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With the rapid advent of modern computers, especially with better understand-
ing of accuracy, stability and convergence of modern numerical algorithms, it is pos-
sible to design fast and reliable computer programs to simulate more and more com-
plicated processes in oil reservoirs. This offers great helps in predicting, planning
and designing of oil and gas explorations and productions. Simulation for petroleum
industry is a task involving inter-disciplinary collaborations. It involves reservoir
and chemical engineering, geophysics, numerical mathematics and computer sci-
ences. The International Conference on ”Scientific Computing in Petroleum Indus-
try (SCPI)” was trying to bring scientists from different disciplines together and
communicate on new and better simulation methods for petroleum related prob-
lems. The conference was held at Jiuhua SPA and Resort in Beijing, China from
August 4-7, 2004. Scientists from 10 countries have taken part in the conference.
The talks delivered at the conference cover a wide range of topics including the
following:

• parameter estimation and level set methods
• large scale reservoir numerical simulation,
• continuation and subsurface imaging in seismic exploration,
• automatic history matching
• fractured reservoir simulations,
• numerical simulations for sedimentary basins

Many modern and new numerical techniques are discussed and presented in the
conference. Domain decomposition methods, preconditioning techniques, methods
of characteristics, mixed finite element methods, splitting techniques, unstructured
mesh techniques and multiscale methods are among the topics presented in the
conference.

This special issue of the journal contains a selected collection of contributions
to the processing of the conference. All the contributions have gone through a
standard peer review process of the journal. The selected publications contain
research work on numerical simulation aspects of the reservoir simulations as well
as computer vision and planning of tasks related to petroleum industry.
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BAROCLINIC MATHEMATICAL MODELING
OF FRESH WATER PLUMES IN THE INTERACTION

RIVER-SEA

HERMILO RAMÍREZ LEÓN, HÉCTOR ALFONSO BARRIOS PIÑA, CLEMENTE

RODRÍGUEZ CUEVAS, AND CARLOS COUDER CASTAÑEDA

Abstract. The estuarine zone is an area of strong interaction between fresh

and salty water. Dynamics in these areas is complex due to the interaction of

the forcing mechanisms such as wind, tides, local coastal currents and river dis-

charges. The difference of density between fresh water and salted water causes

the formation of the buoyant plumes which have been investigated by means of

numerical models and field studies. Plumes play a significant role in the trans-

port of pollutants and the ecology in the frontal areas where density gradients

are strong. Therefore, in order to investigate the horizontal and vertical disper-

sion of salinity and temperature the YAXUM/3D baroclinic numerical model

was developed. The model is validated and applied for two particular cases.

The first one consist of modeling the discharge of a jet of hot water where the

gradients of temperature prevail and the second to study the discharge of the

mouth of the estuary Leschenault toward the Koombana bay, Australia where

salinity gradients are analyzed. The results derived from the YAXUM/3D are

satisfactory and in agreement to with other models which have been already

validated.

Key Words. estuarine zone, baroclinic modeling, buoyant plume, vertical

mixing.

1. Introduction

The estuarine zone is a complex area due to the interaction of wind, tides, local
coastal currents and river discharges. In this area, the fresh water moves toward
the sea on top of the salty water layer. The dynamics of the frontal area play an
important role in the biology of the area due to the accumulation of particulate
organic matter. In addition, the daily heating and cooling effect produce changes
of temperature in both rivers and marine waters [1].

In coastal areas, the interaction of fresh water river discharges into the sea causes
the formation of the buoyant plumes. In order to investigate de dynamics of buoyant
plumes laboratory, field measurements and numerical simulations have been carried
out thoroughly. Also, a significant ecological impact has been observed due to
amount of particles and pollutants brought along with the river flow.

Numerical models have proven to be a successful tool to investigate buoyant
plumes. So different environmental conditions can be simulated in relatively short
periods of time. Oceanographers have established different approaches to classify
their own models. One of the most important approaches in the literature is the
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consideration of the density variation, where the models are classified as barotropic
or baroclinics. Although this approach is derived from the oceanic classification
models, it is wise to take it into account in what refers to applications in estuaries,
outlets or coastal lagoons, because in some cases, important processes exist due to
the change of densities.

The difference between a barotropic and baroclinic models resides in the vertical
discretization and on the determination of the pressure term in the Reynolds equa-
tions. In the barotropic models the vertical integration is applied and therefore,
density is uniform with depth, while in the baroclinic models vertical process are
considered such as gradients of temperature, salinity and density.

In this paper, a baroclinic numerical model is developed and validated for buoy-
ant fresh water plumes discharging to the coastal environment. In the first part,
the numerical model is described and in the second part the validation and applica-
tions examples are showed. The results are compared to those derived by McGuirk
and Rodi [2]. In the second application a dispersion of fresh water plume into a
marine environment is modeled. Basically, attention is paid to the simulation of
the salinity behavior. In this case we are reproducing the work developed by Okely
[3], who works with another numerical model whose application was given for the
Koombana Bay in Australia.

2. The Numerical Model

The YAXUM/3D numerical model was developed and solves the three dimen-
sional equations for a free surface flows based on the numerical scheme proposed
by Casulli and Cheng[4], where the numerical solution is given by a combination of
a semi-implicit Eulerian-Lagrangian numerical scheme.

2.0.1. Governing equations. These equations describe the velocity fields and
the free surface variations. The density is solved by means of a state equation in
function of a temperature, salinity and pressure fields. The model solves a salinity
and temperature transport equations. For the pressure two kinds of approximations
are taken in account. The first one is the hydrostatic approach where the pressure
P changes with the depth (z), according to

(1)
∂P

∂z
= −ρg

This relation is valid if the horizontal dimension is larger than the vertical one,
which is the main consideration for the shallow water equations approach.

The second consideration is named the Boussinesq approximation, where density
may be considered as a constant in all terms, except the gravitational term.

Horizontal velocities:

(2)
∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ W

∂U

∂z
= − 1

ρ0

∂P

∂x
− ∂u′u′

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z
+ fV

(3)
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ W

∂V

∂z
= − 1

ρ0

∂P

∂y
− ∂v′u′

∂x
− ∂v′v′

∂y
− ∂v′w′

∂z
− fU

Vertical velocity:

(4)
∂W

∂z
= −

(
∂U

∂x
+

∂V

∂y

)
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Free surface equation:

(5)
∂η

∂t
= − ∂

∂x




η∫

−d

Udz


− ∂

∂y




η∫

−d

V dz




Temperature equation:

(6)
∂T

∂t
+U

∂T

∂x
+V

∂T

∂y
+W

∂T

∂z
=

∂

∂x

(
KTx

∂T

∂x

)
+

∂

∂y

(
KTy

∂T

∂y

)
+

∂

∂z

(
KTz

∂T

∂z

)

Salinity equation:

(7)
∂S

∂t
+U

∂S

∂x
+V

∂S

∂y
+W

∂S

∂z
=

∂

∂x

(
KSx

∂S

∂x

)
+

∂

∂y

(
KSy

∂S

∂y

)
+

∂

∂z

(
KSz

∂S

∂z

)

Density equation[5]:

(8) ρ
(
S, T , P

)
=

ρ0(
1− P

kP

)

where ρ0 is the reference density and kP is a constant coefficient. These values and
the formulation (8) are obtained from UNESCO[6].

Therefore, hydrodynamic is described by a four variables (U, V , W and η) given
by equations (2),(3),(4) and (5). For the thermodynamic, temperature, salinity and
density are given by equations (6),(7) and (8). Pressure P from the state equation
(8) is the hydrostatic pressure and can be computed at any time.

2.0.2. Numerical solution. The model solves the equations with the two options
of a vertical integrated or multilayer model. A staggered grid cell is used where the
vectorial variables are evaluates in center of each face and the scalar at the center
of cell (Figure 1)

Vi,j,k

Ui,j,k

scalar
Vi,j+1,k

Ui+1,,j,k

Wi,j,k+1

Wi,j,k
x

y

z

Figure 1. Variables position on the numerical cells

The vertical grid can be defined as uniform or variable vertical layers as shown
in Figure 2.
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Figure 2. Vertical consideration of the YAXUM/3D model: on
the left, constant layers; on the right, variables layers

The Eulerian-Lagrangian method separates the equations in two components:
advection and diffusion, and each-one is solved by a specific technique. Frequently,
the advective components is solved by the characteristic method (Lagrangian).
That means that at each node at time tn+1 some value is assigned for the particles
and this value remains unchanged whereas the particles moves on the characteristic
line defined by the flow. The position of this particle in time tn is localized and
by means of an interpolation method between the two adjacent nodes, the new
concentration is estimated and assigned to the node at time tn+1. The diffusive
component is solved by centered finite differences (Eulerian component) using the
concentrations obtained in the previous Lagrangian approach as a initial condition.
In this way, advective and diffusive components of the Reynolds and transport
equations are solved.

Because the errors are increased with the number of interpolations, as the time
step, ∆t, is greater, the number of interpolations will decrease so the precision will
be improved significatively. This is an advantage regarding the Eulerian methods
that their precision diminishes quickly when the ∆t is increased.

It can be shown[4] that when a three-lineal interpolation is used, the Eulerian-
Lagrangian scheme is free of false oscillations, in addition, it can be shown that the
condition of stability is given by

(9) ∆t ≤
[
2νT

(
1

∆x2
+

1
∆y2

)]−1

As we can see, when νT = 0, this scheme ends up as unconditionally stable.

2.0.3. Turbulence modeling. In this paper the Reynolds stress correlations u′u′,
u′v′,u′w′,. . . ,v′w′ are modeled by means of zero turbulence model. These correla-
tions are evaluated by a relation of mean velocity gradients related with two tur-
bulent viscosity coefficients νTH and νTV . Therefore, the Reynolds stress tensors
of equation (2) and (3) have the following form

Velocity U

(10)
∂

∂x

(
2νTH

∂U

∂x

)
+

∂

∂y

[
νTH

(
∂U

∂y
+

∂V

∂x

)]
+

∂

∂z

(
νTV

∂U

∂z

)

Velocity V
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(11)
∂

∂y

(
2νTH

∂V

∂y

)
+

∂

∂x

[
νTH

(
∂U

∂y
+

∂V

∂x

)]
+

∂

∂z

(
νTV

∂V

∂z

)

where νTH is calculated in terms of Smagorinsky[7] criterion, as a function of the
local horizontal grid resolution (∆x and ∆y) and the mean velocity gradients U
and V , such that,

(12) νTH = Csmag∆x∆y

[(
∂U

∂x

)2

+
1
2

(
∂U

∂y
+

∂V

∂x

)2

+
(

∂V

∂y

)2
] 1

2

The vertical mixing is evaluated after the formulation of Stanby[8]:

(13)

νTV =

(
l4h

[
2

(
∂U

∂x

)2

+ 2
(

∂V

∂y

)2

+
(

∂V

∂x
+

∂U

∂y

)2
])

+l4v

[(
∂U

∂z

)2

+
(

∂V

∂z

)2
] 1

2

where lh is long scale for the horizontal motion and lv for the vertical motion; both
variables are obtained after the following expressions:

(14) lh = βlv,

lv = k(z − zb) for
(z − zb)

∆z
<

λ

k
,

lv = λ∆z for
λ

k
<

(z − zb)
∆z

< 1

3. Baroclinic modeling

Equation (1) is written in the following way

(15) P (x, y, z, t) = g

η∫

z

ρdz + Patm

where η = η (x, y) is the free surface variation and Patm is the atmospheric pressure.
Including equation (15) into (2) and (3) and applying the Leibnitz integration rule,
the pressure terms are written as

(16) − 1
ρ0

∂P

∂x
= −ρg

ρ0

∂η

∂x
− g

ρ0

η∫

z

∂ρ′

∂x
dz − 1

ρ0

∂Patm

∂x

(17) − 1
ρ0

∂P

∂y
= −ρg

ρ0

∂η

∂y
− g

ρ0

η∫

z

∂ρ′

∂y
dz − 1

ρ0

∂Patm

∂y

where ρ′ = ρ− ρ0 is the anomalous density.
So the pressure is related at any depth by the atmospheric pressure Patm acting

on the free surface, the variation of the free surface η (barotropic component) and
the anomalous pressure integrated between that depth and the free surface (baro-
clinic component). Therefore, if the equations (16) and (17) are substituted in the
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equations (2) and (3), respectively, the equations of the horizontal hydrodynamic
field including the baroclinic term is given by,

(18)
∂U
∂t + U ∂U

∂x + V ∂U
∂y + W ∂U

∂z = −ρg
ρ0

∂η
∂x − g

ρ0

η∫
z

∂ρ′

∂x dz − 1
ρ0

∂Patm

∂x

−∂u′u′
∂x − ∂u′v′

∂y − ∂u′w′
∂z + fV

(19)
∂V
∂t + U ∂V

∂x + V ∂V
∂y + W ∂V

∂z = −ρg
ρ0

∂η
∂y − g

ρ0

η∫
z

∂ρ′

∂y dz − 1
ρ0

∂Patm

∂y

−∂v′u′
∂x − ∂v′v′

∂y − ∂v′w′
∂z − fU

4. Plume dispersion modeling of a fresh water coming into a reservoir

In this part we present a numerical modeling of a thermal fresh water plume
dispersion entering into a cold water large reservoir, with uniform depth and infinite
length in the direction of the discharge. In Figure 3 is shown the domain and the
implemented grid.

2000 m

1000 m

250 m

5 m

20 m
inflow

outflow

mzmymx 1,50,100 =D=D=D

Figure 3. Study field and grid generated for the temperature dis-
persion plume

4.1. Initial conditions. Initially, the velocities and temperatures are setup to
zero (UE , VE ,WE = 0 m/s and TE = 0oC). The salinity, wind effect on the
surface and Coriolis effect were not considered. At the bottom a constant valor
of 1 cm for the rugosity was imposed. For the plume, a constant value of Froude
densimetric number of 2.56 was considered according to McGuirk and Rodi[2] and
the discharge flow velocity was 0.6 m/s with a temperature of 20 oC. The results
obtained were compared with the numerical work of McGuirk and Rodi[2] and the
experimental results of Lal and Rajaratnam[9].

4.2. Results and discusion. In Figure 4 is shown the comparison of the tem-
perature decay derived by McGuirk and Rodi[2], the experimental results of Lal
and Rajaratnam[9] and the values computed by the simulation. The results are
in agreement. The two numerical calculations are similar but some differences are
found compared to the experimental results which can be attributed to the limita-
tion of the tank extension and, therefore, inducing some recirculation. The main
difference between the two numerical models is that the McGuirk and Rodi[2] uses
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a k-ε turbulence model, while in the YAXUM/3D a mixing length scheme was
implemented (described previously).

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100

McGuirk and Rodi model

Lal and Rajaratnam experiment

YAXUM/3D model

CLx
T

T

÷
÷
ø

ö
ç
ç
è

æ

D

D

= 0

002 bh

x

Figure 4. Decay temperature comparison. Results of McGuirk
and Rodi[2], Lal and Rajaratnam[9], and the YAXUM/3D model
are included

In Figure 5(a), it is observed the distribution of the buoyant plume in the vertical
plane obtained by McGuirk and Rodi[2]. The behavior of the profile shows a wider
plume near the injection which decreases gradually as it moves away. In Figure 5(b),
a surface view of the plume is shown. The isotherms correspond to a relationship
among the injection temperature and the calculated (∆T/∆Tx=0).

(a) Side view of temperature plume dispersion (b) Surface isotherms for the temperature plume

dispersion (Fr = 2.56)

Figure 5. 3-D temperature plume dispersion obtained by
McGuirk and Rodi[2] and experimental measurements of Lal and
Rajaratnam[9]

In Figure 6 are shown the results of the YAXUM/3D model. The longitudinal
section of the plume evolution is described and it can be observed how the plume
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temperature close the injection and narrows smoothly as the plume moves far from
the discharge area similarly to the results of McGuirk and Rodi[2] (Figure 5a).
Finally, in Figure 7 the sequence of the horizontal temperature fields are described.
The distribution pattern of the buoyant plume is similar to Figure 5(b) given by
McGuirk and Rodi[2].

Figure 6. Side views of temperature plume dispersion results ob-
tained with the YAXUM/3D model

Figure 7. Surface views of the temperature plume dispersion evo-
lution obtained with the YAXUM/3D model

4.3. Final comments. The horizontal and vertical patterns of temperatures of
the buoyant plume simulated by the YAXUM/3D model are in agreement with
the experiments of McGuirk and Rodi[2] and Lal and Rajaratnam[9]. Also, the
flotation phenomenon can observed induced by a hot water mass on top interacting
with the cold water mass of the reservoir.

5. Plume dispersion modeling of a fresh water discharging to a reservoir:
Salinity modeling

The model was also applied to simulate de discharge of low salinity water moving
to a reservoir with high salinity concentration like an ocean. The simulations are
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according to the study carried out by Okely[3] who applied two versions of the
ELCOM model for the study of the buoyant plume originated in the discharge of
the mouth of the estuary of Leschenault toward the Koombana bay on the West
Coast of Australia. The location of the Koombana bay is shown in Figure 8(a) and
in Figure 8(b) is shown the characterization of the domain used by Okely[3] which
was also implemented for the YAXUM/3D model.

(a) Geographical location (b) Numerical field characterization

Figure 8. Study field configuration

5.1. Initial conditions. Initially, the condition of a reservoir is in rest with uni-
form temperature (16 oC) and salinity (35 ups) are imposed. The discharge is
considered less saline than that of the reservoir with 27 ups and with a lineal in-
crement of the rate flow from 0 m3/s to 400 m3/s with a rate of 8.6× 10−2 m3/s2.
Other forcings such as Coriolis, wind and variations of temperature were not con-
sidered in the simulations. The bottom friction coefficient is 0.05 and constant
through the entire domain. These conditions are according to observations carried
out by Imberger[10] and Imberger and Luketina[11] during field studies and de-
scribed described by Okely[3]. The walls of the discharge channel and the reservoir
were considered closed in the work of Okely[3]. In contrast, in the simulations with
the YAXUM/3D model the wall (face) from the discharge was considered as an
open boundary.

5.2. Simulations. Okely[3] modeled the thermal plume dispersion using different
grid size resolutions such as 200, 100, 50 and 25 m. In some simulations a variable
spacing was applied. The vertical grid size was uniform and was 0.5 m. Two
versions of the ELCOM program was used to carry out a total of 11 simulations
with time steps of 60, 30 and 20 s, according to the resolution of the grid size..

Simulations with the YAXUM/3D model were made using a constant spacing of
200 m and 25 m (Figure 9) with a vertical grid size of 0.5 m. The time steps were
estimated according to the stability of the equation 9.

5.3. Results and discussion. In Figure 10 are shown the results from the EL-
COM model, version 1.3.0, using the grid sizes of 200 and 25 m. The salty plume
is advected and spreads on the surface and the resolution of the gradients depends
on the grid size. For the 200 m grid size the plume is elongated along the x-axis.
However, as the grid size is decreased to 25 m the shape of the plume is circular.
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mzmyx 5.0,25 =D=D=D mzmyx 5.0,200 =D=D=D(b)(a)

Figure 9. Numerical grid implemented on the YAXUM/3D model

Figure 11 shows the surface view of the results of the ELCOM models, version
1.4.2. From these simulations, it was observed that the shape of the saline plume
was not dependent on the grid size and behaved similarly under different environ-
mental conditions. This was achieved since the new ELCOM code was significantly
improved such as in the grid and interpolations of the variables and velocities.

mzmyx 5.0,25 =D=D=Dmzmyx 5.0,200 =D=D=D(a) (b)

Figure 10. Surface buoyant plume obtained with ELCOM 1.3.0 model

A comparison of the results of the YAXUM/3D model and ELCOM (version
1.4.2) shows a slight elongation of the plume along the x-axis and this seems to be
to the boundary condition taken in the discharge (Figure 12). However, in both
model cases (Figures 12a and b), the plumes tend to be circular as shown in Figures
10(b), 11(a) and 11(b).
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mzmyx 5.0,25 =D=D=Dmzmyx 5.0,200 =D=D=D(a) (b)

Figure 11. Surface buoyant plume obtained with ELCOM 1.4.2 model

mzmyx 5.0,25 =D=D=Dmzmyx 5.0,200 =D=D=D(a) (b)

Figure 12. Surface buoyant plume obtained with YAXUM/3D model

In relation to vertical structure, in Figure 13(a) and (b) is shown the plume
distribution along the x-axis derived form the ELCOM code (version 1.4.2) and
that derived by the YAXUM/3D model using, in both cases, a grid resolution of
25 m.

Moreover, Okely[3] also compared the results of the density structure particularly
in the Lift-Off zone which is the region where the discharge meets the reservoir or
bay and the slope of the bay is present. In Figure 14 the field observations made by
Imberger and Luketina[11] and the ELCOM and YAXUM/3D model results which
are in complete agreement (Figure 14 a, b and c).

Simulations of the vertical salinity distribution with the YAXUM/3D model
(Figure 13b) show a slight less stratified vertical structure, as that observed in the
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(a) ELCOM 1.4.2. Model (b) YAXUM/3D Model

Figure 13. Vertical structure of salinity plume

(a) Imberger and Luketina

(2001)

(b) ELCOM 1.4.2. Model ( ) YAXUM/3D ModelC

mzmyx 5.0,25 =D=D=D mzmyx 5.0,25 =D=D=D

Figure 14. Density contours comparison on the lift-off region

results of the ELCOM Model (Figure 13a), since the frontal part of the plume tend
to mix more efficiently with saline waters of the reservoir. This mixing effect has
been also modeled by Morey[12] who simulated the dispersion of the Mississippi
river plume to the Gulf of Mexico. For the simulations, the NCOM model was used
with a similar scheme as used by the ELCOM and YAXUM/3D model. A view of
the vertical saline plume obtained by Morey[12] is shown in Figure 15 where vertical
mixing is according to the results modeled by YAXUM/3D for the Koombana Bay.

6. Conclusions

A numerical model has been developed to simulate the freshwater plumes dis-
persion. The model named YAXUM/3D was validated and simulations of the dis-
persion of plumes are in agreement with results derived from other models which
have been thoroughly tested in different sites.

During the simulations, the time step was the only constraint to achieve good
results. Larger time steps caused numerical instabilities; therefore, caution has to
be taken to determine the adequate time step and, consequently, achieve realistic
results.

Finally, the model constitutes a valuable tool to investigate and quantify the dis-
persion of freshwater plumes under different environmental conditions. Multiples
applications are expected from the model related to the design and evaluation of
the impact to the aquatic environment by thermal plumes such as those induced



BAROCLINIC MATHEMATICAL MODELING 13

Figure 15. Salinity plume vertical distribution of Mississippi
river obtained by Morey[12] with NCOM model, on the region
of LATEX and Mafla, USA

by power plants along the coast. Now some modules of water quality and sedi-
ment transport have been developed; some applications real ecosystems are carried
out[13].
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AN EFFICIENT AND EFFECTIVE NONLINEAR SOLVER IN A
PARALLEL SOFTWARE FOR LARGE SCALE PETROLEUM

RESERVOIR SIMULATION

JIANWEN CAO AND JIACHANG SUN

Abstract. We study a parallel Newton-Krylov-Schwarz (NKS) based algo-

rithm for solving large sparse systems resulting from a fully implicit discretiza-

tion of partial differential equations arising from petroleum reservoir simula-

tions. Our NKS algorithm is designed by combining an inexact Newton method

with a rank-2 updated quasi-Newton method. In order to improve the computa-

tional efficiency, both DDM and SPMD parallelism strategies are adopted. The

effectiveness of the overall algorithm depends heavily on the performance of the

linear preconditioner, which is made of a combination of several preconditioning

components including AMG, relaxed ILU, up scaling, additive Schwarz, CRP-

like(constraint residual preconditioning), Watts correction, Shur complement,

among others. In the construction of the CRP-like preconditioner, a restarted

GMRES is used to solve the projected linear systems. We have tested this algo-

rithm and related parallel software using data from some real applications, and

presented numerical results that show that this solver is robust and scalable

for large scale calculations in petroleum reservoir simulations.

Key Words. Petroleum reservoir simulation, Nonlinear solver, Precondition-

ing, Inexact Newton, BFGS, Krylov subspace, Parallel performance.

1. Introduction

Petroleum reservoir simulation solves the multidimensional and multiphase equa-
tions of conservation of mass in porous media, subject to appropriate initial and
boundary conditions. The processes occurring in petroleum reservoirs are basically
fluid flow and mass transfer. Black Oil Model [1, 2] is regarded as the fundament
of reservoir simulation work, where fluids of different phases are usually considered
to be at constant temperature and in thermodynamic equilibrium throughout the
reservoir. There are three distinct phases, namely oil, water and gas, in this model.
Flow in a porous media is governed by three kinds of equations: PDEs describing
material flow between blocks which are governed by Darcy’s law, a phase-constraint
equation describing a saturation relationship of three different phases, capillary
pressure equations describing surface tension and the curvature of the interface
between the two fluids within the small pores.

In last few years, the performance of parallel petroleum reservoir simulation has
been significantly improved ([3]-[10]). However, only a few papers offer their re-
sults and effects of practical reservoir problems on MPP computers with more than
32 CPUs. We have developed a parallel black-oil simulator based on a sequential
code ([11]), it works well on distributed-memory machines. This simulator uses a

Received by the editors October 1, 2004 and, in revised form, October 30, 2004.
2000 Mathematics Subject Classification. 65N22, 65H10, 65Y05, 65Y20, 76S05, 76T30.

15



16 J. CAO AND J. SUN

fully implicit scheme to discretize the coupled PDEs. The resulting set of nonlin-
ear equations is solved by using inexact Newton method with special choice the
initial guess([12]). Efficiency, flexibility and portability are emphasized throughout
processes of design and implementation. The solver package is designed and coded
so that it is adapted to solving a variety of multi phase flow problems, not being
limited to black-oil problems.

Newton method has attractive theoretical and practical properties. If the initial
guess is close enough to the exact solution, then quadratic convergence can be ob-
tained. In the nonlinear solver, choosing a good initial guess is one of our emphases.
We use BFGS method to provide a good initial guess.

In Newton iteration the most expensive part is solving large sparse linear systems.
Usually, each Newton step uses Krylov subspace method with a proper precondi-
tioner. Numerical tests show that, comparing different Krylov subspace algorithms
with their “proper” chosen preconditioners, no one algorithm is obviously better
than the other ([15]). So the most important part is the choice of preconditioning
strategy. Our parallel simulator uses a FGMRES method ([16])with an iterative
preconditioning as a typical linear solver. The used preconditioner adopts a so-
called multipurpose oblique projection correction strategy ([12]), which involves
several preconditioning components such as AMG, relaxed ILU, up scaling, DDM,
CRP ([17]) etc.

2. The Black Oil Model and Discretization

The three-phase flow conservation equations can be expressed as [18]
(1)

∇[Tw∇(Pw − ρwgD)] + qw =
∂(φbwSw)

∂t

∇[To∇(Po − ρogD)] + qo =
∂(φboSo)

∂t

∇[Tg∇(Pg − ρggD)] +∇[ToRs∇(Po − ρogD)] + qg + Rsqo =
∂(φbgSg + φboSoRs)

∂t
,

where Tl := Mlbl is the transmissibility of phase-l (l = w, o, g), bl := f1(Po) is the
reciprocal of formation volume factor, D is the vertical depth, Rs := f2(Po) is the
gas-oil ratio, and φ := f3(Po) is the rock porosity. As a factor of Tl, the mobility

Ml :=
Kf4(Sw, Sg)

µl
gives a relationship between the flow rate ~vl and the pressure

gradient ∇Pl in each phase through Darcy’s Law

~vl = −Ml∇(Pl − ρlgD) .

As an empirical fact, the capillary pressure is a unique function of saturation which
provides a relationship between different phase pressures

Pw = Po − Pcow(Sw) , Pg = Po + Pcgo(Sg) .

As a result, the three unknowns of the above PDEs are oil-phase pressure (Po),
water-phase and gas-phase saturation (Sw, Sg). More details of the variables and
their physical properties can be found in many literatures, e.g. ([2]). This model
is being used in the commercial reservoir simulation software packages such as
VIP ([7]), ECLIPSE ([8]), IPARS([9]) and Simbest-II ([11]). The model represents
mathematically a class of important industrial problems rather than simply being
an idealized model for benchmark tests and uses realistic saturation coefficients,
permeability, and transmissibility which are in-situ field data collected over a long
period of time.



AN EFFICIENT AND EFFECTIVE NONLINEAR SOLVER 17

By means of considering special cases, we may know about their obscure charac-
teristics. First, the PDEs behave mainly parabolic characteristics. A single-phase
PDE has the same form of a heat conduction equation and maybe nonlinear. Two-
phase PDEs superficially resemble heat conduction equations also. Second, the
PDEs have some characters of elliptic equations. The effects of compressibility ct

usually don’t dominate, especially for incompressible flow or slight compressible
flow. Thus, as a practical matter, the pressure equation must also be treated as
being elliptic or nearly elliptic

∇(Mo + Mw)∇(Po + Pw) + 2× (
qo

ρo
+

qw

ρw
) ' φct

∂(Po + Pw)
∂t

.

Third, the saturation equation can be regarded as a nonlinear variation of the
diffusion-convection equation

∇(f5(Sw)∇Sw)− f6(Sw)~vt∇Sw +
qw

ρw
' φ

∂Sw

∂t
+∇(

MoMw(ρw − ρo)g
Mo + Mw

∇D) .

If the diffusion term dominates which means that the capillary pressure Pcow ef-

fect dominates (f5(Sw) := − MoMw

Mo + Mw

dPcow

dSw
), this PDE behaves like a parabolic

equation. However, if the capillary effects are small, when velocities ~vt are large,

the convection term dominates (f6(Sw) :=
d[Mw/(Mo + Mw)]

dSw
), and this PDE ap-

proaches a first-order nonlinear hyperbolic equation. These characteristics require
appropriate difference formulations and suitable preconditioned linear solvers in or-
der to solve various applications efficiently. According to above analysis, we can
draw the following conclusion: the pressure PDE is parabolic in nature, in many
cases, it is nearly elliptic; the gas saturation PDE is a nonlinear diffusion-convection
equation, whereas capillary pressure effects dominate; the oil saturation PDE be-
haves nearly hyperbolic, especially when capillary pressure effects dominate, and
more important sometimes, when velocities are large.

Finite difference formulation of the component conservation equation adopts
block-centered grid system in our simulator. Considering convection-dominated
PDEs, the choice of a first-order difference scheme is crucial. Both up streaming
and centered scheme in spatial direction can satisfy the requirement of uncondi-
tionally stable. Large time step requirement discards the choice of explicit scheme.
Thus, there are four combinations of first-order schemes available, up streaming-
in-distance with implicit-in-time, up streaming-in-distance with centered-in-time,
centered-in-distance with implicit-in-time, and centered-in-distance with centered-
in-time. All the four combinations may lead to numerical dispersion or oscillation
(overshoot) phenomenon. Numerical results and theoretical analysis assure that we
can’t avoid the two phenomena at the same time ([1],[2]). By choosing different
combinations, trade off between one and the other is available. In order to keep
the scheme to be unconditional stable and avoid numerical oscillation, the choice
strategy of first-order difference scheme in our simulator is: fully implicit scheme in
the time direction and up steaming scheme in the distance direction. The simulator
also adopts the so-called upstream weighting for the relative permeability in the
discretization of the second-order diffusion term.

3. Nonlinear Solver and Linear Solver

Fully implicit formulation leads to nonlinear difference equations, thus Newto-
nian iteration method is required. Newton method has been the most popular
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choice to solve the nonlinear systems resulting from the fully implicit discretization
of the fluid-flow PDE at each time step. It is noted that nonlinearity of the model
equation leads to time step restriction also, though it is much less stringent than
that for less-implicit difference scheme such as IMPES ([2]), etc. When a fully im-
plicit scheme converts the coupled partial differential equations of black oil reservoir
simulation to algebraic equations, usually a set of nonlinear algebraic equations of
the form F (u) = 0, have to be solved at every time step. The following provides a
general description of the nonlinear inexact Newton method.

Algorithm IN (Inexact Newton Method)
Define δu := u(n+1) − u(n)

(a) Give initial guess u(0)

(b) For n = 0, 1, 2, . . . until convergence, do
Using Taylor’s formula, to discretize the nonlinear equation

F (u(n+1)) = F (u(n) + δu) ≈ F (u(n)) + J(u(n))δu = 0

Get the following linear system

(2) ‖J(u(n))δu + F (u(n))‖2 ≤ ηn‖F (u(n))‖2
Choose a proper forcing term ηn, which is a function of n and F (u(n))
Solve the linear system and obtain its solution δu(n)

Choose a proper backtracking step length αn, which is a function of n, δu(n)

and δu[max tolerance]

Compute the new approximate solution

u(n+1) = u(n) + αnδu(n)

Check if u(n+1) satisfies the convergence tolerance of F (u) = 0

In most cases, the initial guess of Newton method is close enough to the exact
solution. However, on few cases (usually less than 5%), the initial guess is far
enough that Newton method is difficult to converge or even diverge. There are two
approaches to overcome these non convergence phenomena. The first approach is
to cut the length of current time step, another way is to try to find a better initial
guess. Obviously, considering the solution efficiency, the latter is better. In our
simulator, we use BFGS to find a proper initial guess, and obtain the following
algorithm:

Algorithm INNS(Inexact Newton Nonlinear Solver)
(a) Choose the initial vector u(0)

(b) Use Algorithm IN to get the approximation solution vector u(k)

(c) Do the convergence history evaluation. Determine that the nonlinear
iteration process is satisfied or not.

Case 1: If this process is satisfied, we continue to use Algorithm IN till
convergence.
Case 2: If this process isn’t satisfied, which means that it is difficult to
observe the IN’s convergence behavior, or even the IN diverges. In this
case, we use BFGS to obtain a better approximation u(k∗) than that of
u(k), then let u(0) := u(k∗), and go back to (b)in order to construct a new
approximation vector. Here, we need to choose an initial approximation of
J(u(∗)) ≡ F ′(u(∗)) as B0.

Algorithm BFGS
Get the approximation vector u(k−1) and mark it with v(0)
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Get an initial approximation of B0 := J(v(0)) ≡ F ′(v(0))
Choose ILU(1) as a preconditioner of B0

For j = 0, 1, . . . , m until the convergence criteria is satisfied, and mark the
solution v(m) with u(k∗).

(a) Let gj := F (v(j)), solve B0z = −gj using GMRES-ILU precon-
ditioned iterative method
(b) Solve the matrix system : Bjdj = −F (v(j))
(c) Compute αj so that v(j+1) = v(j) +αjdj can decrease the merit
function f(j) := 1/2‖F (v(j))‖22 along the direction dj

(d) Check if v(j+1) satisfies the tolerance ‖F (v(j+1))‖2 ≤ 0.1× ‖F (v(0))‖2
(e) Compute and get the following vector

gj+1 := F (v(j+1))
yj := gj+1 − gj ≡ F (v(j+1))− F (v(j))

s(j) := αjdj ≡ v(j+1) − v(j)

(f) Bj+1 is obtained from Bj by means of a rank-2 updates,

Bj+1 = Bj +
gj gT

j

gT
j dj

+
yj yT

j

yT
j s(j)

.

One of the important parts of our nonlinear solver is choosing a good initial
guess. The reason of adopting BFGS is that there is a fast implementation of
BFGS algorithm. The j-th BFGS iteration needs to solve a linear system with a
fixed matrix B0. We may get an ILU decomposition of B0 and repeatedly use it as a
preconditioner during iteration process (a). Another computation-sensitive process
of BFGS is (b), it only needs to solve a small dense matrix linear system of order
(j +1)× (j +1) (usually less than 10×10) which can be solved easily and efficiently
by calling BLAS3 mathematic library. In our nonlinear solver, considering the role
of BFGS, its maximum iteration number m is set to be 9, and its stopping tolerance
is set to be ‖F (v(j+1))‖2/‖F (v(0))‖2 ≤ 0.1. The computation process (b) is depicted
as follows([12]):

(b1) Compute and store the following arrays

GD(j − 1) := gT
j−1dj−1

YS(j − 1) := (gj − gj−1)T (v(j) − v(j−1))
BG(j) := B−1

0 gj

GBG(i, k) := gT
i B−1

0 gk (i = 0, 1, . . . , j; k = 0, 1, . . . , j)

(b2) Form the following (j + 1)× (j + 1) dense matrix linear system

C(k) +
j∑

i=0




( 1
GD(i)

+
1

YS(i)
+

1
YS(i− 1)

)
GBG(k, i)

− 1
YS(i)

GBG(k, i + 1)

− 1
YS(i− 1)

GBG(k, i− 1)




C(i) = −GBG(k, j)

k = 0, 1, 2, 3, . . . , j, where GD(j) := ∞, YS(−1) := ∞, YS(j) := ∞
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(b3) Call BLAS3 to solve the above small system, and obtain the solution array
C(0), . . . , C(j), then the desired solution vector of BFGS method can be obtained as

dj = −∑j−1
i=0

[
C(i)
GD(i)

− C(i + 1)− C(i)
YS(i)

+
C(i)− C(i− 1)

YS(i− 1)

]
BG(i)

−
[
1 +

C(j)− C(j − 1)
YS(j − 1)

]
BG(j)

Quasi-Newton matrix B0 comes from a Jacobian approximation of the nonlinear
equation. BFGS is used until u(k) is much closer to solution u(∗), so that Newton
method may show its quadratic convergence rate. During the computation process
along the temporal axis, on most cases, only an inexact Newton method is used for
solving the nonlinear equation, a merit function of evaluating the iteration history
needs to be provided priory. Once the iteration history isn’t satisfied, which means
that the inexact Newton algorithm may not converge successfully ([19, 20]), maybe
the initial approximation is pretty bad, at that time BFGS is used to find a better
initial guess. If INNS doesn’t work, we have to cut in half the length of this time
step (In our solver, the maximum limitation of cut number is set to be 3). If INNS
doesn’t work also, we need set the length of time step to be minimum, which is
provided from the written data file and usually equals to be 0.01 days. In the non-
linear solver, we use merit function f(j) to do the evaluation of convergence history.
If f(j − 3) < f(j − 2) < f(j − 1) < f(j) comes into existence, we consider that a
divergence process may occur, and so the INNS’s nonlinear iteration process isn’t
satisfied. The default maximum nonlinear iteration number is set to be 15, the back-

tracking step length satisfies αj = min{1.0,max{exp−0.5×10−2j

,
δu[max tolerance]

‖δu(j)‖∞
}},

where δu[max tolerance] is an experience value which means the maximum tolerance
of the variation of u(j) − u(j−1), it is given from the written data file.

The most computationally expensive part is the solution of the sparse linear
equations (2), which can be expressed algebraically as

(3)




A11 A12 A13

A21 A22 A23

A31 A32 A33







x1

x2

x3


 =




f1

f2

f3


 ⇔ A x = f

where xi = (xi,1, xi,2, · · · , xi,N )T , (i = 1, 2, 3), x1,j
.= Po,j , x2,j

.= Sw,j , x3,j
.= Sg,j ,

(j = 1, 2, · · · , N), and N = Nx ×Ny ×Nz is the total number of grid nodes. Two
ways of nature ordering are used in the linear solver of PRIS in fact. The above
ordering is suitable for analysis. Another natural ordering is based N ×N blocks
and each block has a 3 × 3 sub-block. For example, matrix-vector multiplication,
CRP preconditioning and decoupling operator adopt the nature ordering as alike
as formulation (2), ILU decomposition, DDM and AMG adopt the second pattern
of nature ordering for their specific aims. The Jacobian matrix A is sparse, each
entry Aij , i, j = 1, 2, 3, is a heptadiagonal matrix, significantly nonsymmetric and
highly indefinite. Furthermore, the coefficient blocks associated with a particular
type of unknown have different natures (the pressure diagonal block is of elliptic
type, the saturation diagonal blocks are of hyperbolic type). In this instance, the
single incomplete LU factorization, which is an algebraic preconditioner and doesn’t
consider the PDE characteristics, doesn’t work efficiently. The natural approach
to precondition this coupled system is to precondition different blocks separately,
taking full advantage of their different natures. Since the blocks of (3) are coupled
through non-diagonal blocks, ways to decouple the whole system are to be found.
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A so-called decoupled preconditioning process is adopted before we solve the whole
linear system ([12, 21, 22]).

