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A SPRING–BEAM SYSTEM WITH SIGNORINI’S CONDITION
AND THE NORMAL COMPLIANCE CONDITION

JEONGHO AHN∗ AND NICHOLAS TATE

Abstract. This paper provides mathematical and numerical analyses for a dynamic frictionless
contact problem in which both of Signorini’s condition and the normal compliance condition
are used. The contact problem is considered by employing two viscoelastic (Kelvin-Voigt type)
objects: a linear Timoshenko beam and a nonlinear spring. In addition, a transmission condition
is imposed on one end of the beam and the top of the spring so that they can touch and vibrate
together. We prove the existence of solutions satisfying all the conditions. Time discretizations
and finite element methods are utilized to propose the fully discrete numerical schemes. We select
several groups of data to present and discuss numerical simulations.

Key words. Timoshenko beams, duffing equation, normal compliance, Signorini’s condition,
Galerkin’s method, contraction mapping argument.

1. Introduction

Over the past half century, mathematical theories and numerical methods of
contact mechanics have made remarkable progress. Reader may refer to the mono-
graphs [6, 7] to understand mathematical and numerical approaches to contact
problems with various effects such as friction, wear, thermal effects, adhesion, or
damage. In particular, one–dimensional dynamic contact problems for strings, rod-
s, or beams with or without those side effects have been actively studied. See, e.g.,
[21, 23, 19, 15, 20, 16, 9, 17, 18]. If they are integrated, more practical contact
models can be built to describe a wide range of physical or engineering situations.
Recently, in [22, 28], a rod–beam system is constructed to provide mathematical
and numerical analyses on a V–shaped Micro-Electro-Mechanical Systems (MEMS)
actuator.

In this work, we utilize two Kelvin–Voigt typed viscoelastic objects with the two
contact conditions and a transmission condition to design a mechanical system.
A nonlinear spring and a linear beam coalesce into a dynamic contact model to
consider a spring–beam system which results in a system of differential equations
with the three conditions aforementioned. This contact model can be regarded as
a boundary thin deformable obstacle problem. The system consists of an initial–
boundary value problem (IBVP) and an extended Duffing equation (see the book [3]
for the original Duffing equation) with initial data. The Duffing equation written
by a second order nonlinear ordinary differential equation (ODE) describes the
motion of a viscoelastic spring. The IBVP which contains a couple of linear partial
differential equations (PDEs) also describes the motion of a viscoelastic Timoshenko
beam [11, 12]. Unlike most contact models, our contact model is considered by using
both the normal compliance condition (see e.g., [13, 14] and references therein) and
Signorini’s condition. The first condition is for between one end of the beam and the
top of the spring and the other is for when the spring is fully compressed and hits a
rigid foundation. One can notice that the normal compliance is a regularization of
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contact forces in Signorini’s condition. A similar but simpler contact model can be
found in [10]. In addition to the two contact conditions, a transmission condition is
combined with the normal compliance condition, when the end of the beam and the
top of the spring touch each other. In fact, the transmission condition is inspired
by the model of a beam on Emil Winkler’s elastic foundation, [2] published in 1867.
His model has received special attention from civil engineering communities, since
it has simple but profound assumptions. We note that the springs used in the
Winkler’s model are linearly elastic and that there are multiple contacts between a
beam and the springs.

In many papers (e.g., [25, 26, 27, 24] and references therein), the Duffing equation
is first modified and then the analytical solutions are found. In future work, the
first author in this paper will generalize the Duffing equation more mathematically
and then add dynamic frictional contact conditions formed by Coulomb’s laws (see
[8]). Due to the complexity of the problem, the solutions are unlikely to be found.
Instead, its solvability will be studied and numerical schemes will be proposed.

In order to prove the existence results for the contact problem, we derive a cor-
responding variational formulation to the IBVP in the abstract setting and then
apply Galerkin’s method to it. Signorini’s condition essentially causes nonsmooth
solutions but the convolution of the standard mollifier and locally integrable so-
lutions is employed to regularize them. While contact forces understood at the
atomic level (see [1, Chapter I]) do not guarantee the conservation of energy or en-
ergy balance with viscosity, the regularized contact forces by means of the standard
mollifier are likely to do so. Such a discrepancy will be explored in future work. We
note that the regularization of the contact forces would be unrelated to the normal
compliance condition.

We use a contraction mapping argument to prove the uniqueness of the solutions
satisfying all the conditions except for Signorini’s condition. We note that it still
remains open to prove the uniqueness for Signorini’s condition in the dynamic case.

The fully discrete numerical schemes are proposed, based on time discretizations
on a time interval and finite element methods (FEMs) in the spacial domain. The
overall scheme for computing each time step numerical approximations is to estab-
lish recursive relations and employ the the Newton–Raphson method. Particularly,
block matrix manipulations and back substitutions are required to obtain the fully
discrete numerical approximations of the PDEs. The Algorithm 1 presented in the
section 5 explains all detailed steps. We also investigate numerical stability which
is supported by numerical results, as we shall see them later.

This paper is organized as follows. The detailed illustrations for the mathemat-
ical model are presented in Section 2 and mathematical background is introduced
in Section 3. In Section 4, we prove the existence of the global solutions in the con-
tinuous case. In Section 5, the fully discrete numerical schemes are explained and
an algorithm is provided to compute numerical solutions. A criteria for numerical
stability is also formed and validated. Several groups of data are chosen and then
numerical simulations and results are presented and discussed in the last section 6.

2. A mathematical model

See Figure 1 to understand the dynamic contact model. An easiest way to
understand the model is to consider the motion of seesaws at playgrounds. For
a mathematical reason, we want to consider the motion of a half board which is
described by a coupled PDEs (1–2). The half of the board is assume to be a linear
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viscoelastic Timoshenko beam, in which its one end is clamped and another one
touches the top of a nonlinear spring attached to the land. The governing equation
of the spring is formed by an extended Duffing equation (6). The length of the beam
is assumed to be one. Let T > 0 be the final time. For all (t, x) ∈ [0, T ]× [0, 1] the
vertical displacement and the rotatory angle of the beam are denoted by u = u(t, x)
and θ = θ(t, x), respectively. The position of the spring’s top is denoted by y = y(t).
The spring is assumed to be initially in the equilibrium state and let Ψ be its
equilibrium position. When the one end of the beam hits the top of the spring,
they start moving together and there occur contact forces between them, which are
understood by the transmission condition in (7) and normal compliance condition
in (5). The tip of the beam compresses the spring until it reaches to the land. The
land is assumed to be a rigid foundation. The position of the land is denoted by
φ. Then there happen contact forces, denoted by N = N(t), which is understood
by complementarity conditions (CCs) in (8). Thus, Signorini’s condition can be
alternatively interpreted by CCs: 0 ≤ a ⊥ b ≥ 0 means that either of a or b is zero.
Based on the Winkler foundation model, we assume that the beam’s tip and the
top of the spring continue to be unseparated until they return to the equilibrium
position of the spring. Finally, we assume that the beam moves down initially and
it hits the top of the spring at a time t = tc ∈ (0, T ].

