
− sin(x) sin(y)
cos(x) cos(y)

)
, αp :=

d

dt
f(t) cos(x) sin(y), ∀(x, y) ∈ Ω, t ≥ 0,

and

u(t) :=


−f(t) cos(x), ∀(x, y) ∈ (0, 1)× {0},
−f(t) sin(1) sin(y), ∀(x, y) ∈ {1} × (0, 1),
f(t) cos(x) cos(1), ∀(x, y) ∈ (0, 1)× {1},
0, ∀(x, y) ∈ {0} × (0, 1).

Then,

(−→α q

αp

)
is a C∞([0,∞); C∞(Ω))-solution to the wave equation written as a

pHs (6)–(7).
The choice of sine and cosine functions has been made to avoid exact interpola-

tion in the polynomial finite element spaces of high order.
The Hamiltonian is easily obtained for all t ≥ 0

H
(−→α q(t), αp(t)

)
=

1

8

(
d

dt
f(t)

)2 (
1− (sin(1) cos(1))2

)
+

1

8
(f(t))

2 ×
{

(1 + sin(1) cos(1))
2

+ (1− sin(1) cos(1))
2
}
.

Figure 1. Convergence of EX as a function of h at order 1, with
the optimal choice of finite element families. See values in bold on
Table 1.

6.2. Simulations. In this section, the following procedure is proposed: Hq, Hp

and H∂ are varying according to many ranges of finite element families, and all
combinations are tested to analyse the behaviour of the convergence rate.

The simulations are performed using FEniCS [2], with a Crank-Nicolson scheme
in time t ∈ (0, 0.5) [1]. The time step is chosen small enough according to κ,
in order to ensure that the error is driven by the mesh size h and not the time
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Figure 2. Convergence of EX as a function of h at order 2, with
the optimal choice of finite element families. See values in bold on
Table 2.

Figure 3. Convergence of EX as a function of h at order 3, with
the optimal choice of finite element families. See values in bold on
Table 3.

step1 dt = 10−5. Note that Crank-Nicolson scheme being an implicit time-stepping
scheme, it requires the resolution of a linear system at each time step: difficulties
may arise due to the behaviour of condition numbers of the matrices involved, when
h→ 0, which is often the case for finite element methods. Since the purpose of

1This is not a kind of CFL condition due to the PFEM, but a matter of space discretization

analysis. We only have access to the total error O(hκ) +O(∆t2). Taking a sufficiently small time
step allows for the analysis of this error as a function of h, to be able to observe the order κ.
Note in particular that Crank-Nicolson scheme is unconditionally stable and symplectic for linear
systems.
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this work is semi -discretization in space, we do not go deeper into that direction
and refer the interested reader to e.g. [25, 20] for that specific problem, and to [37]
for discrete-time finite-dimensional port-Hamiltonian systems. The tests (namely
447 combinations, with 8 different values for h) have been run on a personal com-
puter (Intel Core I7 processor, 24GB of RAM).

All the convergence rates are presented on Tables 1-2-3 for the absolute error
EX . The associated figures show the convergence rates proven in Theorem 4.2 and
Proposition 5.2 for the optimal choices of finite element families among all our tests.

In Theorem 4.2, Hp is assumed to be H1(Ω)-conforming. Looking at Tables 1-2-
3, this seems indeed necessary to ensure convergence. In every test cases, the rate
is negative when Hp is given by discontinuous Galerkin finite elements, no matter
the order (we gather lines for DG`, ` = 0, 1, 2, 3 since they give the same results).
It has to be noted that assumption (H2) is not satisfied in these cases: Theorem 4.2
does not apply.

6.3. About the convergence rate of the Hamiltonian error EH. So far,
compatibility conditions have not been taken into account between Hq, Hp and H∂ .
In other words, only conforming assumptions have been made, and optimal rates
have then been deduced. However, pHs are strongly structured, and in particular,
the de Rham cohomology should be respected to improve the efficiency of the
PFEM. As a motivation, it is remarkable on Tables 4–5–6 that EH does not converge
at the same rate as EX , as stated in Corollary 4.3, but at twice its order in a various
number of cases.

On Table 4, one can see that the Hamiltonian convergence rates when boundary
functions are approximated by Discontinuous Galerkin finite elements of order 0,
DG0, never reach order 2, i.e. twice the optimal convergence rate of the state error
according to Theorem 5.1. This leads us to conclude that compatibility conditions
of Theorem 4.4 are never met for the combinations of finite elements presented on
Table 4.