Newton-Krylov-Schwarz method is used in our solver, where Schwarz method
is used to get the parallel solver. Usually, each Newton step uses a so-called
Krylov subspace method with a proper preconditioner. Both GMRES ([24]) and
BICGSTAB ([25]) are considered as one of the best choices to solve the linear
systems. For GMRES and BICGSTAB, [15] gives out the pattern of its proper pre-
conditioner which is named as PRE-ITER and PRE-ILU respectively. Numerical
tests show that, different Krylov subspace methods with an appropriate precondi-
tioner are able to achieve similar performance, in other words, the choice of iterative
algorithms isn’t the most important part of solving the linear systems efficiently.
Instead, the more important part is the choice of the preconditioning strategy.

The default linear solver used in our simulator is preconditioned FGMRES, ac-
cording to the conclusion of [15], it is typical. For this solver, the default number
of orthogonal vectors is 10, and the maximum number of iterations is set to 88.
GMRES-ILU preconditioned iterative method is used to solve the small system
of PRE-ITER, considering its role of preconditioning, the l2 norm of the relative
residual as the stopping condition is less than 0.1, the maximum restart number of
GMRES is limited to 3. The forcing term ηn of Formulation (2) in IN algorithm
can be depicted as follows:

ηn := max{10−5, min{10−6 ×
√

3N, ε0 × f(n)
f(n− 1)

}}

At the same time, the stopping condition of linear system (3) also has to satisfy
: ‖x(j)

1 − x
(j−1)
1 ‖∞ ≤ ε1, ‖x(j)

2 − x
(j−1)
2 ‖∞ ≤ ε2 and ‖x(j)

3 − x
(j−1)
3 ‖∞ ≤ ε2. The

default values of ε0,ε1 and ε2 are 0.01, 0.3 and 0.001 respectively. They can be
given from the written data file.

4. Preconditioning of the Linear Solver

A proper preconditioner should be computed easily and be chosen in a way to suit
parallel computation . ILU preconditioning is sequential in nature and leads to poor
efficiency of the implementation on distributed memory computer platforms. DDM-
based preconditioning and combined preconditioning for Krylov subspace methods
have been developed for solving an important class of linear systems in large-scale
simulation applications. As preconditioning components, they are coupled together
by using a so-called multi step method

Algorithm MSM(Multi Step Method)
Assume three types of preconditioning are available and denoted as T0, T1

and T2, A is the matrix of the linear system, and r is the residual vector, then the
Multi Step Method gives the following method of constructing a preconditioner

a): z = T0 r
b): r∗ = r − A z
c): z = z + T1 r∗

d): r∗ = r − A z
e): z = z + T2 r∗

This preconditioner ([22]) involves several preconditioning components such as
AMG, relaxed ILU, up scaling, DDM, CRP-like ( constraint residual precondition-
ing, [17] ) etc.. CRP involves solving a small linear system (PT AP )z = r by using
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GMRES(m) iterative method. There are three oblique projection correction oper-
ators. The first is an oblique projection correction process from the whole matrix
system A to sub-matrix PT AP . As a special case, PT AP ≡ A11 is used for Black-
oil model. The reason is that A11 shows an elliptic feature, and many algebraic
algorithms (e.g. ILU, AMG etc.) can be used to solve this sub matrix system.

The second operator deals with an oblique projection correction from the whole
solving region to local solving region which is represented by the so-called additive
Schwarz preconditioning. From the view of parallelism, computational locality is
important and be used to minimize communication frequency among processors.
We partition vector x into p sub vectors and each of which is nonempty, possible
overlapping, and the union of them is all of the elements of x. Let Boolean rect-
angular matrix Ri extracts the ith subset of vector x which can be described as
xi := Rix. Let Ai := RiART

i , and M :=
∑p

i=1 RT
i A−1

i Ri. Obviously, M is an
approximation of the inverse of Jacobian matrix A and named as additive Schwarz
preconditioner.

Theoretical and numerical analysis show that single level additive Schwarz method
is effective only for small number of subdomains ([23]). so M needs to be modified
further similar to that of multilevel methods for PDEs, this modification process
uses a coarse grid correction. With an addition of a coarse grid, we get a new
preconditioner

M := RT
0 A−1

0 R0 +
p∑

i=1

RT
i A−1

i Ri ,

which has been proved that is can be used as a “good” Schwarz preconditioning if
the coefficient matrix A derives from an elliptic operator. Further more, solving a
linear system also needs to choose a proper initial guess in order to decrease the
computation cost. We use AMG algorithm to find a better initial guess so that the
used Krylov method may converge more speedily. Considering the heterogeneous
construction characteristics of some oil area, the so-called Watts correction is used
which can also be considered as a coarse grid correction in some degree. As the
third operator of oblique projection, coarse grid correction plays an important role
in the linear solver of reservoir simulation.

If coarse grid correction is hoped to be used efficiently, matrix A should be
elliptic. Due to the features of PDEs of (1), only the sub matrix A11 is elliptic, so
we have to find a way to increase the effect of A11, and decrease the effects of A22

and A33 in the whole coefficient matrix at the same time. CRP implements this
goal in some degree, and we may find this effect from the following formula

AMCRP := A(T0 + T1 − T1AT0) =




I 0 0
ε21 χ22 ε23

ε31 ε32 χ33


 ,

where T1 = P1(PT
1 AP1)−1PT

1 is a CRP, T0 is a preconditioner of A such as M , P1

is a projector such that PT
1 AP1 = A11, and the entries of εij are much smaller than

that of χii.
Though CRP has decoupling effects in some degree, it isn’t enough. We need to

have a more powerful way to decouple the whole coefficient matrix, which is named
as decoupling operator TLeft and is used as a left preconditioning such as

TLeftAx = TLeftf, T−1
Left =




diag(A11) diag(A12) diag(A13)
diag(A21) diag(A22) diag(A23)
diag(A31) diag(A32) diag(A33)


 .
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Figure 1. Spectral distribution of the original Aij

The idea of decoupling operator is proposed as a way to weaken the coupling of drift-
diffusion equations that occur in semiconductor device modelling. Experiments
show that the decoupling operator leads to a significant clustering of eigenvalues
associated with Jacobian matrices during the simulation process. Considering our
simulator of black oil modelling, let AD := TleftA, and AD

ij := (TleftA)ij (i =
1, 2, 3, j = 1, 2, 3), figures 1 and 2 give the spectral distribution of the nine sub
matrices Aij and AD

ij respectively, and figure 3 gives the spectral distribution of
matrices A and AD. We observe through the figures 1 and 2 that, before decoupling
process, all the nine sub matrices Aij have obvious effects to the whole coefficient
matrix A. Their spectral distributions show that their effect can not be neglected.
However, after decoupling process, the effects of some sub matrix such as A12,
A13 and A23 is so little that they can even be neglected. Their eigenvalues are
so small that they maybe considered as zero matrix without too much sacrifice of
accuracy. Comparing the spectral distributions of A with A11, and comparing the
spectral distributions of AD with AD

11, we can see that matrix A is not similar to
A11, however, matrix AD is very much similar to matrix AD

11. These figures show
significant effects of the decoupling preconditioning.

In summaries, by using Algorithm MSM, we construct a final preconditioner B
for linear system (3), which consists of Tleft and Tright, and satisfies

(4) TleftATrightT
−1
rightu = Tleftf .

Further more, Tleft is a decoupling operator which deals with the coupled PDE and
scaling, Tright satisfies

(5) (I −ATright) = (I −ATc)(I −AT2)(I −AT1)(I −AT0)

where, Tc consists of AMG preconditioning and Watts correction method, T2 =
P2(PT

2 AP2)−1PT
2 is CRPe for compositional model, T1 = P1(PT

1 AP1)−1PT
1 is CRP
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Figure 2. Spectral distribution of the preconditioned (TLeftA)ij
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Figure 3. Spectral distribution of the original A and preconditioned TLeftA

for black oil model which increases the effect of the pressure term in the whole
matrix, T0 is DDM preconditioning which deals with grid partition of the solving
region, P1 and P2 are the two projection matrix. In both T1 and T2, relaxed ILU
(.e.g. relaxedILU := 0.9 × ILU(`) + 0.1 ×MILU) is used in solving the sub region
in its processor locally ([26]). Obviously, B has a similar form of multiplicative
Schwarz algorithm. In fact, multiplicative Schwarz idea is used here for taking full
advantage of “good” properties of Aij , and Shur complement operation is used to
do works related to block elimination processes.

5. Parallelism and Parallel Test Cases

The used parallel simulator is designed based on strategies of both domain de-
composition and SPMD parallelism. After discretization process, the reservoir area
is split across a number of processors by means of load balance. Currently, grid cells
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Case 1 Case 2 Case 3
number of discrete time steps 126 166 166
number of nonlinear systems 451 718 1326

number of linear systems 2669 5023 9662
number of FGMRES iterations 20744 24831 59345

number of ILU-GMRES iterations 237383 128590 342190
elapsed hours on 16 node/32 CPU 2.99 2.76 24.62
elapsed hours on 32 node/64 CPU 1.45 1.51 12.50

Table 1. Statistics of the three industrial test cases

in z-direction need to remain intact. The entire computational grid is partitioned
and distributed to a logical 2-D mesh network of processors.

In this paper, the used hardware platform is a Beowulf cluster LSSC-II [27],
which has 256 computational nodes. Each computational node has two Intel 2GHz
Xeon CPU and 1GB physical memory. Both a fast Ethernet and a Myrinet 2000
are installed for every computational node. The used compilers include both GNU
C/C++ and Intel Fortran V6. MPICH–GM 1.2.5 is used as a parallel communica-
tion library.

Industrial cases are tested to evaluate efficiency and effectiveness of our parallel
simulator with solver INNS. The first case is a three-phase black oil model, with
a 199 × 87 × 67 grid system, 6 rock types, 291 wells, the simulated period is the
31.5 years exploitation history of a DaQing oil section of China. The second case
is also a three-phase black oil model from the Chinese ShengLi Oilfield, the grid
dimensions are 160×320×27, or 1382400 grid blocks and 4147200 unknowns, there
are 326 wells in the simulation region, and the matching history is 14 years. The
third case is a finery of the same reservoir block as Case 2, with a 320 × 640 × 27
grid system, or 5.5296 million grid blocks and 16.5888 million unknowns.

Table 1 gives some statistics of the three industrial cases simulated. In fact, the
elapsed simulation time of the first two cases is roughly the same, the cost of Case
3 is about 9 times larger than that of Case 2.

The average time step length of Case 1 is 31.5 × 365 ÷ 126 ' 91 days, the
same datum of both Case 2 and Case 3 is 31 days. For Case 1, each time step
consists of 3.58 Newton steps in average, each Newton step averagely needs to solve
5.92 number of linear syetems, each linear system averagely needs 7.77 FGMRES
iterations, and each FGMRES step needs 11.44 ILU-GMRES iterations in order to
get an iterative preconditioning. For Case 2, the corresponding data are 4.33, 6.99,
4.94 and 5.18 respectively. For Case 3, the corresponding data are 7.99, 7.29, 6.14
and 5.76 respectively.

Comparing correlative data of the first two cases, we see that larger time step
length may lead to more number of FGMRES iterations and more accurate pre-
conditioning (which is in direct proportion to the average number of ILU-GMRES
iterations for each FGMRES iteration step); the nonlinear feature of Case 2 is
stronger than that of Case 1, so Case 2 needs more number of both Newton steps
and linear systems in average for each time step; comparing with Case 1, the formed
nonlinear equations of Case 2 are easier to solve.

Comparing correlative data of the last two cases, we observe that if the unknowns
increases 4 times, the totally simulation cost will increase about 9 times, where the
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CPU = 8 CPU = 16 CPU = 32 CPU = 64 CPU = 128

Elapsed T ime 8.71 5.59 2.99 1.45 0.87

Relative Speedup 1 1.56 2.91 6.01 10.01

Table 2. Elapsed times and relative speedups on LSSC-II

number of Newton step improves approximately 2 times, the computation work-
load of linear iteration improves 4 times, and the frequency of global reduction
communication improves about 3 times.

The first test case, i.e., the DaQing black oil model has been simulated using up
to 128 processors on LSSC–II with our parallel simulator. Table 2 gives elapsed
wall-clock times and relative speedups with variable CPUs ranging from 4 to 128.
The elapsed time is given in hours, and the relative speedup is computed with
respect to the case of 8 processors.

The relative parallel efficiencies on 16, 32, 64, and 128 processors with respect
to 8 processors are 78%, 73%, 75%, and 63%, respectively. The parallel efficiencies
are quite satisfactory considering the communication complexity of the parallel
nonlinear solver. The communication / computation ratio is almost 1:1 in the case
of 128 processors, indicating that 8 to 128 processors are suitable for one million-
grid cell problems of black oil model on this kind of machines.

For the past five years, the simulation time has reduced dramatically from two
months to an hour for this real data. It means the total simulation capability speed
up to 1600 times than before. After a detailed analysis, if we exclude the factors
40 of hardware contributions ( which consist of fivefold CPU frequency increasing
and at most eightfold potential concurrence process of the 64-CPU hardware sys-
tem), the left 40 times speedup belongs to the improvement of our preconditioned
nonlinear algorithm (at least speed fivefold) and elaborate parallel implementation.
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L2-NORM ERROR BOUNDS OF CHARACTERISTICS
COLLOCATION METHOD FOR COMPRESSIBLE
MISCIBLE DISPLACEMENT IN POROUS MEDIA

NING MA, DANPING YANG AND TONGCHAO LU

Abstract. A nonlinear parabolic system is derived to describe compressible

miscible displacement in a porous medium in non-periodic space. The concen-

tration is treated by a characteristics collocation method, while the pressure is

treated by a finite element collocation method. Optimal order estimates in L2

is derived.

Key Words. compressible miscible displacement; characteristics line; colloca-

tion scheme; error estimate.

1. Introduction

The mathematical controlling model for compressible flow in porous media is
given by

(a) d(c)
∂p

∂t
+∇ · u = d(c)

∂p

∂t
−∇ · (a(c)∇p) = q, (x, y) ∈ Ω, t ∈ (0, T ]

(b) φ
∂c

∂t
+ b(c)

∂p

∂t
+ u · ∇c−∇ · (D∇c) = (c̄− c)q, (x, y) ∈ Ω, t ∈ (0, T ]

(1)

where c = c1 = 1− c2, a(c) = a(x, y, c) = k(x, y)/µ(c),

b(c) = b(x, y, c) = φ(x, y)c1{z1 −
2∑

j=1

zjcj}, d(c) = d(x, y, c) = φ(x, y)
2∑

j=1

zjcj .

ci denote the concentration of the ith component of the fluid mixture, and zi is
the ”constant compressibility” factor [1] for the ith component. The model is a
nonlinear coupled system of two partial differential equations. Let Ω = (0, 1)×(0, 1)
with the boundary ∂Ω, p(x, y, t) is the pressure in the mixture,u is the Darcy
velocity of the fluid, and c(x, y, t) is the relative concentration of the injected fluid.
k(x, y) and φ(x, y) are the permeability and the porosity of porous media, µ(c) is
the viscosity of fluid, D(x, y) is molecular dissipation coefficient, q and c̄(t) etc. are
just like the definition of [1,2].
We shall assume that no flow occurs across the boundary

(a) u · ν = 0 on ∂Ω,

(b) D∇c · ν = 0 on ∂Ω,
(2)
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where ν is the outer normal to ∂Ω, and the initial conditions
(a) p(x, y, 0) = p0(x, y), (x, y) ∈ Ω,

(b) c(x, y, 0) = c0(x, y), (x, y) ∈ Ω.
(3)

The collocation methods are widely used for solving practice problems in engi-
neering due to its easiness of implementation and high-order accuracy. But the most
parts of mathematical theory focused on one-dimensional or two-dimensional con-
stant coefficient problems [3-6]. In 1990’s the collocation method of two-dimensional
variable coefficients elliptic problems is given in [7].

The mathematical controlling model for compressible flow in porous media is
strongly nonlinear coupling system of partial differential equations of two different
types. Nonlinear terms introduce many difficulties for convergence analysis of algo-
rithms. In the present article, we use different collocation technique to treat equa-
tions of different types, usual collocation method to solve the equation for pressure
and characteristic collocation scheme to approximate the equation for concentra-
tion. We develop some technique to analyze convergence of collocation algorithm
for this strongly nonlinear system and prove the optimal order L2 error estimate.
And we shall assume the coefficients a(c), D(x, y), φ(x, y), d(c), b(c) to be bounded
above and below by positive constants independently of c as well as being smooth.

The organization of the rest of the paper is as follows. In Section 2, we will
present the formulation of the characteristic collocation scheme for nonlinear system
(1). In section 3, we will analyze convergent rate of the scheme defined in section
2. Throughout, the symbols K and ε will denote, respectively, a generic constant
and a generic small positive constant.

2. Fully Discrete Characteristic Collocation Scheme

In this section, we will give some basic notations and definition for collocation
methods, which will be used in this article. Then we will present the fully discrete
characteristic collocation scheme for nonlinear system (1).

2.1. Notations and definition for collocation methods.
We make the partition of the domain Ω, which is quasi-uniform and equally

spaced rectangular grid. The grid points are (xi, yj), i = 0, 1 · · ·Nx; j = 0, 1 · · ·Ny.
Let

δx : 0 = x0 < x1 < · · · < xNx = 1, δy : 0 = y0 < y1 < · · · < yNy = 1

be the grid points along x-direction and y-direction respectively, and

hx = xi − xi−1, hy = yj − yj−1, h = max{hx, hy}
be grid size along x-direction and y-direction and maximum size of partition re-
spectively. Introduce the following notations:

Ωij = (xi−1, xi)× (yj−1, yj), I = [0, 1]

Ii
x = [xi−1, xi], Ij

y = [yj−1, yj ],
for i = 1, 2 · · ·Nx and j = 1, 2 · · ·Ny. Define function spaces as follows:

M1(3, δx) = {v ∈ C1(I)| v ∈ P3(Ii
x), i = 1 · · ·Nx},

M1(3, δy) = {v ∈ C1(I)| v ∈ P3(Ij
y), j = 1 · · ·Ny},

where P3 denotes the set of polynomials of degree ≤ 3, and

M1,P (3, δx) = {v ∈M1(3, δx) : v(0) = v(1) = 0},
M1,P (3, δy) = {v ∈M1(3, δy) : v(0) = v(1) = 0},
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then let m1(3, δ) and m1,P (3, δ) be the spaces of piecewise Hermite bicubics defined
by

M1(3, δ) = M1(3, δx)
⊗

M1(3, δy),

and
M1,P (3, δ) = M1,P (3, δx)

⊗
M1,p(3, δy).

Next, we take four Gauss points as collocation points in Ωij : (ξx
ik, ξy

jl), k, l = 1, 2,

ξx
ik = xi−1 + hxξk, ξy

jl = yj−1 + hyξl,

where
ξ1 = (3−

√
3)/6, ξ2 = (3 +

√
3)/6.

Let T3,δx
and T3,δy

be the interpolation operators of piecewise Hermite bicubics
of M1(3, δx) in x and M1(3, δy) in y, respectively, and T3,δ be the interpolation
operator of piecewise Hermite bicubics in m1(3, δ) on Ω, which may be defined by

T3,δv = T3,δx
T3,δy

v = T3,δy
T3,δx

v,

for sufficiently smooth function v.
Introduce the following summation notation:

< u, v >=
Nx∑

i=1

Ny∑

j=1

< u, v >ij=
Nx∑

i=1

Ny∑

j=1

1
4
hxhy

2∑

k,l=1

(uv)(ξx
ik, ξy

jl),

< u, v >x=
Nx∑

i=1

< u, v >ix=
Nx∑

i=1

hx

2

2∑

k=1

(uv)(ξx
ik),

< u, v >y=
Ny∑

j=1

< u, v >jy=
Ny∑

j=1

hy

2

2∑

l=1

(uv)(ξy
jl),

< u, v >=< < u, v >x, 1 >y=< < u, v >y, 1 >x, < u, u >= |‖u‖|2,
and discrete norms

‖|u‖|2H1
0 (Ω) =

∫ 1

0

< Dux, ux >y dx +
∫ 1

0

< Duy, uy >x dy, ∀u ∈M1(3, δ),

and

‖|u‖|2E =
∫ 1

0

< ux, ux >y dx +
∫ 1

0

< uy, uy >x dy, ∀u ∈M1(3, δ).

2.2. Fully discrete CCS.
At first time can be discretized 0 = t0 < t1 < · · · < tn = T, 4t = tn−tn−1. We

consider the concentration equation, let ψ = [φ2 +u2
1 +u2

2]
1
2 , and the characteristic

direction associated with the operator φct + u · ∇c is denoted by τ(x, y), hence

ψ
∂c

∂τ
= φ

∂c

∂t
+ u · ∇c.

The equation (1)(b) can be put in the form

(4) ψ
∂c

∂τ
+ b(c)

∂p

∂t
−∇ · (D∇c) = (c̄− c)q, (x, y) ∈ Ω, t ∈ (0, T ].

For (4), we use a backward difference quotient for ∂c/∂τ along the characteristic
line

(5) ψ
∂cn

∂τ
≈ ψ

cn(x, y)− cn−1(x̆, y̆)
4t[1 + |u|2/φ2]

1
2

= φ
cn − c̆n−1

4t
,
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where
f̆n = f(x̆n, y̆n, tn), fn = f(tn),

with
x̆n−1 = x− un

1

φ
4t, y̆n−1 = y − un

2

φ
4t.

Then, we have the following discrete equation

φ
cn
h − c̆n−1

h

4t
+ b(cn−1

h )
Pn − Pn−1

4t
−∇ · (D∇cn

h)

− (c̄n−1 − cn−1
h )q = 0, n = 1, 2 · · · .

(6)

Now by using the interpolation operator T3,δ and the Gauss points { (ξx
ik, ξy

jl),
1 ≤ i ≤ Nx; 1 ≤ j ≤ Ny; k, l = 1, 2}, we give the fully discrete characteristic
collocation scheme:

Characteristic Collocation Scheme: If (Cn−1, Pn−1) has been known at
t = tn−1, at t = tn the (Cn, Pn) should be

(a) C0 = T3,δc0(x, y), P 0 = T3,δp0(x, y),

(b) { d(Cn−1)
Pn − Pn−1

4t
−∇ · (a(Cn−1)∇Pn)− q }(ξx

ik, ξy
jl) = 0,

(c) { φ
Cn − Ĉn−1

4t
+ b(Cn−1)

Pn − Pn−1

4t
−∇ · (D∇Cn)

− (C̄n−1 − Cn−1)q }(ξx
ik, ξy

jl) = 0,

(d)
∂Cn

∂ν

∣∣∣∣
∂Ω

= 0

(7)

where
f̂n = f(x̂n, ŷn, tn), fn = f(tn)

and

(8) Un−1 = −a(Cn−1)∇Pn−1

with
x̂n−1 = x− Un

1

φ
4t, ŷn−1 = y − Un

2

φ
4t,

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, k, l = 1, 2 and n,m ≥ 0, computed in the order: at
first Pn can been computed from (7)(b), then from (8) and (7)(c) we can obtain Cn.

When x̂ is through the boundary ∂Ω, we
will do continuation according to specular re-
flection method, namely when x̂ is outside Ω,
we do the normal from x̂ to ∂Ω, and the nor-
mal intersects ∂Ω at Y . Then we do inner
normal at Y , and we choose point ẍ so as
to |x̂Y | = |ẍY |, and the value of c(ẍ) re-
places the one of c(x̂), in this way c and
C etc. functions are certain meaning. Be-
cause c satisfies (2)(b), the continuation is
right[10].

In next section, we will analyze existence and convergence of the solution of the
characteristic collocation scheme.
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3. Convergence Analysis

In this section, we first analyze the existence of the solution of the characteristic
collocation scheme, and then analyze convergence. We assume that
(R) c ∈ L∞(H6)

⋂
L∞(W 2

∞)
⋂

H1(W 2
∞)

⋂
H2(H1)

p ∈ L∞(H6)
⋂

H1(H6)
⋂

L∞(W 1
∞)

⋂
H2(H1).

3.1. Preliminary results.
We list some basic results in [3,8].
Lemma 3.1 . Let e = v − T3,δxv, then there exists constant K > 0 such that

(1) < e(l), e(l) >x ≤ Kh
2(4−l)
x ·

Nx∑

i=1

∫ xi

xi−1

∑

α≤4

(
∂αv

∂xα
)2dx, l = 0, 1

(2) < exx, exx >x ≤ Kh6
x ·

Nx∑

i=1

∫ xi

xi−1

∑

α≤5

(
∂αv

∂xα
)2dx

(3) | < ex, 1 >x |2 ≤ Kh9
x ·

Nx∑

i=1

∫ xi

xi−1

∑

α≤5

(
∂αv

∂xα
)2dx

(4) | < exx, 1 >x |2 ≤ Kh9
x ·

Nx∑

i=1

∫ xi

xi−1

∑

α≤6

(
∂αv

∂xα
)2dx.

There is the same conclusions in y direction.
Lemma 3.2 There exists constant K ≥ 0 such that for sufficiently smooth func-

tion v

‖v − T3,δv‖L2(Ω) ≤ Kh4(
Nx∑

i=1

Ny∑

j=1

‖v(4)‖L2(Ωij))
1
2 ,

‖vt − T3,δvt‖L2(Ω) ≤ Kh4(
Nx∑

i=1

Ny∑

j=1

‖v(4)
t ‖L2(Ωij))

1
2 .

The following conclusions are proved in [3,5].
Lemma 3.3 For any v ∈M1(3, δ), if we have

v(ξx
ik, 0) = v(ξx

ik, 1) = v(0, ξy
jl) = v(1, ξy

jl) = v(0, 0) = v(0, 1) = v(1, 0)

= v(1, 1) = v(ξx
ik, ξy

jl) = 0,

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and k, l = 1, 2, then v = 0.
Lemma 3.4 For any v ∈M1,P (3, δ),there exists constant K > 0 such that

‖|v‖|2E ≤ − < 4v, v > ≤ K|‖v‖|2E .

Lemma 3.5 Assume that the inverse supposition for m1(3, δ) holds [9], then
exists constant K > 0 such that for any v ∈M1(3, δ)

‖v‖2H1(Ω) ≤ K { < v, v > + |‖v‖|2H1
0 (Ω) }.

Lemma 3.6 Assume that v ∈M1(3, δ) holds, there exists constant K1 ≥ 0 and
K2 ≥ 0 such that

‖v‖L2(Ω) ≤ |‖v‖| ≤ K1 ‖v‖L2(Ω), ‖v‖L∞(Ω) ≤ K2h
−1 ‖v‖L2(Ω).

Proof. We may see 2.2 and 2.4 in [4].
Lemma 3.7. Assume that D(x, y) is sufficiently smooth. There exists constants

0 < K∗ ≤ K∗ such that for each v ∈M1,P (3, δ)

K∗ < −4v, v > ≤ − < ∇ · (D∇v), v > ≤ K∗ < −4v, v > .
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Proof. The Peano representation of the remainder in the two-point Gauss-
Legendre quadrature and Leibnitz’s formula, (see Theorem 4.2 in [7]), reads

< − ∂

∂x
(D

∂v

∂x
)(·, ηjl), v(·, ηjl) >x= I1(D, v, ηjl) + I2(D, v, ηjl),

where

I1(D, v, ηjl) =
∫ 1

0

[D(
∂v

∂x
)2](x, ηjl)dx

+ 4
Nx∑

k=1

(hx)4
∫

Ix
k

[D(
∂3v

∂x3
)2](x, ηjl)K(

x− xk−1

hx
)dx

= I3(D, v, ηjl) + I4(D, v, ηjl),

and

I2(D, v, ηjl) =
5∑

l=1

∑
i+j=6−l

0≤i,j≤3

αl
i,j

Nx∑

k=1

(hx)4 ×
∫

Ix
k

[
∂lD

∂xl

∂iv

∂xi

∂jv

∂xj
](x, ηjl)K(

x− xk−1

hx
)dx,

the constant αl
ij are independent of h and symmetrical αl

ij = αl
ji, and

0 ≤ K(β) =
1
24
{ (1− β)4 − 2[(ξ1 − β)3+ + (ξ2 − β)3+] } ≤ K, β ∈ [0, 1].

Since I2(1, v, ηjl) = 0, we see that

D∗ < −∂2v

∂x2
(·, ηjl), v(·, ηjl) >x ≤ I1(D, v, ηjl), D∗ ∈ min

(x,y)∈Ω̄
D(x, y).

On the other hand, the Cauchy-Schwarz inequality in L2(Ix
k ) give

|I2(D, v, ηjl)| ≤ KKx
1

5∑

l=1

∑
i+j=6−l

0≤i,j≤3

Nx∑

k=1

(hx)4‖∂iv

∂xi
(·, ηjl)‖L2(Ix

k )‖
∂jv

∂xj
(·, ηjl)‖L2(Ix

k ),

where

Kx
1 = max

1≤l≤5
max

(x,y)∈Ω̄
|∂

lD

∂xl
(x, y)|.

Hence, by using the inverse inequality

‖u(i)‖L2(Ix
k ) ≤ Khl−i

x ‖u(l)‖L2(Ix
k ), 0 ≤ l ≤ i ≤ 3 , u ∈ P3,

with l = 1, 2 ≤ i ≤ 3, the Cauchy-Schwarz inequality in RNx , and the Poincáre
inequality ‖u‖L2(0,1) ≤ K‖u′‖L2(0,1), for u ∈ m1,P (3, δx), we get

|I2(D, v, ηjl)| ≤ KKx
1 hx‖∂v

∂x
(·, ηjl)‖2L2(0,1)

and

|I4(D, v, ηjl)| ≤ KD∗‖∂v

∂x
(·, ηjl)‖2L2(0,1), D∗ = max

(x,y)∈Ω̄
D(x, y).

Further, lemma 3.3 of [3] implies that

|I2| ≤ KKx
1 hx < −∂2v

∂x2
(·, ηjl), v(·, ηjl) >x

and

|I4| ≤ KD∗ < −∂2v

∂x2
(·, ηjl), v(·, ηjl) >x .
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Putting above estimates together, we have

(D∗ −KKx
1 hx) < −4v, v > ≤< − ∂

∂x
(D

∂v

∂x
), v >

≤ (D∗ + KKx
1 hx + KD∗) < −4v, v > .

For < − ∂

∂y
(D

∂v

∂y
), v > has the similar estimate. Let

K1 = max
1≤l≤5

max
(x,y)∈Ω̄

{ |∂
lD

∂xl
(x, y)|, |∂

lD

∂yl
(x, y)| }

and
K∗ = 2(D∗ −KK1h) K∗ = 2(D∗ + KK1h + KD∗).

For sufficient small h, K∗ and K∗ are positive. The lemma is proved.
Lemma 3.8 Under the same conditions as in lemma 3.7, there exists constant

0 < C∗ ≤ C∗ such that

C∗|‖v‖|2H1
0 (Ω) ≤ < −∇ · (D∇v), v > ≤ C∗ |‖v‖|2H1

0 (Ω), ∀v ∈M1,P (3, δ).

Proof. Since 2.1 section and the condition of D(x, y) satisfied, we obtain

D∗|‖v‖|2E ≤ |‖v‖|2H1
0 (Ω) ≤ D∗|‖v‖|2E , v ∈M1,P (3, δ)

Since lemma 3.4 and lemma 3.7, we have
K∗
D∗ |‖v‖|2H1

0 (Ω) ≤ K∗|‖v‖|2E ≤ K∗ < −4v, v >

≤ − < ∇ · (D∇v), v >≤ K∗ < −4v, v >

≤ K∗K|‖v‖|2E ≤ K∗K
D∗

|‖v‖|2H1
0 (Ω), v ∈M1,P (3, δ)

Let C∗ =
K∗
D∗ , C∗ =

K∗K
D∗

, the proof is completed.

3.2. Existence of the solution of CCS.
In this section we consider the existence and uniqueness of the numerical solution.

(7)(b)(c) can be rewritten as the discrete Galerkin method given by

(a) < d(Cn−1)
Pn − Pn−1

4t
−∇ · (a(Cn−1)∇Pn)− q, χ >= 0,

∀χ ∈M1,P (3, δ)

(b) < φ
Cn − Ĉn−1

4t
+ b(Cn−1)

Pn − Pn−1

4t
−∇ · (D∇Cn)

− (C̄n−1 − Cn−1)q, Z >= 0, ∀Z ∈M1,P (3, δ).

(9)

We only discuss the pressure equation, and the concentration equation is similar.
It is clear that any solution of (7)(b) is a solution of (9)(a). Thus, it is sufficient
to prove existence for (7)(b) and uniqueness for (9)(a) (lemma 4.1 of [3]). For
sufficiently small 4t, existence for (7)(b) follows from lemma 3.3, since it implies
that matrix generated by the time derivative term is nonsingular for any choice of
the basis for m1,P (3, δ), and uniqueness for solutions of (9)(a) also is implies by
lemma 3.3, since the matrix generated by time-derivative term in (9)(a) must be
nonsingular since d(c) is bounded below by a positive constant.

So CCS(7) and the discrete Galerkin method (9) each possess a unique solution
for 0 < t ≤ T ; moreover, these solutions are identical if the processes are started
from the same initial values.
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3.3. Error estimate.
In this section, we will obtain the optimal L2-norm error estimate.
Theorem 3.1. Suppose (R) and r = 3 hold, and 4t = o(h), then there exists a

constant K = K(Ω, a∗, b∗, d∗, φ∗, D∗, · · · ,K∗, K1,K2) such that, for h sufficiently
small,

max
0≤n≤[ T

4t ]
‖ cn − Cn ‖2 +

T/4t∑
n=0

‖ pn − Pn ‖2 4t ≤ K(4t2 + h8).

Proof. Let

c̃ = T3,δc, ζ = c− c̃, ξ = c̃− C, p̃ = T3,δp, η = p− p̃, π = p̃− P.

We first consider the pressure equation. Subtracting (9)(a) from the Galerkin
method of (1)(a), we obtain

< d(Cn−1)dtπ
n, χ > − < ∇ · (a(Cn−1)∇πn), χ >

=< [ d(Cn−1)− d(cn) ]dtp̃
n, χ > − < d(cn)dtη

n, χ >

+ < d(cn)(dtp
n − ∂pn

∂t
), χ > + < ∇ · (a(cn)∇ηn), χ >

+ < ∇ · [ (a(cn)− a(Cn−1))∇p̃n ], χ >, ∀χ ∈M1,P (3, δ)

(10)

where dtf
n =

fn − fn−1

4t
, and choosing the test function χ = πn in (10), and the

right terms can be denoted by T ′i , i = 1, 2 · · · 5 in turn. Then by lemma 3.1, lemma
3.2 and lemma 3.6, we have

|T ′1| =< [ d(Cn−1)− d(cn−1) + d(cn−1)− d(cn) ]dtp̃
n, πn >

=< [
∂d

∂c
(c1)(Cn−1 − cn−1) +

∂d

∂c
(c2)(cn−1 − cn) ]dtp̃

n, πn >

≤ K(|||ζn−1|||+ |||ξn−1|||+ |||cn−1 − cn|||) sup
n
|dtp̃

n| · |||πn|||

≤ K(h8 +4t2 + ||ξn−1||2) + ε||πn||2.

(11)

And

|T ′2| ≤ | < d(cn)
ηn − ηn−1

4t
, πn > |

≤ K|||ηt|||2 + ε|||πn||| ≤ Kh8||pt||2H4 + ε||πn||2,
(12)

where using lemma 3.1, lemma 3.2, lemma 3.6.
For T ′3, we can get from the standard backward-difference error equation or

Taylor expansion[10]

|T ′3| ≤ | < d(cn)(
pn − pn−1

4t
− ∂pn

∂t
), πn >≤ K(4t)2 + ε||πn||2.(13)

To obtain T ′4, we have the following conclusion. ξn, ζn are defined as the above,
such that for ε sufficiently small

< (Dζn
x )x, ξn >x | ≤ ε{(ξn

x , ξn
x )x+ < ξn, ξn >x}

+ K h8
x

Nx∑

i=1

∫ xi

xi−1

∑

α≤6

(
∂αcn

∂xα
)2dx.

(14)
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Because we let ξ̌n
i = h−1

x < ξn, 1 >i, by the definition of section 2.1 we obtain

< ξn, 1 >2
i =

h2
x

4
{ξn(ξx

i1) + ξn(ξx
i2)}2 ≤ K

h2
x

4
{(ξn(ξx

i1))
2 + (ξn(ξx

i2))
2}

= K
hx

2
{hx

2
[(ξn(ξx

i1))
2 + (ξn(ξx

i2))
2]}

≤ Khx < ξn, ξn >i= Khx|‖ξn‖|2i .
Thus

(15) |ξ̌n
i | ≤ Kh

− 1
2

x |‖ξn‖|i
And

(16) < (Dζn
x )x, ξn >x=< Dxζn

x , ξn >x + < Dζn
xx, ξn >x .

We estimate the first term of the right-side of (16)

| < Dxζn
x , ξn >i | ≤ | < Dxζn

x , ξn − ξ̌n
i >i |+ | < Dxζn

x , ξ̌n
i >i |

= S1 + S2.

By lemma 3.1 , Poincáre inequality [3], we obtain

|S1| ≤ K max{|Dx(ξx
i1)|, |Dx(ξx

i2)|} |‖ζn
x ‖|i · |‖ξn − ξ̌n

i ‖|i
≤ K max{|Dx(ξx

i1)|, |Dx(ξx
i2)|}h4

x (
∫ xi

xi−1

∑

α≤4

(
∂αcn

∂xα
)2dx)

1
2 · ‖ξn

x‖L2(Ii)

≤ ε(ξn
x , ξn

x )i + K · h8
x ·

∫ xi

xi−1

∑

α≤4

(
∂αcn

∂xα
)2dx.

(17)

By lemma 3.1 and (15) , we obtain

|S2| ≤ K max{|Dx(ξx
i1)|, |Dx(ξx

i2)|} | < ζn
x , 1 >i | · |ξ̌n

i |

≤ K max{|Dx(ξx
i1)|, |Dx(ξx

i2)|}h4
x (

∫ xi

xi−1

∑

α≤5

(
∂αcn

∂xα
)2dx)

1
2 · |‖ξn‖|i

≤ ε < ξn, ξn >i +K · h8
x ·

∫ xi

xi−1

∑

α≤5

(
∂αcn

∂xα
)2dx.

(18)

Next we estimate the second term of (16)

| < Dζn
xx, ξn >i | ≤ | < Dζn

xx, ξn − ξ̌n
i >i |+ | < Dζn

xx, ξ̌n
i >i |

= S′1 + S′2.

Similar to (17)

|S′1| ≤ K max{|D(ξx
i1)|, |D(ξx

i2)|} |‖ζn
xx‖|i · |‖ξn − ξ̌n

i ‖|i
≤ K max{|D(ξx

i1)|, |D(ξx
i2)|}h4

x (
∫ xi

xi−1

∑

α≤5

(
∂αcn

∂xα
)2dx)

1
2 · ‖ξn

x‖L2(Ii)

≤ ε(ξn
x , ξn

x )i + K · h8
x ·

∫ xi

xi−1

∑

α≤5

(
∂αcn

∂xα
)2dx.

(19)

Similar to (18)
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|S′2| ≤ K max{|D(ξx
i1)|, |D(ξx

i2)|} | < ζn
xx, 1 >i | · |ξ̌n

i |

≤ K max{|D(ξx
i1)|, |D(ξx

i2)|}h4
x (

∫ xi

xi−1

∑

α≤6

(
∂αcn

∂xα
)2dx)

1
2 · |‖ξn‖|i

≤ ε < ξn, ξn >i +K · h8
x ·

∫ xi

xi−1

∑

α≤6

(
∂αcn

∂xα
)2dx.

(20)

By summing over i , it follows that

| < (Dζn
x )x, ξn >x | = |

Nx∑

i=1

< (Dζn
x )x, ξn >i |

= |
Nx∑

i=1

[< Dxζn
x , ξn >i + < Dζn

xx, ξn >i]|

≤ ε{(ξn
x , ξn

x )x+ < ξn, ξn >x}+ K h8
x

Nx∑

i=1

∫ xi

xi−1

∑

α≤6

(
∂αcn

∂xα
)2dx.