According to the physical situation explained above, we are led to the following
dynamic contact problem:

ρIθtt = E Iθxx +KAG (ux − θ)
+ αbE Iθtxx + αbKAG (utx − θt) in (0, T ]× (0, 1),(1)

ρAutt = KAG (uxx − θx) + αbKAG (utxx − θtx) + fb in (0, T ]× (0, 1),(2)
0 = u(t, 0) = θ(t, 0) on (0, T ],(3)
0 = E Iθx(t, 1) + αbE Iθtx(t, 1) on (0, T ],(4)

λnc (Ψ− u(t, 1))p+ = KAG (ux(t, 1)− θ(t, 1))
+ αbKAG (utx(t, 1)− θt(t, 1)) on (0, T ],(5)

mytt + αsyt + k1 y + k2y
3 = −λnc (Ψ− u(t, 1))p+ +N(t) + fs on (tc, T ] ,(6)

u(t, 1) = y(t) if φ ≤ u(t, 1) ≤ Ψ on (tc, T ] ,(7)
0 ≤ N(t) ⊥ y(t)− φ ≥ 0 on (tc, T ] ,(8)

θ(0, x) = θ0(x), θt(0, x) = θ0t (x) in (0, 1),(9)

u(0, x) = u0(x), ut(0, x) = u0t (x) in (0, 1),(10)

y (tc) = Ψ, yt (tc) =
1

2

(
ut
(
t−c , 1

)
+ ut

(
t+c , 1

))
, N(0) = 0,(11)

where fb = fb(t, x) and fs = fs(t) are external body forces and all the initial data
are given in (9–11). One can notice that the initial velocity of the spring in (11)
is assumed to be the average of the left and right hand limits of the velocity of the
beam’s tip. All the coefficients are explained: ρ is the density of the beam, A is the
area of its cross section, G is the modulus of elasticity of shear, K is the geometric
dependent distribution of shear stress, E is Young modulus, I is the second moment
of inertia, and m is the mass. In the Timoshenko beam theory, E I represents the
flexural rigidity of the beams. The essential boundary conditions are imposed in
(3) and the natural boundary conditions are also imposed in (4–5). In the normal
compliance condition, λnc ≥ 0 and p ≥ 1 are called the stiffness of a reactive spring
and the normal compliance exponent, respectively. As we can see the subscripts
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Figure 1. Physical setting.

of the solutions θ, u in (1–5), they indicate partial derivatives with respect to the
subscripted variables. In addition, a subscript of the solution y in (6) means a time
derivative.

3. Preliminaries

In this section, we provide the mathematical background to be able to prove the
existence results for all the conditions (1–11). For mathematical conveniences, we
assume that ρ = I = E = K = A = G = m = 1.

In this paper, vectors and matrices are denoted by bold-faced letters. For a
sufficiently smooth vector–valued function, denoted by u = (θ, u)

T
: [0, 1] → R2,

we define a differential operator L:

Lu = (θxx + ux − θ, uxx − θx) .

Solution spaces for the contact problem are based on Gelfand triples: V ⊂ H =
H ′ ⊂ V ′. In this contact problem, V = H1

c

(
0, 1;R2

)
and H = L2

(
0, 1;R2

)
.

Here the subscript ”c” means that one end of beams is clamped. Their alternative
notations can be written as follows:

(12) H1
c

(
0, 1;R2

)
= H1

L(0, 1)×H1
L(0, 1), L2

(
0, 1;R2

)
= L2(0, 1)× L2(0, 1),

where H1
L(0, 1) =

{
u ∈ H1(0, 1) | u(0) = 0

}
. The subscript ”L” means that the

essential homogeneous boundary condition imposed at the the left of the beam.
Thus, the Sobolev space H1

c

(
0, 1;R2

)
consists of vector–valued functions which

satisfy the essential homogeneous boundary condition (3). For v = (ω, v)
T
, ϖ =

(ϖ, ν)
T ∈ H the associate inner product on the space can defined to be

(v, ϖ)H =

∫ 1

0

ωϖ + v ν dx

and the associated norm can be easily defined. Similarly, the inner product and
norm over the space V can be defined. Let X be a Banach space and X∗ be a its
dual space. Then the duality paring can be denoted by ⟨·, ·⟩X∗×X . Assume that
the vector–valued functions g = (g1, g2) ∈ X∗ and f = (f1, f2)

T ∈ X. Then the
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duality pairing can be defined by

⟨g, f⟩X∗×X =

∫ 1

0

g1f1 + g2f2 dx.

Let u ∈ V and w = (ϑ, w)
T ∈ V . Then we define an elliptic selfadjoint operator

A : V → V ∗:

⟨Au, w⟩V ∗×V :=

∫ 1

0

Lu ·w dx =

∫ 1

0

θxϑx + (ux − θ) (wx − ϑ) dx.

It is easy to see that the norm ∥u∥V is equivalent to
√
⟨Au, u⟩. In addition, we

can define the interpolation spaces Vσ = Hσ
L(0, 1) × Hσ

L(0, 1) for σ ∈ R with the
associate norms ∥·∥Vσ

. Thus, it follows from the scales of the interpolation spaces
that V0 = H and V1 = V .

Let σ = 1/2 + ε with ε > 0. Then there is a bounded linear operator β :
Hσ (0, 1) → Hε(1) = R, called the trace operator such that β w = w(1) ∈ Hε(1)
for all w ∈ Hσ(0, 1). Here the notion of the space Hε(1) is that the functions w
are restricted to the right boundary. Let 1 ≤ q ≤ ∞. Spaces involving time such as
Lq(0, T ;X) or W 1,q(0, T ;X) with the associate norms can be easily defined and
will be essential to construct the weak solutions to the PDEs.

Assume that u : [0, T ] × [0, 1] → R2. Then, we use the trace operators and a
projection operator from V → H1(0, 1) to define a composite operator P : V → V ∗

by

(13) ⟨Pu, w⟩V ∗×V = λnc (Ψ− βu (t))p+ β w for t ∈ [0, T ],

where Ψ ∈ R is given and (r)+ = max(r, 0). We note that βu(t, x) is replaced by
βu(t) for a simple notation.

In order to build approximations of functions on R, we define the convolution
operator, denoted by ∗, to be

f ∗ g(t) =
∫ ∞

−∞
f(t− s)g(s) ds =

∫ ∞

−∞
f(s)g(t− s) ds.

The standard mollifier η ∈ C∞ is defined by

η (t) =

{
C exp

(
1

|t|2−1

)
if |t| < 1,

0 if |t| ≥ 1.

Here the quantity C > 0 is chosen such that
∫∞
−∞ η(t) dt = 1.

As we shall see later, the simpler notations ⟨·, ·⟩ , (·, ·) will be used, if the choice
of spaces is clear. Let ut = v and yt = z. An energy functional in the continuous
case is defined by

(14) E(t) = Eb(t) + Es(t),

where

Eb(t) := Eb [u(t),v(t)] =
1

2
((v, v) + ⟨Au, u⟩) + λnc

p+ 1
(Ψ− β u(t))p+1

+

and

Es(t) := Es [z(t), y(t)] =
1

2

(
z2 + k1y

2 +
k2
2
y4
)
− λnc
p+ 1

(Ψ− y(t))p+1
+ .

One can notice that the total energy is E(t) = Eb(t) if t < tc for an initial contact
time tc.
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4. The existence results

In order to investigate a solvability of (1–11), we first derive a variational for-
mulation (15) which corresponds to (1–5) and then present the following Problem 1.

Problem 1. Let f b = (0, fb)
T . Assume that αb, αs > 0 and (f b, fs) ∈ L2 (0, T ;

L2(0, 1)× L2(0, T ). Find a solution (u, y) : [0, T ]→ V × C[0, T ] such that

vt = −αbAv −Au+ Pu+ f b,(15)

zt = −αsz − k1y − k2y3 − λnc (Ψ− β u(t))p+ +N(t) + fs,(16)
β u(t) = y(t) if φ ≤ β u(t) ≤ Ψ,(17)
0 ≤ N(t) ⊥ y(t)− φ ≥ 0,(18)

u(0, x) = u0 ∈ V, v(0, x) = v0 ∈ H,(19)

y (tc) = Ψ ∈ R, z(0) =
1

2

(
ut
(
t−c , 1

)
+ ut

(
t+c , 1

))
∈ R, N(0) = 0.(20)

For the abstract variational formulation (15), we use Galerkin’s method to choose
sufficiently smooth functions ϕi = ϕi(x) such that {ϕi}∞i=1 is an orthonormal ba-
sis of L2(0, 1) and is an orthogonal basis of H1

L(0, 1). In order to consider the
solution spaces, we temporarily establish regularity assumptions that (u, y) ∈
H1 (0, T ;V ) × L2

loc(0, T ). Let n ∈ N to be sufficiently large. We assume that
the solution of (15) is approximated by un : [0, T ]→ V of the form

(21) un(t) = (θn(t), un(t))
T
=

(
n∑

i=1

θi(t)ϕi(x),
n∑

i=1

ui(t)ϕi(x)

)T

.