On the contrary, increasing by one order the approximation for boundary terms,
both for Discontinuous and Continuous Galerkin DG1 and CG1, leads to an order
2 in most cases, as seen on Table 5. Those corresponding to a convergence rate
of order 1 for the state error in Table 2 might indeed satisfy the compatibility
condition of Theorem 4.4.

Analogously, increasing again the approximation at the boundary, i.e. taking
DG2 or CG2 finite elements, allows for a Hamiltonian convergence rate reaching
order 4, inviting us to conjecture that compatibility conditions of Theorem 4.4
are met for boldface convergence rate of Table 6. Remark that we do not have a
sufficiently small time step to be able to numerically observe order 6, if any.

To conclude, as pHs deal with a Hamiltonian functional, which can be seen as
the primary object, the structure-preserving discretization should mean that H has
to be accurately discretized for both the power balance (PFEM) and the value
of H in R (compatibility conditions). Together, the PFEM and the compatibility
conditions seem to achieve this, making use of the Finite Element Method only.
They give the maximal precision with the minimal number of degrees of freedom.
Furthermore, the number of degrees of freedom at the boundary being very low in
comparison to those of q- and p-type, it clearly appears that the choice of boundary
finite elements proves crucial to reach the expected convergence rates with respect
to the finite elements chosen within the domain Ω (as an example, compare the
rate obtained with the discretization CG2 × CG3 for −→α q and αp on Table 5 with
the same on Table 6).
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6.4. More test cases.

6.4.1. A non-convex case: the L-shaped domain. In this section, we test a
non-convex case, with an analytical solution given as in the previous tests (boundary
control is again given by the restriction of the analytical solution to ∂Ω), with a
time step dt = 10−3. One can appreciate on Figure 4 how our results carry over,
and remain valid even for this more complicated geometric shape.

Figure 4. L-shape: a non-convex domain.

6.4.2. An anisotropic case. As Theorems 4.2 and 4.4 are given for general het-
erogeneous anisotropic wave equations, a test case for constant anisotropy on the
square Ω = (0, 1)× (0, 1) is consider, with a time step dt = 10−3. Let

T ≡
(

5 2
2 3

)
, ρ ≡ 1,

An analytical solution is then given by: w(t, x) = cos(3t− x+ 2y). More precisely

−→α q =

(
−1
2

)
sin(3t− x+ 2y), αp = 3 sin(3t− x+ 2y).

Convergence rates for optimal combinations of finite elements are given on Figure 5.
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Figure 5. An anisotropic case.

6.5. Absorbing boundary condition. It can be difficult to deal with dissipative
boundary conditions for PDEs. For instance in the port-Hamiltonian formalism,
at the continuous level, the dissipation does not appear as a positive bounded
operator R in the dynamics in general. This means that the dynamics of the
port-Hamiltonian systems is not necessarily governed by an operator of the form
(J −R)Q (even with a lot of work involving lifting operators to fit this formulation,
R will not be a bounded operator). In other words, the dissipativity is hidden in the
domain of the unbounded operator J . However, it is expected to recover a finite-
dimensional pHs driven by a matrix of the form

(
J d −Rd

)
Qd at the discrete level.

PFEM provides a very easy and convenient way to describe this positive matrix
Rd when dealing with admittance or impedance boundary conditions, i.e. ab-
sorbing boundary condition in the PDE terminology. The strategy relies on the
use of a suitable output feedback law on the finite-dimensional pHs obtained by
PFEM in the previous sections (see [51, 50] where this original strategy has been
first proposed and explained in full details). Furthermore, this construction gives a
well-understood structure to the matrix Rd, which turns out to be of low rank: at
most the dimension of V∂ as expected, since the damping is applied at the boundary
only.