And there is the same conclusion in y direction, in this time let
ξ̌n
j = h−1

y < ξn, 1 >j , the (14) is right. And because of

| < (Dζn
x )x, ξn > | = |

Ny∑

j=1

hy

2
[< (Dζn

x )x, ξn >x (ξy
j1)+ < (Dζn

x )x, ξn >x (ξy
j2)] |

we have the following conclusion.

| < (Dζn
x )x, ξn > | ≤ ε{(ξn

x , ξn
x )+ < ξn, ξn >}

+ K h8
Nx∑

i=1

Ny∑

j=1

∫

Ωij

∑

α≤6

(
∂αcn

∂xα
)2dΩ,

(21)

where α is a two-fold index, and there is the same conclusion in y direction.
Then for T ′4 similar to (17)-(20), lemma 3.6 and lemma 3.7, we obtain

|T ′4| = | < ∇ · (a(cn)∇ηn), πn > |
≤ | < a(cn)4ηn, πn > |
+ | < a(cn)x(ηn)x, πn > |+ | < a(cn)y(ηn)y, πn > |.
≤ Kh8 + ε(||πn||2 + ||∇πn||2)

(22)

For T ′5, we shall need an induction hypothesis. We assume that

||Cn||W 1∞ ≤ K, 0 ≤ n ≤ l − 1.(23)

We start this induction by seeing that

||C0||W 1∞ ≤ ||c̃0||W 1∞ + ||ξ0||W 1∞ ≤ ||c̃0||W 1∞ ≤ K,

for h sufficiently small. We shall check that if n = l, (23) is right at the end of the
proof. Similar to the proof of T ′1 and T ′4 and using lemma 3.1, lemma 3.2, lemma
3.6 and (23), we can get

|T ′5| ≤ | < [ a(cn)− a(Cn−1) ]∆p̃n, πn > |
+ | < ∇[ a(cn)− a(Cn−1) ] · ∇p̃n), πn > |
≤ K(||ξn−1||21 + h8 +4t2) + ε(||πn||2 + ||∇πn||2).

(24)
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Next using the inequality a(a − b) ≥ 1
2 (a2 − b2), we see that the first left-hand

side term of (10),

< d(Cn−1)dtπ
n, πn >

≥ 1
24t

{ < d(Cn−1)πn, πn > − < d(Cn−1)πn−1, πn−1 > }(25)

Similar to the proof of lemma 3.7 and (23), the second left-hand side term of
(10) get

(26) − < ∇ · (a(Cn−1)∇πn), πn > ≥ (a∗ −KK2h) ‖ ∇πn ‖2,
then for sufficiently small h there exists constant C > 0, we have a∗ − KK2h ≥
C > 0.

By (11)-(26), we multiplied by 24t and sum in time n, for ε sufficiently small,

m∑
n=1

( < d(Cn−1)πn, πn > − < d(Cn−1)πn−1, πn−1 >) + C

m∑
n=1

||∇πn||24t

≤ K(h8 +4t2 +
m−1∑
n=1

||ξn||214t) + ε

m∑
n=1

(||πn||2 + ||∇πn||2)4t,

and

d′∗

m−1∑
n=1

||πn||24t + d∗||πm||2 +
m∑

n=1

||∇πn||24t

≤ K(h8 +4t2 +
m−1∑
n=1

||ξn||214t).

(27)

We can turn to the derivation of a corresponding evolution inequality for ξn.
Subtracting (9)(b) from the discrete Galerkin scheme of (1)(b), we obtain

< φ
ξn − ξn−1

4t
, Z >− < ∇ · (D∇ξn), Z >

= − < φ
∂cn

∂t
+ un · ∇cn − φ

cn − c̆n−1

4t
, Z >

+ < φ
c̆n−1 − ĉn−1

4t
, Z > − < φ

ξn−1 − ξ̂n−1

4t
, Z >

− < φ
ζn − ζ̂n−1

4t
, Z > + < ∇ · (D∇ζn), Z >

+ < [−(ξn−1 + ζn−1) + (cn−1 − cn) ] q, Z >

+ < b(Cn−1)
Pn − Pn−1

4t
− b(cn)

∂pn

∂t
, Z > ∀Z ∈M1,P (3, δ).

(28)

To obtain L2 estimate for ξ, we choose Z = ξn as test function in (28), and we
denote the resulting right-hand side terms by T1, T2, · · · , T7. First we shall discuss
the right-hand side of (28).

For T1, similar to the discussion in [2,10], so that

ψ
∂cn

∂τ
= φ

∂cn

∂t
+ un · ∇cn,
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The standard backward-difference error equation is given by

∂cn

∂t
− cn − cn−1

4t
=

1
4t

∫ tn

tn−1
(t− tn−1)

∂2c

∂t2
dt,

analogously, along the tangent to the characteristic

ψ
∂cn

∂τ
− φ

cn − c̆n−1

4t

=
φ

4t

∫ (x,y,tn)

(x̆,y̆,tn−1)

√
(x(τ)− x̆)2 + (y(τ)− y̆)2 + (t(τ)− tn−1)2

∂2c

∂τ2
dτ

(29)

So by the definition of section 2.1, we obtain

< ψ
∂cn

∂τ
− φ

cn − c̆n−1

4t
, ψ

∂cn

∂τ
− φ

cn − c̆n−1

4t
>

=
Nx∑

i=1

Ny∑

j=1

1
4
hxhy

2∑

k,l=1

·

{( φ

4t

∫ (x,y,tn)

(x̆,y̆,tn−1)

√
(x− x̆)2 + (y − y̆)2 + (t− tn−1)2

∂2c

∂τ2
dτ)(ξx

ik, ξy
jl)}2.

Let Eij be the plane from (ξ̆x
ik, ξ̆y

jl, t
n−1) to (ξx

ik, ξy
jl, t

n) along the characteristic
direction, then

|||ψ∂cn

∂τ
− φ

cn − c̆n−1

4t
|||2

≤ Ch2
Nx∑

i=1

Ny∑

j=1

2∑

k,l=1

max
(x,y)∈Eij

| ∂
2c

∂τ2
|2{ φ

4t
· (ψ4t

φ
)
∫ (ξik,ξjl,t

n)

(ξ̆ik,ξ̆jl,tn−1)

dτ}2

≤ K4t2h2 max
(x,y)∈E

| ∂
2c

∂τ2
|2

Thus, we can obtain the estimate of T1

|T1| ≤ K|‖ψ∂cn

∂τ
− φ

cn − c̆n−1

4t
‖| · |‖ξn‖|

≤ K4t2h2 max
(x,y)∈E

| ∂
2c

∂τ2
|2 + ε|‖ξn‖|2.

(30)

By (8), we get

|T2| = | < φ
c̆n−1 − ĉn−1

4t
, ξn > | = | < ∇c̄ · (un − Un), ξn > |

= | < ∇c̄ · [a(cn)∇ηn + a(Cn)∇πn + (a(cn)− a(Cn))∇p̃n], ξn > |.
Similar to the estimation of T ′4 in the pressure equation, (23) and lemma 3.1, we
can get

|T2| ≤ K(h8 +4t2 + ||ξn||2) + ε(||ξn||21 + ||∇πn||2).(31)

To handle T3, we shall need another induction hypothesis. We assume that

||∇Pn||L∞ ≤ K, 0 ≤ n ≤ l − 1.(32)

If l = 1, we can start the induction by (27) to get

||∇P 0||L∞ ≤ ||∇p̃0||L∞ + ||∇π0||L∞ ≤ K + Kh−1(h4 +4t) ≤ K,
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for h sufficiently small and 4t = o(h). We shall check that if n = l (32) is right at
the end of the proof. Then for T3, we can obtain by lemma 3.6, [2,10], the induction
hypotheses (23) and (32),

|T3| ≤ K|||ξ
n−1 − ξ̂n−1

4t
||| · |||ξn||| ≤ ε||ξ

n−1 − ξ̂n−1

4t
||2 + K||ξn||2

≤ ε||∇ξn−1||2 + K||ξn||2.
(33)

Next we estimate T4,

|T4| ≤ K( | < φ
ζn − ζn−1

4t
, ξn > |+ | < φ

ζn−1 − ζ̂n−1

4t
, ξn > | ),

by the Taylor expansion, Cauchy inequality and lemma 3.1, lemma 3.6, we obtain

| < φ
ζn − ζn−1

4t
, ξn > | ≤ K|||ζn

t |||2 + ε|||ξn|||2 ≤ Kh8||cn
t ||2H4 + ε||ξn||2,

and by two dimensional Taylor expansion and (32), similar to (17) and (18), it
follows that

| < φ
ζn−1 − ζ̂n−1

4t
, ξn > |

≤ K( | < Un
1 ζn−1

x , ξn > |+ | < Un
2 ζn−1

y , ξn > | ) + K4t|||ξn|||
≤ K (h8‖cn−1‖2H5(Ω) +4t2) + ε(||ξn||2 + ||∇ξn||2),

so we can get

(34) |T4| ≤ K h8(‖cn−1‖2H5 + ‖cn
t ‖2H4) + K4t2 + ε(||ξn||2 + ||∇ξn||2).

Then, similar to T4, by (14) and (21), we have

|T5| = | < ∇ · (D∇ζn), ξn > |
≤ | < (Dζn

x )x, ξn > |+ | < (Dζn
y )y, ξn > |

≤ K h8‖cn‖2H6 + ε(||ξn||2 + ||∇ξn||2).
(35)

And using lemma 3.1, lemma 3.2, lemma 3.6, we shall get

|T6| ≤ K( h8 +4t2 + ||ξn−1||2) + ε||ξn||2.(36)

Similar to the pressure equation estimate (10), T7 can be written as

|T7| ≤ | < d(Cn−1)dtπ
n, ξn > |+ | < [ d(Cn−1)− d(cn) ]dtp̃

n, ξn > |

+ | < d(cn)dtη
n, ξn > |+ | < d(cn)(dtp

n − ∂pn

∂t
), ξn > |

≤ K(h8 +4t2 + ||ξn−1||2) + ε||ξn||2

+ | < d(Cn−1)
πn − πn−1

4t
, ξn > |.

(37)

Thus we obtain the estimate of the right-side of (28) by the preceding, next for
the left-hand side of (28) we use the inequality 1

2 (a2 − b2) ≤ a(a − b) and lemma
3.8, such that

1
24t

{< φξn, ξn >− < φξn−1, ξn−1 >}+ C∗|||ξn|||2H1
0 (Ω)

≤ < φ
ξn − ξn−1

4t
, ξn > − < ∇ · (D∇ξn), ξn > .

(38)
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So by (30)-(38), we now have

1
24t

{< φξn, ξn >− < φξn−1, ξn−1 >}+ C∗|||ξn|||2H1
0 (Ω)

≤ K(4t2 +4t2h2 + h8 + ||ξn−1||2 + ||ξn||2)

+ ε(||ξn||21 + ||∇πn||2) + | < d(Cn−1)
πn − πn−1

4t
, ξn > |.

(39)

If (39) is multiplied by 24t and summed in time n (ξ0 = 0,4t = o(h) ), then it
follows that

< φξm, ξm > + C∗
m∑

n=1

|||ξn|||2H1
0 (Ω)4t

≤ K (4t2 + h8 +
m∑

n=1

||ξn||24t ) + ε

m∑
n=1

(||ξn||21 + ||∇πn||2)4t

+ 2
m∑

n=1

| < d(Cn−1)(πn − πn−1), ξn > |,

(40)

where the right-hand side last term of (40) can be written as
m∑

n=1

| < d(Cn−1)(πn − πn−1), ξn > |

≤ d′∗
m−1∑
n=1

||πn||24t + d∗||πm||2 + ε

m∑
n=1

||ξn||24t.

(41)

So the relations (40) and (41) can be combined with (27) and the Gronwall lemma
for sufficiently small ε to show that

(42) max
1≤n≤m

‖ξn‖2 + C∗
m∑

n=1

|||ξn|||2H1
0 (Ω)4t ≤ K{4t2 + h8},

then lemma 3.5 and (42) can be combined with (27) to show that

(43)
m∑

n=1

||∇πn||24t ≤ K{ 4t2 + h8 },

At last we shall check the induction hypotheses (32) and (23)

||∇P l||L∞ ≤ ||∇p̃l||L∞ + ||∇πl||L∞ ≤ K + Kh−1||∇πl||
≤ K + Kh−2(4t + h4) ≤ K,

||Cl||W 1∞ ≤ ||c̃l||W 1∞ + ||ξl||W 1∞ ≤ K + Kh−2||ξl||
≤ K + Kh−2(4t + h4) ≤ K,

for h sufficiently small , and the proof is complete.
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HIGH PERFORMANCE COMPUTING IN PETROLEUM
APPLICATIONS

RICHARD E. EWING, GUAN QIN AND WEI ZHAO

Abstract. The purpose of mathematical reservoir simulation models in petroleum

applications is to try to optimize the recovery of hydrocarbon from permeable

underground reservoirs. To accomplish this, one must be able to predict the

performance of the reservoir under various production schemes. There are two

essential issues, modeling and software architecture design, while developing a

comprehensive oil reservoir modeling platform that should be an integration

of subsurface models, facility network models and economic models. Effective

subsurface models must be constructed to describe the complex geomechani-

cal, physical, and multiphase fluid flow processes that accompany the various

recovery mechanisms. Upscaling needs to be utilized to provide effective rock

properties for coarse-grid models used for field-scale simulations. However, lo-

calized flow regimes at sub-coarse grid scales must often be resolved using local

grid refinement techniques. Finite volume element methods for accurate reso-

lution of localized geometrics can be coupled with cell-centered finite difference

methods used in many existing simulators. Aspects of coupling different grids,

different discretization schemes, and different physical equations via mortar

techniques will be presented. Reservoir simulation is an integration of various

technologies through the construction of a reservoir model as well as optimiza-

tion of production strategies. A comprehensive oil reservoir modeling platform

should be an integration of different software applications or components and

its software architecture should be scaleable, extendable and should have the

capability to create and modify a workflow. Beyond the traditional three-tier

software architecture, data, application, and user-interface, separation of con-

trol and business logic through those three tiers is proposed to achieve those

goals. The aspect of the software architecture design will be discussed.

Key Words. Eulerian-Lagrangian localized adjoint method, mixed finite ele-

ment method, petroleum reservoir simulation, separation of control and busi-

ness logic, three-tier software architecture

1. Introduction

With rapid advances in information technology and computing power, large-scale
oil reservoir simulations become the routine work in upstream asset development.
The objective of oil reservoir simulation is to understand the complex chemical,
physical, and fluid flow processes occurring in an underground porous medium suf-
ficiently well so as to be able to optimize oil production strategy that is usually
constrained by the volatile oil prices. To do this, one must be able to predict
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the performance of the reservoir under various recovery scenarios. Consequently,
a comprehensive oil reservoir modeling platform that is an integration of subsur-
face, facility network technologies and economics needs to be developed. There
are two essential issues in development of this platform. An integrated model of
reservoir, facility network and economic models must be efficiently constructed to
yield information about complex subsurface phenomena and surface facility net-
work accompanying different recovery scenarios. The software architecture design
of the platform should be extendable to plug-in new software components and be
flexible to create and to modify workflows that address various simulation scenarios.
Among various important physical, mathematical and software development issues,
we focus on the complex subsurface modeling processes and an improved software
architecture design in this paper.

There are four major stages to the subsurface modeling process. First, a physical
model of the flow processes is developed incorporating as much geology, chemistry,
and physics as is deemed necessary to describe the essential phenomena. This
requires the interaction of geologists, geophysicists, chemical and petroleum engi-
neers, etc. Second, a mathematical formulation of the physical model is obtained,
usually involving coupled systems of nonlinear, time-dependent partial differential
equations. The analyses of these systems of differential equations are often quite
complex mathematically. Third, once the properties of the mathematical model,
such as existence, uniqueness, and regularity of the solution, are sufficiently well un-
derstood, a discretized numerical model of the mathematical equations is produced.
A numerical model is determined that has the required properties of accuracy and
stability and which produces solutions representing the basic physical features as
well as possible without introducing spurious phenomena associated with the spe-
cific numerical scheme. Finally, a computer code capable of efficiently performing
the necessary computations for the numerical model is developed. The total mod-
eling process encompasses aspects of each of these four intermediate steps. This
involves the multidisciplinary interaction of a wide variety of scientists. It is rare
to find all of this expertise in one group or at one location. Thus the effective
simulation of these problems should entail collaboration of scientists, often across
disciplines and institutions, to address the enormous complexity of these models.
Finally, the modeling process is not complete with one pass through these four steps.
An optimized subsurface model should be developed by minimizing the difference
between simulation results and field and lab observations by iterations through
those four stages.

A comprehensive oil reservoir modeling platform should provide such a collab-
orative environment to support the multi-disciplinary collaborations. The aspects
involved in the architecture design are three folds, an integrated central data reposi-
tory that extracts, transforms and archives large amounts of incongruous data from
domain specific data sources such as well log data, seismic data, well testing data,
production data, rock and fluid properties, etc. and the flexibility to efficiently
create, to manage and to modify a workflow that addresses various recovery sce-
narios. Beyond the traditional three tier software architecture, data, application
and user-interface, separation of control and business logic through those three tiers
is proposed to effectively and efficiently address those issues.

In this paper, we will discuss and survey some of the advanced numerical tech-
nologies that can be applied to improve the subsurface modeling as well as advanced
software architecture design that allows effective integration of subsurface technolo-
gies. Some simulation results will be presented to illustrate those concepts.
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2. Reservoir Characterization

The processes of both single- and multiphase flow involve convection, or physical
transport, of the fluids through a heterogeneous porous medium. The equations
used to simulate this flow at a macroscopic level are variations of Darcy’s law.
Darcy’s law has been derived via a volume averaging of the Navier-Stokes equations,
which govern flow through the porous medium at a microscopic or pore-volume
level. Reservoirs themselves have scales of heterogeneity ranging from pore-level
to field scale. In the standard averaging process for Darcy’s law, many important
physical phenomena which may eventually govern the macroscopic flow are lost.
We discuss certain techniques that are beginning to address these scaling problems.

Since the velocity variations are influenced at all relevant length scales by the
heterogeneous properties of the reservoir, much work must be done in volume av-
eraging or homogenizing or flow-based upscaling of terms like porosity and perme-
ability. Statistical methods that can be calibrated with existing field observations
have shown promise in this area [4, 18].

Many of the multiphase flow processes are characterized by the chemical and
physical interaction of the fluids. Therefore, diffusive or dispersive mixing of fluids
is sometime critical to the flow processes and should be understood and modeled
accurately. Molecular diffusion is typically quite small. However, hydrodynamic
dispersion, or the mechanical mixing caused by velocity variations and flow through
heterogeneous rock, can be extremely important and should be incorporated in some
way in our models.

The effects of dispersion in various flow processes have been discussed extensively
in the literature. Russell and Wheeler [53] and Young [59] have given excellent
surveys of the influence of dispersion and attempts to incorporate it in present
reservoir simulators. Various terms which affect the length of the dispersive mixing
zone include viscosity and velocity variations and reservoir heterogeneity. The
dispersion tensor has strong velocity dependence [26, 53]. Initial work on correlation
of dispersion coefficients presented with statistical simulations was presented in [36].

3. Model Equations for Porous Media Flow

3.1. Model Equantions. The basic one is the model of multi-phase and multi-
component fluids flow in compressible porous media. The simplified version such as
black oil model can be derived from the multi-phase and multi-component model
by honoring some specific assumptions. The mathematical formulation is based on
the Darcy’s law and mass balance equations as follows (see, e.g., [7]):

(1) uα = −Kkrα

µα
(∇pα − γαg), in Ω,

where ρα is the fluid density, K is the absolute permeability tensor and krα is
relative permeability that is generally a function of phase saturations, µα is the
dynamic fluid viscosity that depends on pressure and temperature, pα is the phase
pressure of multi-phase fluid, and g is the acceleration vector due to gravity. The
subscript α in the equation is referred to various phases, oil, water and gas.

Darcy’s law provides a relation between the volumetric flux in the mass con-
servation equation and the pressure in the fluid. This relation is valid for viscous
dominated flows which occur at relatively low velocities.

Physically, fluid mass should be conserved in terms of component that may
present in phases. It is common in petroleum reservoir simulation to assume that
mass exchange between hydrocarbon phases and water is negligible. Consequently,
the mass balance equation of hydrocarbon component can be derived accordingly:
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(2)
∂(φmi)

∂t
+∇ · (ρouoci

o) +∇ · (ρgugci
g) = F i, i = 1, . . . , Nc, in Ω, t > 0.

(3)
∂(φmw)

∂t
+∇ · (ρwuw) = Fw, i = 1, . . . , Nc, in Ω, t > 0.

Here mi or mw represents the total number of moles of hydrocarbon component i
or water component, ci

o and ci
g are the mole fraction of hydrocarbon component i in

oil and gas phase, respectively, ρo, ρg and ρw are the molar density of oil, gas and
water phase, φ is the porosity of rocks, and Nc is the total number of hydrocarbon
components. F i(i = 1, . . . , Nc, w) represents sink/source terms that should be a
function of different variables in regarding to various well constraints. Under the
assumption that pore volume of porous media is fully filled with fluids, the following
volumetric constraint holds [1, 13, 54]:

(4) ST = Sw + So + Sg = 1.

where Sw, So and Sg are the water, oil and gas saturations.
Assumption of thermodynamic phase equilibrium for a given pressure-volume-

temperature state at every moment is imposed to calculate the phase distribution.
Phase equilibrium is characterized by equalization of chemical potentials of each
component in different phases. Equation (1),(2), and (3) form a coupled system
of nonlinear partial differential equations that is coupled with phase equilibrium
constraints and volumetric constraint (4).

In order to solve such a system, an efficient linearization technique needs to be
applied to solve this system numerically. One of the important issues in linearization
process is the choice of solution unknowns that will result in various compositional
formulations [1, 3, 14, 17, 50, 54]. By the Gibbs phase rule one conclude that
the system is uniquely determined by Nc + 2 extensive variables, which are called
primary variables. Other variables are the functions of the primary variables.

In addition to Equations (1) – (3), initial and boundary conditions are specified.
The flow at injection and production wells is modeled in Equations (2) and (3) via
point or line sources and sinks.

The equations presented above describe multi-phase and multi-component fluid
flow in porous media. However, in order to use these equations effectively, pa-
rameters that describe the rock and fluid properties for the particular reservoir
application must be input into the model. The relative permeabilities, which are
nonlinear functions of water and gas saturations, can be estimated via laboratory
experiments using reservoir cores and resident fluids. However, the permeability
K and the porosity φ are effective values that must be obtained from local prop-
erties via scaling techniques. In addition, the inaccessibility of the reservoir to
measurement of even the local properties increases the difficulties [29, 34, 58].

3.2. Linearization Techniques. Once the primary varibles are chosen, an effec-
tive linearization technique should be proposed to decouple Equaitons (1) – (3).
There are various linearization strategies being discussed [1, 14, 50, 54]. In this
paper, we propose a sequential solution procedure for the linearization with the
choice of primary variables p,mi, (i = 1, . . . , Nc) and Sw. Here p is oil phase pres-
sure, mi is the total number of moles of i hydrocarbon component and Sw is water
saturation.

Notice that the constraint (4) is a function of the primary variables. If one
differentiates the constraint equation (4) with time t and replaces ∂Sw/∂t and
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∂mi/∂t with Equations (2) and (3) incorporated with Darcy’s law (1), one obtains
the following pressure equations [1, 50, 54]:

(5) βT
∂p

∂t
−K

[
Nc∑

i=1

∂ST

∂mi
∇ · (ρoλoc

i
o + ρgλgc

i
g)∇+

∂ST

∂Sw
∇ · (λw∇)

]
p = rp,

where βT is the total compressibility, λα = krα/µα, α = oil, gas, water and the
right-hand-side rp is volumetric discrepancy error [1, 54]. Equaiton (5) is a parabolic
PDE with respect to the pressure p and can be solved by finite difference, finite ele-
ment and finite volume methods. After numerical solution ph is obtained, one com-
putes the numerical phase velocities using Equation (1). Then mi(i = 1, . . . , Nc)
and Sw can be obtained using Equations (2) and (3). In this paper, we will discuss
the numerical solution methods for solving those equations.

4. Mixed Methods for Accurate Velocity Approximations

In reality, the subsurface geology is strongly heterogeneous, the absolute perme-
ability K can be very rough. In this case the exact solution of pressure of Equation
(4) is not neccessarily smooth and so the numerical solution ph might not be ac-
curate. As a result, the numerical Darcy’s velocities uh

o , uh
g and uh

w obtained from
Equation (1) by numerically differentiating ph and multiplying ph by a rough coef-
ficient K are even less accurate. This in turn affects the accuracy of thenumerical
approximations to other primary variables through the substitution of phase veloc-
ities into Equations (2) and (3). While pressure p may be rough, the total velocity
u = uo+ug +uw is usualy smooth. Consequently, we adopt an mixed finite element
method to solve the following system of first-order PDEs for pressure p and total
velocity u [50, 54]:

(6)
dp

dt
+∇ · u = Rp,u + λT K∇p = Ru.

Here λT = λo + λg + λw and the total derivative d/dt is defined:

(7)
d

dt
= βT

∂

∂t
+

Nc∑

i=1

∇∂ST

∂mi
(ρoλoc

i
o + ρgλgc

i
g)∇+∇∂ST

∂Sw
(λw∇),

After total velocity u is obtained from equation (6), the phase velocities can be
computed by:

(8) uα = fαuα + fαK
∑

j 6=α

λj [∇(pcjo − pcαo)− (γj − γα)g∇z],

where the fractional flow functions fα is defined as fα = λα/λT .
In this section, we describe mixed finite element methods for the accurate ap-

proximation of the total velocity u. Among the disadvantages of the conforming
discretizations are the lack of local mass conservation of the numerical model and
some difficulties in computing the phase velocities needed in the transport and sat-
uration equations. The straightforward numerical differentiation is far from being
justifiable in problems formulated in a highly heterogeneous medium with complex
geometry. On the other hand, the mixed finite element method [10] offers an at-
tractive alternative. In fact, this method conserves mass cell by cell and produces a
direct approximation of the two variables of interest—pressure and velocity. Below
we explain briefly the mixed finite element method for the pressure equation.

To describe the mixed method we introduce two Hilbert spaces. Let
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W = L2(Ω), V =
{
ϕ ∈ L2(Ω)3, ∇ ·ϕ ∈ L2(Ω)

}
.

The inner product in L2(Ω) is denoted by (·, ·). For the sake of simplicity, (·, ·) is
also used as the inner product in the product space L2(Ω)3.

The pressure equation is written in the following mixed weak form: for W =
L2(Ω) and V = H(div, Ω), find (p,u) ∈ W × V such that [10]

(9)
(Au,ϕ)− (p,∇ ·ϕ) = (Ru, ϕ), ∀ ϕ ∈ V , t > 0,
(pt, ψ) + (∇ · u, ψ) = (Rp, ψ), ∀ ψ ∈ W, t > 0,

p(0) ∈ L2(Ω) is the given initial pressure.

Here pt = dp/dt, A = (KλT )−1. We note that A is always symmetric and positive
definite which leads to a well defined problem.

We triangulate the domain Ω in tetrahedras with characteristic diameter h.
Next we introduce the finite element spaces Wh ⊂ W and V h ⊂ V of piecewise
polynomials with respect to the triangulation and time discretization tn = n∆t,
n = 0, 1, . . . . The mixed finite element approximation (Pn, V n) ∈ Wh × V h of
(p(tn),u(tn)) ∈ W × V is the solution of the following problem:

(10)

(Anun, ϕh)− (∇ ·ϕh, Pn) = (Rn
uv, ϕh), ∀ ϕh ∈ Vh,

1
∆t

(βn(Pn − Pn−1), ψh) + (∇ · un, ψh) = (Rn
p , ψh), ∀ ψh ∈ Wh,

P 0 ∈ Wh is expressed through given initial data.

This is an implicit Euler approximation of a nonlinear problem which can be solved
by Picard or Newton iterations.

5. Eulerian-Lagrangian Techniques

Sustituting the phase velocities uo, ug and uw obtained from Equation (8) into
Equations (2) and (3) and assuming that water phase and rocks are incompressible,
we rewrite Equations (2) and (3) as follows:

(11) φ
∂mi

∂t
+∇ · (uimi)−∇ · (Di∇mi) = Ri,

and

(12) φ
∂Sw

∂t
+∇ · (ufw(Sw))−∇ · (Dw∇Sw) = Rw.

Here the right-hand-side are given as follows:

(13) Rw = ∇ ·
(

Nc∑

i=1

Di∇mi

)
+ qw, and Ri = ∇ ·




Nc∑

j=1;j 6=i

Dj∇mj


 + qi,

the barycentric velocity is defined as follows:

(14) ui =

[(
mi

o

mi

) (
fo

vo

)
+

(
mi

g

mi

) (
fg

vg

)]
u.

In Equation (11), the convective, hyperbolic part is a linear function of the
velocity. An operator-splitting technique has been developed to solve the purely
hyperbolic part by time stepping along the associated characteristics [23, 35, 51].
The analogue of Equation (11) can be written as follows:
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(15) φ
∂c

∂t
+ u · ∇c−∇ ·D∇c = q .

Here c stands for mi, u for ui and q for Ri. Next, the first and second terms
in Equation (15) are combined to form a directional derivative along what would
be the characteristics for the equation if the tensor D were zero. The resulting
equation is

(16) ∇ · (D∇c) + q = φ
∂c

∂t
+ u · ∇c ≡ φ

∂c

∂τ
.

The system obtained by modifying Equations (1) and (2) in this way is solved
sequentially. An approximation for u is first obtained at time level t = tn from
a solution of Equations (1) and (2) with the fluid viscosity µ evaluated via some
mixing rule at time level tn−1. Equations (1) and (2) can be solved as a mixed finite
element method for a more accurate fluid velocity as in the last section. Let Cn(x)
and Un(x) denote the approximations of c(x, t) and u(x, t), respectively, at time
level t = tn. The directional derivative is then discretized along the “characteristic”
mentioned above as

(17) φ
∂c

∂τ
(x, tn) ≈ φ

Cn(c)− Cn−1(x̄n−1)
∆t

,

where x̄n−1 is defined for an x as

(18) x̄n−1 = x− Un(x)∆t

φ
.

This technique is a discretization back along the “characteristic” generated by the
first-order derivatives from Equation (16). Although the advection-dominance in
the original Equation (16) makes it non-self-adjoint, the form with directional
derivatives is self-adjoint and discretization techniques for self-adjoint equations
can be utilized. This modified method of characteristics can be combined with
either finite difference or finite element spatial discretizations.

In multiphase and multi-component flow, it is common to assume that there is
no mass exchange between water and hydrocarbon components. The advection-
diffusion equaiton for water concentration is highly nonlinear and the equation is
given as follows:

In Equation (12), the convective part is nonlinear. A similar operator-splitting
technique with a focus on splitting the fractional flow function to solve the water
concentration Equation (19) needs reduced time steps because the pure hyperbolic
part may develop shocks. An operator-splitting technique has been developed for
multiphase flows [20, 21, 24, 25] which retains the long time steps in the character-
istic solution without introducing serious discretization errors.

Let S stand for Sw. The operator splitting gives the following set of equations:

(19) φ
∂S̄

∂t
+

d

dS
fm(S̄) · ∇S̄ ≡ φ

d

dτ
S̄ = 0 ,

(20) φ
∂S

∂τ
+∇ · (bm(S)S)− ε∇ · (D(S)∇S) = q(x, t) ,

tm ≤ t ≤ tm+1, together with proper initial and boundary conditions. As noted
earlier, the saturation S is coupled to the pressure/velocity equations, which will
be solved by mixed finite element methods described in the last section.

The splitting of the fractional flow function into two parts: fm(S) + b(S)S, is
constructed [25] such that fm(S) is linear in the shock region, 0 ≤ S ≤ S1 < 1,
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and b(S) ≡ 0 for S1 ≤ S ≤ 1. Further, Equation (19) produces the same unique
physical solution as

(21)
∂S

∂t
+∇ · (fm(S) + b(S)S) = 0

with an entropy condition imposed. This means that, for a fully developed shock,
the characteristic solution of Equation (19) always will produce a unique solution
and, as in the single-phase case, we may use long time steps ∆t without loss of
accuracy.

Unfortunately, the modified method of characteristics techniques described above
generally do not conserve mass. Also, the proper method for treating boundary
conditions in a conservative and accurate manner using these techniques is not
obvious. Recently, M.A. Celia, T.F. Russell, I. Herrera, and the author have devised
Eulerian-Lagrangian localized adjoint methods (ELLAM) [12, 47], a set of schemes
that are defined expressly for conservation of mass properties.

The ELLAM formulation was motivated by localized adjoint methods [11, 46],
which are one form of the optimal test function methods discussed above [5, 21, 25].

We next extend the ELLAM techniques to the nonlinear multiphase flow equa-
tions (see e.g., [19, 20, 21, 22, 28]). We consider the divergence form of the multi-
phase flow equation given by Equation (12) with φ assumed constant in time and
ignoring the gravity term for simplicity:

(22) LS ≡ φ
∂S

∂t
+∇ · (fwu)−∇ ·D∇S = qw, x ∈ Ω, t ∈ J,

(23) (fwu−D∇S) · ν = h, x ∈ ∂Ω, t ∈ J,

where ν is the outward unit normal to the boundary ∂Ω. Let Σ = Ω × J de-
note the space-time domain. Then we obtain a weak formulation of Equation
(22) by integrating against a test function w = w(x, t). This yields a weak form,∫

Σ

(LS)w dxdt =
∫

Σ

qw dxdt. We obtain the specific equation

(24)

∫

Ω

∫

J

φ(Sw)tdtdx +
∫

J

∫

Ω

∇ · (fwu−D∇S)wdtdx +
∫

Σ

D∇S · ∇w dxdt

−
∫

Σ

(φSwt + fwu · ∇w)dxdt =
∫

Σ

qww dxdt.

Then, as in [52], we begin to study the time dependence of the potentially useful test
functions by looking at a semidiscrete scheme on the time interval Jn+1 = [tn, tn+1]
or over the space time region

∑n+1 = Ω × Jn+1. By applying the divergence
theorem to (24), we obtain

(25)

∫

Ω

φS(x, tn+1)w(x, tn+1)dx +
∫

Σn+1
D∇S · ∇w dxdt

+
∫

Jn+1

∫

∂Ω

(fwu−D∇S) · ν wdσdt

−
∫

Σn+1
(φSwt + λwu · ∇w)dxdt

=
∫

Ω

φS(x, tn)w(x, tn)dx +
∫

Σn+1
qww dxdt.

In order to consider the ELLAM formulation from [12] directly, we should look
for solutions of the adjoint to treat the term of the form
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(26)
∫

Σn+1
SL∗w dxdt = 0 .

Since L is not a linear operator, we must perform some linearizations before we
apply the analogue of Equation (26) to treat the fourth term in Equation (25).

Motivated by [24], we define

(27) f̄(S)S ≡





dfw

ds
(S1)S, 0 ≤ S ≤ S1,

(1− r)
(1− S1)

S + c, S1 ≤ S ≤ 1,

where S1 is the top saturation of an established front. This is the piecewise lin-
earization of fw using the top saturation of the established front and its value
fw(S1). Then, we define b(s) by the difference of fw and f̄S. Thus,

(28) fw = f̄(S)S + b(S)S.

For 0 ≤ S ≤ S1, b(S)S is an antidiffusive term causing the fronts to tend to
sharpen. For S1 ≤ S ≤ 1, b(S)S is a diffusive term. Using these definitions, the
fourth term in Equation (25) can be written as

(29)

∫

Σn+1
S

(
φwt +

{
f̄(S) + b(S)

}
u · ∇w

)
dxdt

=
∫

Σn+1
S

(
φwt + f̄u · ∇w

)
dxdt +

∫

Σn+1
Sbu · ∇w dxdt.

We cannot, in general, determine a test function w that satisfies φwt + f̄u ·∇w = 0,
even locally within each small space-time element. However, we will make a choice
of test functions that will make this term small. Analysis of the size of this term
will be presented elsewhere.

By choosing a test function w(x, t) that is constant in time along the charac-
teristics that define the moving Lagrangian frame of reference, we can make the
first term in Equation (29) small. If the test function were a standard chapeau
basis function in the x-direction, it would also make second term in Equation (25)
small. This would be an effective test function if the second term on the right
side of Equation (29) were zero or were small. However, in many multiphase flow
problems, the b(S)u term is not small and the use of characteristics has not sym-
metrized the form which is analagous to the form in Equation (25). As above, the
use of an upwinded form of the test function for constant x will efficiently treat the
b term from Equation (29) together with the D term from Equation (25).

We thus arrive at a choice of w(x, t) which is constant along the characteristics
determined by the directional derivative along τ with f̄ defined in Equation (27).
Using these test functions, our approximation scheme can be defined in the interior
of the region on prisms as in [52]. Also see [52] for treatments at the boundaries of
domain.

Recently ELLAM techniques have been extended to a wide variety of applications
[57, 50, 22, 38, 39, 40, 41, 42, 43, 55, 56]. Optimal order error estimates have
been developed for advection [39], advection-diffusion [42, 56], advection-reaction
[22, 38, 39, 40, 41, 42], and advection-diffusion-reaction [40, 55] systems.
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6. Software Architecture

Software Architecture is critical in high performance computation in petroleum
applications and it is even more critical in building an integrated petroleum appli-
cation platforms. Software architecture is defined as the structure or structures of
the programming system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them [2]. Over the past
decades, software architecture has received tremendous attention as an essential
field of study in software and its applications. In this section, we review impor-
tant milestone software architectures and their practical applications. We will then
propose a new innovative architecture and discuss its application in reservoir sim-
ulations.

6.1. Evolution of Software Architecture. At the very beginning of the soft-
ware development (say between 1950s and 1970s), the software architecture was
one-tier. That is, the developers and users concentrated on the input and output
behavior of a program, ignored the internal structure of the software, and treated
the entire program as one black box. This model worked for small programs and
mainframe computers where all the control functions were centralized and multi-
ple users accessed a computer by terminals. One fatal limitation of the one-tier
architecture is that it is not able to easily support programs that are distributed
in multiple hosts. In the middle of 1980s, as the development of computer network
and distributed computing systems, two-tier software architecture was developed.
The two-tier architecture usually consists of multiple clients and one server. Clients
and server usually reside at different hosts and coordinately provide the function-
ality of the application. On the client site, functions such as session, text input,
dialog, and display management are usually implemented. The data management
functionality is typically realized at server site. The two-tier architecture improves
usability, flexibility and scalability as compared to one-tier one. For example, a sys-
tem with two-tier architecture can easily accommodate hundreds of users (clients)
to access a service (server). Many of the web systems today are two-tier based. Nev-
ertheless, the two-tier architecture has its own limitations. The interoperability is
limited since the implementation of business logic relies on specific data manage-
ment systems. When there is need to interoperate with more than one type of data
management systems, the application has to be rewritten. The two-tier architec-
ture is also restricted in its maintainability. As part of application logic resides
on client, every upgrade or modification must be delivered, installed and tested on
each client, increasing workload and costs. Three-tier architecture emerged in the
1990s to overcome the limitations of the two-tier architecture. A third tier (middle
tier server) is added between the user interface (client) and the data management
(server) components. This middle tier provides process management where rules
and business logic are executed and can service more than 100 users with func-
tions such as application execution, queuing and database staging. The three-tier
software architecture is most appropriate in an effective distributed client/server en-
vironment. Compared to the two-tier, the three-tier architecture provides increased
performance, flexibility, maintainability, reusability and scalability while hiding the
complexity of distributed processing from the user. Due to these characteristics,
the three-tier architecture is a popular choice for network-centric information sys-
tems and Internet applications. However, as the size and complexity of the software
system grow, the three-tier architecture needs also to be improved as we discuss in
the next section.