Similarly, we can write

vn(t) = (ωn(t), vn(t))
T
=

(
n∑

i=1

ωi(t)ϕi(x),

n∑
i=1

vi(t)ϕi(x)

)T

.

The second order nonlinear DE (16) needs to be understood in the sense of distri-
butions. We also employ the standard mollifier η1/n (t) := n η (n t) to approximate
a solution y. We extend y to be 0 on the intervals (−∞, 0) and (T, ∞). Then we
set up approximations

yn(t) = η1/n ∗ y (t) on (1/n, T − 1/n).

The support of a function f is denoted by supp(f) := {t ∈ [0, T ] | f(t) ̸= 0}. Let
t∗ ∈ (0, T ) be an instantaneous contact time when the springs are fully compressed.
In the CCs (25), the contact forces N are assumed to be approximated by

Nn(t) =

m∑
i=1

η1/n (t− t∗,i) ,

where for each contact time t∗,i ∈ (0, T ] with 1 ≤ i ≤ m∫ T

0

η1/n (t− t∗,i) dt = 1

and supp
(
η1/n

)
⊂ (t∗,i − 1/n, t∗,i + 1/n) and η1/n (t− t∗,i)→ δ (t− t∗,i) as n ↑ ∞.

Here δ is the Dirac delta function (measure). Since n is sufficiently large, it is easy
to see that (t∗,i − 1/n, t∗,i + 1/n) ∩ (t∗,j − 1/n, t∗,j + 1/n) = ∅, if i ̸= j.

Now, the main results of the existence are presented in the following Theorem 2.
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Theorem 2. Let αb, αs > 0 and ε = 1/2. Assume that (f b, fs) ∈ L2
(
0, T ;L2(0, 1)

)
×L2 (0, T ). Then there is a solution (θ, u) and (y, z) of (15–20) such that

θ ∈ C
(
[0, T ] ;H1

L(0, 1)
)
∩W 1,∞ (0, T ;L2(0, 1)

)
∩H1

(
0, T ;H1

L(0, 1)
)
∩ (C[0, T ]× C[0, 1]) ,

u ∈ C
(
[0, T ] ;H1

L(0, 1)
)
∩W 1,∞ ([0, T ] ;L2(0, 1)

)
∩H1

(
0, T ;H1

L(0, 1)
)
∩ (C[0, T ]× C[0, 1]) ,

(y, z) ∈ C [0, T ]× L∞ (0, T ) .

Note that we can naturally extend the solutions (y, z) to become the functions
y(t) = Ψ and z(t) = 0 for t ∈ [0, tc).

First, we want to seek the approximations (un, yn) for a sufficiently large n ∈ N
in some Banach spaces involving time such that

vn
t = −αbAvn −Aun + Pun + f b,(22)

znt = −αsz
n − k1yn − k2 (yn)3 − λnc (Ψ− β un(t))p+ +Nn(t) + fs,(23)

β un(t) = yn(t) if φ ≤ β un(t) ≤ Ψ,(24)
0 ≤ Nn(t) ⊥ yn(t)− φ ≥ 0,(25)

θi(0) =
(
θ0, ϕi

)
, ui(0) =

(
u0, ϕi

)
,(26)

ωi(0) =
(
ω0, ϕi

)
, vi(0) =

(
v0, ϕi

)
,(27)

yn (tc) = Ψ ∈ R, zn(0) =
1

2

(
β vn

(
t−c
)
+ β vn

(
t+c
))
∈ R, Nn(0) = 0.(28)

Now, we consider a validation for construction of the approximations in (21) satisfy-
ing (22) and (26–27). Define the following four bilinear forms: for (θ, u)T , (ϑ, w)T ∈
V

a11(θ, ϑ) = (θx, ϑx) + (θ, ϑ) , a12 (u, w) = − (ux, w) ,

a21 (θ, ϑ) = (θ, ϑx) , a22 (u, w) = − (ux, wx) ,

where (·, ·) denotes the inner product in L2(0, 1). From (22) we can derive the
following second order ODE system easily: for each 1 ≤ i ≤ n[

θ̈i(t)
üi(t)

]
= −αb

[
a11 (ϕi, ϕj) a12 (ϕi, ϕj)
a21 (ϕi, ϕj) a22 (ϕi, ϕj)

] [
θ̇j(t)
u̇j(t)

]

−
[
a11 (ϕi, ϕj) a12 (ϕi, ϕj)
a21 (ϕi, ϕj) a22 (ϕi, ϕj)

] [
θj(t)
uj(t)

]
+

[
0

dj(t)

]
+

[
0

(fb(t), ϕi)

]
,

(29)

where

(30) di(t) = λnc (Ψ− uj(t))p+ β ϕj β ϕi.

Note that the Einstein summation notation is used in (29–30) and (̇), (̈) in (29) are
the first and second time derivatives, respectively. We intend to determine all the
coefficients (θi, ui) for 1 ≤ i ≤ n to satisfy (22) and (26–27). Let ui = ui(t) =
(θi(t), ui(t)) for each i ∈ N. Then the nonlinear ODE (29) can be consider in the
following vector equation

(31) üi = F (t, ui, u̇i) .

See the book [4, Sec 1.6]. Since (Ψ− uj(t))p+ is Lipschitz, the vector function F

in (31) is Lipschitz as well and thus we can guarantee only local uniqueness and
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existence of the solution ui. However, we will use a priori energy estimates and
then pass to the limits as n ↑ ∞, which enables us to prove that there is a unique
weak solution satisfying (22) and (26–27) on the global time interval [0, T ].

Throughout this paper, C > 0 is a fixed quantity and may be different in each
occurrence. In the following Lemma 3, based on some estimates, we show the
uniform boundedness of the approximations for a sufficiently large n ∈ N.

Lemma 3. Let αb, αs > 0. Assume that (fb, fs) ∈ L2
(
0, T ;L2(0, 1)

)
× L2(0, T )

and E(0) ≤M <∞. Then (un, yn) and (vn, zn) satisfying (22–28) are uniformly
bounded in C ([0, T ] ;V )×C [0, T ] and

(
L∞(0, T ;H) ∩ L2(0, T ;V )

)
×L∞ (0, T ) for

sufficiently large n ∈ N, respectively. vn
t is also uniformly bounded in L2 (0, T ;V ∗)

for a sufficiently large n ∈ N.

Proof. For our convenient notations, the approximations un and vn are denoted
by u and v, respectively. We take the inner product with v ∈ H1 (0, T ;V ) on both
sides of (15). Then it is easy to see that for a. a. t ∈ (0, T ]

1

2

∫ t

0

d

dτ
(v, v) dτ + αb

∫ t

0

⟨Av,v⟩ dτ + 1

2

∫ t

0

d

dτ
⟨Au,u⟩ dτ −

∫ t

0

⟨Pu, v⟩ dτ

=

∫ t

0

(f b, v) dτ.

(32)

We recall (13) to see that the last integral in the left side of (15) becomes

(33)
∫ t

0

⟨Pu, v⟩ dτ = − λnc
p+ 1

∫ t

0

d

dτ
(Ψ− β u(τ))p+1

+ dτ.