6.5.1. Discretization. More precisely, the following boundary condition is con-
sidered, instead of (2), for the admittance boundary condition
(2Y)

v(t,−→x ) = Y (−→x )∂tw(t,−→x ) +
(
T (−→x )

−−−→
grad(w(t,−→x ))

)> −→n (−→x ),

∀−→x ∈ ∂Ω, t ≥ 0,
y(t,−→x ) = ∂tw(t,−→x ), ∀−→x ∈ ∂Ω, t ≥ 0.
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and the following one instead of (2), for the impedance boundary condition
(2Z)

ṽ(t,−→x ) = ∂tw(t,−→x ) + Z(−→x )
(
T (−→x )

−−−→
grad(w(t,−→x ))

)> −→n (−→x ),

∀−→x ∈ ∂Ω, t ≥ 0,

ỹ(t,−→x ) =
(
T (−→x )

−−−→
grad(w(t,−→x ))

)> −→n (−→x ), ∀−→x ∈ ∂Ω, t ≥ 0.

where both the admittance Y and the impedance Z are positive and belong to
L∞(∂Ω) and v or ṽ are the external inputs.

Remark 6.1. It is clear that (2Y) and (2Z) generalize (2) and (2S) respectively.
Nevertheless, as mentioned above, PFEM does not apply straightforwardly in these
more general cases (think about the use of Green’s formula (5) at the beginning
of the strategy). The proposed alternative to construct the finite-dimensional dis-
sipative pHs using an output feedback laws seems an elegant way to achieve our
goal.

It is easy to write the following relations: between u, y and v (the new control)
from (2) and (2Y)

u(t,−→x ) = v(t,−→x )− Y (−→x )y(t,−→x ), ∀−→x ∈ ∂Ω, t ≥ 0,

or between ũ, ỹ and ṽ (the new control) from (2S) and (2Z)

(30) ũ(t,−→x ) = ṽ(t,−→x )− Z(−→x )ỹ(t,−→x ), ∀−→x ∈ ∂Ω, t ≥ 0.

Using a weak formulation, these equalities read in matrix form

M∂u(t) = M∂v(t)− 〈Y 〉 y(t), ∀t ≥ 0,

or

M∂ ũ(t) = M∂ ṽ(t)− 〈Z〉 ỹ(t), ∀t ≥ 0,

respectively, where

〈Y 〉 :=

∫
∂Ω

Y (−→s )Ψ(−→s ) (Ψ(−→s ))> d−→s ,

or

〈Z〉 :=

∫
∂Ω

Z(−→s )Ψ(−→s ) (Ψ(−→s ))> d−→s .

As presented in [50, Remark 2.], this procedure indeed gives rise to finite-dimen-
sional Dirac structures, introducing extra resistive ports, and leading to a pHDAE.

6.5.2. Simulation results. As a worked-out example, let us consider a fully het-
erogeneous and anisotropic case, with boundary control and boundary damping.
The aim is to illustrate how the structure-preserving scheme can be appreciate on
the Hamiltonian behaviour and the different kind of energies present in the system
(potential, kinetic, supplied and damped).

Let us consider each part of the energy and their sum. The preservation of the
physical meaning supposes that the exchanges of energy (e.g. potential to kinetic
and vice-versa, boundary-supplied/taken energy to the system and damped into
internal energy) must result in the preservation of the first principle of thermody-
namics: the sum of all energies must be constant over time. More precisely, let us
define the potential energy

EPot(t) :=
1

2

∫
Ω

(−→α q(t,
−→x )
)>

T (x, y) −→α q(t,
−→x ) d−→x ,
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the kinetic energy

EKin(t) :=
1

2

∫
Ω

(
αq(t,

−→x )
)2

ρ(−→x )
d−→x ,

the boundary-supplied energy

S(t) :=

∫ t

0

〈
u(t,−→s ), y(t,−→s )

〉
U,Y dt,

and the damped energy

D(t) :=

∫ t

0

〈
Y (t,−→s ) y(t,−→s ), y(t,−→s )

〉
U,Y dt.

The total energy present in the system over time is then decomposed as

E(t) = EPot(t) + EKin(t) + S(t) +D(t) = H(t) + S(t) +D(t),

and the first principle of thermodynamics implies that E(t) ≡ E(0) for all t ≥ 0.
For our example on Ω :=

{−→x ∈ R2 |
∥∥−→x ∥∥ < 1

}
, the non-uniform anisotropic

elasticity tensor T and the non-uniform heterogeneous mass density ρ are taken as
follows

T (x, y) :=

(
2 0.2(1 + x)(1− x)

0.2(1 + x)(1− x) 1

)
,

ρ(x, y) := 2 + 0.25(1 + x)(1− x), ∀(x, y) ∈ Ω.