HIGH PERFORMANCE COMPUTING IN PETROLEUM APPLICATIONS 53

6.2. Basics of New 2x3 Architecture. For many large and complex software
systems, the thee-tier architecture seems to be insufficient. For example, these soft-
ware systems often require dynamically integration and configuration of multiple
heterogeneous applications, and meanwhile handling huge data sets which might
be dispersed geographically in different sites. The current available software ar-
chitectures, such as two-tier, three-tier, cannot meet these requirements because
they either mix-up the interface, data sources with application algorithms; or they
hardwire the system control with payload data processing. These observations are
validated via development of systems such as Virtual Network Laboratory [48],
regional data center, reservoir simulation system, etc. We believe that the key
issue is separation of control and payload processing. Here, terms “control” and
“payload” are borrowed from the field of network communication. Most if not all
communication protocols, which are proven to be very successful in the end, have
clear separation of controlling processing and payload process. Such separation is
essential since it distinguishes “how to do” (control) from “what to do” (payload).
Under many circumstances, the payload process, i.e., the logics for solving a specific
problem is well understood and developed independently. Control process is often
applied to a number available payload processing logics so that a high level problem
can be tackled. The separation of control from logic allows changes on control side
without the need to change any payload processing logic, and vice versa. In this
way, not only are the development and maintenance costs reduced greatly for large
and complex software, the flexibility in run-time process change is no longer beyond
the possibilities. Based on the principle of control and payload separation, we pro-
pose a scheme called 2x3 architecture in which there are two planes: control plan
and logic plane. With each plane, there are three tiers, namely interface, business
logic, and databases.

Figure 1. The New 2x3 Software Architecture

Our new 2x3 architecture should be able to offer explicit benefits by control and
payload separation. Specifically, this architecture allows to

(1) Shortened development cycle and reduced development costs. The 2x3 ar-
chitecture allows the developer to modify the control process without the
need to change the underlying process logics. A new control process may
correspond to a new solution to a certain problem. On the other hand, the
developers are allowed to update any constituent process logics while the
high level control process remains unchanged as long as the interface be-
tween the control and logic are kept same. The separation of control from
logic let these two parts being taken care of by different groups, thus greatly
shortening the software’s time-to-shelf and cutting down the involved de-
velopment costs.
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(2) Provide better maintainability. The new 2x3 architecture offers better
maintainability since the maintenance workload is separated into the two
planes automatically. Moreover, people with domain specific expertise
knowledge are allowed to take part in the software maintenance cycle and
give domain specific supervision. This is especially true in a large integrated
software system where system components are from different domains and
dealing with vast different data sources. Some high level expertise need be
introduced to monitor the overall control process so that the integration
can be accomplished in the least effort and shortest time period.

(3) Improve system reliability. The software reliability is also improved with
the 2x3 architecture being enforced. The system errors can be quarantined
into different planes and different tiers, and are easier to be identified within
the integral software framework.

(4) Increase run-time efficient. The separation of control from logic in the 2x3
architecture also enables run-time process adjustments that are beyond the
possibilities of current architectures. It can also be expected that some use-
ful software debugging and testing could be produced and deployed easily
within such an architectural framework.

(5) Enhance Reusability. The reusability is enhanced by being possible in both
planes: control process and logic process. On the one hand, a single control
process, once being set up and verified, can be applied to different sets of
logic processes; on the other hand, a single logic process can be incorporated
into different control scenarios. Therefore both the control processes and
logic processes are reusable with little efforts.

6.3. Application of 2x3 Architecture. At Texas A&M University, we have de-
veloped tools and reference systems that allow us to fully leverage the benefits of
2x3 architectures in developing large and complex software systems. Here we de-
scribe a reservoir simulation system which is developed by this new methodology.
The payload part of the reservoir simulation system consists of multiple applica-
tion modules which are dynamically configured and integrated under the instruction
from the control plane. In our system, workflow is defined as a process that realizes
the execution of such integrated multiple applications. As such, our control con-
sists of workflow editor and verifier and workflow execution engine. For detailed
description of these components, see [49].
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timization and Numerical Analysis. Goméz S., Hennart J.P., eds. Vol. 275. Netherlands:
Kluwer Academic Publishers, 1994. P. 185–205.

[41] . Eulerian-Lagrangian localized adjoint methods for reactive transport in groundwater
// in Environmental Studies: Mathematical Computational, and Statistical Analysis. IMA
Volume in Mathematics and its Application. Wheeler M.F., ed. Vol. 79. Berlin: Springer-
Verlag, 1995. P. 149–170.

[42] . Optimal-order convergence rate for Eulerian-Lagrangian localized adjoint method for
reactive transport and contamination in groundwater // Numerical Methods in PDE’s. 1995.
Vol. 11. 1. P. 1–31.

[43] Ewing R.E., Wang H., Russell T.F. Eulerian-Lagrangian localized adjoint methods for
convection-diffusion equations and their convergence analysis // IMA J. Numerical Anal-
ysis. 1995. Vol. 15. P. 405–459.

[44] Ewing R.E., Wang J. Analysis of mixed finite element methods on locally refined grids //
Numerische Mathematik. 1992. Vol. 63. P. 183–194.

[45] . Analysis of multilevel decomposition iterative methods for mixed finite element meth-
ods // R.A.I.R.O. Mathematical Modeling and Numerical Analysis. 1994. Vol. 28. 4. P. 377–
398.

[46] Herrera I. Unified formulation of numerical methods I. Green’s formula for operators in
discontinuous fields // Numerical Methods for PDE’s. 1985. Vol. 1. P. 25–44.

[47] Herrera I., Ewing R.E., Celia M.A., Russell, T.F. Eulerian-Lagrangian localized adjoint
method: The theoretical framework // Numerical MEthods for PDE’s. 1993. Vol. 9. P. 431–
457.

[48] Liu S., Marti W., Zhao W. Virtual Networking Lab (VNL): its concepts and implementations
// in Proc. ASEE Annual Conf. & Exposition, Albuquerque, NM, Jun. 2001.

[49] Mai Z., Cheng D., Ewing R.E., Qin G., Zhao W. Application of 2x3 Architecture to Reservoir
Simulation Systems // Technical Report, ISC, TAMU, Oct 2004.

[50] Qin G., Wang H., Ewing R.E., Espedal M.S., Numerical simulation of compositional fluid
flow in porous media // Lecture Notes in Physics, Vol. 552, New York, Springer-Verlag, 2000,
P. 232-243.

[51] Russell T.F. The time-stepping along characteristics with incomplete iteration for Galerkin
approximation of miscible displacement in porous media // SIAM J. Numer. Anal. 1985.
Vol. 22. P. 970–1013.

[52] Russell T.F., Trujillo R.V. Eulerian-Lagrangian localized adjoint methods with variable co-
efficients in multiple divergences // Proceedings 7th International Conference on Computa-
tional Methods in Water Resources. Venice, Italy, to appear.

[53] Russell T.F., Wheeler M.F. Finite element and finite difference methods for continuous flows
in porous media // in The Mathematics of Reservoir Simulation, Frontiers in Applied Math-
ematics. Ewing R.E., ed. Philadelphia: SIAM, 1983.



HIGH PERFORMANCE COMPUTING IN PETROLEUM APPLICATIONS 57

[54] Trangenstein, J. and Bell, J. Mathematical structure of compositional reservoir simulation,
SIAM J. Sci. Stat. Comput. Vol 10, 1989, P 817-845.

[55] Wang H., Ewing R.E., Celia M.A. Eulerian-Lagrangian localized adjoint methods for reactive
transport with biodegradation // Numerical Methods for PDE’s. 1995. Vol. 11. 3. P. 229–254.

[56] Wang H., Ewing R.E., Russell T.F. Eulerian-Lagrangian localized adjoint methods for
variable-coefficient convection-diffusion problems arising in groundwater applications // in
Computational Methods in Water Resources, IX. Numerical Methods in Water Resources.
Vol. 1. Russell T.F., Ewing R.E., Brebbia C.A., Gray W.G., Pinder G.F., eds. London: El-
sevier Applied Science, 1992. P. 25–32.

[57] H. Wang, D. Liang, R.E. Ewing, S. Lyons and G. Qin, An ELLAM-MFEM solution tech-
nique for compressible fluid flows in porous media with point sources and sinks//, J. Comput.
Phys., 159 (2000), P. 344-376.

[58] Watson A.T., Wade J.G., Ewing R.E. Parameter and system identification for fluid flow in
underground reservoirs // in Proceedings of the Conference, Inverse Problems and Optimal
Design in Industry. Philadelphia, PA, July 8–10, 1994.

[59] Young L.C. A study of spatial approximations for simulating fluid displacements in petroleum
reservoirs // Comp. Meth. Appl. Mech. Eng. 1984. Vol. 47. P. 3–46.

Institute for Scientific Computation, Texas A&M University, College Station, Texas 77843-
3404, USA

E-mail : ewing@isc.tamu.edu

URL: http://www.isc.tamu.edu/∼ewing/



INTERNATIONAL JOURNAL OF c© 2005 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 2, Supp , Pages 58–67

A PSEUDO FUNCTION APPROACH IN RESERVOIR
SIMULATION

ZHANGXIN CHEN, GUANREN HUAN, AND BAOYAN LI

Abstract. In this paper we develop a pseudo function approach to obtain rela-

tive permeabilities for the numerical simulation of three-dimensional petroleum

reservoirs. This approach follows the idea of an experimental approach and

combines an analytical solution technique for two-phase flow with a numeri-

cal simulation technique for cross-sectional models of these three-dimensional

reservoirs. The advantages of this pseudo function approach are that the het-

erogeneity of these reservoirs in the vertical direction and various forces such

as capillary and gravitational forces can be taken into account in the derivation

of the relative permeabilities. Moreover, this approach considers more physi-

cal and fluid factors and is more robust and accurate than the experimental

approach. To reservoir engineers, the study of pseudo functions for the cross-

sectional models of different types itself is the study of numerical simulation

sensitivity of displacement processes in reservoirs. From this study they can

understand the reservoir production mechanism and development indices.

Key Words. Reservoir simulation, pseudo function, mechanics of porous

medium flow, cross-sectional model, non-dimensional cumulative production,

relative permeability.

1. Introduction

The derivation of relative permeabilities in laboratory experiments [3] is carried
out on core samples of porous media. The displacement mechanism in such samples
is restricted to homogeneous cores. Moreover, in general, gravitational forces are
ignored, and the magnitude of capillary forces is assumed to be very small. The
relative permeabilities derived under such restricted conditions take into account
only the microscopic heterogeneity of the porous media and viscous forces. If they
were applied to the numerical simulation of a three-dimensional reservoir model,
computational indices would be better than those observed in real situations. For a
three-dimensional reservoir, the depth of each layer in the vertical direction is typ-
ically of the order of 10 m, and the permeability difference between different layers
is of 10 times more. The heterogeneity in permeability can lead to the viscosity
increase in a water-displacing-oil or gas-displacing-oil process; consequently, water
or gas is produced at the very early stage from oil wells, and the amount of water
or gas dramatically increases in these wells. Also, for such a reservoir, the density
difference between the displacing fluid and displaced fluid often leads water and gas
to the bottom and top of oil layers, respectively. Even for a homogeneous reservoir,
the interface between different fluids can be non-homogeneous. In reality, capillary
forces exist. The gravitational and capillary forces have very different influences on

Received by the editors September 23, 2004.
2000 Mathematics Subject Classification. 35K60, 35K65, 76S05, 76T05.
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water and oil layers. The water layers can easily lead to the equilibrium of fluid
motion in the vertical direction, and the layers with a lower water saturation can
suck water from the layers with a higher water saturation under the influence of
the capillary forces. But for the oil layers, the capillary forces offset the gravita-
tional forces in those layers with a lower permeability, and this effect leads water
in the higher permeability layers to the lower permeability layers. These two forces
influence each other. This paper studys how to incorporate these complex forces
(viscous, gravitational, and capillary) into the derivation of relative permeabilities
for a three-dimensional reservoir. By reducing this reservoir to a two-dimensional
cross-sectional reservoir and taking into account these forces in this reduced model,
the relative permeabilities are obtained using the idea of the classical experimental
approach and applied to the numerical simulation of the original three-dimensional
reservoir. The computational development indices for this reservoir can accurately
reflect various displacement mechanism factors in the study of numerical simulation
sensitivity.

The difference between our pseudo function approach and other earlier ap-
proaches [4, 5, 6] lies in the fact that we combine pseudo functions with the sen-
sitivity study by reservoir engineers and we derive these functions by combining
analytical solution and numerical reservoir simulation techniques. The physical
concepts in our approach is clear, its derivation is mathematically rigorous, and it
is applicable to different reservoirs.

The rest of this paper is outlined as follows. In the next section we review the
analytical solution technique. Then, in the third section we describe the derivation
of relative permeabilities. In the fourth section we apply our pseudo function ap-
proach to a reservoir example. Finally, concluding remarks are given in the final
section.

2. Analytical Solution of Two-Phase Flow

For a two-phase (e.g., water and oil) flow problem in a porous medium, Buckley
and Leverett obtained an analytical solution in 1942 [1]. To combine the present
pseudo function approach with an analytical solution approach, in this section we
briefly review the derivation of this analytical solution.

2.1. Two-phase flow. For the flow of two incompressible, immiscible fluids in
a porous medium, the mass balance equation for each of the fluid phases in the
x-direction is

(2.1) φ
∂sw

∂t
+

∂uw

∂x
= 0,

(2.2) φ
∂so

∂t
+

∂uo

∂x
= 0,

where w denotes the water phase, o indicates the oil phase, φ is the porosity of the
medium, and sα and uα are, respectively, the saturation and volumetric velocity of
the α-phase, α = w, o. The volumetric velocities uw and uo are given by the Darcy
law

(2.3) uw = −K
Krw(sw)

µw

∂p

∂x
,

(2.4) uo = −K
Kro(so)

µo

∂p

∂x
,
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where K is the absolute permeability of the porous medium, p is the pressure, and
µα and Krα are the viscosity and relative permeability of the α-phase, respectively,
α = w, o. In addition to (2.1)–(2.4), the customary property for the saturations is

(2.5) sw + so = 1.

The unknowns for the system of equations (2.1)–(2.5) are sα, uα, and p, α = w, o.

2.2. Characteristics. We introduce the phase mobility functions

λα(sα) =
Krα(sα)

µα
, α = w, o,

and the total mobility

λ(sw) = λw(sw) + λo(1− sw).

The fractional flow functions are defined by

fw(sw) =
λw(sw)
λ(sw)

, fo(sw) =
λo(1− sw)

λ(sw)
.

We also define the total velocity

(2.6) u = uw + uo.

By (2.1), (2.2), and (2.5), we see that

(2.7)
∂u

∂x
= 0,

so u is constant in x. Because uw = fw(sw)u, it follows that

(2.8)
∂uw

∂x
= fw

∂u

∂x
+ u

dfw(sw)
dsw

∂sw

∂x
= uFw(sw)

∂sw

∂x
,

where the distribution function of saturation is

Fw(sw) =
dfw(sw)

dsw
.

Now, we substitute (2.8) into (2.1) to see that

(2.9) φ
∂sw

∂t
+ uFw(sw)

∂sw

∂x
= 0.

This equation defines a characteristic x(t) along the interstitial velocity v by

(2.10)
dx

dt
= v(x, t) ≡ uFw(sw)

φ
.

Along this characteristic, it follows from (2.9) that sw is constant. Namely, it holds
that

(2.11)
dsw(x(t), t)

dt
=

∂sw

∂x

dx

dt
+

∂sw

∂t
= 0.
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2.3. Non-dimensional cumulative production. We consider a tube Q in the
x-direction with cross-sectional area A, and we define the cumulative liquid pro-
duction along this tube

(2.12) U(t) = A

∫ t

0

u dt.

From (2.10), along the characteristic x(t) we see that
∫ t

0

dx =
Fw(sw)

φ

∫ t

0

u dt,

so, by (2.12),

(2.13) x(sw, t) =
Fw(sw)

φA
U(t).

The non-dimensional fluid cumulative production is defined by

(2.14) Ū(t) =
U(t)
φAL

,

where L is the length of Q. Let swe be the value of saturation at x = L. Then it
follows from (2.13) and (2.14) that

(2.15) Ū(t) =
1

Fw(swe)
.

Also, we introduce the water cumulative production

(2.16) Uw(t) =
∫ t

tB

fw dU(t) = A

∫ t

tB

uw dt,

where tB is the water break-through time (i.e., the saturation equals the critical
value swc at t = tB) and we used (2.12) and the fact that uw = fw(sw)u. Define
the non-dimensional water cumulative production

(2.17) Ūw =
Uw

φAL
.

It follows from (2.16) and integration by parts that

Ūw =
1

φAL

∫ t

tB

fw dU(t) =
1

φAL

(
fwU −

∫ t

tB

U dfw

)
,

so, by the fact that dfw = Fw dsw, we see that

Ūw =
1

φAL

(
fwU −

∫ t

tB

UFw dsw

)
.

Then we apply (2.15) to obtain

(2.18) Ūw =
fw(swe)
Fw(swe)

− (swe − swc).

Similarly, we define the oil cumulative production

(2.19) Uo(t) =
∫ t

tB

fo dU(t) = A

∫ t

tB

uo dt,

and the corresponding non-dimensional one

(2.20) Ūo =
Uo

φAL
.
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It is easy to see that

(2.21) Ūo =
1− fw(swe)

Fw(swe)
+ (swe − swc),

and

(2.22) Ū = Ūw + Ūo.

3. Derivation of Relative Permeabilities

In an experimental approach, water and oil relative permeabilities are derived
as follows: After the water and oil cumulative productions and the pressure drop
are obtained, the relative permeabilities are found in an inverse fashion from the
derivation of the analytical solution in the previous section. This idea also applies to
the present pseudo function approach. In the approach in this paper, we think of the
computational results from a cross-section model of a three-dimensional reservoir
as the experimental results, and then the derivation of relative permeabilities is
carried out in the same manner.

3.1. The derivation of formulas. We define the mobile resistance ratio

(3.1) r(sw) =
λo(swc)
λ(sw)

,

and we scale the space dimension by

x̄ =
x

L
.

Then we define the non-dimensional resistance ratio

(3.2) R =
∫ 1

0

r(sw) dx̄.

Note that, by (2.13) and (2.15),

dx̄ = Ū dFw,

so (3.2) becomes

(3.3) R =
∫ Fw(swe)

Fw(swc)

rŪ dFw =
1

Fw(swe)

∫ Fw(swe)

Fw(swc)

r dFw;

that is,

(3.4) RFw(swe) =
∫ Fw(swe)

Fw(swc)

r dFw.

Set Fwe = Fw(swe). From (3.4), we see that

(3.5) r =
d(RFwe)

dFwe
.

We also introduce the non-dimensional quantity

(3.6) γ =
Ūo + swc

Ū
.

Substituting (2.15) and (2.12) into (3.6) gives

(3.7) γ = 1− fw + swFwe.

We differentiate γ with respect to Fwe to have
dγ

dFwe
= − dfw

dFwe
+ sw + Fwe

dsw

dFwe
,
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so that, by the definition of Fw,

(3.8)
dγ

dFwe
= sw.

It follows from (3.7) that

(3.9) fw = 1− γ + swFwe.

Now, by the definition of fw and (3.1), we calculate Krw and Kro as follows:

(3.10) Krw(sw) =
µwfw(sw)
µor(sw)

Kro(swc),

(3.11) Kro(sw) =
1− fw(sw)

r(sw)
Kro(swc).

3.2. Steps for calculating Krw and Kro. We now summarize the steps for cal-
culating Krw and Kro. For a cross-sectional model, the computation of production
is performed under a fixed pressure condition. Below Q(t) denotes the instanta-
neous production at time t, and ∆p indicates the pressure drop at the two ends of
a cross-section. Now, the steps for calculating Krw and Kro are as follows:

• Record Uw, Uo, Q, and ∆p at time t;
• Calculate the non-dimensional cumulative production

Ūw =
Uw

φAL
, Ūo =

Uo

φAL
, Ū = Ūw + Ūo;

• Compute the non-dimensional mobile resistance ratio

(3.12) R =
∆p Qi

∆pi Q
,

where ∆pi and Qi are the initial pressure drop and production, respectively;
• Evaluate Fwe and γ by

Fwe =
1
Ū

, γ =
Ūo + swc

Ū
;

• Find the relationship between r, sw and Fwe by

r =
d(RFwe)

dFwe
, sw =

dγ

dFwe
;

• Obtain the relationship between fw and Fwe according to the equation

f(sw) = swFwe + 1− γ;

• Calculate Krw and Kro by

Krw(sw) =
µwfw(sw)
µor(sw)

Kro(swc), Kro(sw) =
1− fw(sw)

r(sw)
Kro(swc).

4. An Application

In the final section we study the pseudo function approach and verify its cor-
rectness by simulating a numerical example of waterflooding.

For the computation of each cross-sectional model, we need to record the follow-
ing quantities:

• the triple (φ,A, L),
• the initial production and pressure drop and the corresponding ones at any

time after the water break-through time, and
• the water and oil cumulative productions.
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We then calculate the water and oil relative permeabilities using the approach
outlined in §3.2.

We compare our pseudo function approach with an experimental approach for
a three-dimensional model which is heterogeneous in the vertical direction and
homogeneous in the horizontal direction. The experimental approach is applied di-
rectly to this model to obtain the relative permeabilities. To apply the pseudo
function approach, we weight-average the absolute vertical permeability of the
three-dimensional reservoir with the depth of each layer as the weight to obtain
a cross-sectional two-dimensional model. Then the pseudo function approach is ap-
plied to this reduced two-dimensional model and is compared with the experimental
approach for the original three-dimensional model.

layer K × 10−3 µm2 swc (frac) pcmax (MPa) pcmin (MPa)
1 10 0.21 0.3730 -0.4636
2 20 0.22 0.2637 -0.3278
3 40 0.23 0.1865 -0.2318
4 70 0.24 0.1409 -0.1752
5 100 0.25 0.1179 -0.1466
6 200 0.26 0.0834 -0.1036
7 400 0.27 0.0589 -0.0733
8 700 0.28 0.0444 -0.0554
9 1,000 0.29 0.0373 -0.0463
10 2,000 0.30 0.0263 -0.0327

Table 1. The distribution of vertical permeabilities.

sw Krw Kro pc (MPa)
0.280 0.0 1 4.4580132E-02
0.305 0.001 0.809 6.9950912E-03
0.3266 0.003 0.707 4.2926008E-03
0.3483 0.006 0.606 2.4362588E-03
0.3699 0.01 0.513 1.0780764E-03
0.3915 0.015 0.421 2.3129978E-05
0.4131 0.021 0.369 -8.3082396E-04
0.5 0.035 0.26 -3.2011603E-03
0.6 0.048 0.15 -5.0774538E-03
0.7 0.065 0.07 -6.8351193E-03
0.8 0.085 0.0 -9.1273598E-03
1.0 0.2 0.0 -5.5419870E-02

Table 2. The relative permeability and capillary pressure data.

ps (MPa) 11.2 9 6 3 0.6
gas solubility 29.5 23.2 14.3 6.98 1.2
µo (mPa.s) 15.5 19.7 26.3 37.6 52.8
oil volume factor (frac) 1.0795 1.0632 1.0415 1.0208 1.0057
oil compressibility (1/MPa) 0.00045 0.00045 0.00045 0.00045 0.00045

Table 3. The oil PVT data.
We now consider a concrete example where there are 10 layers with the per-

meability in the top layer equal to 10 × 10−3 µm2 and in the bottom layer equal
to 2, 000 × 10−3 µm2. Thus this example is highly heterogeneous in the vertical
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direction, and the permeability difference between the top and bottom layers is 200
times more. The permeabilities in other layers are stated in Table 1 where pcmax

and pcmin denote the maximum and minimum values of the capillary pressure (i.e.,
at swc and 1), respectively. Other physical and fluid data are given in Tables 2–4
where ps means the saturated pressure.

item unit Data
NX, NY, NZ 20, 1, 10
Dx m 25
DY m 250
DZ m 1
perforated zone depth m 1,100
temperature C 74
initial pressure MPa 11.2
ps MPa 3
φ frac 0.3
final time year 20
water density g/cm3 1.015
water volume factor 1.022
µw mPa.s 0.42
water compressibility 1/MPa 0.00045
oil density g/cm3 0.972
µo mPa.s 37.6
oil compressibility 1/MPa 0.0003
gas weight 0.5615
oil-water viscosity ratio 89.5
injection-production pressure drop MPa 8

Table 4. The data for the three-dimensional model.
The relative permeabilities obtained by the experimental approach are shown in

Fig. 1 and these functions obtained by the pseudo function approach are displayed
in Fig. 2. The comparison between the oil cumulative productions using these two
approaches is illustrated in Fig. 3, which shows that the productions are almost
identical.

5. Concluding Remarks

In this paper we have developed a pseudo function approach to derive relative
permeabilities for the numerical simulation of three-dimensional reservoirs. This ap-
proach combines an analytical solution technique for a two-phase flow problem and
a numerical simulation technique for cross-sectional models of three-dimensional
reservoirs. It follows the idea of the laboratory experimental approach and takes
into account various complex factors in porous medium flow. The study of this
approach can be combined with the study of numerical simulation sensitivity by
reservoir engineers. Furthermore, the physical concepts in this approach is clear,
its derivation is mathematically rigorous, and it is applicable to different reservoirs.
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Fig. 3: The comparison of oil productions: •=experimental, –=pseudo.
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NUMERICAL SIMULATION AND ANALYSIS OF
MIGRATION-ACCUMULATION OF OIL RESOURCES

YIRANG YUAN

Abstract. Numerical simulation of migration-accumulation of oil resources in

porous media is to describe the history of oil migration and accumulation in

basin evolution. It is of great value to the evaluation of oil resources and to

the determination of the location and amount of oil deposits. This thesis puts

forward a mathematical model, a careful parallel operator splitting-up implicit

iterative scheme, parallel arithmetic program, parallel arithmetic information

and alternating-direction mesh subdivision. For the actual situation of Tanhai

region of Shengli Petroleum Field, our numerical simulation test results and

the actual conditions are coincident. For the model problem (nonlinear coupled

system) optimal order estimates in l2 norm are derived to determine the errors.

We have successfully solved the difficult problem in the fields of permeation fluid

mechanics and petroleum geology.

Key Words. migration-accumulation of oil resources; multilayer parallel arith-

metic; careful numerical simulation, l2 error estimates.

1. Introduction

The oil formation in sediment basins, its displacement, transport and accumula-
tion, and the final formation of oil deposits have been one of the key problems in the
exploration of oil-gas resources. How has oil been accumulated in the present loop
according to the mechanics of immiscible flow? How is oil distributed in basins?
All this is what the numerical simulation of accumulation of oil resources mainly
studies[1−5]. With the exploration of the oilfields, efforts have been made to find
covered and “potato piece” oil deposits, so basin simulation must be more and
more precise become large-scale and develop in parallel direction. In basin simula-
tion, the migration-accumulation of oil resources in particular, the traditional serial
computers can hardly solve this problem[4−6].

The fluid dynamics model of migration-accumulation has strong hyperbolic char-
acteristics. Therefore, the numerical method is very difficult in mathematics and
mechanics. In this field, Ungerer, P., Walte, D. H., Yukler, M. A. and others have
had famous publications[7−9]. They have studied the mathematical model and nu-
merical simulation of the two-dimensional section, which have found their practical
application in North Sea Oil Field. In China, Wang Jie, Cha Ming and others have
also done important jobs[4,10] centered on petroleum geology. In a word, first fruits
in monolayer problems have reaped [4,11−14]. This thesis, from the actual conditions
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and for highly accurate and careful parallel numerical simulation of oil resources
migration-accumulation, we put forward a mathematical model and a careful par-
allel operator splitting-up implicit iterative scheme, parallel arithmetic program,
parallel arithmetic information transmission and alternating-direction mesh subdi-
vision. Making use of the present SGI high-performance miniature computer group
(8CPU), we have conducted parallel arithmetic of the “careful numerical simulation
of migration-accumulation of oil resources”. We have made parallel computation
and analysis of four schemes, namely, the mesh step lengths are 800m., 400m.,
200m., and 100m. Our results are identical with the actual situation. For the
model problem (nonlinear coupled system) optimal order estimates in l2 norm are
derived to determine the errors. We have successfully solved the difficult problem
in the fields of permeation fluid mechanics and petroleum geology. This thesis dis-
cusses the numerical simulation of the migration-accumulation of oil resources, the
most difficult part in basin simulation and important in rational evaluation of oil
resources and exploration oil deposit locations.

2. The Mathematical Model

 

Ω
1Ω 1H

2H

y
x

z

O

Fig. 1 two-layer sketch map of regions Ω, Ω1

The mechanism of migration-accumulation of oil resources:
The primary driving force of migration-accumulation is the buoyancy caused by

both the density difference between the oil in the carrying bed and that of the
water in the porous structure, and the potential gradient formed by all the fluid
(water and oil) in the porous structure, while the fluid is trying to migrate to the
low-potential area.

The restricting force of migration-accumulation has something to do with the
capillary pressure which gets larger while the aperture becomes narrower. If the
capillary pressure exceeds the driving force, the migration will be held up. The
migration of oil and underground water is mainly a permeation process. Both the
oil and water potential fields determine the direction and magnitude of oil and
water permeations.

For the numerical simulation of secondary multilayer oil migration in porous
media, the flow in the first and third layers is considered as horizontal and in
the one between them as vertical. After careful analysis of the model and the
scientific numerical test, we propose a creative and rational numerical model. For
the mathematical model of multilayer migration-accumulation:

∇ · (K1
kro

µo
∇ψo) + Boq − (K3

kro

µ0

∂ψ0

∂z
)z=H1 = −Φs′(

∂ψ0

∂t
− ∂ψw

∂t
),

X = (x, y)T ∈ Ω1, t ∈ J = (0, T ],
(1a)
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∇ · (K1
krw

µw
∇ψw) + Bwq − (K3

krw

µw

∂ψw

∂z
)z=H1 = Φs′(

∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J,

(1b)
∂

∂z
(K3

kro

µo

∂ψo

∂z
) = −Φs′(

∂ψo

∂t
− ∂ψw

∂t
) , X = (x, y, z)T ∈ Ω, t ∈ J, (2a)

∂

∂z
(K3

krw

µw

∂ψw

∂z
) = Φs′(

∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω, t ∈ J, (2b)

∇ · (K2
kro

µo
∇ψo) + Boq + (K3

kro

µ0

∂ψ0

∂z
)z=H2 = −Φs′(

∂ψo

∂t
− ∂ψw

∂t
),

X = (x, y)T ∈ Ω1, t ∈ J,

(3a)

∇ · (K2
krw

µw
∇ψw) + Bwq + (K3

krw

µw

∂ψw

∂z
)z=H2 = Φs′(

∂ψo

∂t
− ∂ψw

∂t
),

X ∈ Ω1, t ∈ J,

(3b)

where ψ0 and ψw are the potential functions, kro and krw are the relative per-
meabilities for the oil and water phases, respectively. K1, K2 and K3 are the
absolute permeabilities in respective layers. µ0 and µw are the viscosities for
the oil and water phases. s′ = ds

dpc
, where s is the water concentration, and pc

is the capillary pressure. Bo and Bw are the flow coefficients, Bo = kro

µo
(kro

µo
+

krw

µw
)−1 , Bw = krw

µw
(kro

µ0
+ krw

µw
)−1, q(x, t) are the source (sink) functions. By

Darcy law: −K3
kro

µ0

∂ψ0
∂z = qh, 0, −K3

krw

µw

∂ψw

∂z = qh, w. The initial conditions and
boundary conditions are given.

3. The Numerical Simulation Method

The fluid dynamics model of migration-accumulation has strong hyperbolic char-
acteristics. Therefore, the numerical simulation must be very stable for as long as
millions of years. The numerical method is very difficult in mathematics and me-
chanics. This thesis, starting from the actual conditions and the above characteris-
tics, puts forward a kind of careful parallel operator splitting-up implicit iterative
scheme.

3.1. The splitting-up implicit iterative scheme of the three-dimensional
problem.

z direction:
1
2
∆z̄(Azw∆zψ

∗
w) +

1
2
∆z̄(Azw∆zψ

(l)
w ) + ∆ȳ(Ayw∆yψ

(l)
w ) + ∆x̄(Azw∆xψ

(l)
w )

−Gψ∗w + Gψ∗o = Hl+1(
∑

Aw)(ψ∗w − ψ
(l)
w )−Bm

w qm+1 −Gψm
w + Gψm

o ,

(4a)

1
2

∆z̄(Azw∆zψ
∗
o) +

1
2
∆z̄(Azw∆zψ

(l)
o ) + ∆ȳ(Ayo∆yψ

(l)
o ) + ∆x̄(Axw∆xψ

(l)
o )

+Gψ∗w −Gψ∗o = Hl+1(
∑

Ao) (ψ∗o − ψ
(l)
o )−Bm

o qm+1 + Gψm
w −Gψm

o ,

(4b)

y direction:
1
2
∆ȳ(Ayw∆yψ∗∗w )− 1

2
∆ȳ(Ayw∆yψ

(l)
w )−Gψ∗∗w + Gψ∗∗o

= Hl+1(
∑

Aw)(ψ∗∗w − ψ∗w)−Gψ∗w + Gψ∗o ,

(4c)

1
2
∆ȳ(Ayo∆yψ∗∗o )− 1

2
∆ȳ(Ayo∆yψ

(l)
o ) + Gψ∗∗w −Gψ∗∗o

= Hl+1(
∑

Ao)(ψ∗∗o − ψ∗o) + Gψ∗w −Gψ∗o ,

(4d)
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x direction:
1
2
∆x̄(Axw∆xψ

(l+1)
w )− 1

2
∆x̄(Azw∆zψ

(l)
w )−Gψ

(l+1)
w + Gψ

(l+1)
o

= Hl+1(
∑

Aw)(ψ(l+1)
w − ψ∗∗w )−Gψ∗∗w + Gψ∗∗o ,

(4e)

1
2
∆x̄(Axo∆xψ

(l+1)
o )− 1

2
∆x̄(Axo∆xψ

(l)
o ) + Gψ

(l+1)
w −Gψ

(l+1)
o

= Hl+1(
∑

Ao)(ψ
(l+1)
o − ψ∗∗o ) + Gψ∗∗w −Gψ∗∗o ,

(4f)

where ∆x̄(Ax∆xψm+1)ijk = Ax,i+1/2,jk(ψi+1,jk − ψijk)m+1 − Ax,i−1/2,jk(ψijk −
ψi−1,jk)m+1, Axw,i+1/2,jk =

(
K∆y∆z

∆x
krw

µw

)
i+1/2,jk

, · · · .

Take the value of kr according to the partial upper reaches principle, and other
terms can be defined similarly. G = −VpΦṡ/∆t, Vp = ∆x∆y∆z, the (l + 1) times
iterative computational formula of ṡ:

ṡ(l+1) = ω1

( s(l) − sm

p
(l)
c − pm

c

)
+ (1− ω1)ṡ(l), (5)

where l is the iterative time, 0 < ω1 < 1 is the mean factor.
For the purpose of high accuracy, we introduce the residual computational value:

Pz = ψ∗w − ψ(l)
w , Py = ψ∗ ∗w − ψ∗w , Pz = ψ(l+1)

w − ψ∗ ∗w , (6a)

Rz = ψ∗o − ψ(l)
o , Ry = ψ∗ ∗o − ψ∗o , Rz = ψ(l+1)

w − ψ∗ ∗o . (6b)
Finally, we put forward the careful parallel operator splitting-up implicit iterative

scheme.
z direction:

1
2

∆z̄(Azw∆zPz)− (G + Hl+1

∑
Aw)Pz + GRz

= −[∆(Aw∆ψ
(l)
w ) + Bm

w qm+1 −G(ψ(l)
w − ψm

w ) + G(ψ(l)
o − ψm

o )],
(7a)

1
2

∆z̄(Azo∆zRz)− (G + Hl+1

∑
Ao)Rz + GPz

= −[∆(Ao∆ψ
(1)
o ) + Bm

o qm+1 + G(ψ(l)
w − ψm

w )−G(ψ(l)
o − ψm

o )],
(7b)

y direction:
1
2
∆ȳ(Ayw∆yPy)− (G + Hl+1

∑
Aw)Py + GRy = −1

2
∆ȳ(Ayw∆yPz), (7c)

1
2
∆ȳ(Ayo∆yPy)− (G + Hl+1

∑
Ao)Ry + GPy = −1

2
∆ȳ(Ayo∆yRz), (7d)

x direction:
1
2
∆x̄(Axw∆xPz)− (G + Hl+1

∑
Aw)Px + GRx = −1

2
∆x̄(Axw∆x(Py + Pz)), (7e)

1
2
∆x̄(Axo∆xPz)− (G + Hl+1

∑
Ao)Rx + GPx = −1

2
∆x̄(Axo∆z(Ry + Rz)). (7f)

When the iterative error reaches our accuracy index, the iterative values ψ
(l+1)
o and

ψ
(l+1)
w are regarded as ψm+1

o and ψm+1
w . Again by

sm+1 = sm + ṡ(ψm+1
0 − ψm

0 − ψm+1
w + ψm

w ). (8)

In practical numerical computation, krw, kro, pc(s) must undergo data processing
and filtration so as to get the correct results.
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3.2. The mathematical model and numerical method of the quasi-three-
dimensional (single layer) problem.

If the actual thickness of the carrying bed is much smaller than the size of
the horizontal simulation area, we propose the solution by reducing it to a two-
dimensional problem in the following way. So it can also be called a quasi-three-
dimensional problem. By integrating z with equations (1a) and (1b), the average
results are:

∇ · (K̄ ∆zkro

µo
∇ψo) + Boq̄∆z = −Φ̄s′∆z(

∂ψo

∂t
− ∂ψw

∂t
), (9a)

∇ · (K̄ ∆zkrw

µw
∇ψw) + Bw q̄∆z = Φ̄s′∆z(

∂ψo

∂t
− ∂ψw

∂t
), (9b)

where ∆z is the thickness of the carrying bed.

K̄ =
1

∆z

∫ h2(x,y)

h1(x,y)

K(x, y, z)dz,

Φ̄ =
1

∆z

∫ h2(x,y)

h1(x,y)

Φ(x, y, z)dz, q̄ =
1

∆z

∫ h2(x,y)

h1(x,y)

q(x, y, z)dz,

where h1(x, y), h2(x, y) are the depths of the carrying beds for the upper and
lower boundaries, respectively.

For the quasi-three-dimensional problem we put forward a kind of careful parallel
operator splitting-up implicit iterative scheme.

x direction:

∆x̄(Axw∆xψ∗w) + ∆ȳ(Ayw∆yψ
(l)
w )−Gψ∗w + Gψ∗o

= Hl+1(
∑

Aw) (ψ∗w − ψ
(l)
w )−Bm

w qm+1 −Gψm
w + Gψm

o ,
(10a)

∆x̄(Axo∆xψ∗o) + ∆ȳ(Ayo∆yψ
(l)
o ) + Gψ∗w −Gψ∗o

= Hl+1(
∑

Ao) (ψ∗o − ψ
(l)
o )−Bm

o qm+1 + Gψm
w −Gψm

o ,
(10b)

y direction:

∆x̄(Axw∆xψ∗w) + ∆ȳ(Ayw∆yψ
(l+1)
w )−Gψ

(l+1)
w + Gψ

(l+1)
o

= Hl+1(
∑

Aw) (ψ(l+1)
w − ψ∗w)−Bm

w qm+1 −Gψm
w + Gψm

o ,
(10c)

∆x̄(Axo∆xψ∗o) + ∆ȳ(Ayo∆yψ
(l+1)
o ) + Gψ

(l+1)
w −Gψ

(l+1)
o

= Hl+1(
∑

Ao) (ψ(l+1)
o − ψ∗o)−Bm

o qm+1 + Gψm
w −Gψm

o ,
(10d)

where G = −VpΦs′/∆t, Vp = ∆x∆y, Hl+1 is the iterative factor,
∑

Aw = Aw,i+1/2,j

+Aw,i−1/2,j + · · ·+ Aw,i,j−1/2,
∑

A0 = · · · .
For high accuracy purpose, we introduce the residual computational value:

Px = ψ∗w − ψ
(l)
w , Py = ψ

(l+1)
w − ψ∗w,

Rx = ψ∗o − ψ
(l)
o , Ry = ψ

(l+1)
o − ψ∗o .