Thus it follows from (32) and (33) that

(34) Eb(t) + αb

∫ t

0

⟨Av,v⟩ dτ ≤ Eb(0) +

∫ t

0

(f b, v) dτ.

yn, zn, and Nn are also denoted by y, z, and N , respectively. Multiply both sides
in (23) by z to see that

1

2

(∫ t

0

d

dτ
[z(τ)]

2
+ k1

d

dτ
[y(τ)]

2
+
k2
2

d

dτ
[y(τ)]

4

)
dτ

+ αs

∫ t

0

[z(τ)]
2
dτ −

∫ t

0

N(τ)
d

dτ
(y(τ)− φ) dτ

+

∫ t

0

λnc (Ψ− y(τ))p+
d

dτ
(y(τ)−Ψ) dτ =

∫ t

0

fs(τ) z(τ) dτ.(35)

Note that y will be a trivial solution over [0, tc). Thus we can obtain
(36)

Es(t) + αs

∫ t

0

[z(τ)]
2
dτ −

∫ t

0

N(τ)
d

dτ
(y(τ)− φ) dτ ≤ Es(0) +

∫ t

tc

fs(τ) z(τ) dτ

We add (34) into (36) to see from (24) that

E(t) + αb

∫ t

0

⟨Av,v⟩ dτ + αs

∫ t

0

[z(τ)]
2
dτ −

∫ t

0

N(τ)
d

dτ
(y(τ)− φ) dτ

≤ E(0) +

∫ t

0

(f b, v) dτ +

∫ t

0

fs(τ)z(τ) dτ.(37)
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We use integration by parts and the CCs in (25) to see easily that∫ t

0

N(τ)
d

dτ
(y(τ)− φ) dτ =

∫ t

0

(y(τ)− φ) d

dτ
N(τ) dτ = 0.

Thus it follows from (37) that

(38) E(t)+αb

∫ t

0

⟨Av,v⟩ dτ+αs

∫ t

0

[z(τ)]
2
dτ ≤ E(0)+

∫ t

0

(f b, v) dτ+

∫ t

0

fsz dτ.

Now we can use Cauchy’s inequality to have

(39) E(t) ≤ E(0)+
1

2

(
∥fb∥2L2(0, T ;L2(0, 1)) + ∥fs∥

2
L2(0, T )

)
+
1

2

∫ t

0

∥v∥2L2(0, 1)+z
2dτ.

Recall the energy function (14). Let g(t) = ∥v(t)∥2L2(0, 1) + [z(t)]
2. Then can easily

see that

g(t) ≤
∫ t

0

g(t)dτ + C,

where C = E(0)+∥fb∥2L2(0, T ;L2(0, 1))+∥fs∥
2
L2(0, T ). Gronwall’s inequality allows us

to have
∥v(t)∥2L2(0, 1) + [z(t)]

2 ≤ C
(
1 + TeT

)
for a.a. t ∈ [0, T ].

Thus, it is straightforward to see from (38) and (39) that (un, yn) is uniformly
bounded in C ([0, T ] ;V )×C [0, T ] and (vn, zn) is uniformly bounded in (L∞(0, T ;H)
∩L2(0, T ;V )× L∞ (0, T ) for any n ≥ 1.

Multiply (22) by w ∈ V with ∥w∥V ≤1 in (32). Then it is easy to see that

|⟨ü,w⟩| ≤ C
(
∥fb∥L2(0,1) + ∥u∥V + ∥v∥V

)
.

Thus we can have∫ T

0

∥ü∥2V ∗ dt ≤ C
(
E(0) + ∥fb∥2L2(0, T ;L2(0, 1)) + ∥fs∥

2
L2(0, T )

)
which implies that ün is uniformly bounded in L2 (0, T ;V ∗). The proof is complete
now. �

We use the previous Lemma 3 to show that there is a weak solution of (22) and
(26–27). From now on, the strong, weak, and weak* convergences are denoted by
→, ⇀, and ⇀∗, respectively.

Lemma 4. There exists a weak solution u ∈ H1(0, T ;V ) satisfying the conditions
(15) and (19).

Proof. It follows from the previous Lemma 3 that approximations un and ün are
bounded in H1 (0, T ;V ) and L2 (0, T ;V ∗) for any n ≥ 1, respectively. Thus there
are their corresponding subsequences, denoted by {unl}, {ünl} such that

unl ⇀ u in H1 (0, T ;V ) and

ünl ⇀ ü in L2 (0, T ;V ∗) ,(40)

as l → ∞. We restrict our attention to those subsequences. Choose any test
functions w ∈ W, where

W =
{
w ∈ C2(0, T ;V ) | w(T ) = ẇ(T ) = 0

}
.
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Let n = nl for our convenience. Then we take the inner product on both sides of
(22) with w and take integrals with respect to t ∈ (0, T ] to see that∫ T

0

(ün, w) dt =−
∫ T

0

αb ⟨Avn, w⟩+ ⟨Aun, w⟩ dt

+

∫ T

0

⟨Pun, w⟩ dt+
∫ T

0

(f b, w) dt.(41)

We pass the approximations to the limits. Then it is easy to see from (40) that
(42)∫ T

0

(ü, w) dt = −
∫ T

0

αb ⟨Av, w⟩+ ⟨Au, w⟩ dt+
∫ T

0

⟨Pu, w⟩ dt+
∫ T

0

(f b, w) dt.

Thus the variational formulation (15) holds for all w ∈ V and almost all t ∈ (0, T ].
Now we claim that the solution u satisfies the two initial data (19). We apply
integration by parts twice in (41) and (42). Then we can obtain the following
identity

− (un(0), ẇ(0)) + (vn(0), w(0)) = −
(
u0, ẇ(0)

)
+
(
v0, w(0)

)
.

Since w(0) and ẇ(0) are arbitrary, the initial conditions imposed by the weak
solution u hold. The proof is complete now. �

In the next Lemma 5, we use a contraction mapping argument to show the
uniqueness of the solutions satisfying all the conditions considered in the Problem 1
except the CCs in (18). We note that proving the uniqueness of solutions satisfying
the CCs is an open question. Since the solutions u ∈ H1(0, T ;V ) and (y, z) ∈
C [tc, T ]× L∞ (tc, T ), we can write

(43) u(t) = u(s) +

∫ t

s

v(τ) dτ, y(t) = y(s) +

∫ t

s

z(τ) dτ

for tc ≤ s ≤ t ≤ T .

Lemma 5. There is a unique weak solution (u, y) satisfying (15–17) and (19–20),
provided that N(t) = 0 for t ∈ [0, T ].

Proof. Assume that there are two solutions (u1, y1) and (u2, y2) ∈ C([0, T ];V )×
C[0, T ] satisfying (15–17) and (19–20). Let u = u1 − u2 and thus v = u̇1 − u̇2.
Also let y = y1−y2 and thus z = ẏ1− ẏ2. Note that we do not want to consider the
trivial solutions y1 and y2, if t ∈ [0, tc). Now, we claim that (u, y)=0, if N(t) = 0.
If λnc = 0, it is straightforward to show the uniqueness of (15). If λnc > 0, then we
first show that u(t) = 0 for t ∈ [0, T ]. Since the initial data (19) are shared, it is
easy to see from (15) that over a local interval

[
0, tb1

]
⊂ [0, T ]

(44)
1

2

(∥∥v (tb1)∥∥2H +
∥∥u (tb1)∥∥2V )+ αb

∫ tb1

0

∥v(τ)∥2V dτ =

∫ tb1

0

⟨Pu1 − Pu2, v⟩ dτ.