The boundary control is chosen as

u(t, x, y) :=

{
5x sin(t) sin(1− t), ∀t < 1, (x, y) ∈ ∂Ω,
0, ∀t > 1, (x, y) ∈ ∂Ω,

while the admittance is defined by

Y (t, x, y) :=

{
2.5x sin(t) sin

(
t−1.5

1.5

)
, ∀t > 1.5, (x, y) ∈ ∂Ω,

0, ∀t < 1.5, (x, y) ∈ ∂Ω,

The simulation is performed on the time interval (0, 3) with a time step dt =
10−4. The spatial discretization is RT1×CG1×CG1. The time solver is Assimulo
(IDA SUNDIALS) [4]. The integration in time to compute S and D are done using
the midpoint rule. We can appreciate on Figure 6 how the total energy E remains
constant over time, as physically expected, thanks to the PFEM.

Figure 6. Time evolution of the energies present in the system
(RT1 × CG1 × CG1 discretization). The number of degrees of
freedom is: 2055 + 714 + 84 = 2853.
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7. Conclusion and perspectives

In this work, the numerical analysis of the Partitioned Finite Element Method
applied to the anisotropic and heterogeneous boundary-controlled-and-observed N -
dimensional wave equation has been carried out. This recent structure-preserving
method [12, 13] allows the direct construction of a finite-dimensional port-Hamilton-
ian system, the underlying Dirac structure of which mimicks the infinite-dimensional
Stokes-Dirac structure. This property allows a very accurate discretization of the
power balance satisfied by the system. Furthermore, it has been shown that under
compatibility conditions resembling those allowing for discrete de Rham complexes,
the discrete Hamiltonian converges very fastly toward the continuous one, strength-
ening the interest of the PFEM, since the versatility of port-Hamiltonian systems
aims precisely at modelling the exchange of energies between sub-systems. As an
illustration of our main theorems, we have performed 2D simulations on a case
where an analytical solution is known, with a non-homogeneous boundary con-
dition: the boundary control, for both convex and non-convex domain. A wide
range of usual finite element have been tested. Moreover, impedance-like boundary
damping have been carried out to illustrate the structure-preserving property of
the PFEM [51, 50].

Several questions remain open, the first one being the case of mixed boundary
conditions. Two approaches have been proposed in [11]: a domain decomposition
followed by a gyrator interconnection between the two sub-systems, and the use of
Lagrange multipliers. The former has the great advantage of remaining an ODE,
while the latter transforms into a Differential Algebraic Equation (DAE). The nu-
merical analysis of both alternatives will require deeper investigation.

A second interesting question is the problem of symplectic integration of pH-
DAE, which naturally arises in various situations such as the aforementioned mixed
boundary conditions, or for the heat equation [48, 49]. A scheme has been recently
proposed in [43] for this purpose.

Finally, in assumption (H0) allowing for regular solutions, Xκ is assumed to be
a Hilbert space. It is clear that this requires some regularity assumptions on the
physical parameters. An interesting future work would be to design a structure-

preserving scheme when the physical parameters ρ and T are no more regular, e.g.
using mollifying methods: refining the constants in the estimates as function of
those parameters, as done in this work, seems to be a first step in order to tackle
this problem.
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Appendix A. Technical lemmas

The following lemma gives an upper bound for θ1,0 in (H5), namely θ0,1

from (H4), although not optimal for general geometry (e.g. for convex domains).

Lemma A.1. If (H4) holds true, then there exists a constant C0,1 > 0 such that

‖Ppvp − vp‖H1(Ω) ≤ C0,1 h
−θ1,0 ‖P1,pvp − vp‖H1(Ω) , ∀vp ∈ H1(Ω),

i.e. such that (H5) holds with θ0,1 = θ1,0.