Finally, we put forward the modified method of alternating direction implicit
iterative scheme.

x direction:
∆x̄(Axw∆xPx)− (G + Hl+1

∑
Aw)Px + GRx

= −[∆(Aw∆ψ
(l)
w ) + Bwq −G(ψ(l)

w − ψm
w ) + G(ψ(l)

o − ψm
o )] = −B1X

(l),
(11a)
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∆x̄(Axw∆xRx)− (G + Hl+1

∑
Ao)Rx + GPx

= −[∆(Ao∆ψ
(l)
o ) + Boq + G(ψ(l)

w − ψm
w )−G(ψ(l)

o − ψm
o )] = −B2X

(l).
(11b)

As for y direction, the computation is similar. When the iterative error reaches
our accuracy index, the iterative values ψ

(l+1)
w , ψ

(l+1)
o are regarded as ψm+1

w , ψm+1
o .

Again from (8) we find out Sm+1.

3.3. The numerical method of the multilayer problem.
The following quasi-three-dimensional numerical schemes can be used to do nu-

merical computation.
The first layer scheme:

∇ · (K̄1∆z1
kro

µo
∇ψo) + Boq̄∆z1 + q1

h,o = −Φ̄s′(
∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J, (12a)

∇ · (K̄1∆z1
krw

µw
∇ψw) + Boq̄∆z1 + q1

h,w = Φ̄s′(
∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J, (12b)

where

K̄1 =
1

∆z1

∫ h1
2(x,y)

h1
1(x,y)

K1(x, y, z)dz,

Φ̄ =
1

∆z1

∫ h1
2(x,y)

h1
1(x,y)

Φ(x, y, z)dz, q̄ =
1

∆z1

∫ h1
2(x,y)

h1
1(x,y)

q(x, y, z)dz.

The second layer scheme:

∇ · (K̄2∆z2
kro

µo
∇ψo) + Boq̄∆z2− q2

h,o = −Φ̄s′(
∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J, (13a)

∇ · (K̄2∆z2
krw

µw
∇ψo) + Bw q̄∆z2− q2

h,w = Φ̄s′(
∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J, (13b)

where K̄2 =
1

∆z2

∫ h2
2(x, y)

h2
1(x, y)

K1(x, y, z)dz, · · · , q1
h, o ≈ q2

h, o , q1
h, w ≈ q2

h, w.

Numerical Schemes (12) and (13) are combined by applying Darcy’s law. Compute
equations (12) and (13) respectively by the scheme proposed by the quasi-three-
dimensional problem (2.2). The two layers between them are coupled by Darcy’s
law, that is

q1
h,0 = q2

h,0 ≈ −1
2
{K̄1(

kro

µo
)1 + K̄2(

kro

µo
)2}(ψ0,2 − ψ0,1)/∆z, (14a)

q1
h,w = q2

h,w ≈ −1
2
{K̄1(

krw

µw
)1 + K̄2(

krw

µw
)2}(ψw,2 − ψw,1)/∆z. (14b)

Thus, this important problem can be successfully solved. This method can be used
in solving multilayer problems.

For the model problem, theory of differential equation prior estimates and tech-
niques are made use of. We can obtain the convergence theorem of this numerical
method.
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4. Validity Analysis of Careful Parallel Arithmetic

We adopt the geology parameters of Tanhai region. Simulation region: Taihai re-
gion, earth-coordinate (m) (20611700.00, 4169000.00) and (2071700.00, 4253000.00),
horizontal scale=8845.2km2. The simulation includes two layers, that is Sand third
middle section and Sand third upper section. According to the structure of Tanhai
region, Chengzikou-Qingyun ridge, Yihezhuang-Wudiningjin ridge, Chenjiazhuang-
Binxian ridge and Qingtuozi- Kendong ridge are located from northwest to south-
east. In between horizontally located are Chengbei hollow, Huanghekou hollow,
Bonan hollow, Gunan hollow and other oil-bearing hollows.

Simulation computation of the following four schemes:
Scheme 1: In x direction the mesh step length is 810m, and there are 130

meshes; in y direction the mesh step length is 840m, and there are 100 meshes. So
on the plane of each layer there are 13000 meshes.

Scheme 2: Each mesh in Scheme 1 is further divided into four. Thus in x
direction the number of meshes is 260, and the step length is 405m. In y direction
we have 200 meshes, and the step length of each is 420m. One layer has 52000
meshes, Two layers has 104000.

Scheme 3: Each mesh in Scheme 2 is further divided into four. Thus in x
direction the mesh step length is 202.5m, and there are 520 meshes; In y direction
the mesh step length is 220m, and there are 400 meshes. One layer has 208000
meshes, Two layers has 416000 meshes.

Scheme 4: Consider only numerical simulation of monolayer—Sand third upper
section. In x direction the mesh step length is 101.25m, and there are 1040 meshes;
in y direction the mesh step length is 100m, and there are 800meshes. So on the
plane of a simple layer there are 832000 meshes.

Simulation begins with the computation of Dongying Group, continues through
sediment interruption of the upper and lower third systems, Guantao group, Ming-
huazhen group and finally to the present fourth system, covering thirty million
geological years. Thus careful precise numerical parallel simulation computation
has been completed.

Table 1 illustrates the general situation of schemes 1∼4, the computation time
of each geological year and the overall computation time of 30 million years. From
Table 1 we can see that when the mesh step length reduces from 800m to 400m, the
computation time increases 3.84 times. When the mesh step length reduces from
400m to 200m, the computation time increases 6.14 times.

Simulation results: Figures 2a and 2b show the oil concentration distribution, in
two layers (Sand third upper region and Sand third middle region) during 1.8×107

years. Figures 3a and 3b show the present oil concentration isograms in these two
layers during 3.0×107 years. The results of numerical simulation indicate that the
oil in Sand third middle region migrates along the fault towards Sand third upper
region and accumulates on the uplifted zone around the low-lying area and on the
slope, that is Chengdao area, Laohekao, Stake No.5 and Gudong area. The present
situation of oil exploration of Shengli Oilfield is basically the same.

The above computation and analysis indicate that our large-scale careful par-
allel numerical simulation system (when mesh step length is 200m) can perform
precise numerical simulation by using three-dimensional seismic interpretation re-
sults without losing a single small stratigraphic trap and, therefore, can be used to
evaluate present oil resources and explore new oilfields.
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Fig.2a 1.8× 107 year’s Sand Third Upper oil concentration isogram

Fig.2b 1.8× 107 year’s Sand Third Middle oil concentration isogram
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Fig.3a 3.0× 107 year’s Sand Third Upper oil concentration isogram

 

Fig.3b 3.0× 107 year’s Sand Third Middle oil concentration isogram

5. Numerical Analysis of the Model Problem

As for the numerical method of oil migration-accumulation of the multilayer in
porous media, for the sake of brevity we consider one model problem, the nonsta-
tionary flow computation of mutilayer fluid dynamics in porous media. We have to
find out the following nonlinear convection-dominated diffusion coupling systems
with initial-boundary value problem[11−14]:

Φ1(x, y)
∂u

∂t
+ ⇀

a(x, y, t) · ∇u−∇ · (K1(x, y, u)∇u)−K2(x, y, z)
∂w

∂z
|z=1

= Q1(x, y, t, u), (x, y)T ∈ Ω1, t ∈ J = (0, T ],
(15a)
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Φ2(x, y, z)
∂w

∂t
=

∂

∂z
(K2(x, y, z)

∂w

∂z
), (x, y, z)T ∈ Ω, t ∈ J, (15b)

Φ3(x, y)
∂v

∂t
+

⇀

b (x, y, t) · ∇v −∇ · (K3(x, y, v)∇v) + K2(x, y, z)
∂w

∂z
|z=0

= Q3(x, y, t, v), (x, y)T ∈ Ω1, t ∈ J,

(15c)

where

Ω = {(x, y, z)|0 < x < 1, 0 < y < 1, 0 < z < 1}, Ω1 = {(x, y)|0 < x < 1, 0 < y < 1}.
We assume the boundary condition:

u(x, y, t)|∂Ω1 = 0, v(x, y, t)|∂Ω1 = 0, w(x, y, z, t)|∂Ω = 0, t ∈ J, (16a)

w(x, y, z, t)|z=1 = u(x, y, t), w(x, y, z, t)|z=0 = v(x, y, t), (x, y)T ∈ Ω1, t ∈ J.
(16b)

The initial conditions:
u(x, y, 0) = u0(x, y), (x, y)T ∈ Ω1,

w(x, y, z, 0) = w0(x, y, z), (x, y, z)T ∈ Ω,

v(x, y, 0) = v0(x, y), (x, y)T ∈ Ω1.

(17)

The unknown functions u, w and v are the potential functions, ∇u, ∇v and ∂w
∂z

are Darcy’s velocity, Φα(α = 1, 2, 3) is the porosity, Kα(α = 1, 2, 3) is the

stratigraphical permeability, ⇀
a(x, y, t) = (a1(x, y, t), a2(x, y, t))T ,

⇀

b (x, y, t) =
(b1(x, y, t), b2(x, y, t))T are the convection coefficients. Q1(x, y, u), Q2(x, y, v)
are the external volumetric flow rates.

Let h = 1
N , tn = n∆t, U(xi, yj , t

n) = Un
ij , V (xi, yj , t

n) = V n
ij ,W (xi, yj , zk, tn) =

Wn
ijk. Let δx, δy, δz and δx̄, δȳ, δz̄ be the forward and backward difference quotients,

respectively. dtu
n
ij is the forward quotient of net function un

ij .
For equation (15a), the upwind finite difference fractional steps scheme is given

by

(Φ̂1 −∆t(1 +
h1

2
|an

1 |
K1(Un)

)−1δx(K1(Un)δx̄) + ∆tδan
1 ,Un,x)Un+1/2

ij

= Φ̂1,ijU
n
ij + ∆t{Kn

2,ij,N−1/2δz̄W
n+1
ij,N + Q(xi, yj , t

n, Un+1
ij )}, 1 < i < N,

(18a)

U
n+1/2
ij = 0, (xi, yj) ∈ ∂Ω1,h, (18b)

(Φ̂1 −∆t(1 +
h1

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳ) + ∆tδan
2 ,Un,y)Un+1

ij

= Φ̂1,ijU
n+1/2
ij , 1 < j < N,

(18c)

Un+1
ij = 0, (xi, yj) ∈ ∂Ω1,h, (18d)

where
δan

1 ,Un,xuij = an
1,ij [H(an

1,ij)K1(Un)−1
ij ·K1(Un)i−1/2,jδx̄ + (1−H(an

1,ij))K1(Un)−1
ij ·

K1(Un)i+1/2,jδx]uij , δan
2 ,Un,yuij = an

2,ij [H(an
2,ij)K1(Un)−1

ij · K1(Un)i,j−1/2δȳ +
(1−H(an

2,ij))K1(Un)−1
ij ·K1(Un)i,j+1/2δy]uij , K1(Un)−1

ij = (K1(Un)ij)−1,

H(z) =
{

1, z ≥ 0,
0, z < 0.

In practical computation, δz̄W
n+1
ij,N in (18a) is approximately

taken as δz̄W
n
ij,N , while Un+1

ij is taken as Un
ij .

For equation (15b), the finite difference scheme is expressed as

Φ2,ijk

Wn+1
ijk −Wn

ijk

∆t
= δz(Kn

2 δz̄W
n+1)ijk, 0 < k < N, (i, j) ∈ Ω1,h, (19)



78 Y. YUAN

For equation (15c), the upwind finite difference fractional steps scheme is given by

(Φ̂3 −∆t(1 +
h1

2
|bn

1 |
K3(V n)

)−1δx(K3(V n)δx̄) + ∆tδbn
1 ,V n,x)V n+1/2

ij

= Φ̂3,ijV
n
ij + ∆t{−Kn

2,ij,1/2δzW
n+1
ij,0 + Q(xi, yj , t

n, V n+1
ij )},

i1(j) < i < i2(j),

(20a)

V
n+1/2
ij = 0, (xi, yj) ∈ ∂Ω1,h, (20b)

(Φ̂3 −∆t(1 +
h1

2
|bn

2 |
K3(V n)

)−1δy(K3(V n)δȳ) + ∆tδbn
2 ,V n,y)V n+1

ij

= Φ̂3,ijV
n+1/2
ij , j1(i) < j < j2(i),

(20c)

V n+1
ij = 0, (xi, yj) ∈ Ω1,h, (20d)

where
δbn

1 ,V n,xvij = bn
1,ij [H(bn

1,ij)K3(V n)−1
ij ·K3(V n)i−1/2,jδx̄ + (1−H(bn

1,ij)) ·K3(V n)−1
ij

K3(V n)i+1/2,jδx]uij , δbn
2 ,V n,yvij = bn

2,ij [H(bn
2,ij)K3(V n)−1

ij ·K3(V n)i,j−1/2δȳ + (1−
H(bn

2,ij))K3(V n)−1
ij ·K3(V n)i,j+1/2δy]vij . In practical computation, δzW

n+1
ij,0 in (20a)

is approximately taken as δzW
n
ij,0, and V n+1

ij as V n
ij .

The algorithm for a time step is as follows. Assuming that the approximate solu-
tion {Un

ij ,W
n
ijk, V n

ij } at time t = tn is known, one needs to find out the approximate
solution {Un+1

ij ,Wn+1
ijk , V n+1

ij } at time tn+1. First, from schemes (18a) and (18b),

method of speedup is used to get the solution of transition sheaf {Un+1/2
ij } along

x direction. Second, from schemes (18c) and (18d) we obtain solution {Un+1
ij }.

Next, from (20a) and (20b), by using method of speedup, we get the solution of
transition sheaf {V n+1/2

ij } along x direction; from (20c) and (20d) we obtain the
solution{V n+1

ij }. Finally, from scheme (19) we obtain {Wn+1
ijk }. Only in this way,

can we proceed continuously so that a complete time step can be taken. Finally,
because of the positive definite condition, this finite difference solution exists and
is the sole one.

Theorem Suppose that the exact solution of problems (15)∼(17) satisfies
smooth condition: ∂2u

∂t2 , ∂2v
∂t2 ∈ L∞(L∞(Ω1)), u, v ∈ L∞(W 4,∞(Ω1))

⋂
W 1,∞

(W 1,∞(Ω1)), ∂2w
∂t2 ∈ L∞(L∞(Ω)), w ∈ L∞(W 4,∞(Ω)). Adopt the second order

upwind finite difference fractional steps schemes (18), (19) and (20). Then the
following error estimates hold:

‖u− U‖L̄∞(J;l2) + ‖v − V ‖L̄∞(J;l2) + ‖w −W‖L̄∞(J;l2) + ‖u− U‖L̄2(J;h1)

+‖v − V ‖L̄2(J;h1) + ‖w −W‖L̄2(J;h1) ≤ M{∆t + h2},
(21)

where ‖g‖L̄∞(J;X) = Sup
n∆t≤T

‖fn‖X , ‖g‖L̄2(J;X) = Sup
L∆t≤T

{
L∑

n=0
‖gn‖2X∆t}1/2.

Proof Let ξ = u−U , ζ = v−V , ω = w−W , where u, v, w are exact solutions
of problems (15)∼(17), and U , V , W are the difference solutions of schemes (18),
(19) and (20).

First, consider (18). For (18a)∼(18d), by eliminating Un+1/2, we get the follow-
ing equivalent form:
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Φ̂1,ij

Un+1
ij − Un

ij

∆t
− {(1 +

h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄)

+(1 +
h

2

∣∣an
2,ij

∣∣
K1(Un)ij

)−1δy(K1(Un)δȳ)}Un+1
ij + δan

1 ,Un,xUn+1
ij

+δan
2 ,Un,yUn+1

ij + ∆t(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)

· δx̄(Φ̂−1
1 (1 +

h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳUn+1)·)ij

−∆t{(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 δan

2 ,Un,yUn+1))ij

+δan
1 ,Un,x(Φ̂−1

1 (1 +
h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳUn+1))ij

−δan
1 ,Un,x(Φ̂−1

1 δan
2 ,Un,yUn+1)ij}

= Kn
2,ij,N−1/2δz̄W

n+1
ij,N + Q(Un+1

ij ), 1 ≤ i, j ≤ N − 1,

(22a)

Un+1
ij = 0, (xi, yj) ∈ ∂Ω1. (22b)

Next, for (20a)∼(20d), by eliminating V n+1/2, we get the following equivalent form:

Φ̂3,ij

V n+1
ij − V n

ij

∆t
− {(1 +

h

2

∣∣bn
1,ij

∣∣
K3(V n)ij

)−1δx(K3(V n)δx̄)

+(1 +
h

2

∣∣bn
2,ij

∣∣
K3(V n)ij

)−1δy(K3(V n)δȳ)}V n+1
ij + δbn

1 ,V n,xV n+1
ij

+δbn
2 ,V n,yV n+1

ij + ∆t(1 +
h

2

∣∣bn
1,ij

∣∣
K3(V n)ij

)−1δx(K3(V n)

· δx̄(Φ̂−1
3 (1 +

h

2
|bn

2 |
K3(V n)

)−1δy(K3(V n)δȳV n+1)·)ij

−∆t{(1 +
h

2

∣∣bn
1,ij

∣∣
K3(V n)ij

)−1δx(K3(V n)δx̄(Φ̂−1
3 (δbn

2 ,V n,yV n+1)·)ij

+δbn
1 ,V n,x(Φ̂−1

3 (1 +
h

2
|bn

2 |
K3(V n)

)−1δy(K3(V n)δȳV n+1))ij

−δbn,V n,x(Φ̂−1
3 δbn

2 ,V n,yV n+1)ij}
= −Kn

2,ij,1/2δzW
n+1
ij,0 + Q(V n+1

ij ), 1 ≤ i, j ≤ N − 1,

(23a)

V n+1
ij = 0, (xi, yj) ∈ ∂Ω1. (23b)

For problems (15)∼(17), we have the following error equations:

Φ̂1,ij

ξn+1
ij − ξn

ij

∆t
− {(1 +

h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄ξn+1)ij

+[(1 +
h

2

∣∣an+1
1,ij

∣∣
K1(un+1)ij

)−1δx(K1(un+1)δx̄un+1)ij

−(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄un+1)ij ]}

−{(1 +
h

2

∣∣an
2,ij

∣∣
K1(Un)ij

)−1δy(K1(Un)δȳξn+1)ij
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+[(1 +
h

2

∣∣an+1
2,ij

∣∣
K1(un+1)ij

)−1δy(K1(un+1)δȳun+1)ij

−(1 +
h

2

∣∣an
2,ij

∣∣
K1(Un)ij

)−1δy(K1(Un)δȳun+1)ij ]}
+{δan

1 ,Un,xξn+1
ij + δan+1

1 ,un+1,xun+1
ij − δan

1 ,Un,xun+1
ij }

+{δan
2 ,Un,yξn+1

ij + δan+1
2 ,un+1,yun+1

ij − δan
2 ,Un,yun+1

ij }

+∆t{(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 (1 +

h

2
|an

2 |
K1(Un)

)−1

· δy(K1(Un)δȳξn+1)·)ij + [(1 +
h

2

∣∣an+1
1,ij

∣∣
K1(un+1)ij

)−1δx(K1(un+1)

· δx̄(Φ̂−1
1 (1 +

h

2

∣∣an+1
2

∣∣
K1(un+1)

)−1δy(K1(un+1)δȳun+1)·)ij

−(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 (1

+
h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳun+1)·)ij ]}

−∆t{(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 δan

2 ,Un,yξn+1))ij

+[(1 +
h

2

∣∣an+1
1,ij

∣∣
K1(un+1)ij

)−1δx(K1(un+1)δx̄(Φ̂−1
1 δan+1

2 ,un+1,yun+1))ij

−(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 δan

2 ,Un,yun+1))ij ]}

−∆t{δan
1 ,Un,x(Φ̂−1

1 (1 +
h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳξn+1))ij

+[δan+1
1 ,un+1,x(Φ̂−1

1 (1 +
h

2

∣∣an+1
2

∣∣
K1(un+1)

)−1δy(K1(un+1)δȳun+1))ij

−δan
1 ,Un,x(Φ̂−1

1 (1 +
h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳun+1))ij ]}
+∆t{δan

1 ,Un,x(Φ̂−1
1 δan

2 ,Un,yξn+1)ij

+[δan+1
1 ,un+1,x(Φ̂−1

1 δan+1
2 ,un+1,yun+1)ij − δan

1 ,Un,x(Φ̂−1
1 δan

2 ,Un,yun+1)ij ]}
= Kn

2,ij,N−1/2δz̄ω
n+1
ij,N + Q(un+1

ij )−Q(Un+1
ij ) + εn+1

1,ij , 1 ≤ i, j ≤ N − 1,

(24a)

ξn+1
ij = 0, (xi, yj) ∈ ∂Ω1, (24b)

where
∣∣εn+1

1,ij

∣∣ ≤ M{
∥∥∥∥

∂2u

∂t2

∥∥∥∥
L∞(L∞)

, ‖u‖L∞(W 4,∞)}{∆t + h2}.

Φ2,ijk

ωn+1
ijk − ωn

ijk

∆t
= δz(Kn

2 δz̄ω
n+1)ijk + εn+1

2,ijk, 1 ≤ i, j, k ≤ N − 1, (25)

where
∣∣∣εn+1

2,ijk

∣∣∣ ≤ M{
∥∥∥∥

∂2w

∂t2

∥∥∥∥
L∞(L∞)

, ‖w‖L∞(W 4,∞)}{∆t + h2}.

Testing (24a) and (25) against 2∆tξn+1
ij and 2∆tωn+1

ijk , summing them up by
parts, and using (24b) we can obtain
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∥∥∥Φ̂1/2
2 ξn+1

∥∥∥
2

−
∥∥∥Φ̂1/2

1 ξn
∥∥∥

2

+ (∆t)2
∥∥∥Φ1/2

2 dtξ
n
∥∥∥

2

+ ∆t{
∥∥∥K

n,1/2
1 δx̄ξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
1 δȳξn+1

∥∥∥
2

} ≤ M{(∆t)2 + h4 +
∥∥ξn+1

∥∥2 + ‖ξn‖2}∆t.

(26)

Similarly, for equation (23) we have
∥∥∥Φ̂1/2

2 ζn+1
∥∥∥

2

−
∥∥∥Φ̂1/2

3 ζn
∥∥∥

2

+ (∆t)2
∥∥∥Φ1/2

2 dtζ
n
∥∥∥

2

+ ∆t
∥∥∥K

n,1/2
3 δx̄ζn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δȳζn+1

∥∥∥
2

} ≤ M{(∆t)2 + h4 +
∥∥ζn+1

∥∥2 + ‖ζn‖2}∆t.

(27)

For error equation (25) we have
∥∥∥Φ1/2

2 ωn+1
∥∥∥

2

−
∥∥∥Φ1/2

2 ωn
∥∥∥

2

+ (∆t)2
∥∥∥Φ1/2

2 dtω
n
∥∥∥

2

+ 2∆t
∥∥∥K

1/2
2 δz̄ω

n+1
∥∥∥

2

≤ 2∆t
N−1∑
i,j=1

{Kn
2,ij,N−1/2δz̄ω

n+1
ij,N · ξn+1

ij −Kn
2,ij,1/2δzω

n+1
ij,O · ζn+1

ij }h2

+M∆t{(∆t)2 + h4 +
∥∥ωn+1

∥∥2}.

(28)

Combining (26)∼(28), summing up 0 ≤ n ≤ L, and noting that ξ0 = ζ0 = ω0 = 0,
we have

{
∥∥∥Φ̂1/2

1 ξL+1
∥∥∥

2

+
∥∥∥Φ̂1/2

3 ζL+1
∥∥∥

2

+
∥∥∥Φ1/2

2 ωL+1
∥∥∥

2

}

+∆t
L∑

n=0
{
∥∥∥Φ̂1/2

1 dtξ
n
∥∥∥

2

+
∥∥∥Φ̂1/2

3 dtζ
n
∥∥∥

2

+
∥∥∥Φ1/2

2 dtω
n
∥∥∥

2

}∆t

+
L∑

n=0
{
∥∥∥K

n,1/2
1 δx̄ξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
1 δȳξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δx̄ζn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δȳζn+1

∥∥∥ +
∥∥∥Φ1/2

2 δz̄ω
n+1

∥∥∥
2

}∆t

≤ M{
L∑

n=0
[
∥∥ξn+1

∥∥2 +
∥∥ζn+1

∥∥2 +
∥∥ωn+1

∥∥2]∆t + (∆t)2 + h4}.

(29)

Applying the discrete Gronwall inequality, we have
∥∥∥Φ̂1/2

1 ξL+1
∥∥∥

2

+
∥∥∥Φ̂1/2

3 ζL+1
∥∥∥

2

+
∥∥∥Φ1/2

2 ωL+1
∥∥∥

2

+∆t
L∑

n=0
{
∥∥∥Φ̂1/2

1 dtξ
n
∥∥∥

2

+
∥∥∥Φ̂1/3

3 dtζ
n
∥∥∥

2

+
∥∥∥Φ1/2

2 dtω
n
∥∥∥

2

}∆t

+
L∑

n=0
{
∥∥∥K

n,1/2
1 δx̄ξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
1 δȳξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δx̄ζn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δȳζn+1

∥∥∥ +
∥∥∥K

n,1/2
2 δz̄ω

n+1
∥∥∥}∆t

≤ M{(∆t)2 + h4}.

(30)
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ROBIN TRANSMISSION CONDITIONS FOR OVERLAPPING
ADDITIVE SCHWARZ METHOD APPLIED TO LINEAR

ELLIPTIC PROBLEMS

HONGWEI LI AND JIACHANG SUN

Abstract. We consider overlapping Additive Schwarz Method(ASM) with

Robin conditions as the transmission conditions(interior boundary conditions).

The main difficulty left in this field is how to select the parameters for Robin

conditions – these parameters have strong effect on the convergence rate of

ASM. In this paper, we proposed the parameters for linear elliptic problems

which seemed to be near optimal.

Key Words. domain decomposition, additive Schwarz methods, Robin trans-

mission conditions.

1. Introduction

Classical additive Schwarz method(ASM) converges very slow for general prob-
lems. So, in most circumstances, this method can only be used as a preconditioner.
On the other hand, ASM has high parallelism and is very suitable for coarse grain
parallel computing. Many recent papers contribut to accelerating ASM. The tech-
nique is to replace the Dirichlet transmission conditions posed on the interfaces
with some more general or exact conditions such as absorbing conditions, open
conditions etc. The essence of these conditions is that they are more exact on the
interfaces so that the corresponding ASM should converge faster. However, these
conditions are always global coupled. So, in actual applications, these conditions
should be localized by some kind of approximations. Taylor expansion was first
used, and some other approximations were also introduced[6]. But it seems that
these approximations hold only for simple problems that Fourier analysis can apply.

In this paper, the Dirichlet transmission conditions of the classical overlapping
additive Schwarz method are replaced by Robin conditions directly. We hope that
by selecting proper parameters for the Robin conditions, the corresponding ASM
would converge more rapidly.

Robin transmission conditions were first introduced into domain decomposition
by P.L.Lions in [9, 10, 11]. Since then, many papers followed.

Generalized Schwarz splitting method with Robin transmission conditions was
proposed by Tang [12], which gave the initial impetus to our work in this field.
Optimized Schwarz methods, proposed by M.J. Gander, L.Halpern and F.Nataf,
try to get the optimal Robin parameters by Fourier analysis [6]. This idea was
further utilized in [1, 8, 5, 7, 4].
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Absorbing conditions for domain decomposition methods have been analyzed by
Zhao[2]. In that paper, Robin transmission conditions were analyzed by Taylor
expansion.

Though many authors and papers have talked about Robin transmission condi-
tions for additive Schwarz methods, the main difficulty – lacking of a simple and
uniform way to choose good Robin parameters, is still remaining, even if for simple
problems like Laplace equation.

This paper is motivated by generalized Schwarz splittings proposed by W.P.
Tang and optimized Schwarz methods proposed by M.J. Gander. And we try to
determine the optimal (or near optimal) Robin parameters for general linear elliptic
problems.

The key model problem for this paper is

−∆u + qu = f (Ω)(1)
u = g (∂Ω)(2)

where Ω = (0, 1)d, d = 2, 3, q > 0.
Suppose domain Ω is partitioned into two overlapping subdomains Ω1 and Ω2

︸ ︷︷ ︸

︷ ︸︸ ︷

Ω1

Ω2

Γ1 Γ2

Our aim is to derive the optimal(or near optimal) Robin parameters λ for the
following additive Schwarz method (two subdomain case)

For any given initial values u0, v0, solve the following problems iteratively until
convergence

−∆un + qun = f, (Ω1)(3)
∂un

∂n
+ λun =

∂vn−1

∂n
+ λvn−1 (Γ2)(4)

−∆vn + qvn = f, (Ω2)(5)
∂vn

∂n
+ λvn =

∂un−1

∂n
+ λun−1 (Γ1)(6)

where n denotes the outward normal direction of the subdomain under considera-
tion. We will call above method as RASM(λ), so that it can be distinguished from
ASM.

The main result of this paper is that for high dimensional model problems, the
optimal Robin parameters can be determined as λopt =

√
q + (d− 1)π2, d = 2, 3.

2. Analysis for one dimensional Laplace equation

Suppose the domain Ω = (0, 1), 0 < α1 < β1 < α2 < β2 < ... < αns−1 < βns−1 <
1. Ω1 = (0, β1), Ω2 = (α1, β2), . . ., Ωns−1 = (αns−2, βns−1),Ωns = (αns−1, 1).
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0 1
α1
λ1

β1

λ̃1

α2
λ2

β2

λ̃2

α3
λ3

β3

λ̃3

Figure 1. Domain Ω is decomposed into 4 subdomains

The model problem for this section is

(7) −d2u

d2x
= f(x), x ∈ Ω, u(0) = u(1) = 0

We know that the exact transmission conditions can be expressed as Steklov-
Poincaré operators which depend on the interior boundaries. So the transmission
conditions should be different on different interior boundaries. Therefore, when
being applied to multi-subdomains, RASM(λ) should take the following form

−d2un+1
1

d2x
= f(x), x ∈ Ω1,

un+1
1 (0) = 0

dun+1
1 (β1)
dx

+ λ̃1u
n+1
1 (β1) =

dun
2 (β1)
dx

+ λ̃1u
n
2 (β1)

−d2un+1
i

d2x
= f(x), x ∈ Ωi,

dun+1
i (αi−1)

dx
+ λi−1u

n+1
i (αi−1) = −dun

i−1(αi−1)
dx

+ λi−1u
n
i−1(αi−1)

dun+1
i (βi)
dx

+ λ̃iu
n+1
i (βi) =

dun
i+1(βi)
dx

+ λ̃iu
n
i+1(βi)

i = 2, 3, . . . , ns− 1.

−d2un+1
ns

d2x
= f(x), x ∈ Ωns,

un+1
ns (1) = 0

−dun+1
ns (αns−1)

dx
+ λns−1u

n+1
ns (αns−1) = −dun

ns−1(αns−1)
dx

+ λns−1u
n
ns−1(αns−1)

Notice that the Robin parameters can be different on different interior bound-
aries.

Theorem 2.1. Let λi =
1
αi

, λ̃i =
1

1− βi
, i=1,2,. . . , ns-1. then the above method

converges in ns iterations.

Proof. It suffices to give the proof in the case of f(x) ≡ 0. So we can suppose

un+1
i = Cn+1

i x + dn+1
i , i = 1, 2, . . . , ns.
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Using the transmission conditions and the corresponding parameters λi =
1
αi

, λ̃i =

1
1− βi

, i = 1, 2, . . . , ns, , we have
〈

dn+1
1 = 0

cn+1
1 + dn+1

1 = cn
2 + dn

2〈
dn+1
2 = dn

1

cn+1
2 + dn+1

2 = cn
3 + dn

3〈
dn+1
3 = dn

2

cn+1
3 + dn+1

3 = cn
4 + dn

4
...〈

dn+1
ns = dn

ns−1

cn+1
ns + dn+1

ns = 0

Now we need only to verify that for any given initial values c0
i , d0

i , we will have
cns
i = 0, dns

i = 0, i = 1, 2, . . . , ns. According to above formulas, for any i, we have

dn
i = dn−1

i−1 = dn−2
i−2 = · · · = dn−i+1

1

if n ≥ i, then dn−i+1
1 = 0, so dn

i = 0. Obviously, ns is the minimum number that
meets n ≥ i for any i. So

dns
i = 0, i = 1, 2, . . . , ns.

Secondly, let en
i = cn

i + dn
i , i = 1, 2, . . . , ns. It’s easy to verify that

ens
i = 0, i = 1, 2, . . . , ns.

Therefore, because of dns
i = 0, we have

cns
i = 0, i = 1, 2, . . . , ns

¤
Suppose domain Ω = (0, 1), Ω1 = (0, β1), Ωi = (αi−1, βi), i = 2, . . . , ns − 1,

Ωns = (αns−1, 1). n = ns×m, h = 1/(n + 2), αi = i×mh, βi = i× (m + 2)h, let
γi = i× (m + 1)h, i=1,ns-1.

For one dimensional problems, if no specification, the domain Ω will always take
this kind of decomposition in this paper.

Numerical experiments 2.1. Initial zero interior boundary values, central differ-
ence scheme. Right-hand term: f(x) = 2x(1− x), subdomain solver: CG. Conver-
gence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The optimal Robin parameters are determined
by Theorem (2.1). The results are showed in Table 1 and Table 2

Iter. time(s) Iter. num.

m ASM RASM(λopt) ASM RASM(λopt)

9 0.09 0. 217 4

19 0.64 0. 450 4

99 63.67 0.11 2405 4

Table 1. One dimensional, 4 subdomains. Comparison of itera-
tion time and iteration number

It should be pointed out that, in Theorem 2.1, ns is the minimum iterations for
the method to converge. The iteration number depends only on the domain size,
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Iter. time(s) Iter. num

m ASM RASM(λopt) ASM RASM(λopt)

9 0.62 0.01 803 8

19 4.84 0.02 1702 8

99 491.4 0.44 9240 8

Table 2. One dimensional, 8 subdomains. Comparison of itera-
tion time and iteration number

e.g. the number of subdomains. Furthermore, the optimal parameters λi, λ̃i are
not unique. In fact, we can confine ourself to take same Robin parameters on every
interior boundary pair {αi, βi}. In this case, we still can find a group of parameters
which satisfy that RASM(λ) converges in ns iterations.

Theorem 2.2. Let λi = λ̃i =





1
αi

, i ≤ ns/2 + 1
1

1− βi
, i ≥ ns/2 + 1

RASM(λ) converges in ns

iterations.

3. Coercive Laplace equation

In order to analyze high dimensional problems, we need to study the following
Coercive Laplace equation first

(8) −u
′′

+ qu = f(x), x ∈ Ω = (0, 1), q > 0
u(0) = 0, u(1) = 0

For simplicity and concision, the two subdomain case will be taken for instance.
Suppose ns=2, Ω1 = (0, β1), Ω2 = (α1, 1). Applying RASM(λ) to problem (8), we
have

−d2vn+1

d2x
+ q vn+1 = f(x), x ∈ Ω1,(9)

vn+1(0) = 0,
dvn+1(β1)

dx
+ λvn+1(β1) =

dwn(β1)
dx

+ λwn(β1)(10)

−d2wn+1

d2x
+ qwn+1 = f(x), x ∈ Ω2,(11)

wn+1(1) = 0, −dwn+1(α1)
dx

+ λwn+1(α1) = −dvn(α1)
dx

+ λvn(α1)(12)

In this section, the above method will be analyzed in discrete form, and the
main means is matrix analysis. The continuous problems are approximated by
their discrete forms. Then the optimal Robin parameters will be determined in
discrete form.

For continuous problems, the optimal Robin parameters depend on two factors:
the problem itself and the pattern of domain decomposition. Therefore, if the corre-
sponding discrete scheme approximates the continuous problem quite exactly, then
the optimal parameters derived from matrix analysis should be good approxima-
tions to those for continuous case. In this way, the optimal Robin parameters for
certain discrete scheme obtained by matrix computations can be applied to other
discrete methods. Here, the central difference scheme is used to discrete the second
order term in (9)–(12).
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The discrete form of problem (9)–(12) can be thought of as block Jacobi iteration
method for the following linear algebraic equations

(13) Ãu = g

Ã =
(

A1 −E
−F A2

)
u =

(
v
w

)
g =

(
g1

g2

)

gi = h2f |Ωi
, i = 1, 2; v = u|Ω1 , w = u|Ω2

A1 =




2 + β −1
−1 2 + β −1

. . .
−1 2 + β − σ




m+1,m+1

E =




0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0
−σ 1 0 · · · 0




m+1,m+1

A2 =




2 + β − σ −1
−1 2 + β −1

. . .
−1 2 + β




m+1,m+1

F =




0 · · · 0 1 −σ
0 · · · 0 0 0
...

...
...

...
0 · · · 0 0 0




m+1,m+1

where β = 2 + qh2. And by simple calculations, we have

(14) σ =
1

1 + λh

Hereafter, the above method will be called DRASM(σ), which is the discrete coun-
terpart of RASM(λ). Notice that, DRASM(0) corresponds to the classical additive
Schwarz method, which takes Dirichlet conditions as the transmission conditions.

Now the problem is how to select the parameter σ, so that DRASM(σ) converges
as fast as possible. It is well known that, for any iteration method, the convergence
rate is determined by the spectrum radius of the iteration matrix, more small the
spectrum radius, more rapid the convergence speed.

when DRASM(σ) is applied to problem (13), The iteration matrix is

J =
(

A−1
1

A−1
2

)(
E

F

)
=

(
A−1

1 E
A−1

2 F

)

Now we need to calculate the spectrum radius of matrix J , e.g. the maximum
absolute eigenvalue of J

Define T1 = A−1
1 E, T2 = A−1

2 F . Suppose

A−1
1 = (tij)m+1,m+1 =




t11 t12 · · · t1,m+1

t21 t22 · · · t2,m+1

...
...

...
tm+1,1 tm+1,2 · · · tm+1,m+1




then by the property of algebraic complement and Laplace expansion, we have

A−1
2 =




tm+1,m+1 ? · · · ?
tm,m+1 ? · · · ?

...
...

...
tm+1,1 ? · · · ?
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By some simple calculations, we have

T1 =




−σt1,m+1 t1,m+1 0 · · · 0
−σt2,m+1 t2,m+1 0 · · · 0

...
...

...
...

−σtm+1,m+1 tm+1,m+1 0 · · · 0




m+1,m+1

T2 =




0 · · · 0 tm+1,m+1 −σtm+1,m+1

0 · · · 0 tm,m+1 −σtm,m+1

...
...

...
...

0 · · · 0 t1,m+1 −σt1,m+1




m+1,m+1

By some simple matrix transformations of J , we see that the nonzero eigenvalues
of J are included in the eigenvalues of the following matrix

G =




0 0 −σtm,m+1 tm,m+1

0 0 −σtm+1,m+1 tm+1,m+1

tm+1,m+1 −σtm+1,m+1 0 0
tm,m+1 −σtm,m+1 0 0




However the nonzero eigenvalues of G can be easily derived as

λ1,2 = ±(tm,m+1 − σtm+1,m+1)

So, the spectrum radius of J is

(15) ρ(J) = |tm,m+1 − σtm+1,m+1|
Apparently, the optimal Robin parameter σ is

(16) σ =
tm,m+1

tm+1,m+1

In order to figure out tm,m+1 and tm+1,m+1, the following Lemma 3.1 and Lemma
3.2 are needed

Lemma 3.1. [3] Let β ≥ 2, and

Tn =




β −1
−1 β −1

. . .
−1 β




Dn(β) = det(Tn). Then

(17) Dn(β) =
{

sinh(n + 1)θ/ sinh θ, β > 2, 2 cosh θ = β
n + 1, β = 2

Moreover, if let t−1
n = (tij)n×n, then

(18) tij =
{

Dj−1(β)Dn−i(β)/Dn(β), i ≥ j
Di−1(β)Dn−j(β)/Dn(β), i < j

Lemma 3.2. Let

A =




β −1
−1 β −1

. . .
−1 β




n×n

, B =




β −1
−1 β −1

. . .
−1 β − σ




n×n
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and let A−1 = (tij)n×n, B−1 = (fij)n×n, D0(β) = 1, Dn(β) = det(A), Fn =
det(B). Then

(19) Fn = Dn(β)− σDn−1(β)

(20) fin =
Di−1(β)

Dn(β)− σDn−1(β)

Proof. By the theorem of Laplace expansion, expand Dn(β) and Fn according to
their last rows

Dn(β) = α + 2Dn−1(β)
Fn = α + (2− σ)Dn−1(β)

where α is some certain algebraic complement. So

Fn −Dn(β) = −σDn−1(β)

Therefore
Fn = Dn(β)− σDn−1(β)

Besides, if A?, B? are the adjoint matrixes of A and B respectively, then by the
property of adjoint matrix, we have

AA? = det(A)I, BB? = det(B)I

And by the definitions of adjoint matrix and the matrix A and B, the last columns
of A? and B? should have no difference at all.