Note that tb1 will be small enough, as we shall see later. Recall (13). Since (·)p+
is Lipschitz, we can use the trace theorem and Cauchy’s inequality with ϵ > 0 to
obtain∫ tb1

0

⟨Pu1 − Pu2, v⟩ dτ = λnc

∫ tb1

0

(
(Ψ− βu1 (τ))p+ − (Ψ− βu2 (τ))p+

)
β v dτ

≤ C
∫ tb1

0

1

ϵ
∥u∥2H1

L(0, 1) + ϵ ∥v∥2H1
L(0, 1) dτ.(45)
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Thus, we combine (45) with (44) to have

1

2

(∥∥v (tb1)∥∥2H +
∥∥u (tb1)∥∥2V )+ αb

∫ tb1

0

∥ω(τ)∥2H1
L(0, 1) dτ

+ (αb − Cϵ)
∫ tb1

0

∥v(τ)∥2H1
L(0, 1) dτ ≤

C

ϵ

∫ tb1

0

∥u(τ)∥2H1
L(0, 1) dτ.(46)

Now we can choose a sufficiently small ϵ > 0 such that αb −Cϵ > 0. We define the
norm on the local interval to be

∥u(t)∥L∞(0, tb1;H1
L(0, 1)) = max

0≤t≤tb1

∥u(t)∥H1
L(0, 1) .

We recall (43). We use Hölder’s inequality to see that for t ∈
[
0, tb1

]
(47) ∥u (t)∥H1

L(0, 1) ≤
∫ t

0

∥v (τ)∥H1
L(0, 1) dτ ≤

√
tb1

(∫ tb1

0

∥v(τ)∥2H1
L(0, 1) dτ

)1/2

.

Thus, it follows from (46–47) that

(48) ∥u(t)∥L∞(0, t1;H1
L(0, 1)) ≤ t

b
1

√
C

(αb − Cϵ) ϵ
∥u(t)∥L∞(0, t1;H1

L(0, 1)) .

We also choose a sufficiently small tb1 > 0 such that tb1
√
C/ (αb − Cϵ) ϵ < 1. We

can see from (48) that u(t) = 0 on
[
0, tb1

]
. Similarly, the estimate (46) allows us to

have

∥θ (t)∥H1
L(0, 1) ≤

∫ t

0

∥ω (τ)∥H1
L(0, 1) dτ ≤

√
tb1

(∫ tb1

0

∥ω(τ)∥2H1
L(0, 1) dτ

)1/2

= 0,

which implies that θ(t) = 0 on
[
0, tb1

]
. We continue to apply the same argument

on the next local intervals
[
tb1, t

b
2

]
,
[
tb2, t

b
3

]
, etc. to prove that u(t) = 0 on [0, T ].

Now, we turn to show that y(t) = 0 for each t ∈ [0, T ]. Let [0, ts1] ⊂ [0, T ].
Since there is a unique solution u, the transmission condition in (17) and the
similar argument above and several algebraic manipulations allow us to have

1

2

(
[z (ts1)]

2
+ k1 [y (t

s
1)]

2
)
+ αs

∫ ts1

tc

[z(τ)]
2
dτ

=− k2
∫ ts1

0

(
(y1(τ))

3 − (y2(τ))
3
)
z(τ)dτ

− λnc
∫ ts1

0

(
(Ψ− y1 (τ))p+ − (Ψ− y2 (τ))p+

)
z dτ ≤ C

∫ ts1

0

|y(τ) z(τ)| dτ

≤ C
∫ ts1

0

1

ϵ
|y(τ)|2 + ϵ |z(τ)|2 dτ.

By the similar argument to the beam equation, we can prove that obtain y(t) = 0
on [0, ts1] . But we choose ti = min

(
tbi , t

s
i

)
for i ≥ 1 to validate the contraction

mapping argument for the entire differential equation system. Consequently, we
apply the same argument on the next local intervals [t1, t2], [t2, t3], etc. to show
the uniqueness of the solutions on [0, T ]. The proof is now complete. �
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We can observe from the previous Lemma 3 that ∥v(t)∥H and ∥u(t)∥V are uni-
formly bounded for almost all t ∈ [0, T ]. Thus it follows that for s, t ∈ [0, T ]

∥u(t)− u(s)∥H ≤
∫ t

s

∥v(τ)∥H dτ ≤ C|t− s|.

We use the interpolation space inequality (e.g., see the book [5, Theorem 1.3.3(g)]):
∥u∥Vσ

≤ Cσ ∥u∥1−σ
H ∥u∥σV , where 1 ≤ σ ≤ 1. So it is easy to see that

∥u(t)− u(s)∥Vσ
≤ Cσ|t− s|1−σ.

Let ρ = 1 − σ with 0 ≤ σ < 1. We can apply Sobolev embedding theorem and
Arzella–Ascoli theorem to see that Cρ (0, T ;Vσ) with 1/2 < σ < 1 are compactly
embedded in C[0, T ]× C[0, 1].

In the following Lemma 6, we prove that the limits of (yn, Nn) satisfy the CCs
(18) in the weak sense.

Lemma 6. There are subsequences (yn, Nn) such that Nn ⇀∗ N , yn → y. The
solutions satisfy the CCs (18) in the weak sense.

Proof. Recall from the previous Lemma 3 that (yn, zn) are uniformly bounded in
C [0, T ]× L2 (0, T ) for sufficiently large n. We take integrals on both sides of (23)
to see that∫ T

0

Nn(t) dt ≤ |zn(T )|+ |zn(0)|+ αs

∫ T

0

|zn(t)| dt

+ k1

∫ T

0

|yn(t)| dt+ k2

∫ T

0

|yn(t)|3 dt+
√
T ∥f∥L2(0, T ) ≤M <∞.(49)

Since Nn can be identified with the Borel measure
∫ T

tc
Nn(t) dt by Riesz represen-

tation theorem, we can use Alaoglu’s theorem to see that there is a subsequence,
denoted by {Nn}, such that Nn ⇀∗ N as measures. We note that we keep using
the same notation {Nn} for our convenience. We take a sequence {yn} such that
yn → y in C [0, T ], as n ↑ ∞. {yn} is assumed to correspond to {Nn}. Since
Nn ≥ 0 yn − φ ≥ 0, clearly N ≥ 0 and y − φ ≥ 0. It is also easy to see that

0 =

∫ T

0

Nn(t) (yn(t)− φ) dt→
∫ T

0

N(t) (y(t)− φ) dt,

as required. �
5. The fully discrete numerical schemes

In order to propose the fully discrete numerical schemes, we employ a time
discretization and FEM, where the time step size and the size of subintervals,
denoted by ht > 0 and hx > 0 respectively are accompanied. The number of time
steps and the number of subintervals are also denoted by Pt = ⌊T/ht⌋ and Ps =
⌊1/hx⌋, respectively. Then the space [0, T ]× [0, 1] will be uniformly partitioned:

0 = t0 < t1 < · · · < tl < · · · < tPt−1 < tPt = T,

0 = x0 < x1 < · · · < xi < · · · < xPs−1 < xPs = 1,

where each time step tl = l ht for 0 ≤ l ≤ Pt and each node xi = i hx for 0 ≤ i ≤ Ps.
We assume that tc ∈ {tl | 0 ≤ l ≤ Pt}. The fully discrete numerical solutions for
(u, v, y, z, N) are denoted by (uht,hx , vht,hx , yht , zht , Nht) and thus we can write

(u (tl, xi) .v (tl, xi) , y (tl) , z (tl) , N (tl))

≈ (uht,hx (tl, xi) , vht,hx (tl, xi) , yht (tl) , zht (tl) , Nht (tl))
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for the sufficiently small parameters ht, hx.
First, we use a FEM in the spacial domain [0, 1] to obtain semi discrete approxi-

mations for Timoshenko beam equation. Let Ii = [xi−1, xi] with 1 ≤ i ≤ Ps. Then
a finite dimensional space can be defined by