Proof. Let vp ∈ H1(Ω), one has

‖Ppvp − vp‖H1(Ω) ≤ ‖P1,pvp − vp‖H1(Ω) + ‖Ppvp − P1,pvp‖H1(Ω) ,

= ‖P1,pvp − vp‖H1(Ω) + ‖Pp (vp − P1,pvp)‖H1(Ω) ,

≤ ‖P1,pvp − vp‖H1(Ω) + ‖P1,pvp − vp‖L2(Ω)

+
∥∥∥ −−−→grad (Pp (vp − P1,pvp))

∥∥∥
L2(Ω)

,

≤ 2 ‖P1,pvp − vp‖H1(Ω) + C1,0 h
−θ1,0 ‖Pp (vp − P1,pvp)‖L2(Ω) ,

≤ 2 ‖P1,pvp − vp‖H1(Ω) + C1,0 h
−θ1,0 ‖P1,pvp − vp‖L2(Ω) ,

≤
(
2 + C1,0 h

−θ1,0
)
‖P1,pvp − vp‖H1(Ω) ,

≤ C0,1 h
−θ1,0 ‖P1,pvp − vp‖H1(Ω) ,

where we have used PpP1,pvp = P1,pvp for all vp ∈ H1(Ω), using (H4),
‖Pp‖L(L2(Ω)) = 1, and we have defined C0,1 := 2(h∗)θ1,0 + C1,0. �
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We provide here the two technical lemmas used in the proof of Theorem 4.2.

Lemma A.2. Under the assumptions of Theorem 4.2, one has

1

2

d

dt

∥∥∥∥(−→PPPq 0
0 Pp

)(−→α q

αp

)
−
(−→αd

q

αdp

)∥∥∥∥2

X

=
〈 −−−→

grad
(
ρ−1 (αp − Ppαp)

)
,T

(−→
PPPq
−→α q −−→αd

q

)〉
L2(Ω)

−
〈
T
(−→α q −

−→
PPPq
−→α q

)
,
−−−→
grad

(
ρ−1

(
Ppαp − αdp

))〉
L2(Ω)

+
〈
u− ud, γ0

(
ρ−1

(
Ppαp − αdp

))〉
U,Y .

Proof. From the weak formulations (10)–(11), and thanks to the conformity of the
finite element families, one has

〈
∂t
−→α q − ∂t−→αd

q ,T
−→v d
q

〉
L2(Ω)

=

〈
−−−→
grad

(
ρ−1αp −

αdp
ρ

)
,T −→v d

q

〉
L2(Ω)

,

∀−→v d
q ∈ Hq = T

−1
Vq ⊂ T

−1
L2(Ω),

and〈
∂tαp − ∂tαdp,

vdp
ρ

〉
L2(Ω)

= −

〈
T −→α q − T −→αd

q ,
−−−→
grad

(
vdp
ρ

)〉
L2(Ω)

+

〈
u− ud, γ0

(
vdp
ρ

)〉
U,Y

, ∀vdp ∈ Hp = ρVp ⊂ ρH1(Ω).

Summing the latter two equalities gives

〈
∂t
−→α q − ∂t−→αd

q ,T
−→v d
q

〉
L2(Ω)

+

〈
∂tαp − ∂tαdp,

vdp
ρ

〉
L2(Ω)

=

〈
−−−→
grad

(
ρ−1αp −

αdp
ρ

)
,T −→v d

q

〉
L2(Ω)

−

〈
T −→α q − T −→αd

q ,
−−−→
grad

(
vdp
ρ

)〉
L2(Ω)

+

〈
u− ud, γ0

(
vdp
ρ

)〉
U,Y

, ∀−→v d
q ∈ Hq, v

d
p ∈ Hp.

Now by choosing −→v d
q :=

−→
PPPq
−→α q −−→αd

q ∈ Hq and vdp := Ppαp − αdp ∈ Hp, we get〈
∂t
−→α q − ∂t−→αd

q ,T
(−→
PPPq
−→α q −−→αd

q

)〉
L2(Ω)

+
〈
∂tαp − ∂tαdp, ρ−1

(
Ppαp − αdp

)〉
L2(Ω)
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−−−→
grad

(
ρ−1αp −

αdp
ρ
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PPPq
−→α q −−→αd

q
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L2(Ω)

−
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T −→α q − T −→αd

q ,
−−−→
grad

(
ρ−1

(
Ppαp − αdp
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L2(Ω)

+
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u− ud, γ0

(
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(
Ppαp − αdp

))〉
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Thanks to the orthogonality of

(−→
PPPq 0

0 Pp

)
in X , we have

〈
∂t
−→α q − ∂t−→αd

q ,T
(−→
PPPq
−→α q −−→αd

q

)〉
L2(Ω)

+
〈
∂tαp − ∂tαdp, ρ−1

(
Ppαp − αdp

)〉
L2(Ω)