Because of A−1 = 1
det(A)A

?, and A−1 can be determined by Lemma 3.1

tij =
{

Dj−1(β)Dn−i(β)/Dn(β), i ≥ j
Di−1(β)Dn−j(β)/Dn(β), i < j

Especially, let j = n, we have

tin =
Di−1(β)
Dn(β)

Therefore
det(A)tin = det(B)fin, i = 1, 2, . . . , n.
⇒ Dn(β)tin = Fnfin

⇒ fin =
Dn(β)tin

Fn

⇒ fin =
Di−1(β)

Dn(β)− σDn−1(β)
¤

Theorem 3.1. The optimal Robin parameter for our model problem is

(21) σ = sinh(mθ)/ sinh(m + 1)θ,

where θ satisfies

(22) 2 cosh θ = β, β = 2 + qh2.

and DRASM(σ) converges in two iterations.

Proof. By (16), the optimal Robin parameter σ = tm,m+1/tm+1,m+1. Moreover,
by (15), the spectrum radius of the iteration matrix corresponding to DRASM(σ)
equals zero in this case. So DRASM(σ) converges in two iterations. And then we
need only to verify the following formula

tm,m+1

tm+1,m+1
=

sinh(mθ)
sinh(m + 1)θ
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By Lemma 3.2

(23) tm,m+1 =
Dm−1(β)

Dm+1(β)− σDm(β)

(24) tm+1,m+1 =
Dm(β)

Dm+1(β)− σDm(β)
Therefore

σ = tm,m+1/tm+1,m+1 = Dm−1(β)/Dm(β)
By Lemma 3.1, we have

Dm(β)
Dm+1(β)

=
sinh(mθ)

sinh(m + 1)θ
¤

We can express the optimal Robin parameter more directly. By (22)

2 cosh θ = β
⇒ eθ + e−θ = β

⇒ eθ =
β +

√
β2 − 4
2

On the other hand,

(25) σ =
sinh(mθ)

sinh(m + 1)θ
=

emθ − e−mθ

e(m+1)θ − e−(m+1)θ
= eθ (eθ)2m − 1

(eθ)2(m+1) − 1

As β > 2, eθ > 1. So, if m is a relative large natural number, then (eθ)2m À 1.
Therefore

(26) σ ≈ e−θ =
2

β +
√

β2 − 4
=

1

1 +
qh +

√
q2h2 + 4q

2
h

However, by (14), σ =
1

1 + λh
, so

(27) λ =
qh +

√
4q + q2h2

2
If h → 0, the discrete scheme should approximate the corresponding continuous
problem better and better, so λ should approximate the optimal Robin parameter
for the continuous problem better and better. Therefore, we have reason to think
that the optimal Robin parameter for the continuous problem should be

(28) λopt = lim
h→0

qh +
√

4q + q2h2

2
=
√

q

and the optimal Robin parameter for the corresponding discrete problem should be

(29) σopt =
1

1 + λopth

Numerical experiments 3.1. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term f(x) = 2x(1− x), q=10, subdomain solver: CG.
Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The optimal Robin parameter is deter-
mined by (28) and (29). Table 3 shows the results.
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Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 0.01 0. 38 6

19 0.05 0. 76 6

99 4.53 0.06 401 6

Table 3. One dimensional, two subdomains. Comparison of iter-
ation time and iteration steps. q = 10

Notation 3.1. By (26), if q > 0 and the subdomain size m is relatively large, then
the optimal Robin parameter σopt or λopt can be thought of as no coupling with the
relative position of the interior boundaries. Based on this observation, for multi-
subdomain problems, we can take the same Robin parameters on all the interior
boundaries.

Numerical experiments 3.2. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term: f(x) = 2x(1 − x), q=100, subdomain solver:
CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The optimal Robin parameter is
determined by (28) and (29). Table 4 shows the results.

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 0.05 0.01 81 10

19 0.39 0.03 171 11

99 42.16 0.5 927 11

Table 4. One dimensional, 8 subdomains. Comparison of itera-
tion time and iteration steps, q = 100

Notation 3.2. We will analyze high dimensional problems in the following sections,
and the optimal Robin parameters for high dimensional problems will be reduced to
a series of one dimensional problems just like the model problem in this section,
which has zero order term. So, for high dimensional problems, if no specification,
when reduced to one dimensional multi-subdomain problems, we always take the
same Robin parameters on all the interior boundaries.

In order to quantify the effects of q on the spectrum radius of the iteration
matrix, (15) needs to be analyzed further. By (23), (24) and (15) (substituting
fm,m+1 and fm+1,m+1 for tm,m+1 and tm+1,m+1 respectively), we have

(30) ρ(J) =
∣∣∣∣
Dm−1(β)− σDm(β)
Dm+1(β)− σDm(β)

∣∣∣∣
By (3.1)

ρ(J) =
∣∣∣∣

sinh(mθ)− σ sinh(m + 1)θ
sinh(m + 2)θ − σ sinh(m + 1)θ

∣∣∣∣

=

∣∣∣∣∣∣∣∣

sinh(mθ)
sinh(m + 1)θ

− σ

sinh(mθ)
sinh(m + 1)θ

− σ +
sinh(m + 2)θ − sinh(mθ)

sinh(m + 1)θ

∣∣∣∣∣∣∣∣
=

∣∣∣∣
ησ

ησ + τ

∣∣∣∣
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where θ satisfies 2 cosh θ = β, β = 2 + qh2, and ησ =
sinh(mθ)

sinh(m + 1)θ
− σ, τ =

2 sinh θ cosh(m + 1)θ
sinh(m + 1)θ

= 2 sinh θ coth(m + 1)θ > 2 sinh θ > 0

It’s clear that, if q gets larger, then β and θ get larger, so τ larger. That’s to say
that, the sensitivity of ρ(J) on σ will decrease as q gets larger.

Notation 3.3. High dimensional problems can be reduced to a series of one di-
mensional problems just like this section, which have zero order terms. So, for high
dimensional problems, we can consider only the reduced one dimensional problem
which has the minimum coefficient for the zero order term.

4. Two dimensional problem

We borrow the idea in [12] to reduce high dimensional problems to lower ones.
Consider the model problem

(31) −∆u(x, y) + qu(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1)
u(x, y)|∂Ω = g(x, y)

where q ≥ 0.
We take the following pattern of domain decomposition and grid partition.
Ω = (0, 1)× (0, 1), Ω1 = (0, β1)× (0, 1), Ωi = (αi−1, βi)× (0, 1), i = 2, . . . , ns−1,

Ωns = (αns−1, 1)×(0, 1). n = ns×m, h = 1/(n+2), αi = i×mh, βi = i×(m+2)h.
Let γi = i×(m+1)h, i = 1, ns−1. For two dimensional model problems, we always
take this kind of domain decomposition and grid partition if no specification.

Definition 4.1.

Tn(β) , Tridiagonal{−1, β,−1}n×n, (β ≥ 2)

and Denote Tn(x1, x2, x3) as Tn(x2) except the first diagonal element is x1, and the
last is x3.

Consider the two-subdomain case. when DRASM(σ) is applied to (31), the
coefficient matrix is

Ã =
(

A1 −E1

−F1 A2

)

where
A1 = T1 ⊗ In + Im ⊗ Tn(2)

A2 = T2 ⊗ In + Im ⊗ Tn(2)

E1 = E ⊗ In

F1 = F ⊗ In

and

T1 = Tm+1(β, β, β − σ)
T2 = Tm+1(β − σ, β, β)

E, F defined as before. β = 2 + qh2.
The iteration matrix for DRASM(σ) is

J =
(

A−1
1

A−1
2

)(
E1

F1

)
, M−1N
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It’s well known that Tn(2) has the following spectrum decomposition

(32) XnTn(2)XT
n = Dn = diag{di}, di = 4 sin2 iπ

2(n + 1)
, i = 1, . . . , n.

Let

U =
(

Im ⊗Xn

Im ⊗Xn

)

then
J ′ = UJUT = (UMUT )−1N = M̃−1N

where

M̃ =

(
Ã1

Ã2

)
Ãi = (Im ⊗Xn)Ai(Im ⊗Xn)T = Ti ⊗ In + Im ⊗Dn

Let P denotes the permutation matrix that makes the rows (k − 1)n + i and rows
2(i− 1)(m + 1) + k permute their positions for each other, k = 1, . . . , 2(m + 1), i =
1, . . . , n. Then

J1 = PJ ′PT =




J(d1)
J(d2)

. . .
J(dn)




where J(di) are the iteration matrices when DRASM(σ) is applied to the following
one dimensional problems

−u′′ + (q + dih
−2)u = f, (0, 1)

u(0) = u(1) = 0

However, According to Note (3.3), we need only consider the one dimensional
problem with minimum zero order coefficient. So we need only analyze the optimal
Robin parameter for J(d1). That’s to say,

(33) λopt =
√

q + d1h−2, σopt =
1

1 + λopth

On the other hand,

d1 = 4 sin2 π

2(n + 1)
= 4 sin2 πh

2
≈ π2h2

so

(34) λopt =
√

q + π2, σopt =
1

1 + λopth

This λopt will be taken as the optimal Robin parameter for the two dimensional
model problem. And numerical experiments showed that λopt is near optimal.

Numerical experiments 4.1. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term: f(x, y) = x(1− x) + y(1− y), q = 0, subdomain
solver: CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The Robin parameter is
determined by (34). The results are showed in Table 5 and Table 6.

The above strip domain decomposition pattern can be generalized to multi-
direction decomposition. The optimal Robin parameter can be generalized to this
situation in a simple and straightforward way, e.g. ignoring the coupling among
the different directions, and the optimal Robin parameter is still

(35) λopt =
√

q + π2, σopt =
1

1 + λopth
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Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 0.19 0.05 38 9

19 3.35 0.7 76 12

49 95.92 9.29 196 19

Table 5. Two dimensional, two subdomains, comparison of iter-
ation time and iteration numbers. Strip domain decomposition

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 2.55 0.31 113 13

19 45.22 3.54 234 15

29 237.96 13.79 358 23

Table 6. Two dimensional, 4 subdomains, comparison of iteration
time and iteration numbers. Strip domain decomposition

Numerical experiments 4.2. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term f(x, y) = x(1 − x) + y(1 − y), q = 0, subdomain
solver: CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The Robin parameter is
determined by (34). The results are showed in Table 7 and Table 8

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 0.68 0.17 63 14

19 9,98 1.54 129 18

29 39.07 3.8 195 21

Table 7. Two dimensional, 4 subdomains. Comparison of itera-
tion time and iteration numbers. Domain decomposition: 2× 2

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 3.44 0.62 126 18

19 47.75 5.08 258 23

29 196.35 12.68 393 27

Table 8. Two dimensional, 9 subdomains. Comparison of itera-
tion time and iteration numbers. Domain decomposition: 3× 3

5. Three dimensional problem

Consider the following model problem

(36) −∆u(x, y, z) + qu(x, y, z) = f(x, y, z), (x, y, z) ∈ (0, 1)3 = Ω
u(x, y, z)|∂Ω = g(x, y, z)

where q > 0.
We take the following pattern of domain decomposition and grid partition.
Ω = (0, 1) × (0, 1) × (0, 1), Ω1 = ×(0, 1) × (0, β1), Ωi = (0, 1) × (0, 1) ×

(αi−1, βi), i = 2, . . . , ns − 1, Ωns = (0, 1) × (0, 1) × (αns−1, 1). n = ns ×m, h =
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1/(n + 2), αi = i ×mh, βi = i × (m + 2)h. let γi = i × (m + 1)h, i = 1, ns − 1.
For three dimensional problems, we always take this kind of domain decomposition
and grid partition if no specification.

Consider the two-subdomain case. when DRASM(σ) is applied to (36), the
coefficient matrix can be expressed as

Ã =
(

A1 −E1

−F1 A2

)

where
A1 = T1 ⊗ In ⊗ In + Im ⊗ Tn(2)⊗ In + Im ⊗ In ⊗ Tn(2)

A2 = T2 ⊗ In ⊗ In + Im ⊗ Tn(2)⊗ In + Im ⊗ In ⊗ Tn(2)

E1 = E ⊗ In ⊗ In

F1 = F ⊗ In ⊗ In

where

T1 = Tm+1(β, β, β − σ)
T2 = Tm+1(β − σ, β, β)

E, F are defined as before. β = 2 + qh2. The iteration matrix is

J =
(

A−1
1

A−1
2

)(
E1

F1

)
, M−1N

According to (32) , there is a matrix Xn satisfies

XnTn(2)XT
n = Dn = diag{di}, di = 4 sin2 iπ

2(n + 1)
, i = 1, . . . , n.

Let

U =
(

Im ⊗ In ⊗Xn

Im ⊗ In ⊗Xn

)

we have
(Im ⊗ In ⊗Xn)(Ti ⊗ In ⊗ In)(Im ⊗ In ⊗Xn)T

= (Ti ⊗ In ⊗Xn)(Im ⊗ In ⊗Xn)
= Ti ⊗ In ⊗ In

(Im ⊗ In ⊗Xn)(Im ⊗ Tn ⊗ In)(Im ⊗ In ⊗Xn)T

= (Im ⊗ Tn ⊗Xn)(Im ⊗ In ⊗XT
n )

= Im ⊗ Tn ⊗ In

(Im ⊗ In ⊗Xn)(Im ⊗ In ⊗ Tn(2))(Im ⊗ In ⊗Xn)T

= [Im ⊗ In ⊗ (XnTn(2))][Im ⊗ In ⊗XT
n ]

= Im ⊗ In ⊗ (XnTn(2)XT
n )

= Im ⊗ In ⊗Dn

So
J ′ = UJUT = (UMUT )−1N = M̃−1N

where

M̃ =

(
Ã1

Ã2

)

and
Ãi = Ti ⊗ In ⊗ In + Im ⊗ Tn(2)⊗ In + Im ⊗ In ⊗Dn i = 1, 2.
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Let Bi = Ti ⊗ In + Im ⊗ Tn(2), Imn = Im ⊗ In, then the above formula can be
written as

(37) Ãi = Bi ⊗ In + Imn ⊗Dn

From (37), we can see that, Bi are the coefficient matrices when DRASM(σ) is
applied to two dimensional model problem (31). Using the same method as in above
section to reduce two dimensional problem to one dimensional problems, we can
also reduce our three dimensional problem to two dimensional problems. That’s to
say that the optimal Robin parameter for our three dimensional problem can be
approximated by the following two dimensional problems

−∆u(x, y) + (q + dih
−2)u(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)2

u(x, y)|∂Ω = g(x, y)

According to Note (3.3), we need only consider the minimum eigenvalue d1. So
by (34), the optimal Robin parameter λ for the three dimensional model problem
can be written as

(38) λopt =
√

q + d1h−2 + d1h−2 =
√

q + 2π2, σopt =
1

1 + λopth

It’s obvious that when DRASM(σ) is applied to three dimensional problems, its
sensitivity to optimal Robin parameter gets decreased compared to two dimensional
problems.

Numerical experiments 5.1. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term f(x, y, z) = x(1− x) + y(1− y) + z(1− z), q=0,
subdomain solver CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The Robin pa-
rameter is determined by (38). The results are showed in Table 9 and Table 10.

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 3.87 1.54 28 8

19 77.08 25.28 57 10

29 622.46 97.57 87 12

Table 9. Three dimensional, two subdomains. Comparison of
iteration time and iteration numbers, strip domain decomposition

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 18.90 5.68 79 10

19 718.22 99.56 163 11

Table 10. Three dimensional, 4 subdomains. Comparison of it-
eration time and iteration numbers, strip domain decomposition

The above strip domain decomposition pattern can also be generalized to multi-
direction decomposition in a simple and straightforward way, e.g. ignoring the
coupling among the different directions, and the optimal Robin parameter is still
taken as the same.
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Numerical experiments 5.2. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term f(x, y, z) = x(1− x) + y(1− y) + z(1− z), q = 0,
subdomain solver: CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The Robin
parameter is determined by (38). The results are showed in Table 11.

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 1.63 0.46 61 13

19 53.51 7.98 124 17

29 484.45 46.94 187 19

Table 11. Three dimensional, 8 subdomains. Comparison of iter-
ation time and iteration numbers. Domain decomposition pattern:
2× 2× 2

6. Conclusions and Remarks

The main point of this paper is that for model problems, the optimal (near
optimal) Robin parameters have been determined as

(39) λopt =
√

q + (d− 1)π2, d = 2, 3

we started out with one dimensional problems, derived out the optimal Robin
parameters by discrete scheme and matrix analysis, then after some reductions
and approximations, the near optimal Robin parameters for continuous problems
are obtained. For large scale model problems, the optimal Robin parameter can
accelerate classical additive Schwarz method by tens of magnitude.

The optimal Robin parameters are near optimal, and DRASM(σopt) has a weak
dependence on the grid size h. For high dimensional problems, the convergence rate
is less sensitive to the optimal Robin parameters. So near optimal and optimal have
little difference in practice. And this is also the main reason that we can take the
same Robin parameter on all the different interior boundaries. Indeed, we can take
the following Robin parameter for our two or three dimensional model problems

(40) λopt =
√

q + 3π2

It comes from the considerations not only the minimum eigenvalue d1 ≈ π2, but
also the second minimum eigenvalue d2 ≈ 4π2. Numerical experiments showed
that this parameter may work somewhat better than (39) in some cases, though
the advantage is negligible.

The key idea different from other papers is that we gave up the efforts to seek
for the real optimal Robin parameters. Instead, we just try to find the ”near
optimal” or good enough Robin parameters. In some cases, the Robin parameters
determined by our approach may be far away from the optimal in some sense, but
the Robin parameters may still work perfect in reality. Because in these situations,
the problem may converge fast for a relative large scope of Robin parameters. It’s
no need to look for the real optimal one.

The optimal Robin parameter is just for our model problems, which is of constant
coefficients and rectangle domain. Note that the optimal Robin parameter λopt can
be thought of as a constant for continuous problems, so in practice it can be applied
to other discrete methods.

We would like to point out that, for variable coefficient problems, our Robin
parameters are still near optimal and work well. We will analyze the convection-
diffusion problems and general variable coefficient problems in other papers.
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MESH OPTIMIZATION BASED ON THE CENTROIDAL
VORONOI TESSELLATION

DESHENG WANG AND QIANG DU

Abstract. The subject of mesh generation and optimization is very important

in many scientific applications. In this paper, we investigate the issue of mesh

optimization via the construction of Centroidal Voronoi Tessellations. Given

some initial Delaunay meshes with only average quality, it is shown that the

CVT based mesh optimization generates a robust, high quality mesh which

does not rely critically on the choice of the initial mesh. In comparison, other

smoothing techniques, such as the classical Laplacian smoothing, tend to be

more sensitive to the initial distributions of vertices. Thus, the CVT based

optimization may be advocated as a prefered choice for mesh optimization and

smoothing.

Key Words. Voronoi tessellations, Delaunay triangulation, optimal tessella-

tions, mesh optimization, mesh smoothing, Centroidal Voronoi tessellation

1. Introduction

The automatic unstructured triangular/tetrahedral mesh generation for complex
geometries is essential to the efficient solution of complex problems in various ap-
plications such as CFD, CEM and oil reservoir simulations. The advancing front
techniques, Octree methods and Voronoi Delaunay-based methods are three well-
studied techniques in unstructured mesh generation[1, 2, 3, 4, 5]. Regardless of the
method chosen, the resulting unstructured mesh often requires further improve-
ment and optimization. For example, much attention has been paid to the almost
regular triangular/tetrahedral meshing used in conjunction with the Yee’s scheme
in computational electro-magnetics and the MAC method in CFD[37, 38, 39]. Such
simulation requirement poses challenges on mesh improvement and optimization,
especially in complicated domains.

Traditionally, the procedures for unstructured mesh optimization generally fall
into the following basic categories[12, 29, 30, 31, 32, 33, 34, 35]: geometric op-
timization, meaning mesh smoothing or vertices relocation without changing the
node connectivity, through strategies such as the Laplacian smoothing and its vari-
ants; topological optimization, consisting of local reconnections such as edges/faces
flipping, while keeping node positions unchanged; and vertex insertion or deletion,
referring to operations such as the sink insertion[42]. These techniques are often
combined and performed in an iterative manner, and they form the core of the clas-
sical optimization methods. More recently, there have also been some studies on the
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use of global optimization approaches, such as the use of Winslow transforms, har-
monic mappings and algebraic or geometric mesh quality measures [29, 30, 31, 32].

In this paper, we focus on the application of Centroidal Voronoi tessellations
(CVTs) to mesh optimizations. The concept of CVT has been used in diverse ap-
plications, such as data and image analysis, communication and sensor network,
clustering, vector quantization, flow control, dimension reduction and resource
allocation[6, 8, 9]. CVTs are defined as special Voronoi tessellations of a region
such that the generating points of the tessellations are also the mass centroids of
the corresponding Voronoi regions with respect to a given density function[6]. In the
application to quality mesh generation, a CVT configuration provides an optimal
points distribution (with respect to a given density), its dual centroidal Voronoi-
Delaunay triangulation (CVDT) provides a high quality triangular (or tetrahedral)
mesh[7, 12]. The optimality can be illustrated through the minimization of an as-
sociated error or cost functional, and it can also be validated by the celebrated
Gersho’s conjecture which predicts the asymptotic equi-partition of the local error.
CVTs can often be constructed through the iterative Lloyd algorithm which moves
the generators to the mesh centers and re-start the Voronoi-Delaunay construction.
Thus, if Lloyd iteration is applied to an initial Delaunay triangular mesh to con-
struct a CVDT or a constrained CVDT of a given domain, the final triangular mesh
becomes a natural optimization of the initial mesh. CVT based mesh optimization
has been successfully applied to 2D/3D isotropic cases [7, 12, 16], and it has also
been generalized to anisotropic and surface mesh generation [10, 15]. A brief survey
can be found in [18].

Some earlier results reported on the CVT based mesh optimization show encour-
aging signs that it may be further developed into a robust procedure for improving
the mesh quality. In this paper, we carry out more numerical studies on the ef-
fectiveness of its applications to the isotropic 2D and 3D mesh optimization and
also make comparisons with other existing algorithms. For two dimensional exam-
ples, the Lloyd iterations with respect to the constant density yield meshes that
are almost regular triangular meshes. The comparisons between the classical opti-
mization techniques that combine mesh smoothing with edges/faces swapping and
the CVT based optimization technique indicate that the classical optimization is
much more sensitive to the initial mesh configuration or vertex distribution, while
the CVT based optimization provide meshes that are largely independent of such
initial conditions. Similarly, for the three dimensional application examples, we
can also see that the CVT based optimization results in meshes that are of higher
quality and are more structured than those obtained by the classical optimization.

The remaining part of the paper is organized as follows. The basic procedures of
the mesh optimization based on the centroidal Voronoi tessellation are recalled in
Section 2. The effects of the mesh improvement based on the CVT and comparisons
with those of classical optimizations are discussed in Section3 and Section4, for 2D
and 3D isotropic meshing respectively. A final conclusion is made in Section5.

2. Mesh Optimization Based on Centroidal Voronoi Tessellation

Recently, the centroidal Voronoi tessellation (CVT) and its wide range of appli-
cations have been studied in [6, 7, 8, 9, 10, 11, 12]. Often, CVT provides optimal
points placement with respect to a given density function. When the density func-
tion is chosen properly with respect to a giving sizing field, its dual structure,
the so-called centroidal Voronoi Delaunay triangulation (CVDT), results in a high-
quality Delaunay mesh[7, 12]. We have applied this technique to mesh generation



102 D. WANG AND Q. DU

and optimization in isotropic 2D and 3D unstructured meshing[7, 12], and also
generalized it to anisotropic and surface quality mesh generation[10, 15]. In the
following, we recall some of the main concepts and properties of the CVT from [6],
and present the algorithm for constructing CVDT for the optimization of any given
Delaunay mesh.

2.1. Basic Concepts and Properties. Given a density function ρ defined on a
region V , the mass centroid z∗ of V is defined by

z∗ =

∫
v
yρ(y)dy∫

v
ρ(y)dy

.

We then have [6]:

Definition 2.1. Given the set of points {zi}k
i=1 in the domain Ω and a positive

density function ρ defined on Ω, a Voronoi tessellation is a centroidal Voronoi tes-
sellation (CVT) if zi = z∗i , i = 1, ..., k, i.e., the generators of the Voronoi regions
Vi, zi, are themselves the mass centroids of those regions. The dual Delaunay trian-
gulation is referred to as the Centroidal Voronoi-Delaunay triangulation (CVDT).

For any tessellation {Vi}k
i=1 of the domain Ω and a set of points {zi}k

i=1 ( in-
dependent of {Vi}k

i=1 ) in Ω, we can define the following cost (or error or energy)
functional:

F({Vi}k
i=1, {zi}k

i=1) =
k∑

i=1

∫
Vi

ρ(x)‖x− zi‖2dx .

The standard CVT’s along with their generators are critical points of this cost
functional. Using the concept of cost functional, we also have the definition of
Constrained CVT (CCVT) and its duality constrained CCVT (CCVDT); see [6,
7, 12] for the details. Also, in [15], the definition of CVT has been generalized to
anisotropic cases with a Riemannian metric and an one-sided distance.

Generally speaking, the practical construction of CVT and CVDT can be clas-
sified into two categories: the probabilistic and the deterministic methods[6, 20,
21, 23, 27, 28]. Here, we apply a deterministic algorithm based on the popu-
lar Lloyd’s method [6, 19, 28] which is an obvious iteration between constructing
Voronoi tessellations and centroids. And it enjoys the property that the functional
F is monotonically decreasing throughout the iteration. A detailed description of
the algorithm will be presented later. For studies on the probabilistic methods as
well as their parallelization, we refer to [11].

2.2. Application to Quality Mesh Generation. The construction of CVDT
(or CCVDT) through the Lloyd iteration can be viewed from a different angle as
a smoothing process of an initial mesh. The CVDT concept provides a good the-
oretical explanation to the smoothing process: by successively moving generators
to the mass centers (of the Voronoi regions), the cost functional is reduced. Here,
smoothing means both node-movement and node reconnection. If the density func-
tion can be chosen according to the sizing function, the cost functional may be
related to the distortion of the mesh shape and quality with respect to the mesh
sizing.Thus, the process of iteratively constructing CVDTs, like the the Lloyd’s
algorithm, contributes the reduction of the global distortion of element shape and
sizing. The final CVDT would have the minimal distortion, and hence shares good
elements quality with respect to the sizing distribution[7, 12] .
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A practically useful property of the CVT and CVDT is the equi-distribution of
cost[6, 7, 12]. It is not difficult to show that in the one dimensional case,∫

Vi

ρ(x)(x− xi)2dx ≈ c ∀i

for some constant c when the number of generators goes to infinity. This means,
asymptotically speaking, the cost is equally distributed in the Voronoi intervals[6].
For the multidimensional CVT, the Gersho conjecture [26] predicted that asymp-
totically, as the number of generators becomes large, all Voronoi regions are approx-
imately congruent to the same basic cell that only depends on the dimension. The
basic cell was shown to be the regular hexagon in two dimensions[24], and the dual
cell is the regular triangle, thus explaining why the CVDTs in 2D tend to provide
high quality meshes. The conjecture remains open for three and higher dimensions
[25, 26] while further numerical substantiation has been provided in [25] to the fact
that the basic cell in 3D is the conjectured BCC lattice polyhedra[16]. The conclu-
sion of the conjecture would lead to the cost equi-distribution principle. Moreover,
for large scale problems involving millions of grid points, the conjecture also would
imply that the unstructured Delaunay mesh may in fact be locally well-structured.
Even though the conjecture is still open in three and higher dimensions, it is nev-
ertheless practically prudent to apply the equi-distribution of the cost functional
based on the conjecture. With the cost functionals being related implicitly to the
distortion of the elements quality[7, 12], the equi-distribution principle can then
be understood as the equi-distribution of the distortion of the elements quality.
In other words, asymptotically, almost regular triangulation/tetrahedralization can
be generated. This idea has been applied to quality isotropic 2D and 3D mesh
generation and optimization[7, 12] where various meshing examples have provided
support to the claim of good element quality. More recently, similar techniques
were also successfully generalized to the anisotropic case and quality surface grid
generation in [10, 15, 17].

We now briefly recall how to construct the CVDT using the Lloyd method as
an natural optimization for the constrained Delaunay meshing of a given domain.
Given a bounded domain and a prescribed element sizing, suppose a constrained
boundary Delaunay triangulation/tetrahedralization of the domain with respect
to the sizing has been generated and stored[12, 13, 14, 16], we then perform the
optimization procedure, or say the Lloyd iteration, as follow:

Algorithm 2.1. (The Lloyd iteration) Given a set of vertices.
1) Construct the Voronoi region for each of the interior points that are allowed to
change their positions, and construct the mass center of the Voronoi region with
a properly defined density function ρ(p) derived from the sizing field H(p). Here,
ρ(p) = C/H(p)2+d, where d is the dimensions, C is a scaling constant (may be
simplified to identity).
2) Insert the computed mass centers into the constrained boundary Delaunay tri-
angulation/tetrahedralization through a constrained Delaunay insertion procedure[5,
12, 35].
3) Compute the difference D =

∑k
i=1 ‖Pi−Pimc‖2, {Pi} is the set of interior points

allowed to change, {Pimc} is the the set of corresponding computed mass center.
4) If D is less than a given tolerance, terminate; otherwise, return to step 1.

Later in the paper, the Lloyd iteration given above is applied to optimize various
constrained isotropic Delaunay mesh examples in 2D and 3D respectively. The mesh
improvement effects are probed with respect to different initial points distribution
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and the final element qualities of the converged CVDTs. Comparisons with the
classical mesh optimization techniques are also made. We note that generalizations
of the Lloyd method as well as its parallel implementations have been provided in
our earlier works[11].

To further demonstrate the effect of the CVT based mesh optimization, the
Laplacian smoothing and its variant (edge length weighted Laplacian smoothing)
together with local Delaunay edges swappings are performed to the same initial
meshes until convergence. The final results are compared which further highlight
the more effectiveness of the CVT-based optimization.

To be more precise, the Laplacian smoothing here takes the following simplest
form: a new position Pnew for an interior vertex Pi is computed by the formula:
Pnew = 1

Ni

∑Ni

j=1 Pj , with Pj being the adjacent vertices, and Ni the number of
adjacent vertices to Pi. It is heuristically simple and often has reasonable con-
vergence rate. It also smoothes local sizing and improves the quality of the worst
element. However, for a general initial mesh, its convergence does not guarantee
the global quality improvement and the element validity (i.e. sometimes, inverted
elements are generated). This is in part due to the fact that it is not related to
a rigorously proved reduction of some global measure. Its improvement to three
dimensional tetrahedral mesh is even more limited, and thus its application should
be more cautiously used[29, 30, 34, 35]. With such limitations, several variants
have been developed to retain the efficiency of Laplacian smoothing while improv-
ing its robustness[4, 29, 30, 34]. Here, we apply the edge-length weighted version
for which the position of Pnew is related to the global sizing field and the optimality
of element quality.

We now briefly recall the general procedure which is based on the edge unit
length computation (for details, see [35, 36]). Let P be an interior free vertex, and
Ki be the set of elements sharing P . Let Pi be the vertices of Ki other than P . Each
point Pi is associated with an optimal point P ∗i such that

−−−→
PiP

∗
i =

−−→
PiP/l(PiP ), for

which l(PiP
∗
i ) = 1 holds. The computation of the edge length l(PiP ) can be found

in [36]. Then, Pnew is defined as the centroid of (P ∗i ).
In the above Laplacian smoothing or it variant, it is not sufficient to only consider

the improvement made through vertices movement, for the new triangulation after
the Laplacian smoothing may no longer be Delaunay. Hence, it is necessary to
add local topological operations such as edges swappings into the improvement of
the mesh so as to keep the Delaunay property of the triangulation. Usually, they
are coupled in an iterative manner. Here, the Laplacian smoothing and the edge-
length weighted version are both coupled with the local edges swapping and these
combined optimizations are called the Delaunay-Laplacian (DL) optimization and
the Weighted Delaunay-Laplacian (WDL) optimization.

3. Optimization effects for 2D test examples

We note that, for a triangle A, its quality can be often defined by Q = 4
√

3|A|/
∑

L2
i

where |A| is the area of the element and Li is the length of the i-th edge. In order
to study the effects of CVT-based optimization for a given 2D mesh, two test exam-
ples are investigated here. One is a quadrilateral domain with uniform sizing and
the other is a washer shaper with nonuniform sizing. The points of the two initial
meshes are all generated using the advancing-front technique[1, 2]. Then, pertur-
bations are performed to the initial points so as to produce triangular meshes with
bad qualities. Such perturbations may be produced with a combination of random
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movements and movements to form clusters. To improve the meshes, Lloyd iter-
ations are performed, leading to converged CVDTs which are almost regular with
respect to the specified sizing and element quality.

Figure 1. A quadrilateral domain and a perfect mesh (top) and
the meshes after perturbations (bottom).

The first example is a quadrilateral domain which can be meshed with all equi-
lateral triangles. The domain and a perfect regular mesh is shown in Fig3. Such as
initial regular mesh is generated in advancing-front method and then the interior
points are repositioned by random perturbations or by perturbations to cluster all
points to the center of the domain. The two meshes after the relocation of vertices
are also shown in Fig3. Obviously the elements are of low qualities after the per-
turbations. To improve these meshes, DL, WDL, and CVT based optimizations are
performed respectively. The final converged meshes are different from each other,
which indicate different optimization effects. The meshes after the DL optimization
are shown in Fig3 and the element qualities of the meshes are presented in Table 1
(RandPert and ClusPert refer to the randomly perturbed and the clustered initial
distributions respectively). Both meshes and the mesh quality data demonstrate
that the DL optimization is very sensitive to the initial vertex distribution and is
it is not effective especially for the mesh with vertices that are highly clustered.
This is due to the fact that the optimization is done with no respect to any global
sizing measure. Thus, most of the initial vertices still remain in the center, see the
right of Fig3. The meshes generated by the WDL optimization are significantly
better with much more improvement. The mesh sizing is in more conformity with
the given uniform sizing, and element quality is also better. The meshes and the
element quality data are given in Fig3 and Table 2. It can be seen that the final
converged or optimized mesh is still somewhat different from the regular initial
mesh, thus showing the sensitivity of WLS to the initial vertex distribution. But
the Lloyd iterations (or the CVT based optimization) for these two different initial
meshes converge to the same mesh: the original regular mesh shown in Fig3 (so
that we do not actually need to provide any quality data), a demonstration that
the CVT based optimization is very effective and it performs better than the other
two classical ones due to their less sensitivity on the initial vertex distribution.

The second example is for meshing a washer-shaped domain shown in Fig 4.
The initial vertices are also generated by the advancing-front method. As in the
above, the interior vertices are perturbed or clustered near the inner circle. The
two distorted meshes are shown in Fig 4. These two meshes are then improved
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Figure 2. Meshes after the DL optimization of example 1 with
randomly perturbed and clustered initial meshes.

Example 1 RandPert ClusPert

average quality 0.986 0.927

minimum quality 0.776 0.391

minimum angle 35.24 13.89

maximum angle 98.95 121.0

Table 1. Mesh quality data after the DL Optimization

Figure 3. Meshes after the WDL optimization of example 1 with
randomly perturbed and clustered initial meshes.

Example 1 RandPert ClusPert

average quality 0.991 0.940

minimum quality 0.871 0.600

minimum angle 41.67 30.0

maximum angle 88.73 120.0

Table 2. Mesh quality data after the WDL Optimization.

through DL, WDL and the CVT based optimization. Concerning the optimization
effects, similar conclusions as in the previous example can be drawn. The meshes
in Fig 5 and elements quality statistics contained in Table 3 further clarify that the
simple DL optimization is not effective for sizing related mesh improvement; while
Fig 6 and Table 4 demonstrate that the WDL optimization is much more effective,
both in terms of the sizing consistency and the element quality. However, observing
the different mesh configurations near the inner circle (see Fig 6), there are still
noticeable differences in the two converged meshes after the WDL optimization.
The meshes shown in Fig 7 after the CVT based optimizations and their mesh
quality data given in Table 5 once again illustrate that the Lloyd iteration can lead
to almost regular triangular meshes with the values of average quality up to 0.99.
The converged results are insensitive to the given initial vertex distribution.
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Figure 4. Perturbed initial meshes for example 2.

Figure 5. Meshes after the DL Optimization of example 2.

Example 2 RandPert ClusPert

average quality 0.978 0.926

minimum quality 0.798 0.328

minimum angle 34.98 11.3

maximum angle 97.35 120.1

Table 3. Mesh quality data after the DL Optimization

Example 2 RandPert ClusPert

average quality 0.973 0.958

minimum quality 0.751 0.447

minimum angle 34.1 20.3

maximum angle 103.6 134.9

Table 4. Mesh quality data after the WDL Optimization.

Example 2 RandPert ClusPert

average quality 0.989 0.991

minimum quality 0.861 0.854

minimum angle 40.1 41.1

maximum angle 88.4 91.3

Table 5. Mesh quality data after CVT-based optimization
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Figure 6. Meshes after the WDL Optimization of example 2.

Figure 7. Meshes after CVT based optimization of example 2.

4. Optimization effects in 3D applications

We now present two application examples in 3D to investigate the effect of the
CVT based optimization in more practical situations. One example is a cube con-
taining an interior sphere, a case often considered in simple external flow field
simulations. The other is the femur reconstructed from CT scans or cross sectional
contours and used for a biomedical simulation such as the fracture prediction and
simulation[40, 41]. In the above simulation examples, the generated mesh qual-
ity is often closely related to the computational efficiency, especially when explicit
marching schemes are used, and hence it is necessary to construct quality tetrahe-
dral meshes in such applications [40, 41].

For both examples, initial tetrahedral meshes are constructed by the classical
constrained Delaunay tetrahedralization method which includes surface mesh gen-
eration, initial unconstrained Delaunay 3D triangulation of boundary points, con-
strained boundary recovery, interior refinement and mesh optimization. Here, for
simplicity, interior vertices are generated along interior edges by the method of
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[35]. For mesh optimization, two methods are applied. One is the classical Com-
bined Optimization which includes optimization based on the Laplacian smoothing,
edges/faces flipping and the iterations between them [2, 4, 29, 33, 34].In each itera-
tion, three to five Laplacian smoothings are performed and complex edges or faces
flippings are conducted to improve the minimal dihedral angles. The other method
is the CVT based optimization which has been shown to be a successful approach
for generating various high quality 3D meshing examples in [12], and more recently,
for probing the qualities of optimal CVTs and the Gersho conjecture in three di-
mensions in [16]. Also, CVT has been applied together with simple swappings to
remove slivers[12, 16].

For the example with a cube containing a sphere as shown in Fig 8, the cutting
views of its two optimized meshes are shown in Fig 9, and the element quality
data of the initial mesh, the mesh after combined optimization, and the mesh after
the CVT based optimization with or without simple swappings, are given in Table
6. Here, element quality formulae follows that in [12, 16]. The bad elements or
the good elements are defined as those whose quality number is less than 0.3 or
larger than 0.5 respectively. From the cutting view, it can be seen that the CVT
based optimization generates more structured mesh than the counterpart obtained
via the combined optimization. From the mesh quality data in Table6, first, it
indicates that the combined optimization is very effective in removing slivers or
bad-quality tetrahedra (bad elements), thus making the technique very popular
among commercial meshing softwares[4, 29, 35]. In comparison, nevertheless, the
CVT based optimization can produce a mesh CV DT with an average element
quality about 0.81, better than the value 0.71 in the mesh obtained by the classical
combined optimization. Moreover, the CVDT has a larger number of tetrahedra
whose quality are closer to that of the regular one. Also, it can be found that there
is a small number of sliver-like elements (bad elements) in the CVDT and they
are neighboring the boundary of the domain as similarly reported in [12, 16]. But
just like in [12, 16], using simple edge or face swappings (SWAP ), these very bad
elements can be all deleted as demonstrated by the quality statistics of the mesh
produced with CV DT + SWAP . The final mesh is superior to the mesh after the
combined optimization both in terms of the minimum element quality (relating to
slivers), the average element quality (the global quality), and the more structured
configuration.