Vhx =
{
(θhx , uhx) ∈ V |

(
θhx |Ii , uhx |Ii

)
∈ P1 (Ii)× P1 (Ii) , 1 ≤ i ≤ Ps

}
,

where P1 (Ii) is a collection of linear functions on the subinterval Ii. A basis function
ψi(x) with 1 ≤ i ≤ Ps is constructed by a typical piecewise linear function on a
subinterval [xi−1, xi+1]. Now (uht,hx , vht,hx) at each time step t = tl is written to
be

uht,hx (tl, x) := ul
hx
(x) =

 Ps∑
j=1

θljψj(x),

Ps∑
j=1

uljψj(x)

 ,(50)

vht,hx (tl, x) := vl
hx
(x) =

 Ps∑
j=1

ωl
jψj(x),

Ps∑
j=1

vljψj(x)

 .(51)

where ψj (xi) = δij . Note that δij is the Kronecker delta function. Thus the fully
discrete numerical approximations at each time step t = tl and node xi are denoted
by

θ̃l =
(
θl1, θ

l
2, · · · , θlPs

)T
, ω̃l =

(
ωl
1, ω

l
2, · · · , ωl

Ps

)T
,

ũl =
(
ul1, u

l
2, · · · , ulPs

)T
, ṽl =

(
vl1, v

l
2, · · · , vlPs

)T
.

Next, a time discretization is combined with the FEM. On local time intervals
[tl, tl+1], we use a piecewise linear interpolant (uht,hx , yht) such that

(uht,hx (tl, ·) , yht (tl)) =
(
ul
hx
(·), yl

)
and

(uht,hx (tl+1, ·) , yht (tl+1)) =
(
ul+1
hx

(·), yl+1
)

We also use a piecewise constant interpolant (vht,hx
, zht

) such that

(vht,hx (tl, ·) , zht (tl)) =
(
vl
hx
(·), zl

)
for all t ∈ (tl−1, tl] .

The time discrete total forces are defined by

Nht(t) = ht

⌊T/ht⌋−1∑
j=0

δ (t− tj+1)N
j .

Recall all the conditions (22–27) in the continuous case. Assume that fb =∑Ps

j=1 cjψj(x) and fs = c. In the time discretization, the implicit Euler method
and the midpoint rule are applied to set up the following numerical formulations:

1

ht

(
vl+1
hx
− vl

hx
,whx

)
= −αb

2
a
(
vl+1
hx

+ vl
hx
,whx

)
− 1

2
a
(
ul+1
hx

+ ul
hx
,whx

)
+
λnc
2

((
Ψ− ul+1

hx
(1)
)p
+
+
(
Ψ− ulhx

(1)
)p
+

)
whx(1)

+

∫ 1

0

fbwhxdx for all whx = (ϑhx , whx)
T ∈ Vhx

(52)
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and

zl+1 − zl

ht
= −αs

2

(
zl+1 + zl

)
− k1

2

(
yl+1 + yl

)
− k2

(
yl+1

)2
+
(
yl
)2

2

(
yl+1

)
+
(
yl
)

2

− λnc
2

((
Ψ− yl+1

)p
+
+
(
Ψ− yl

)p
+

)
+ fs +N l

(53)

and

1

2

(
vl+1
hx

(x) + vl
hx
(x)
)
=

1

ht

(
ul+1
hx

(x)− ul
hx
(x)
)
,

1

2

(
zl+1 + zl

)
=

1

ht

(
yl+1 − yl

)
,

(54)

ulhx
(1) = yl if φ ≤ ulhx

(1) ≤ Ψ,

(55)

0 ≤ N l ⊥ yl+1 − φ ≥ 0,

(56)

altogether with the initial data (26–28). Note that we used the following inner
product on the space H and bilinear form

(vhx ,whx)H =

∫ 1

0

ωhxϑhx + vhxwhxdx and(57)

a (uhx ,whx) =

∫ 1

0

θ′hx
ϑ′hx

+
(
u′hx
− θhx

) (
w′

hx
− ϑhx

)
dx,(58)

where the primes (′) are the derivatives with respect to x.
Now, we define the mass matrix M ∈ RPs×Ps , the stiffness matrix K ∈ RPs×Ps ,

semi–stiffness matrix S ∈ RPs×Ps to be

M = [mij ] =

∫ 1

0

ψi(x)ψj(x) dx, K = [kij ] =

∫ 1

0

ψ′
i(x)ψ

′
j(x) dx,

S = [sij ] =

∫ 1

0

ψi(x)ψ
′
j(x) dx.(59)

In order to establish one time step nonlinear system for the Timoshenko beam
equation with the normal compliance condition, we use (52) and (54) to present
the following two weak formulations: find

(
θl+1
hx

, ul+1
hx

)
∈ Vhx such that

∫ 1

0

(
2

h2t
θl+1
hx
− 2

h2t
θlhx
− 2

ht
ωl
hx

)
ϑhxdx = −1

2

∫ 1

0

((
θl+1
hx

)′
+
(
θlhx

)′)
ϑ′hx

dx

− αb

ht

∫ 1

0

((
θl+1
hx

)′ − (θlhx

)′)
ϑ′hx

dx+
1

2

∫ 1

0

((
ul+1
hx

)′
+
(
ulhx

)′)
ϑhxdx

− 1

2

∫ 1

0

((
θl+1
hx

)
+
(
θlhx

))
ϑhxdx+

αb

ht

∫ 1

0

((
ul+1
hx

)′ − (ulhx

)′)
ϑhxdx

− αb

ht

∫ 1

0

((
θl+1
hx

)
−
(
θlhx

))
ϑhxdx(60)
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and ∫ 1

0

(
2

h2t
ul+1
hx
− 2

h2t
ulhx
− 2

ht
vlhx

)
whxdx = −1

2

∫ 1

0

((
ul+1
hx

)′
+
(
ulhx

)′)
w′

hx
dx

+
1

2

∫ 1

0

((
θl+1
hx

)
+
(
θlhx

))
w′

hx
dx− αb

ht

∫ 1

0

((
ul+1
hx

)′ − (ulhx

)′)
w′

hx
dx

+
αb

ht

∫ 1

0

((
θl+1
hx

)
−
(
θlhx

))
w′

hx
dx+

∫ l

0

fbwhxdx

+
λnc
2

((
Ψ− ul+1

hx
(1)
)p
+
+
(
Ψ− ulhx

(1)
)p
+

)
whx(1)(61)

for all (ϑhx , whx) ∈ Vhx , provided that
(
θlhx

, ulhx

)
∈ Vhx and

(
ωl
hx
, vlhx

)
∈ H are

given. From the FEM system (60–61) we solve for
(
θl+1
hx

, ul+1
hx

)
. Then a recursive

relation can be written in the following block matrix form:
(62)

A

[
θ̃l+1

ũl+1

]
−h2t

[
0
ẽl+1

]
= B

[
θ̃l

ũl

]
+4ht

[
M ω̃l

M ṽl

]
+2h2t

[
0

M f̃b

]
+h2t

[
0
ẽl

]
,

where

A =

[ (
4 + h2t + 2αbht

)
M +

(
h2t + 2αbht

)
K −

(
h2t + 2αbht

)
S

−
(
h2t + 2αbht

)
ST 4M +

(
h2t + 2αbht

)
K

]
and

B =

[ (
4− h2t + 2αbht

)
M +

(
2αbht − h2t

)
K

(
h2t − 2αbht

)
S(

h2t − 2αbht
)
ST 4M +

(
2αbht − h2t

)
K

]
and ẽl =

(
0, 0, · · · , 0, λnc

(
Ψ− ulPs

)p
+

)T
∈ RPs .