=
〈
∂t
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PPPq
−→α q − ∂t−→αd

q ,T
(−→
PPPq
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q
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L2(Ω)

+
〈
∂tPpαp − ∂tαdp, ρ−1

(
Ppαp − αdp

)〉
L2(Ω)

,

leading to the announced result. �

Lemma A.3. Under the assumptions of Theorem 4.2, one has for all h ∈ (0, h∗)

∥∥∥ −−−→grad
(
ρ−1 (αp − Ppαp)

)∥∥∥
L2(Ω)

≤
(
C0,1C1,p h

θ1,p−θ0,1 +
ρ+C1,0Cp√

ρ−
hθp−θ1,0

)∥∥ρ−1αp
∥∥
Hκ+1(Ω)

.

Proof. Writing

∥∥∥ −−−→grad
(
ρ−1 (αp − Ppαp)

)∥∥∥
L2(Ω)

≤
∥∥∥ −−−→grad

(
ρ−1αp − Ppρ−1αp

)∥∥∥
L2(Ω)

+
∥∥∥ −−−→grad

(
Ppρ

−1αp − ρ−1Ppαp
)∥∥∥

L2(Ω)
,

the first term on the right-hand side is bounded thanks to (H5), with
vp = ρ−1αp ∈ H1(Ω),

∥∥∥ −−−→grad
(
ρ−1 (αp − Ppαp)

)∥∥∥
L2(Ω)

≤ C0,1 h
−θ0,1

∥∥P1,pρ
−1αp − ρ−1αp

∥∥
H1(Ω)

+
∥∥∥ −−−→grad

(
Ppρ

−1αp − ρ−1Ppαp
)∥∥∥

L2(Ω)
,

and by (H2), still with vp = ρ−1αp,

∥∥∥ −−−→grad
(
ρ−1 (αp − Ppαp)

)∥∥∥
L2(Ω)

≤ C0,1C1,p h
θ1,p−θ0,1

∥∥ρ−1αp
∥∥
Hκ+1(Ω)

+
∥∥∥ −−−→grad

(
Ppρ

−1αp − ρ−1Ppαp
)∥∥∥

L2(Ω)
.

Since (Ppρ
−1αp − ρ−1Ppαp) ∈ Vp, hypothesis (H4) gives

∥∥∥ −−−→grad
(
ρ−1 (αp − Ppαp)

)∥∥∥
L2(Ω)

≤ C0,1C1,p h
θ1,p−θ0,1

∥∥ρ−1αp
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+C1,0 h
−θ1,0

∥∥Ppρ−1αp − ρ−1Ppαp
∥∥
L2(Ω)

.
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Let us focus now on
∥∥Ppρ−1αp − ρ−1Ppαp

∥∥
L2(Ω)

to conclude. Since ρ−1Ppρ is a

projector from L2(Ω) onto Vp, one has Ppρ
−1αp = ρ−1Ppρ

(
Ppρ

−1αp
)
. Hence∥∥Ppρ−1αp − ρ−1Ppαp

∥∥
L2(Ω)

=
∥∥ρ−1Ppρ

(
Ppρ

−1αp
)
− ρ−1Ppαp

∥∥
L2(Ω)

≤ 1
√
ρ−

∥∥∥∥ 1
√
ρ
Pp
(
ρPpρ

−1αp − αp
)∥∥∥∥
L2(Ω)

≤ 1
√
ρ−

∥∥ρPpρ−1αp − ρρ−1αp
∥∥
L2(Ω)

≤ ρ+

√
ρ−

∥∥Ppρ−1αp − ρ−1αp
∥∥
L2(Ω)

,

where we have used the lower bound ρ− for ρ from the first to the second line. From
the second to the third line, we have used the norm of the projector Pp, which is 1
thanks to its orthogonality in L2(Ω) endowed with the inner product

〈
v1, ρ

−1v2

〉
L2 ,

for all v1, v2 ∈ L2(Ω). Finally, we have used the upper bound ρ+ for ρ from the
third to the fourth line.

By (H1), still with vp = ρ−1αp, we get∥∥Ppρ−1αp − ρ−1Ppαp
∥∥
L2(Ω)

≤ ρ+Cp√
ρ−

hθp
∥∥ρ−1αp

∥∥
Hκ+1(Ω)

,

leading to the announced result. �
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