The surface mesh, the cutting view of tetrahedral mesh, and the quality statistics
of the meshes of the second example, i.e., the femur are presented in Figures 10 and
11, and Table 7 respectively. Both the mesh structure and the element quality data
show similarity to those of the first example and it further demonstrate that the
CVT based optimization is more effective than the classical combined optimization.
And in the dynamic analysis of the fracture prediction of the femur, it is found
that the generated CVDT results in larger time steps than that from the classical
optimization and this significantly saves simulation time [40, 41].

5. Conclusions and future work

In our present study, numerical investigations are conducted in both 2D and 3D
on the effect of CVT based optimizations. It can be seen that CVT based optimiza-
tions, or say, the convergence of Lloyd iterations, is much less sensitive to the initial
vertex distribution than the classical and weighted Laplacian based optimization.
The CVT based optimization is clearly more effective that the classical counter-
parts. Also, the converged mesh is more geometrically structured, largely due to
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Init CombOpt CVDT CVDT+SWAP

number of elements 26060 24364 23880 23779

0.7 < Q < 1.0 9882 14579 19814 21475

0.5 < Q < 0.7 12212 9183 3734 2090

0.3 < Q < 0.5 2990 601 201 214

0.0 < Q < 0.3 976 1 131 0.0

Qmin 0.0024 0.243 0.09 0.352

bad elements (%) 3.74 0.5 0.8 0.0

good elements(%) 84.7 97.5 98.6 99.1

average quality 0.641 0.719 0.803 0.810

Table 6. Elements quality statistics of optimized meshes of a cube
containing a sphere

Init CombOpt CVDT CVDT+SWAP

number of elements 31511 29441 25808 25757

0.7 < Q < 1.0 12140 16941 20602 22347

0.5 < Q < 0.7 14346 11577 4589 3101

0.3 < Q < 0.5 3774 919 399 309

0.0 < Q < 0.3 1251 4 218 0

Qmin 0.007 0.267 0.084 0.311

bad elements (%) 3.97 0.01 0.8 0.0

good elements(%) 84.0 96.8 97.6 98.8

average quality 0.639 0.713 0.791 0.803

Table 7. Elements quality statistics of optimized meshes of a femur

Figure 8. The frame line (left) and the surface mesh (right) of a
cube containing a sphere

the nice properties of the CVDT and due to the accompanied Gersho conjecture
which states that asymptotically the converged CVDT is a regular triangular mesh
in two space dimension and a BCC lattice based Delaunay mesh in the three di-
mensional space [24, 25, 26]. Such a conjecture has been proved in two dimension
and more recently, its three dimensional version has been numerically substanti-
ated via abundant numerical examples [16]. Hence, one may expect that the final
converged CVDT mesh is more structured locally and is of higher quality than that
constructed using the classical optimization method.
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Figure 9. The cutting view of meshes after the Combined Opti-
mization (left) and the CVT based Optimization (right)

Figure 10. The surface mesh of a femur

Figure 11. The cutting view of meshes after the Combined Op-
timization(left) and the CVT based Optimization(right)

We note that in more recent years, there have also been many studies on the
global optimization methods [29, 30, 31, 32]. We will leave a more careful compar-
ison with such global methods to future works.

Naturally, let us point out that in order for the CVT based optimization to be
successfully applied to large scale quality meshing, especially in the applications
areas such as oil reservoir simulations, and wave scattering simulations for three
dimensional CEM, the Lloyd iteration needs to accelerated in order to make the
CVT based optimization scheme more competitive both quality wise and efficiency
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wise. The acceleration can be realized through the localization of the Delaunay
triangulation or through the use of Multigrid type methods. Such initiatives are
under current investigations [20, 21]. Connections between meshes and algebraic
solvers and their co-adaptations are also useful issues to be examined further [22].
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Abstract. By simply transforming the quadratic matrix equation into an

equivalent fixed-point equation, we construct a successive approximation method

and a Newton’s method based on this fixed-point equation. Under suitable con-

ditions, we prove the local convergence of these two methods, as well as the

linear convergence speed of the successive approximation method and the qua-

dratic convergence speed of the Newton’s method. Numerical results show that

these new methods are accurate and effective when they are used to solve the

quadratic matrix equation.

Key Words. Quadratic matrix equation, iteration method, convergence prop-

erty.

1. Introduction

The quadratic matrix equation (QME)

Q(X) ≡ X2 −BX − C = 0, B, C ∈ Cn×n(1)

occurs in a variety of applications. For example, it may arise in the quadratic
eigenvalue problem[3, 4, 6, 8, 12, 13]

Q(λ)x ≡ λ2x− λBx− Cx = 0, B,C ∈ Cn×n,

or the noisy Wiener-Hopf problems for Markov chains[5, 7, 10, 11]. Evidently, some
Riccati equations are QMEs, and vice versa, and theory of Riccati equations and
numerical methods for their solution are well developed[2, 9]; however, these two
classes of equations require different techniques for analysis and solution in general.
See also [1].

Recently, Higham and Kim[6] studied Newton’s methods with and without exact
line searches for solving the QME(1). In the Newton’s method, the quadratic matrix
function Q(X) is successively linearized at each of the current iterate X(k) which
is required to be located in a neighborhood of a solution X? of the QME(1), and
the next iterate X(k+1) is obtained by solving the corresponding Newton equation
which is a special case of the generalized Sylvester equation. And in the Newton’s
method with line search, the current Newton direction E(k) is used as a search
direction and the next iterate

X(k+1) = X(k) + t(k)E(k)
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is defined by exactly minimizing the objective function

p(t) = ‖Q(X(k) + t(k)E(k))‖2F
along this direction, i.e.,

t(k) = argmin0<t<2p(t),
where ‖ · ‖F denotes the Frobenius norm of a matrix. It was proved in [6] that the
latter has global convergence property.

In particular, when B is a diagonal matrix and C is an M -matrix, Guo[5] stud-
ied the existence and uniqueness of M -matrix solutions and iterative method for
finding the desired M -matrix solution of the QME(1) by transforming it into a
special nonsymmetric algebraic Riccati equation (ARE), and proved the monotone
convergence of the obtained iterative methods.

In this paper, for general matrices B, C ∈ Cn×n, we first simply transform the
QME(1) into an equivalent fixed-point equation, and then based on it we construct a
successive approximation method and a Newton’s method for solving the quadratic
matrix equation (1). Under suitable conditions, we prove the local convergence of
these two methods, as well as the linear convergence speed of the successive ap-
proximation method and the quadratic convergence speed of the Newton’s method.
Numerical results show that these new methods are more accurate and effective
than the known ones in [6, 5].

Without loss of generality, throughout this paper we will assume that the con-
stant matrix term C ∈ Cn×n in the QME(1) is nonsingular. In the case that the
matrix C is singular, we can shift the variable and make the constant matrix term
in the equivalently transformed quadratic matrix equation be nonsingular. More
specifically, by letting Y = σI −X we can rewrite the QME(1) as

Y 2 − (2σI −B)Y + (σ2I − σB − C) = 0,

where σ is a real constant. We can now choose the parameter σ such that the
matrix (σ2I − σB − C) is nonsingular. See [5].

2. Two iteration methods

If X? ∈ Cn×n is a solution of the QME(1), i.e.,

Q(X?) = X2
? −BX? − C = 0,

then we have
(X? −B)X? = C.

It then follows that both X? and (X? − B) are nonsingular matrices, provided C
is a nonsingular matrix. In this case, we can construct the following fixed-point
equation for the QME(1):

X = F(X), where F(X) = (X −B)−1C.(2)

Therefore, X? ∈ Cn×n is a solution of the QME(1) if and only if it is a fixed-point
of the matrix operator F(X), or equivalently, a zero point of the matrix equation

X −F(X) = 0.

Furthermore, by denoting

G(X) = X −F(X)

and using the first-order approximation to G(X), we have

G(X + E) = G(X) + J (X,E) +O(E2),
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where
J (X, E) = E + (X −B)−1E(X −B)−1C.

This straightforwardly results in the following fixed-point equation for the QME(1):

X = N (X) with N (X) = X + E,(3)

where E satisfies

J (X, E) = −G(X).(4)

We call N (X) the Newton operator and (4) the Newton equation of the nonlinear
matrix function G(X). Evidently, we also have the fact that X? ∈ Cn×n is a solution
of the QME(1) if and only if it is a fixed-point of the matrix operator N (X).

Based on (2) and (3)-(4), we can immediately define the following two iteration
methods, called as the successive approximation method and the Newton’s method,
respectively, for solving the QME(1) when the matrix C ∈ Cn×n is nonsingular.

Method 2.1. (The Successive Approximation Method).
Given an initial guess X(0) ∈ Cn×n, for k = 0, 1, 2, . . . until {X(k)} convergence,
compute

X(k+1) = (X(k) −B)−1C.

Method 2.2. (The Newton’s Method).
Given an initial guess X(0) ∈ Cn×n, for k = 0, 1, 2, . . . until {X(k)} convergence,
compute

X(k+1) = X(k) + E(k),

where E(k) is a solution of the ARE

(X(k) −B)E(k) + E(k)N (k) = (X(k) −B)(N (k) −X(k)),(5)

with

N (k) = (X(k) −B)−1C.(6)

These two methods, each has its own advantages and disadvantages. The succes-
sive approximation method is very simple and economical because at each iteration
step it only needs to solve the systems of linear equations

(X(k) −B)N (k) = C

with respect to N (k); however, it only has linear convergence speed. And the
Newton’s method has quadratic convergence speed, however, it is comparatively
complicated and costly because at each iteration step it needs to solve a nonlinear
ARE(5), besides computing N (k) according to (6).

3. Local convergence theorems

In this section, we will establish local convergence theorems for both succes-
sive approximation method and Newton’s method for solving the quadratic matrix
equation (1). We first prove the local convergence of the successive approximation
method.

Theorem 3.1. Let C ∈ Cn×n be a nonsingular matrix and X? ∈ Cn×n be a solution
of the QME(1) such that

‖C‖ ≤ c and ‖(X? −B)−1‖ ≤ β,
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where c and β are two positive constants. Assume that X(0) ∈ Cn×n and there
exists a δ > 0 such that ‖X(0) −X?‖ ≤ δ. Then, if

0 < β <

√
δ2 + 4c− δ

2c
,

the iterative sequence {X(k)} generated by the successive approximation method with
X(0) as the initial guess satisfies

‖X(k+1) −X?‖ ≤ γ‖X(k) −X?‖, k = 0, 1, 2, . . . ,

where

γ =
β2c

1− βδ
∈ (0, 1).

Proof. From the definition of the sequence {X(k)} we obtain

X(k+1) −X? = (X(k) −B)−1C − (X? −B)−1C

= −(X(k) −B)−1(X(k) −X?)(X? −B)−1C.(7)

In addition, we easily have the equality

(X(k) −B)− (X? −B) = X(k) −X?.(8)

Now, the proof can be proceeded by induction.
When k = 0, by (8) and the perturbation lemma in matrix analysis we can

obtain

‖(X(0) −B)−1‖ ≤ ‖(X? −B)−1‖
1− ‖(X? −B)−1‖‖X(0) −X?‖

≤ β

1− βδ
.

It then follows from (7) that

‖X(1) −X?‖ ≤ ‖(X(0) −B)−1‖‖(X? −B)−1‖‖C‖‖X(0) −X?‖

≤ β2c

1− βδ
‖X(0) −X?‖

:= γ‖X(0) −X?‖.
That is to say, the conclusion holds for k = 0. Moreover, the above estimate
immediately yields that

‖X(1) −X?‖ ≤ δ.

Now, assume that
‖X(k) −X?‖ ≤ γ‖X(k−1) −X?‖.

Then it holds that
‖X(k) −X?‖ ≤ δ.

For k, again by (8) and the perturbation lemma in matrix analysis we can obtain

‖(X(k) −B)−1‖ ≤ ‖(X? −B)−1‖
1− ‖(X? −B)−1‖‖X(k) −X?‖

≤ β

1− βδ
.

It then follows from (7) again that

‖X(k+1) −X?‖ ≤ ‖(X(k) −B)−1‖‖(X? −B)−1‖‖C‖‖X(k) −X?‖

≤ β2c

1− βδ
‖X(k) −X?‖

:= γ‖X(k) −X?‖.
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That is to say, the conclusion holds for k, too. Moreover, the above estimate
immediately yields that

‖X(k+1) −X?‖ ≤ δ.

Therefore, by the induction principle, we have proved the conclusion.
Theorem 3.1 shows that the iterative sequence {X(k)} generated by the successive

approximation method converges linearly to a solution X? of the QME(1), provided
the initial guess {X(0)} is sufficiently close to X?.

We now turn to demonstrate the local convergence of the Newton’s method for
solving the QME(1). To this end, we first prove the following properties of the
mappings G(X) with respect to X and J (X,E) with respect to E.

Lemma 3.1. Let X? ∈ Cn×n be a solution of the QME(1) and X be in a neigh-
borhood of X?. The following properties hold for the mappings G(X) and J (X,E):

(i) J (X, E) is a linear mapping with respect to E;
(ii) G(X) is a smooth mapping and it holds that

‖G(X + E)− G(X)− J (X, E)‖ ≤ 1
2

(
1 + ‖(X −B)−1‖2‖C‖) ‖E‖2.

Proof. The linearity of the mapping J (X,E) with respect to E is evident. We
now verify the validity of (ii). Obviously, G(X) is a smooth mapping. By making
use of the mean-value theorem we obtain

G(X + E)− G(X) =
∫ 1

0

J (X, tE) dt.

It then follows that

‖G(X + E)− G(X)− J (X, E)‖ =
∥∥∥∥
∫ 1

0

J (X, tE) dt− J (X,E)
∥∥∥∥

≤
∫ 1

0

‖J (X, tE)− J (X, E)‖ dt

=
∫ 1

0

‖J (X, (1− t)E)‖ dt

=
∫ 1

0

‖tE + (X −B)−1 · tE · (X −B)−1C‖ dt

≤ 1
2

(
1 + ‖(X −B)−1‖2‖C‖) ‖E‖2,

here we have used the linearity of the mapping J (X, E) with respect to E.
Now, we are ready to establish the local convergence theorem of the Newton’s

method for the QME(1).

Theorem 3.2. Let C ∈ Cn×n be a nonsingular matrix and X? ∈ Cn×n be a solution
of the QME(1) such that

‖C‖ ≤ c and ‖(X? −B)−1‖ ≤ β,

where c and β are two positive constants. Assume that X(0) ∈ Cn×n and there
exists a δ > 0 such that ‖X(0) −X?‖ ≤ δ. Then, if

βδ < 1 and
(

1 +
(1− βδ)2

β2c

)
δ < 2,
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the iterative sequence {X(k)} generated by the Newton’s method with X(0) as the
initial guess satisfies

‖X(k+1) −X?‖ ≤ γ‖X(k) −X?‖2, k = 0, 1, 2, . . . ,

where

γ =
1
2

(
1 +

(1− βδ)2

β2c

)
.

Proof. For the Newton sequence {X(k)} we have

X(k+1) −X? = X(k) −X? + E(k).

By the linearity of the mapping J (X, E) with respect to E and the definition of
the Newton sequence {X(k)}, we can obtain

J (X(k), X(k+1) −X?) = J (X(k), X(k) −X?) + J (X(k), E(k))

= J (X(k), X(k) −X?)− G(X(k))

= G(X?)− G(X(k))− J (X(k), X? −X(k)).

It then follows from the estimate

‖J (X(k), X(k+1) −X?)‖
=

∥∥∥(X(k+1) −X?) + (X(k) −B)−1(X(k+1) −X?)(X(k) −B)−1C
∥∥∥

≥
∣∣∣‖X(k+1) −X?‖ − ‖(X(k) −B)−1(X(k+1) −X?)(X(k) −B)−1C‖

∣∣∣

≥
∣∣∣1− ‖(X(k) −B)−1‖2‖C‖

∣∣∣ ‖X(k+1) −X?‖
and Lemma 3.1 (ii) we straightforwardly get

‖X(k+1) −X?‖ ≤ 1
2

1 + ‖(X(k) −B)−1‖2‖C‖
|1− ‖(X(k) −B)−1‖2‖C‖|‖X

(k) −X?‖2.(9)

Analogously to the proof of Theorem 3.1 we have

‖(X(k) −B)−1‖ ≤ ‖(X? −B)−1‖
1− ‖(X? −B)−1‖‖X(k) −X?‖

.(10)

Under the assumptions of the theorem, by making use of the estimates (10) and
(9) we know that

‖(X(0) −B)−1‖ ≤ β

1− βδ
and

‖X(1) −X?‖ ≤ 1
2

1 + ‖(X(0) −B)−1‖2‖C‖
|1− ‖(X(0) −B)−1‖2‖C‖|‖X

(0) −X?‖2

≤ 1
2

1 + β2c/(1− βδ)2

β2c/(1− βδ)2
‖X(0) −X?‖2

=
1
2

(
1 +

(1− βδ)2

β2c

)
‖X(0) −X?‖2

= γ‖X(0) −X?‖2.
That is to say, the conclusion what we are proving holds for k = 0.

Assume this conclusion be true for some positive integer k − 1. Then we have

‖X(k) −X?‖ ≤ γ‖X(k−1) −X?‖2 ≤ γδ‖X(k−1) −X?‖ ≤ ‖X(k−1) −X?‖
≤ . . . ≤ ‖X(0) −X?‖ ≤ δ.



120 Z. BAI, X. GUO AND J. YIN

By making use of the estimates (10) and (9) again we can obtain

‖(X(k) −B)−1‖ ≤ β

1− βδ

and

‖X(k+1) −X?‖ ≤ 1
2

1 + ‖(X(k) −B)−1‖2‖C‖
|1− ‖(X(k) −B)−1‖2‖C‖|‖X

(k) −X?‖2

≤ 1
2

1 + β2c/(1− βδ)2

β2c/(1− βδ)2
‖X(k) −X?‖2

=
1
2

(
1 +

(1− βδ)2

β2c

)
‖X(k) −X?‖2

= γ‖X(k) −X?‖2.
That is to say, the conclusion what we are proving holds for k, too. By induction
principle, we have completed our proof.

4. Numerical results

In the study of noisy Wiener-Hopf problems for Markov chain, we need to find,
for a given diagonal matrix V and a given positive number ε, specific Q-matrices 1

Γ± satisfying
1
2
ε2Z2 ∓ V Z + Q = 0,(11)

respectively. Here, V has positive and negative diagonal elements2 and ε is the level
of noise from Brownian motion independent of the Markov chain. The solutions Γ±
will be generators of two Markov chains. See [7, 10, 11] for more details. From the
discussion in [5] we know that one of the equations in (11) does not necessarily have
a unique Q-matrix solution, and Γ+ (resp. Γ−) is the unique singular Q-matrix
solution when the “−” equation (resp. “+” equation) in (11) has no nonsingular
Q-matrix solutions. Moreover, Γ+ (resp. Γ−) is the unique nonsingular Q-matrix
solution when the “−” equation (resp. “+” equation) in (11) has singular and
nonsingular Q-matrix solutions. If a Markov chain has a singular (nonsingular)
Q-matrix as a generator, then the chain will live forever (die out).

We will apply our new successive approximation method and Newton’s method
to find the matrices Γ±. As in [5] we will also limit our attention to the more
difficult case that Q is an irreducible singular Q-matrix. This is the case of primary
interest in the study of noisy Wiener-Hopf problems. It means that the original
Markov chain will live forever.

In the quadratic matrix equations in (11) we may assume ε =
√

2 as we can
always divide the equations in (11) by ε2

2 . Thus, we only need to consider the
quadratic matrix equations

Z2 − V Z + Q = 0(12)

and

Z2 + V Z + Q = 0.(13)

To find the solution Γ+ of (12), we let X := Z, B := V and C := −Q. The solution
Γ− of (13) can be found by taking X := Z, B := −V and C := −Q.

1A Q-matrix has nonnegative off-diagonal elements and nonpositive row sums; Q is the gener-
ator of an irreducible continuous-time finite Markov chain.

2This is essentially where the name Wiener-Hopf comes from.
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Example 4.1. [5] We consider the quadratic matrix equations (12) and (13) with

V =
(

aI10 0
0 bI10

)
, Q =




−1 1

−1
. . .
. . . . . .

. . . 1
1 −1



∈ R20×20,

where a and b are parameters to be specified. We consider four cases:
(a) a = 1, b = −1, so Γ± are both singular Q-matrices;
(b) a = 2, b = −1, so Γ+ (Γ−) is a singular (nonsingular) Q-matrices;
(c) a = 2, b = −0.1, so Γ+ (Γ−) is a singular (nonsingular) Q-matrices;
(d) a = 1, b = −3, so Γ+ (Γ−) is a nonsingular (singular) Q-matrices.

For each case, the approximations Γ̃± for Γ± are found by the successive approx-
imation method (SA) and the Newton’s method (NM) presented in this paper, the
fixed-point iteration (FP) and the Newton’s method (NM0) presented in [5]. We
list the numerical results in Tables 1 and 2.

All results are obtained by using MATLAB 6.5 on a personal computer (Pentium
IV/2.4G), with machine precision 2.2×10−16. In the tables, we use “IT” to denote
the number of iteration steps, “RES” the errors defined by

RES := ‖(Γ̃±)2 ∓ V Γ̃± + Q‖∞.

The stopping criterion for each iteration method is ‖X(k) − X(k−1)‖∞ < 10−5,
where X(k) is the current, say the k-th, iteration value.

From Tables 1 and 2, we see that the successive approximation method is better
than the fixed-point iteration, and the Newton’s method in this paper outperforms
the Newton’s method in [5], in the sense of iteration step and approximation accu-
racy. Therefore, our new methods are more accurate and effective than the known
ones in [6, 5], correspondingly.

Table 1. Numerical Results for the Quadratic Matrix Equation (12)

Method IT RES
(a) (b) (c) (d) (a) (b) (c) (d)

SA 43 57 26 104 1.3E-5 1.1E-5 5.0E-6 2.6E-5
FP 62 72 40 116 1.4E-5 1.6E-5 1.1E-5 3.2E-5
NW 5 5 4 5 1.1E-15 1.6E-15 3.7E-13 5.6E-15
NW0 6 6 5 6 2.6E-14 3.5E-14 1.0E-13 5.3E-14

Table 2. Numerical Results for the Quadratic Matrix Equation (13)

Method IT RES
(a) (b) (c) (d) (a) (b) (c) (d)

SA 43 67 43 66 1.3E-5 1.9E-5 1.3E-5 1.4E-5
FP 62 84 54 74 1.4E-5 2.3E-5 2.1E-5 1.5E-5
NW 5 5 5 4 1.7E-15 3.5E-15 3.1E-15 1.2E-13
NW0 6 6 6 5 2.0E-14 3.3E-14 2.6E-14 8.0E-14
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PRECONDITIONED HYBRID CONJUGATE GRADIENT
ALGORITHM FOR P-LAPLACIAN

GUANGMING ZHOU, YUNQING HUANG* AND CHUNSHENG FENG

Abstract. In this paper, a hybrid conjugate gradient algorithm with weighted

preconditioner is proposed. The algorithm can efficiently solve the minimiz-

ing problem of general function deriving from finite element discretization of

the p-Laplacian. The algorithm is efficient, and its convergence rate is mesh-

independent. Numerical experiments show that the hybrid conjugate gradient

direction of the algorithm is superior to the steepest descent one when p is

large.

Key Words. p-Laplacian, finite element approximation, hybrid conjugate

gradient algorithm, numerical experiments

1. Introduction

Let Ω be a bounded open subset of R2 with a Lipschitz boundary ∂Ω. The
p-Laplacian with Dirichlet data is the following equation (1.1):

−div(| 5 u|p−2 5 u) = f, in Ω
u = 0, on ∂Ω

where 1 < p < ∞, f ∈ L2(Ω), and | · |2 = (·, ·)R2 .
When p = 2, the equation (1.1) becomes a linear Laplacian equation. The

equation (1.1) occurs in many mathematical models of physical process, for in-
stances, glaciology, nonlinear diffusion and filtration(see Philip [21]), power-law
materials(Atkinson and Champion [2]), and quasi-Newtonian flows(Atkinson and
Jones [3]). The equation (1.1) is viewed as one of the typical examples of a large
class of nonlinear problems. It contains most of the essential difficulties in studies
of finite element approximations for this class of degenerate nonlinear systems. For
this class of systems, many existing techniques in the finite element method, for
example, the linearization method and deformation procedure, do not seem to work
well.

Finite element approximations of p-Laplacian have been extensively studied in
the literature, for example, in [10, 1, 12, 7, 8, 20]. In particular, the quasi-norm
approach has proved quite successful in deriving sharp a priori and a posteriori error
bounds for the finite element approximation of the degenerate systems. A priori
and a posteriori error bounds for p-Laplacian are proposed by using quasi-norm
approach in the paper [14, 15, 16].
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Solving the equation (1.1) is equivalent to solve the following minimization prob-
lem:

min
v∈V

J(v) (1.2)

where V = W 1,p
0 (Ω),1 < p < ∞,and

J(v) =
1
p

∫

Ω

| 5 v|p −
∫

Ω

fv (1.3)

Huang, Li and Liu[13] proposed a steepest descent algorithm with weighted pre-
conditioner which is solved by an algbric multigrid method. The decent algorithm
has excellent computing efficiency for both p large or relatively small, for example,
p = 1000 and p = 1.5, which are obviously superior to past methods. Tai and
Xu[22] proposed a pure multigrid algorithm for solving the nonlinear problems in-
cluding the p-Laplacian. Some theoretical and numerical analysis show the good
efficiency.

It is well known that the conjugate gradients or their hybrid algorithms are more
efficient than the steepest descent algorithm when solving nonlinear programming.
Based on this thought, we proposed a hybrid conjugate gradient algorithm with
weighted preconditioner in this paper. The new algorithm is more efficient than
the descent one in the paper [13] for p-Laplacian for large p. The paper is organized
as follows. Section 2 is devoted to mathematical preliminaries. In Section 3, we
propose the hybrid conjugate gradient algorithm with weighted preconditioner. In
Section 4, we present numerical results in order to compare and evaluate the per-
formance of the new method and the steepest descent algorithm, and finally end,
in Section 5, with some conclusions and discussions.

2. Preliminaries

Obviously, the functional J(v) decided by (1.3) is strictly convex for 1 < p < ∞.
Furthermore, the equation (1.2) has a unique solution. It is well known that solving
the equation (1.2) is equivalent to the following nonlinear PDE-the p-Laplacian:

(WP ) a(u, v) =
∫

Ω

| 5 u|p−2 5 u5 v =
∫

Ω

fv, ∀v ∈ V. (2.1)

A direct calculation yields

J ′(u)(v) =
∫

Ω

| 5 u|p−2 5 u5 v −
∫

Ω

fv. (2.2)

One can refer to the paper [9] for other conclusions of J ′(u)(v) and J ′′(u)(v, w). We
now introduce the finite element spaces. Let Th be a regular triangulation of Ωh,
which is composed of disjoint open regular triangles Ki, that is , Ω̄h =

⋃
Kk∈T h K̄i,

where h = maxK∈T h hk, and hk denotes the diameter of the element K in Th.
When i 6= j, K̄i

⋂
K̄j is void, or only one common vertex, or a whole edge.

Because of the limited higher order regularity for the solution of the p-Laplacian
(see [2, 3, 22]), we shall only discuss the continuous piecewise linear element in this
paper. Associated with Th is a finite dimensional subspace V h of C0(Ω̄h), such
that χ|K ∈ P1 for allχ ∈ V h and K ∈ Th, where P1 is the linear function space.
Let

V h
0 = {χ ∈ V h : χ(xk) = 0, for all xk ∈ ∂Ωh}

Then the finite element approximation of (WP ) is as follows (WP )h: Find un ∈ V h
0

such that
(WP )h

∫

Ωh

| 5 un|p−2 5 un 5 vn =
∫

Ωh

fvh (2.3)
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According to previous discussion,we know that (WP )h has a unique solution uh.
Also (WP )h is equivalent to the following minimization problem:

min
vh∈V h

0

J(vh). (2.4)

3. Hybrid conjugate gradient algorithm with weighted preconditioner

In this section,we formulate a hybrid conjugate gradient method with weighted
preconditioner for the p-Laplacian. Let vh, w ∈ V h

0 . The steepest descent direction
w of J(vh) is defined such that

J ′(vh)(w) = −‖J ′(vh)‖∗‖w‖. (3.1)

For convenience, when computing descent direction w, we shall formulate our algo-
rithm using the H1

0 (Ω) norm, which is the same as the norm in [13]. Convergence
rate of our algorithm is mesh independent.

Let w be the exact solution of (1.2), and un ∈ V h
0 be the current approxima-

tion.General formula finding next approximation un+1 is

un+1 = un + αndn, (3.2)

where αn is step length on search direction dn. αn is determined by a line search

J(un + αndn) = min
α≥0

J(un + αdn) (3.3)

Search direction dn can be computed by using many different ways. For all v ∈ V h
0 ,

if dn is equivalent to solutions of the following two PDE:∫

Ω

5wn 5 v = −J ′(un)(v) = −
∫

Ω

| 5 un|p−2 5 un 5 v +
∫

Ω

fv, (3.4)

∫

Ω

(ε+|5un|p−2)5wn5v = −J
′
(un)(v) = −

∫

Ω

|5un|p−25un5v+
∫

Ω

fv, (3.5)

respectively, corresponding algorithms are called preconditioned steepest descent
one and weighted preconditioned steepest descent one, respectively. In the paper
[13], it is proved that wn determined by (3.4) is the steepest descent direction
in H1

0 (Ω) space, and the direction wn determined by (3.5) is the steepest descent
direction with V ↪→ H1

0 (Ω) equipped a weighted norm ‖·‖2ε,un
=

∫
Ω
(ε+|∇un|p−2)|∇·

|2.
When n > 0, let

βn = max{0, min{βFR
n , βPRP

n }}, (3.6)
α̃n = min

α≥0
J(un + α(wn + βndn−1)). (3.7)

βFR
n , βPRP

n in (3.6) are computed by the following two formulae:

βFR
n =

‖wn‖2
‖wn−1‖2 ,

βPRP
n =

(wn − wn−1)T wn

‖wn−1‖2 ,

respectively. In this paper, search direction dn shall be determined by the following
rule(R):

If n = 0, then dn = wn;
If n > 0, then dn = wn when α̃n = 0; or

dn = wn + βndn−1. (3.8)
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In a way, using the above rule (R), instead of βn = βPRP
n or βn = max{0, βPRP

n },
is reasonable. There are two reasons. Firstly, if one computes βn according to
βn = βPRP

n ,instead of (3.6),then dn in (3.8) is likely close to −dn−1 when βPRP
n

is a very large negative number. Obviously, −dn−1 is not a good search direction.
Secondly, βFR

k has some nice convergence. The details can be found in [11].
Because of that dn determined by the rule(R) may be the steepest descent di-

rection, or FR-conjugate gradient one, or PRP-conjugate gradient one, we call the
following algorithm hybrid conjugate gradient algorithm with weighted precondi-
tioner:

Algorithm 1 Let n := 0. For a given initial value u0 and two small positive
constants ε1, ε2, do the following iterations:

Step 1 For all v ∈ V h
0 , solving the equation (3.5);

Step 2 If ‖wn‖ε1,un
/‖w0‖ε1,u0 < ε2, stop;

Step 3 Computing search direction dn according to the rule (R);
Step 4 Finding step length αn. If α̃n 6= 0, then αn = α̃n; or computing αn,

such that J(un + αnwn) = minα≥0 J(un + αwn);
Step 5 Updating iterative point. un := un + αnwn, n := n + 1; return Step 1.

The direction wn in Step 1 can be solved by fast AMG solvers.

4. Numerical experiments

We test Algorithm 1. The program language is Fortran 90. We used piecewise
linear triangle finite element approximation in all our computations, and always
used zero as an initial solution in all the iterations. The descent direction wn is
computed by an AMG solver. The stopping rule for the AMG iterations is to reduce
the relative defect to 10−8 and the maximin V-Cycles in 50. The stopping criterion
is ‖wn‖ε1,un/‖w0‖ε1,u0 < 10−6. We used a 0.618-section algorithm as the line search
procedure. The current step length is used as an initial value for the initialization
of the search interval at the next step. The parameters ε1 and ε2 are chosen to be
10−4 and 10−6, respectively. A great deal of numerical experiments showed that
efficiency of the algorithm is very high when ε1 = 10−4. Simultaneously, discretion
accuracy of object function and solution can be obtained.

Now we set out two numerical examples and their testing results.

Example 1 Ω = {(x, y)| = r2 = x2 + y2 < 1}, f = 1. The exact solution is

u = u(r) =
p− 1

p
(
1
2
)

1
p−1

(1− r
p

p−1 ). (4.1)

In the tables below, C1, C2, C3, C4 represent the meshes with 1601,6221,24444,
97118 nodes, respectively. ”ItN” and ”CPU” mean iterative numbers and CPU
time, respectively. ”‖ · ‖” indicates L2-norm.

Tables 1 to 5 show the computational results using the conjugate gradient algo-
rithm with weighted preconditioner(marked with WPCG) and the steepest descent
algorithm with weighted preconditioner(marked with WPSD) in the paper [13].
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Table 1 p = 1.14

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 17 17 18 17 17 16 16 15

CPU 0m26s 0m26s 1m39s 1m34s 5m59s 5m38s 23m16s 21m41s

‖u− uh‖ 1.60-5 1.59-5 5.35-6 5.40-6 2.52-6 4.66-6 4.85-6 3.09-6

‖uh − uI‖ 1.23-5 1.22-5 4.39-6 4.44-6 2.21-6 4.44-6 4.80-6 3.03-6

Table 2 p = 4

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 9 9 9 9 9 9 9 8

CPU 0m13s 0m13s 0m46s 0m46s 2m56s 2m40s 14m06s 10m48s

‖u− uh‖ 5.10-4 5.10-4 1.28-4 1.28-4 3.18-5 3.17-5 7.98-6 8.11-6

‖uh − uI‖ 6.75-5 6.66-5 1.66-5 1.63-5 4.03-6 4.03-6 1.70-6 1.05-6

Table 3 p = 20

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 31 21 28 20 23 19 24 20

CPU 0m40s 0m27s 2m18s 1m41s 7m33s 6m20s 32m08s 26m47s

‖u− uh‖ 1.39-3 5.10-4 3.77-4 3.77-4 9.65-5 9.66-5 2.57-5 2.61-5

‖uh − uI‖ 5.63-4 5.64-4 1.68-4 1.68-4 4.75-5 4.80-5 1.26-5 1.31-5

Table 4 p = 100

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 79 51 86 59 71 60 64 57

CPU 1m49s 1m7s 8m20s 4m56s 28m26s 19m48s 90m06s 78m06s

‖u− uh‖ 3.42-3 3.42-3 1.08-3 1.08-3 3.16-4 3.16-4 9.13-5 9.15-5

‖uh − uI‖ 2.61-3 2.61-3 8.74-4 8.74-4 2.67-4 2.67-4 7.81-5 7.84-5

Table 5 p = 1000

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 161 129 340 200 461 258 419 289

CPU 4m01s 2m55s 27m47s 17m14s 152m25s 85m40s 546m22s 396m23s

‖u− uh‖ 6.26-3 6.26-3 2.81-3 2.81-3 1.17-3 1.17-3 4.46-4 4.46-4

‖uh − uI‖ 5.50-3 5.50-3 2.63-3 2.63-3 1.13-3 1.13-3 4.35-4 4.35-4

It is easy to see that the convergence of the two algorithms are almost mesh
independent for a fixed p, and convergent rate tends to O(h) as p → ∞. Mostly,
we can see that iterative numbers and CPU time of WPCG algorithm are less than
that of WPSD algorithm by comparing results of the two algorithms when p is
large. Therefore, we can conclude,to a certain extent, that hybrid conjugate gradi-
ent direction is superior to the steepest descent one when p is large. In addition,
numerical overflow happen when 0 < p < 1.1 or p > 1000. We can utilize WPSD
algorithm to get some results when p = 1.1, but at the same time, when WPCG
algorithm is used, numerical overflow came forth.

Example 2 Ω = {(x, y)|x2 + y2 < 1}, f = 2(x + y − x2 − y2).
We have no way to get analytic solution of the problem, so we only display

iterative number and CPU time. Table 6 and 7 show the results which are obtained
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by using WPSD and WPCG algorithm when p = 4, p = 100, respectively. From
this example, we can also see that WPCG algorithm is superior to WPSD algorithm
in the paper [13] when p is large.

Table 6 p = 4

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 13 12 14 13 15 15 17 16

CPU 0m17s 0m16s 1m11s 1m06s 4m48s 4m53s 20m20s 20m40s

Table 7 p = 100

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 193 94 197 122 196 175 232 206

CPU 4m33s 2m17s 16m33s 10m41s 64m27s 58m46s 305m05s 272m11s

‘

Remark In the paper [13], for steepest decent algorithm with weighted precon-
ditioner(WPSD), the inequality

J(un)− J(un+1) ≥ c(J(un)− J(u))2

‖u0 − u‖2
V h
0

, (4.2)

where c is a positive number, u exact solution of the equation (1.1), u0 initial
value, is proved. It is the inequality (4.2) that guarantees convergence of WPCD
algorithm. For Algorithm 1 in this paper, it is very difficult to prove above result
(4.2). In order to ensure convergence of WPCG algorithm, we can use a restarting
technique, change the rule (R) and get the rule (R∗):

For a given positive integer,
If n can be divided exactly by l, namely, mod(n, l) = 0, then dn = wn;
If mod(n, l) 6= 0, then dn = wn when α̃n = 0; or dn is decided by (3.8).

In Algorithm 1, if the rule (R∗) is used, instead of the rule (R), corresponding
algorithm(marked with WPCG2) is obviously convergent according to the conclu-
sions in the paper [13].

In Table 8, numerical results of WPCG2 algorithm in which l = 10 are displayed
when p = 1000.

Table 8 p = 1000

C1 C2 C3 C4

WPCG2 WPCG WPCG2 WPCG WPCG2 WPCG WPCG2 WPCG

ItN 129 134 200 199 258 252 289 272

CPU 2m55s 3m43s 17m14s 18m16s 85m40s 86m05s 396m23s 372m22s

‖u− uh‖ 6.26-3 6.26-3 2.81-3 2.81-3 1.17-3 1.17-3 4.46-4 4.46-4

‖uh − uI‖ 5.50-3 5.50-3 2.65-3 2.63-3 1.13-3 1.13-3 4.35-4 4.35-4

From Table 8 one can see that performance of WPCG2 algorithm is almost the
same as that of Algorithm 1. For other p, the similar performance also happens.

5. Conclusions and discussions

Based on quasi-norm and the steepest descent algorithm with weighted precondi-
tioner, we have replaced the steepest descent direction by hybrid conjugate gradient
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direction, proposed the hybrid conjugate gradient algorithm with weighted precon-
ditioner, and stated convergence of the new algorithm with restarting technique.
From the numerical results, we conclude that performance of the new algorithm is
superior to the one in the paper [13] when p is large. The new algorithm, of course,
has its weakness. For example, it is still a unsolvable problem how to computing
the equation (1.1) when p is very close to 1.
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Abstract. History matching is an inverse problem of partial differential

equation on mathematics. We adopt the constrained non-linear optimization

to handle this problem, defining the objective function as the weighted square

sum of differences between the wells simulation values and the corresponding

observation values. We develop an optimization computing program that in-

clude Zoutendijk feasible direction methodQuasi-Newton method (BFGS) and

improved Nelder-Mead simplex method, combined with a black-oil simulator,

and discuss the convergence characters of algorithms in case studies about

determining average porosity and directional permeability, determining low

permeability strip between two wells and determining oil-water relative per-

meability curves.