In order to implement the fully discrete numerical schemes, we present the pseu-
docode in Algorithm 1 to simulate the motion of a spring–beam system. See (1)–
(4) in the Algorithm. In our simulations, a beam moves down initially. Note that
tc = lcht is an initial time step when the end of a beam and the top of a spring
touch each other. Indeed, we pay a special attention to (5)–(28). See (11)–(13).
The transmission condition is not applied to the next step solutions

(
ul+1
Ps

, yl+1
)
.

Moreover, there are gaps between them and thus λnc = 0. See (14)–(28). The
transmission condition and CCs are required to compute

(
ul+1
Ps

, yl+1
)
. Particu-

larly, it is not possible to have the condition that ul+1
PS

< yl+1 from a physical
point of view but it may happen computationally. In that case, the top of a spring
and the tip of a beam are assumed to coalesce and move together. Therefore,
ul+1
Ps is temporarily assigned to the previous numerical step solution yl. We uti-

lize Newton–Raphson method to compute yl+1 at first and then ul+1
Ps and yl+1 are

assumed to have an identical position, as seen in (18). See (13) and (19). Since
ul+1
Ps is found in the previous steps and the matrix A in the recursive relation (62)

can be partitioned into appropriate submatrices, the back–substitution allows us
to compute

(
θ̃l+1,

(
ul+1
1 , ul+1

2 , · · ·ul+1
Ps−1

)T)
. Once the next step approximations(

θ̃l+1, ũl+1, yl+1
)

are computed, (54) can be used to update
(
ω̃l+1, ṽl+1, zl+1

)
.

In the fully discrete case, the energy function at each time step t = tl is defined
by

(63) ED (tl) := El
D = El

b,D + El
s,D,
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where

El
b,D := Eb,D (tl) =

1

2

(
ω̃lM

(
ω̃l
)T

+ ṽlM
(
ṽl
)T)

+
1

2

(
θ̃lK

(
θ̃l
)T

+ ũlK
(
ũl
)T − 2ũlST

(
θ̃l
)T

+ θ̃lM
(
θ̃l
)T)

− f̃bM
(
ũl
)T
,

(64)

El
s,D := Es,D (tl) =

1

2

((
zl
)2

+ k1
(
yl
)2

+
k2
2

(
yl
)4)− c yl.

(65)

where f̃b = (c1, c2, · · · , cPs).
In the following Lemma 7, we will see that the total energy for this mechanical

system is bounded, which may validate numerical stability of the algorithms.

Lemma 7. Let αb, αs ≥ 0. Assume that the fully discrete numerical solutions
(uht,hx ,vht,hx , yht , zht) satisfy (52–56). Then El

D ≤ M < ∞ for any l ≥ 0 with
ht, hx > 0.

Proof. Take whx = 1
2

(
vl+1(x) + vl(x)

)
∈ Vhx and whx = 1

ht

(
ul+1(x)− ul(x)

)
∈

Vhx in the first one of (54). Then it is easy to see from (52) that for ht > 0

1

2ht

((
vl+1
hx

,vl+1
hx

)
−
(
vl
hx
,vl

hx

))
+
αb

2
a
(
vl+1
hx

+ vl
hx
,vl+1

hx
+ vl

hx

)
+

1

2ht

(
a
(
ul+1
hx

,ul+1
hx

)
− a

(
ul
hx
,ul

hx

))
− 1

ht

∫ 1

0

fb
(
ul+1
hx
− ulhx

)
dx

=
λnc
2ht

((
Ψ− ul+1

Ps

)p
+
+
(
Ψ− ulPs

)p
+

) (
ul+1
Ps
− ulPs

)
.(66)

It follows from (57–58) and (59) that for each time step t = tl

(
vl
hx
,vl

hx

)
= ω̃lM

(
ω̃l
)T

+ ṽlM
(
ṽl
)T
,(67)

a
(
ul
hx
,ul

hx

)
= θ̃lK

(
θ̃l
)T

+ ũlK
(
ũl
)T − 2ũlS

(
θ̃l
)T

+ θ̃lM
(
θ̃l
)T

, and(68) ∫ 1

0

fbu
l
hx
dx = f̃bM

(
ũl
)T
.(69)

One can notice that ũlST
(
θ̃l
)T

= θ̃lS
(
ũl
)T . We plug (67–69) into the equation

(66). Then we can obtain

(70) El+1
b,D ≤ E

l
b,D + λnc

((
Ψ− ul+1

Ps

)p
+
+
(
Ψ− ulPs

)p
+

) (
ul+1
Ps
− ulPs

)
.

Since numerical solutions uht,hx(t, ·) are piecewise linear continuous on [0, T ], it
follows from (55–56) that

(71) El+1
b,D ≤ E

l
b,D + 2λnc (Ψ− φ)pO (ht) ,
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Algorithm 1 Computation for fully discrete numerical solutions

Initial data: θ̃0, ũ0, ω̃0, and ṽ0 ∈ RPs are given
(1) for i = 1 : lc − 1
(2) λnc ← 0;
(3) update θ̃l+1, ũl+1, ω̃l+1, ṽl+1 from the previous data θ̃l, ũl, ω̃l, ṽl;
(4) end for % there is no contact until the end of beam touches the top of a

spring.
(5) ylc ← Ψ and zlc ← vlcPs

;
(6) λnc > 0 is chosen; % there is an initial contact between them.
(7) for l = lc : ⌊T/ht⌋ − 1

(8) the previous data are given by θ̃l, ũl, ω̃l, ṽl ∈ RPs and yl, zl ∈ R;
(9) compute ũl+1 from the iterative formula (62);

(10) compute
(
yl+1, zl+1

)
from (53–54);

(11) if yl+1 > Ψ and yl+1 < ul+1
Ps

(12) λnc ← 0; % There is no contact between them.
(13) compute

(
θ̃l+1,

(
ul+1
1 , ul+1

2 , · · ·ul+1
Ps−1

)T)
from (62);

(14) elseif ul+1
Ps
≤ Ψ or ul+1

Ps
≤ yl+1

(15) λnc > 0 is chosen; % it will be the same value as in (6).
(16) yltemp ← ul+1

Ps
; % accommodate the transmission condition.

(17) compute
(
yl+1, zl+1

)
from (53–54);

(18) ul+1
Ps
← yl+1;

(19) compute
(
θ̃l+1,

(
ul+1
1 , ul+1

2 , · · ·ul+1
Ps−1

)T)
from (62);

(20) if yl+1 == φ % compute the next step numerical solutions satisfying
CCs.

(21) ul+1
Ps
← φ;

(22) compute
(
θ̃l+1,

(
ul+1
1 , ul+1

2 , · · ·ul+1
Ps−1

)T)
from (62);

(23) yl+1 ← φ;
(24) compute N l from (53); compute zl+1 from (54);
(25) else if yl+1 > φ
(26) N l ← 0;
(27) end if
(28) end if
(29) use (54) to compute

(
ω̃l+1, ṽl+1, zl+1

)
;

(30) θ̃l ← θ̃l+1; ũl ← ũl+1; ω̃l ← ω̃l+1; ṽl ← ṽl+1; yl ← yl+1; zl ← zl+1;
(31) end for

where the big O notation is used. Similarly, it follows from (53) and the second one
in (54) that

1

2ht

((
zl+1

)2 − (zl)2)+ αs

4

(
zl+1 + zl

)2
+
k1
2

((
yl+1

)2 − (yl)2)
+
k2
4

((
yl+1

)4 − (yl)4)− 1

ht
N l
(
yl+1 − φ

)
+

1

ht
N l
(
yl − φ

)
− c

ht

(
yl+1 − yl

)

= −λnc
2ht

((
Ψ− yl+1

)
+
+
(
Ψ− yl

)
+

) (
yl+1 − yl

)
.

(72)
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Table 1. Selected fixed data.

κ1 κ2 αb αs fs λnc p Ψ φ T
3.6× 1010 3.6× 1010 0 0 0 104 3 0 −0.015 4

The CCs in (56) gives the following inequality:

(73) El+1
s,D ≤ E

l
s,D −

λnc
2ht

((
Ψ− yl+1

)
+
+
(
Ψ− yl

)
+

) (
yl+1 − yl

)
.

Since numerical solutions yht are also piecewise linear continuous on [0, T ], we can
easily see that

(74) El+1
s,D ≤ E

l
s,D + 2λnc (Ψ− φ)pO (ht) .

Thus a telescoping sum allows us to have

El
D ≤ E0 + Clht ≤ E0 + CT =M <∞,

as desired. �

Note that if the top of springs and the end of beams are not separate, then
energy does not increase which can be easily proved.

6. Numerical results and discussion

In this section, we implement the numerical schemes proposed in the previous
section 5. We reduce the number of all the coefficients in the Timoshenko beam
equations (1–2) and modify the extended Duffing equation (6) to present the fol-
lowing simplified forms:

θtt = κ1θxx + κ2 (ux − θ) + αb κ1θtxx + αb κ2 (utx − θt) ,
utt = κ2 (uxx − θx) + αb κ2 (utxx − θtx) + fb,

ytt + αsyt + k1 y + k2y
3 = −λnc (Ψ− u(t, 1))p+ +N(t) + fs.

The initial data to be chosen are presented as follows:

θ0(x) = 0, θ0t (x) = 0, u0(x) = 0.5x, u0t (x) = −x, y (tc) = Ψ, yt (tc) = 0, N(0) = 0,

where tc ∈ (0, T ] is an initial contact time. Note that the boundary conditions (4–
5) can also be easily adjusted. All the selected data are presented in the Table 1.

In our numerical experiments, we assume that ut (t−c , 1) = ut (t
+
c , 1). As seen in

the Table, a spring–beam system consists of a purely elastic Timoshenko beam and
nonlinear spring. We will also choose different coefficients k1, k2 for a nonlinear
spring to make observations on their different motion. The time step size and the
size of subintervals are ht = 0.004 and hx = 0.001, respectively. Therefore, the size
of the block matrices A, B in (62) is 2, 000× 2, 000. Matlab’s sparse matrix utility
enables for us to provide an efficient computation for the iterative formula (62).

This physical setting is quite similar to one considered in [10] but in the paper the
beams touch a rigid foundation, instead of a deformable foundation. There are two
groups to display our numerical simulations. We use the different quantities k1 > 0
and k2 < 0 for each group. We note that in the Duffing equation, quantities k2 can
be negative but have to be close to zero. The beams are assumed to move downward
initially and be undeformed until their right end touches the top of the spring. All
the projected curves in sub-figure (A) of Figures 2–5 are captured at each time step,
right after the tip of the beams hits the top of the spring. Subsequently, the curves
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(a) Motion of the beam right after contact
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(b) Subsequent motion of the beam
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(c) Position of the beam’s tip and top of the spring and velocity of the beam’s tip
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(d) Velocity of top of the spring and magnitude of contact forces
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Figure 2. k1 = 3, k2 = −0.2, fb = 0.
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(a) Motion of the beam right after contact
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(b) Subsequent motion of the beam
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(c) Position of the beam’s tip and top of the spring and velocity of the beam’s tip
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(d) Velocity of top of the spring and magnitude of contact forces
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(e) Gap and the total energy

Figure 3. k1 = 3, k2 = −0.2, fb = (0, 0, · · · ,−6).
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(a) Motion of the beam right after contact
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(b) Subsequent motion of the beam
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(c) Position of the beam’s tip and top of the spring and velocity of the beam’s tip
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(d) Velocity of top of the spring and magnitude of contact forces
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Figure 4. k1 = 150, k2 = 67, fb = 0.
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(a) Motion of the beam right after contact
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(b) Subsequent motion of the beam

0 ≤ t ≤ 4

0 0.5 1 1.5 2 2.5 3 3.5 4

u h t,h x(t,1
) a

nd
 y h t(t)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 ≤ t ≤ 4

0 0.5 1 1.5 2 2.5 3 3.5 4

v h t,h x(t,1
)

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

(c) Position of the beam’s tip and top of the spring and velocity of the beam’s tip
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(d) Velocity of top of the spring and magnitude of contact forces
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Figure 5. k1 = 150, k2 = 67, fb = (0, 0, · · · ,−6).
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Table 2. Computing each time step numerical solutions.

Figure 2 Figure 3 Figure 5 Figure 5
Average # of Newton’s iterations 1.990 3.0100 2.0000 2.9780

Average elapsed time (sec) 5.63 × 10−3 5.84 × 10−3 5.90 × 10−3 5.83 × 10−3

in sub–figures (B) are sampled at every 249 time step. One can refer to the boxes
in each picture to see how the beams oscillate. Particularly, see the left bottom
pictures about vht,hx(t, x) in sub-figure (A) of Figures 2 and 4. One can observe
that the beams move up and down almost the same speed at each time step.

See sub-figures (C)–(E) in each of Figures. While the magnitude of contact forces
and the total energy are sampled every time step in (E), all the numerical solutions
are sampled every third time step in sub-figures (C) and (D) to avoid possibilities of
higher frequencies. See the left pictures in sub-figure (C) of each Figure. The blue
and red lines show the motion of the beam’s tip and the spring’s top, respectively.
We can confirm the numerical evidence that the numerical solutions satisfy the
transmission condition in (55). An interesting point is that the spring’s top does
not seem to pass the equilibrium position Ψ. However, when we zoom in the picture
in sub-figure (C) of Figure 4 we can barely see that 0 = Ψ < yht(t) < uht,hx(t, 1)
around t = 3.6. This shows a numerical evidence that solutions do not satisfy
the transmission condition necessarily if the top of spring and the beam’s tip are
positioned higher than Ψ. A little wiggling (see the red color) is detected over
some local intervals. One can guess that this is due to the beam’s hitting. We also
observe that they continue to touch each other and separate alternatively, which
may be understood by the Newton’s third law. Therefore, the numerical simulations
are fairly reasonable from the physical perspective. However, there are significant
oscillations of the beam’s tip, due to the continued hit–separation at each time step.
This implies that they may cause noisy solutions and numerical instability. Indeed,
the task of computing numerical approximations for dynamic contact problems
still remains elusive in contact mechanics. In the recent paper [29], the numerical
schemes have been improved to avoid the unstable numerical solutions. Another
interesting point (see the right picture in sub-figure (C) of Figures 2–5) is that the
load fb applied at the tip makes much faster vibrations, after the initial contact
time t = tc. See the pictures in sub-figure (D) of Figures 3 and 5. There are sudden
big changes in the velocity of the spring at some time steps and there occurs contact
forces then. Accordingly, the numerical solutions are validated to satisfy the CCs
in (8) as well. We compare the left picture in sub-figure (D) of Figure 3 with
one in (D) of Figure 5. The velocity of the softer spring produces sudden changes
more sharply than the stiffer one does. Consequently, the softer one causes higher
singular contact forces than the stiffer one does. As we proved the boundedness of
the total energy in Lemma 7, it is reasonably supported by the numerical evidence
displayed in sub-figure (D) of all Figures.

The following Table 2 displays our numerical computation performance. When
yht is computed at each time step, the tolerance ϵ = 10−12 in Newton–Raphson
method is taken through all the numerical experiments. We note that the semi-
smooth function (·)+ can be a smooth function, if p > 1.
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