Key Words. reservoirs numerical simulation, automatic history matching,

inverse problem, optimization.

1. Problem

History matching is absolutely necessary for a real reservoir simulation, which is
to find a suitable set of values for the simulator’s input parameters such that the
simulator correctly predicts the fluid outputs and the pressures of the wells on the
reservoir. It is an inverse problem of partial differential equation on mathematics,
and is not a well-posed problem [1-20]. Yet there must exist a solution reflecting real
formation condition for a real reservoir problem. So we would focus attention on
the stability of the history matching problem model and the algorithm feasibility,
not to be concerned with the existence and singleness of the solution.

2. Mathematic Model

We adopt the constrained non-linear optimization most in use for inverse prob-
lem of partial differential equation to handle history matching problem, define the
objective function as the weighted square sum of differences between the wells sim-
ulation values and the corresponding observation values:

(1) f(X) =
nw∑

i=1

nt∑

j=1

nk∑

k=1

ω(i, j, k)[yobj(i, j, k)− ycal(i, j, k)]2

where yobj , ycal denote the observation values and simulator computing values
respectively, ω denotes parameter scale coefficient i, j, k denote well number, time
segment and data kind respectively, nw, nt, nk are the maximum of i, j, k respec-
tively , X denotes optimal vector.

For a general history matching problemthe objective function is an implicit func-
tion of the optimal vectorit needs to carrying out a simulation run to gain a objec-
tive function value, it is the uppermost computing cost. Therefore dealing equality
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constrained history matching problem, should adopt elimination method to reduce
variable number, so as to optimization computing converge rapidly. So a general
history problem can be posted as an inequality constrained nonlinear optimization
problem

(2) min f(X) X ∈ En

s.t gi(X) ≥ 0 i = 1, · · · ,m

The optimal vector X, the objective function f(X) and the inequality constrained
function vector G(X) are different for different history matching problem.

3. Algorithms

We develop an optimization computing program that include Zoutendijk feasible
direction methodQuasi-Newton method (BFGS) and improved Nelder-Mead simplex
method [21], combined with a black-oil simulator, and discuss the convergence char-
acters of algorithms in some case studies.

Zoutendijk feasible direction method is a constrained nonlinear optimiza-
tion method, it is in different ways to deal linear constraints and nonlinear con-
straints.

For linear inequality constraints optimization problem

(3)
min f(X)
s.t AX ≥ b

where, f(X) is differential function, A is m × n matrix. X ∈ En, b is m dimen-
sion column vector. Zoutendijk feasible direction method transform determinating
descent feasible direction d to solving following linear programming problem, ac-
cording necessary conditions 5f(X)T d0, A1d ≥ 0,

(4)
min 5f(X)T d
s.t A1d ≥ 0
|dj | ≤ 1 j = 1, · · ·n

Linear search step restriction:

(5) λmax =

{
min{Bj

Dj
|Dj < 0}, D < 0

∞ D > 0

where, A1X = b1, A2X > b2, A =
[

A1

A2

]
, b =

[
b1

b2

]
, B = b2−A2Xi, D = A2di

For nonlinearinequality constraints optimization problem,

(6)
min f(X)
s.t gi(X) ≥ 0 i = 1, · · · ,m

whereX ∈ En, f(X), gi(X) are differentiable functions. Zoutendijk feasible direc-
tion method transform determinating descent feasible direction d to solving fol-
lowing linear programming problem, according necessary conditions 5f(X)T d < 0,
5gi(X)T d > 0, i ∈ I, I = {i|gi(X) = 0}

(7)

min Z
s.t 5f(x)T d− Z ≤ 0

5gi(x)T d− Z ≥ −gi(x), i = 1, · · · ,m
|dj | ≤ 1 i = 1, · · · ,m
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Linear search step restriction:

λmax = sup{λ|gi(Xk + λdk) ≥ 0, i = 1, 2, · · · ,m}
Zoutendijk feasible direction method obtain: steepest descent direction when search
point in the linear inequality constraints feasible region or steepest descent direction
pointing to inside feasible region, projection direction of the steepest descent on
the active constraint surfaces when search point on the linear inequality constraint
surfaces and steepest descent direction pointing to outside feasible region; angle
bisector direction between the steepest descent direction and the gradient vector of
active nonlinear inequality constraint surfaces when search point on the nonlinear
inequality constraint surfaces, the more far from nonlinear inequality constraint
surfaces, the more closed with steepest descent direction when search point in the
nonlinear inequality constraint region.

Quasi-Newton method (BFGS) is an unconstrained nonlinear optimization method,
it approximates the inverse matrix of the Hession matrix in Newton’s method in it-
eration method with the gradient vector. If we known the approximate matrix Hi

of the A−1
i let the approximate matrix Hi+1 of the A−1

i+1 be Hi+1 = Hi+Ei, Ei is ith
updated matrix. BFGS formula make choice H1 = I, and define the ith updated
matrix

(8) Ei =
(

1 +
qT

i Hiqi

pT
i qi

)
pipT

i

pT
i qi

− piqT
i Hi + HiqipT

i

pT
i qi

wherepi = Xi+1 −Xi, qi = 5f(Xi+1) −5f(Xi), when iteration steps reach the
variable number, the initial value of approximate matrix will be reset, iteration will
be restarted.

If 5f(Xi) 6= 0, i1, · · · , n, the constructed approximate matrix Hi(i1, · · · , n) is
positive definite matrix; If objective function is positive definite quadratic function,
the conjugated search direction is obtained and the minimum point must be reached
by this formula in finite step iterations.

In computing, we force Quasi-Newton method (BFGS) turn into Zoutendijk
feasible direction method on the next iteration when search stop on the inequality
constraint surfacesimproved Nelder-Mead simplex method can be used to handle in-
equality constraints optimization problemWhen descent feasible direction has been
obtained, a linear investigation with increasing step length will be carried out to
find high-low-high three points in the direction (or minimum point on inequality
constraint surface), then a three points quadratic interpolation will be performed.

4. Case Studies

Three case studies are carried out with algorithms above in matching well pres-
sures and water cut. The reservoir model is 1 layer and 11×11 blocks, one injection
well and three production wells (figure 1), distance between wells is 200m. Sim-
ulation carries out on a three phase black oil simulator with automatic history
matching function, with all implicit method equation solvers.

Determining average porosity and directional permeabilitys is carried out on a
model with 0.27 Porosity, 300md x directional permeability and 75md y directional
permeability. Constrained conditions are 1md ≤ Kx,Ky ≤ 3000md and 0.005 ≤
Por ≤ 0.5. Initial values are Kx = Ky = 180md,Por = 0.35. The result is:

The result indicates that the computing is convergent and optimal variables are
determinable.

Determining low permeability strip between two wells is carry out on a model with
0.27 Porosity, 300md x and y directional permeability, with 10md x directional
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permeability including six blocks low permeability strip (figure 2). Constrained
conditions are 1md ≤ Kxv ≤ 3000md. The result is:
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The result indicates that the computing is convergent and the determinability
of the optimal variables is relative to initial values.

Determining oil-water relative permeability curves
Assuming connate water saturation and residual oil saturation are fixed, and five

points on both oil relative permeability curve and water relative permeability curve
to be optimized. The initial values are on two straight lines. Optimal method use
BFGS. The constrained conditions are:

Kr0(Swc)−Kr1 > 0, Kr1 −Kr2 > 0,
Kr2 −Kr3 > 0, Kr3 −Kr4 > 0,
Kr4 −Kr5 > 0, Kr5 > 0,
Kr6 > 0, Kr7 −Kr6 > 0,
Kr8 −Kr7 > 0, Kr9 −Kr8 > 0,
Kr10 −Kr9 > 0, Krw(1− Sor)−Kr10 > 0,

The result indicates that the computing is convergent and most optimal variables
are determinable except the last two points.

5. Convergence

The following figures indicate the different convergence rate of improved Nelder-
Mead simplex methodsteepest descent method and Quasi-Newton method (BFGS) .
BFGS is the most rapid, steepest descent is the second, and the improved Nelder-
Mead simplex method is the slowest.

6. Experiences and Conclusions

(1) Case studies indicate: All three algorithms are stabile and feasible; in the
first four iterations, there are no evident difference on the results obtained from
Quasi-Newton method (BFGS) and steepest descent method; Quasi-Newton method
(BFGS) converges far more rapidly than steepest descent method in the latter
iterations; Nelder-Mead simplex method’s convergence rate is the slowest. But the
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evident difference between Quasi-Newton method (BFGS ) and steepest descent
method occurs after objective function descend near three orders, it is difficult to
say the significance of the difference in engineering here.

(2) Some experiences: Finding the relations about variables, performing variable
elimination, descending optimization model freedom and variable relativity as far as
possible; attaching importance to line search. When there are a great deal variables
to optimize, suggesting to optimize the averages of the interrelated variables first or
to introduce constraints temporarily, for example, the relative permeability curves
may be appointed in a definite function form.

(3) The fluctuation of the well water cut could occur when IMPES formula is used
in reservoir simulator, and it often makes optimizing process failed for determining
variable accurately.
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FULL IMPLICIT NUMERICAL SIMULATOR FOR POLYMER
FLOODING AND PROFILE CONTROL

SIQIN TONG AND JINGXIA CHEN

Abstract. In this paper, taking account of the major physical and chemi-

cal mechanisms, such as: for polymer, shearing propertypermeability reduc-

tion, adsorption, inaccessible porous volumes, for gel, gelation speed, water

viscosity changing with gel, permeability reduction, adsorption and retention

in reservoir rocks, a three-dimensional, three-phase (oleic, vapor, aqueous) and

six-component mathematical model has been established for polymer flooding

and profile control. By use of full implicit finite difference method and calling

PETSc linear solving system, the full implicit polymer flooding and profile con-

trol simulation software has been developed on PC-Linux environment based

on black oil simulator, water flooding, polymer flooding and profile control

simulation methods are integrated and applied into practice.

Key Words. numerical simulator, polymer flooding, profile control, full im-

plicit, mathematical model.

1. Preface

With polymer flooding in Daqing, we have to face the problems, such as: a
lot of polymer sewage was injected to stratum, polymer depth profile control and
project setting, etc. In order to resolve actual problems and take full advantage
of reservoir numerical simulation, it is urgent to require the technical support of
polymer flooding and profile control simulation software.

Currently, there are some problems for POLYMER software used in Daqing, such
as pinch and fault disposal and rock compressibility, etc. VIP-POLYMER upgrade
software is applicable, whereas it is impossible of large scale application because of
licence limit, profile control simulation software needs to be improved and refined.

In order to develop independent and practical simulation software for polymer
flooding and profile control, a three-dimensional, three-phase (oleic, vapor, aque-
ous) and six-component (water, oil, gas, polymer, gel, cross-linker) mathematical
model has been established for polymer flooding and profile control. Based on
isothermal black oil model, the major physical and chemical mechanisms and other
important factors are considered in the model, By use of full implicit finite dif-
ference method, the full implicit polymer flooding and profile control simulation
software has been implemented on PC-Linux environment, water flooding, polymer
flooding and profile control are integrated and applied into practice.

2. Mathematical model

According to mass balance equation, the basic differential equations of oil, water,
gas, polymer, cross-linker and gel are derived and established as followed [1, 2]:

(1) Oil: ∇
[
KroK

µoBo
∇(po − γo∇D)

]
+

qo

Bo
=

∂

∂t
(
φSo

Bo
)
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(2) Water: ∇
[
KrwK

µwBw
∇(pw − γw∇D)

]
+

qw

Bw
=

∂

∂t
(
φSw

Bw
)

Gas: ∇
[
KrgK

µgBg
∇(pg − γg∇D)

]
+∇

[
KroK

µoBo
Rs∇(pg − γg∇D)

]
(3)

+
qg

Bg
+

Rsoqo

Bo
=

∂

∂t
[φ(

Sg

Bg
+

RsoSo

Bo
)]

Polymer:
φ

φp
∇ KrwK

Rkfpνwµp
Cp∇(pw − γw∇D)− φ

Sw

νw
Dp − φ

Sw

νw
Rp − Cpqw(4)

=
∂

∂t
(φ

Sw

νw
Cp + (1− φ)

ρr

ρwνw
Ĉp)

Cross-linker:
φ

φp
∇ KrwK

Rkfpνwµp
Cχ∇(pw − γw∇D)− φ

Sw

νw
Rχ − Cχqw(5)

=
∂

∂t
(φ

Sw

νw
Cχ + (1− φ)

ρr

ρwνw
Ĉχ)

Gel:
φ

φp
∇ KrwK

Rkfgµg
Cg∇(pw − γw∇D) + φSwRg − Cgqw(6)

=
∂

∂t
(φSwCg + (1− φ)

ρr

ρw
Ĉg)

(7) where Ri = kiC
d
χCf

p

(8) Dp = −αCp

The main influences are considered in the model, such as: for polymer solution,
shearing propertypermeability reduction, adsorption, inaccessible porous volumes;
For gel, gelation speed and water viscosity changing with gel, permeability decrease,
adsorption and retention in reservoir rocks, etc..

3. Numerical model

We adopt fully implicit difference scheme to make the mathematical model dis-
persed, and then obtain nonlinear algebraic equations. These unknowns in equa-
tions are grid phase pressure, grid phase saturation, grid component concentration
(polymer, gel and cross-linker) and well production/injection rate or well flowing
pressure. By expanding equations with Taylor series, linear system is produced. We
solve the equations using linear equation solver (SLES) in PETSc. The equations
are:

(9) [J ]k · −→u k+1 = −−→r k
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4. The development and application of simulator

On the basis of DQHY simulator, the implicit numerical simulator for polymer
flooding and profile control has been implemented on PC-Linux environment. It
keeps the detailed description of black oil model for reservoir geology, liquids prop-
erty and production performance and has the main function of polymer flooding
and profile control numerical simulation, water flooding, polymer flooding and pro-
file control simulations are integrated. The software is convenient to use, the users
only need to add the polymer flooding and profile control card in data file, then
the simulation could be started on PC-cluster.

Main functions: (1) the development effect of water flooding, polymer flooding
and profile for could be modelled for single well or field; (2) optimize parameter
and project; (3) the study of mechanism and sensitivity for polymer flooding and
profile control.

The concept model has been computed by use of the simulator, the speed and
precision is similar to one of VIP-POLYMER. The first example is the contract of
development in different polymer concentration. the development effects of water
flooding and polymer flooding are computed and contrasted in different concentra-
tion. The model is homogeneous with monolayer, well space is 250m, there are four
injection wells and nine production wells, the permeability is 800md, porosity is
0.25, the cell number is 1681, the injection concentration respectively is 300ppm,
700ppm and 1000ppm, the results are showed by Figure 1. The second example
is the contract of development effect in different polymer quantity, namely, the de-
velopment effects in different injection volume (0.32PV , 0.48PV and 0.64PV ) are
predicted, the predicted curves of water cut and total oil production are showed
by Figure 2. The third example is the contract of profile control effect for low
permeability layer, the model is homogeneous and has two layers, the permeability
is respectively 200mD and 800mD, control profile 200 days after water flooding
3000 days, and then water flooding, the results are showed by Figure 3. The de-
velopment effect of low permeability layer is obviously improved by control profile.

Figure 1. Contract of
development effect in
different polymer con-
centration.

Figure 2. Contract of
development effect in
different polymer quan-
tity.
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Figure 3. Water cut contract of low permeability layer.

5. Conclusions

(1) A three-dimensional, three-phase (oleic, vapor, aqueous) and six-component
mathematical model was established for polymer flooding and profile control. The
model could be representative of the main physical and chemical mechanisms of
polymer flooding and profile control.

(2) By use of full implicit finite difference method and calling PETSc linear
solving system, the full implicit simulation software for polymer flooding and profile
control has been developed on PC-Linux environment based on DQHY simulator.

(3) The software has the functions of water flooding, polymer flooding, profile
control and any combination of them. It has good practicability and can be applied
into practice.

(4) The results have proved its practicability. It can be used in history match,
project prediction, effect evaluations of many oil displacement manners and sensitiv-
ity analysis of parameters, etc. The software can provide strong technical supports
for optimizing design of polymer flooding scheme and tracking adjustment, it will
be applied widely in Daqing Oilfield.

Symbol definition:

K–absolute permeability, µm2;
Kro,Krw,Krg — relative permeability of oil, water, gas, µm2;
µo, µw, µg — viscosity of oil, water, gas, mPa · s;
µp, µg — viscosity of polymer solution, gel, mPa · s;
ρo, ρw, ρg, ρr — density of oil, water, gas and rock, g/cm3;
po, pw, pg — pressure of oil, water, gas, KPa;
t — time, s; h — thickness of oil layer, m;
qo, qw, qg — flow rate of oil, water, gas, m3/s;
Bo, Bw, Bg — volume compressibility of oil, water, gas;
So, Sw, Sg — saturation of oil, water, gas;
φ — rock porosity in oil layer;
φp — the porosity accessible of polymer solution;
Cp, Cχ, Cg — concentration of polymer solution, cross-linker and gel, 10−6;
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Ĉp, Ĉχ, Ĉg — absorbent concentration of polymer solution, cross-linker and gel,
10−6;

Rkfp, Rkfg — permeability reduction factor of polymer solution and gel solution;
Dp — decomposition of polymer;
Ri — rate of consumed/fomed mass concentration of polymer/cross-linker/gel;
ki — reacting coefficients;
d, f — exponents.
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NUMERICAL SIMULATION STUDY ON HYDROCARBON
MIGRATION OF PALEO-RESERVOIRS IN TAZHONG OIL

FIELD, TARIM BASIN, NORTHWESTERN CHINA

WENFENG TANG, GUOZHONG ZHAO, LUOBIN XU, BAOCHEN ZHANG AND WEI ZHAO

Abstract. Tazhong Oil Field located in the center of Tarim Basin is one of

the greatest discoveries during the petroleum exploration in Tarim Basin. The

course of many years for hydrocarbon exploration and development has proved

that there existed a much larger ancient reservoir than present-day reservoir

and residual oil section below present WOC is of obvious characteristics of wa-

ter displacement. Study shows that after it early formed, the paleo-reservoirs

had been reformed to a great extent by hydrodynamic pressure caused by com-

pacted water flow, which had played a dominant role in the redistribution of

oil and gas in the evolution process of paleo-reservoir to present one. The

previous method to study secondary migration caused by hydrodynamic pres-

sure is as follows: to draw oil and water potential energy diagrams by utilizing

pressure data of exploratory wells; to judge hydrocarbon migration direction

and possible accumulation position by combining them with geological condi-

tions; thereafter, to forecast potential oil reservoirs from the macroscopic view.

Application of reservoir numerical simulation technology to hydrocarbon mi-

gration by hydrodynamic pressure has its advantage whether in its mechanism

or in the accurate description of oil and water distribution. This paper has first

presented the existence of the paleo-reservoir, and then constructs its geolog-

ical model on the basis of recognizing its configuration at different geological

stages.

Key Words. hydrocarbon migration, numerical simulation, exploration ori-

entation.

1. Introduction

Tazhong4 area in Tazhong Oil Field is a typical structural trap (Figure 1) with
CIII oil-bearing section, its main oil-bearing bed is characterized by that present-
day WOC is at -2510m below sea level and the bottom of transitional zone from
oil to water is at -2610m below sea level. Residual oil saturation is obviously
dominated by physical properties, i.e., the residual oil saturation in the formation
where physical properties are good is lower than that where physical properties
are relatively poor; and there is remaining oil-bearing interbed. This phenomenon
indicates that there existed a destroyed paleo-reservoir with unitive ancient WOC
(now at -2610m below sea level) in the geologic history.

The existence of ancient WOC can shed more light on studying the evolution of
Tazhong Oil Field as well as its exploration orientation. (1) In the long evolution
process of Tazhong Oil Field, there ever existed a paleo-reservoir which is larger
than that at present. How many was the reserve? (2) The existence of residual
oil indicates that the reservoir had ever undergone adjustment and reconstruction.

143
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Ancient WOC

Present WOC

tz4             tz402    tz421    tz422 tz40     tz411

Figure 1. Tazhong4 area structural trap.

How about is hydrocarbon loss? Where does hydrocarbon migrate and accumulate
towards then? (3) How to find secondary reservoirs scientifically? Many tough
problems listed above are really urgent to tackle during exploration. This paper
applies reservoir simulation technology to study hydrocarbon migration process
of paleo-reservoirs, and partially answers the redistribution of oil and gas after it
destroyed.

2. Hydrocarbon Migration Model

Black oil model is designed for developing the oil field. It is fully a new trial to
utilize it to simulate large-scale hydrocarbon migration. Its simulating space and
time is as much hundreds and even millions times as the general development block.
Moreover, in each simulating unit fluid flow is very slow and the solved variables may
have approached to tolerant errors, so the simulation requires software fast and more
accuracy. Therefore, parallel VIP simulator is employed to perform calculations on
ORIGIN2K parallel computer.

The modeling consists of two parts. First, a section model is designed to study
the mechanism of migration as well as to analyze the relation between hydrody-
namic gradient and the amount of migration followed by determining a reasonable
distribution of hydrodynamic field in this district. Then it is to set up a 3D nu-
merical modeling of the whole area and to predict spatial distribution of secondary
reservoirs on the basis of matching the proven reservoirs.

2.1. The Section Model. The section model of Tazhong Oil Field is set up which
is 41km long, vertically including CII and CIII oil-bearing sections and can be used
to study both plane and vertical migration. The model has 8 modeling layers with
each layer of 25m in effective thickness. WOC is at -2610m (the ancient WOC).
There is a water injection well on one side to simulate hydrodynamic pressure and
on the other side it is open boundary. The fluid inflow and outflow varies with
pressure.

2.2. 3D Simulation Model. In order to find locations where there may exist
potential secondary reservoirs and hydrocarbon may accumulate again, we design
a large work area model which contains 32 exploratory wells in Tazhong zone.
Simulating area is 106km(EW)× 74km(NS)=7844km2 . According to the integrated
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Table 1. Thickness variation of oil beds under the different pres-
sure gradients.

Pressure gradient Thickness of Thickness of Thickness of
(KPa/KM) reservoir(m) reservoir(m) reservoir(m)

So>55% 20%<So<55% So<20%
40 75 25 40
50 50 20 70
60 10 15 115

geologic research, four layers are set vertically, with the total grids 80 × 50 × 4 =
16000.

Due to multiple period of reservoir formed, we set up three different paleo-
reservoir models of CIII oil-bearing in the Tazhong zone, including Cretaceous
model, Tertiary model and Quaternary models, which simulate migrating features
in the evolution process respectively. The grids are the same in three models.

3. Simulation of the Section Model

3.1. The Section Model Results. Simulation study on the mechanism of migra-
tion shows the variation of migrating velocity is actually dependent on the pressure
gradient in the pathway. Thus study on the relation between pressure gradient and
residual oil also reflects how migrating velocity affected residual oil.

By building up different pressure gradients to yield the proportion of different
oil saturation in the reservoir after the migration (see Table 1). Comparing dis-
tribution maps of oil saturation under different pressure gradient and at different
migrating stages, it comes to the following conclusions:

Hydrodynamic strength is the decisive factor on the amount of migration and
there exists a minimum pressure gradient [1]. When pressure gradient is less than
it, migration would not take place. With the pressure gradient increasing, both
pure oil belt and transitional belt correspondingly become smaller until all oil is
expelled from the structure.

With source pressure maintenance, force on oil acted by buoyancy and hydrody-
namic pressure will change as the oil volume varies. Since oil formation becomes
thinner, the pressure gradient in the pathway becomes smaller and smaller. So the
amount of migrated oil is also less and less. When both close to a balance point,
migration stops and hydrodynamic trap is formed. Therefore, although migration is
slow, the migrating scale is large in the beginning, then gradually less till stopping
(Figure 2).

3.2. 3D Simulation Model Results. At the beginning of migration (0-5000
years), since northwestern structure was relatively smooth, oil was basically mi-
grated as a whole in the large scale for all of three models. However, some regions
had great difference. In the Tertiary and Quaternary models, a large amount oil
went south as it migrated along the structure; whereas in the Cretaceous model oil
mainly migrated along the center uplift (Figure 3).

In the middle phase of migration (5000-500000 years), oil mainly migrated along
the center uplift. As structure gradually became large, it moved more collectively,
particularly in Cretaceous reservoirs where oil hardly went south. After TZ4 reser-
voir had formed, oil continued migrating to reach buried hill structure (Figure 4).
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Hydrocarbon .Migration

present  reservoir

Paleo-reservoir

Figure 2. Hydrocarbon migration mechanism simulation (cross model).

CIII1

CIII2

CIII3

CIII4

Figure 3. The beginning phase of migration (Cretaceous model).

Fig.4 The middle of migration(5000-50000years, Tertiary model, CIII
1
 layer)

Figure 4. The middle of migration (5000-50000years, Tertiary
model, CIII1 layer).
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Suggested exploration areaConfirmed reservoirs

CIII1

CIII2

CIII3

CIII4

Figure 5. After simulating, hydrocarbon distribution in the area
(Quaternary model).

During the late period of migration (500000 years -1Ma), major reservoirs had
formed. As time went on, the thickness of oil layers gradually became thinner;
hydrodynamic pressure and buoyancy came to the balance; and the amount of oil
migration gradually decreased till nearly stopping after 1Ma (Figure 5).

Simulating results are basically consistent with discovered reservoirs, which means
they are reasonable. Based on this, we have analyzed oil migration paths and lo-
cations of some secondary reservoirs.

4. Conclusions

After it is modified and adjusted, the black-oil model can be employed to simulate
wide extent and large-scale hydrocarbon migration. By integrating hydrodynamic
pressure, buoyancy as well as capillary pressure the model can correctly reflect
the hydrocarbon distribution both on the plane and in the vertical direction. By
application of 3D display and random statistical technology, it can simulate the
formation and destruction of reservoirs visually and quantitatively. This technology
provides a new effective method for finding oil in the future exploration.

After the paleo-reservoir in the Tazhong zone were destroyed, a large amount
of oil below present WOC and in the pathway had been lost during its evolution
to present-day reservoirs, and the rest oil of 1.5× 108t continued migrating, and
finally form several larger-scale secondary reservoirs were formed.

According to simulation results, the next exploration area is suggested.
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NEW DEMANDS FOR APPLICATION OF NUMERICAL
SIMULATION TO IMPROVE RESERVOIR STUDIES IN CHINA

DAKUANG HAN, JINGRONG WANG AND JIGEN YE

Abstract. After years of production, most oilfields with nonmarine deposits in

China have been at their mature stage with high water cut and high recovery.

The remaining oil is, on one hand, highly scattered in the reservoir, but on

the other hand, relatively concentrated in some locations. The identification

of the exact distribution of these locations with relatively abundant remaining

oil is of great importance for improving oil recovery, but is very difficult. The

oilfield development, which has been complicated by all the above factors, calls

for more powerful numerical reservoir simulation techniques. The large-scale

sophisticated numerical simulation technique with high efficiency, high preci-

sion, and high computing speed will be the key to the study on the remaining

oil distribution for oilfields at their mature stage with high water cut. As for

various types of complicated reservoirs, it is essential to develop different fluid

flowing models and corresponding numerical simulation techniques.

Key Words. Oil reservoir, numerical simulation, high water cut, remaining

oil distribution.

1. First section:Introduction

This is the first section. Statistics show that more than 90In addition, tertiary
recovery techniques such as polymer flooding, alkaline/surfactant/ polymer combi-
nation flooding can be used in a lot of oilfields in China to enhance oil recovery.
Moreover, a lot of fractured sandstone reservoirs with low and extra-low perme-
ability have been found, the development of which is more complicated. Therefore,
numerical simulation demands for improved functions in such cases.

2. Second section:Large-scale sophisticated numerical simulation tech-
nique

This is the second section.

2.1. Combining coarse-gridblock simulation with fine-gridblock simula-
tion. This is the first subsection of the second section. In China, most reservoirs
are very heterogeneous both horizontally and vertically. Reservoirs with nonmarine
deposits usually have a large number of layers, even above one hundred, showing
considerable differences in their properties. In addition, properties also change dra-
matically within the same layer. Therefore, it is of great importance to make clear
the remaining oil distribution in reservoirs, especially those locations with relatively
abundant remaining oil. In order to improve oil recovery of reservoirs of various
types economically and effectively, it is crucial to drill highly efficient infilling wells

Received by the editors Received April 20, 2005, in revised form, August 29, 2005.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.
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at locations with relatively abundant remaining oil or to work out other practicable
reservoir revitalization measures. In order to picture the horizontal heterogeneity
and the large number of layers in the vertical direction, a tremendous number of
grid nodes are needed, even reaching or exceeding one million. During the in-depth
reservoir study, what we are interested in are the locations with relatively abun-
dant remaining oil. Therefore, we should carry out simulation study with fine grid
system only at those locations but not in the whole reservoir. Hence, the optimum
practice is to start with a relatively coarse grid system to simulate the whole reser-
voir to find locations with relatively abundant remaining oil, and then turn to a
more refined grid system for simulation at such locations. This strategy can reduce
grid number and enhance simulation speed without compromising the precision of
remaining oil distribution prediction.

2.2. Parallel computing technique. This is the second subsection of the sec-
ond section. During the study on remaining oil distribution in mature oilfields, al-
though the strategy of combining coarse-grid system with fine-grid one can reduce
grid number and enhance simulation speed, the simulation, especially the history
matching, will still consume a great deal of time due to a large number of wells, a
lot of workovers, and a long production history. Thus, the simulation speed needs
to be accelerated further in the case of large-scale sophisticated simulation. The
core of numerical reservoir simulation is to solve a large-scale sparse system of linear
equations, which is derived from a large-scale system of partial differential equa-
tions. Due to the large amount of time and costs that a large-scale sophisticated
simulation needs, parallel computers are highly recommended. The emergence of
high-performance parallel computers opens a new stage to numerical reservoir sim-
ulation techniques. The parallel computation technique for numerical reservoir
simulation has become a hot research interest. In recent years many oil companies,
service companies and research institutes at home and abroad employ parallel pro-
cessing technique to lower production costs and enhance work efficiency. Several
service companies have also launched numerical reservoir simulators of parallel com-
putation version. China has carried out several key research projects concerning
parallel computation since 1990. Research Institute of Petroleum Exploration and
Development of PetroChina, China Academy of Sciences, Tsinghua University and
others have all been involved in the study on the parallel computation for numeri-
cal reservoir simulation. The study on parallel computation for numerical reservoir
simulation has laid a solid foundation for the study on large-scale sophisticated
numerical reservoir simulation.

2.3. Streamline simulation technique. This is the third subsection of the sec-
ond section. Although parallel computing technique has been well developed, it is
still essential to develop streamline simulation technique with a higher speed when
using simulators to predict the remaining oil distribution in mature oilfields. In a
streamline simulation, the pressure equation is solved on an underlying grid system
using the same method as in a conventional simulation. Next, a nature transport
network is constructed based on the orthogonality between streamlines and pres-
sure contours [2] and fluid is transported along streamlines to track oil/water/gas
movement within the reservoir. The streamline method therefore has an inherent
advantage because the fluid is transported just one dimensionally along streamlines
and not between 3-D grid blocks. Because of this simplicity and greater stability,
larger time steps with less sensitivity to grid block size and orientation can be used
[3]. Displacement along any streamline follows a one-dimensional solution with no
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cross flow among streamlines. Therefore, well response is simply the summation
of a series of 1D flow simulations. Compared with conventional simulations using
Cartesian grid system, streamline models have two very significant applications
/advantages. The applications/advantages are [4]: (1) Computing speed is faster,
simulation capacity is larger, and the total history matching cycle for field-scale
simulation can be reduced by 2-5 times. The equivalent gridblock number can be
over one million. (2) Streamline technology allows easier visualization of both areas
with remaining oil and injector-producer relationships than conventional simulation
with Cartesian grid system.

2.4. Flexible grid technique. This is the fourth subsection of the second section.
With the introduction of 3-D detailed geologic model, flexible grid technique should
be developed in order to simulate complicated reservoirs of various types, sand body
boundaries or faults, anisotropy of permeability in the vertical or lateral direction
as well as the high-speed and high pressure gradient flow regimes in zones near
the borehole. In recent years, flexible grid techniques including local grid refining,
hybrid grids, angular point grids, PEBI, CVFE and complex unstructured grids [5]
have been developed at home and abroad. However for some of these techniques,
there is still some distance before they are put into commercial use.

2.5. Auxiliary software for history matching in large-scale sophisticated
numerical simulation. This is the fifth subsection of the second section. When
the large-scale sophisticated simulation, especially the history matching, is carried
out using some existent simulators, a lot of problems can be met and need to
be solved: (1) Dynamic data preparation is too time-consuming, and engineers
are apt to make mistakes in such preparation. As for mature oilfields with a huge
number of wells, a very long producing history, and undergoing a lot of workovers or
measurements, it takes a great deal of time to prepare dynamic data, which must be
input time step by time step for each well, and engineers are apt to make mistakes in
the process of data preparing. (2) History matching process is complex and difficult.
When analyzing wells performances and making history matching, some existent
simulators cannot show which well is preferential for matching due to their larger
errors and cannot display all the matching parameters, such as production, water
cut, gas-oil ratio and bottom pressure, for the same well on screen simultaneously.
Engineers have to search the matching parameters for a specific well from those for
all the wells again and again. Such practice consumes a lot of time. (3) Information
needed in history matching analyzing is insufficient. Many problems encountered
in history matching come from multi-layering on the well profile. For example,
when the production schedule of a well needs to change from a constant rate to a
constant pressure for the production pressure differences in some layers may not
be satisfied with this constant rate, the pressure in each layer should be analyzed,
but the simulator cant offer relevant information on screen. Therefore, auxiliary
software for large-scale sophisticated numerical simulation has to be developed in
order to improve the efficiency and precision of history matching.

2.6. Injection and production rate allocation technique. This is the sixth
subsection of the second section. The allocation of injection and production rate
to a layer will affect the amount of remaining oil in that layer seriously. However,
quite often the conventional methods to allocate injection and production rate to
each layer by mobility cannot give satisfying results because the practical rates do
not accord with the mobility of each layer due to interference among layers. If the
production profile or water injection profile of wells have been measured precisely,
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the allocation of injection and production rate in each layer by these measurements
will give good results. However, the injection or production profiles have been
measured only in some wells, but were not measured in most wells. Also, the profile
can only represent the time step that it is measured, but not all the time steps of a
wells performance. So, it is necessary to develop new methods using all production
and test data for allocating injection and production rate more accurately in order
to enhance the precision of the identification of remaining oil distribution.

3. Coupling fluid flow with reservoir deformation

This is the third section. The conventional reservoir flow theory does not give
the interaction between fluid flow and reservoir deformation resulted from pressure
drop or temperature change in reservoir into consideration. However, in fact, the
rock matrix is deformable. In a reservoir with low or extra-low permeability, the
permeability is sensible to the pressure drop in the reservoir due to the change in
pressure difference between overburden rock pressure and reservoir pressure. Hence,
numerical simulation should simulate the multiphase flow and reservoir deformation
simultaneously to estimate the effect of pressure sensitivity. And also when the
temperature in a reservoir changes dramatically, the deformation of rock matrix
will result in a change in permeability, and thus affect fluid flow. Therefore, it
is necessary to couple fluid flow with reservoir deformation and to simulate them
simultaneously in order to enhance the precision of the simulation.

4. Fractured reservoir simulation

This is the forth section. Low-permeable fractured sand stone reservoirs take
up a large percentage of all the reservoirs in China. The flow mechanism in a
fractured sand stone reservoir is different from the dual-porosity limestone system.
The mathematical model put forward by Warren and Root [6] assumes that the
distribution of fractures in the reservoir is uniform. But the study on fractured
sandstone reservoirs indicates that the distribution of fractures is characterized
by non-uniformity and discontinuity. The conventional theory from dual-porosity
limestone system may be inappropriate, and new mathematical model needs to be
developed.

5. Non-Newtonian and physiochemical fluid simulation

This is the fifth section. When simulating reservoirs at the stage of chemi-
cal tertiary recovery, the effect of non-Newtonian flow and the more complicated
physiochemical phenomena for polymer flooding and alkaline/surfactant/polymer
combination flooding must be considered. In past decades, significant progress has
been made in these areas, and some simulators have been developed at home and
abroad, especially for polymer flooding. However, there are still a lot of problems
that need to be studied and the functions and the precision should be improved
further.

6. Conclusion

This is the sixth section. Most oilfields with complicated nonmarine geology
in China have been at their stage with high water cut and high recovery. The
identification of the distribution of areas with relatively abundant remaining oil in
order to improve oil recovery calls for the more powerful large-scale sophisticated
reservoir simulation techniques. Therefore, simulation techniques such as combina-
tion of the coarse grid system and the fine one, parallel computation, streamline,
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flexible grid, and auxiliary software for history matching have to be developed. As
for various types of complicated reservoirs, including low and extra-low permeabil-
ity reservoirs, fractured sandstone reservoirs and reservoirs developed by chemical
flooding EOR techniques, some new simulation techniques such as coupling fluid
flow with rock deformation, new mathematical models about interaction between
non-uniform fractures and matrix rocks, and non-Newtonian and physiochemical
flow have to be studied and developed.
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Abstract. Going through the development more than forty years, the overall

water-cut to Daqing Oilfield has almost reached 90%. But there is still consid-

erable residual oil in the place. Reservoir engineers want to know the residual

oil spatial distribution and how to dig it. This requires large-scale reservoir

simulation within limited time. Enlarged scale and highly expected efficiency

need higher technical capability for reservoir simulation. By using PC-Cluster

technique developed in recent years, large-scale reservoir simulation can be

carried out at a relatively low cost. The first PC-Cluster used for reservoir

simulation in Daqing Oilfield was designed and built. Based on this developing

environment, the serial black oil simulator was parallelized by using the SLES

components in PETSc. Then this parallel simulating technique was applied in

seven oil production districts of Daqing Oilfield, where the PC-Clusters were

configured and the parallel black oil simulator PBRS2.1 we had developed was

installed and good results were achieved. In this paper, the hardware and sys-

tem software configuration of PC-Clusters built is briefly introduced, the idea

and method for parallelizing the serial black oil simulator is discussed, and the

simulation study at seven typical field blocks and their application results are

described and presented.

Key Words. residual oil, large-scale reservoir simulation, PC-Linux, PETSc,

parallel black reservoir simulation (PBRS).

1. Introduction

Since reservoir simulation came to be used it had always followed the computer’s
development to satisfy technical requirements of the oil exploitation industry, with
the problem scale being larger, the simulator’s main purpose expands to research
fine distribution of fluid under ground from the past trends of studying the whole
reservoir performance, so that the expenditure for every simulation is bigger and
bigger. The parallel computation environment (shared and distributed) came forth
ten years ago, synchronously some developers of reservoir simulator began to re-
search how the serial simulator was parallelized, and the commercial version came
onto the market later. Taking account of the application convenience and the com-
putation cost, it is necessary to us to parallel the existing serial simulator, and then
the independent parallel simulation technique is performed to satisfy the require-
ments of large scale reservoir simulation in our Oilfield.

In the procedure of reservoir numerical simulation, the computation can be di-
vided into coupled and uncoupled parts. Parallelization of uncoupled part only
involves the program technique, the important thing to do is on data decomposi-
tion by regions, and most of the serial source code for this part can be adopted for
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parallel program. The coupled part is mostly executed in the process for solving lin-
ear equations, where the parallel solving method we use must be different from the
serial case. Therefore, the key work is the development and implementation of the
parallel solving method for large, sparse and unsymmetrical linear system. By the
use of the differential equation parallel solver package-PETSc(Portable, Parallel,
Extended Toolkit for Scientific Computation) coming forth from Argonne National
Lab of America, for the developer of reservoir simulators, it is possible to realize
that the existing serial simulator is parallelized quickly. Therefore, in terms of the
use of PETSc’s options on the LINUX PC-cluster, we made the serial black oil
simulator be parallelized and developed the parallel black oil simulator PBRS, and
successfully applied it in seven oil production areas of the current reservoir studies
in Daqing.

2. The hardware and system software configurations of PC-Clusters in
Daqing

The scale of PC-Cluster is from several nodes to thousands, if we keep exten-
sibility, the more nodes, higher the expense. The first PC-Cluster to be built in
Daqing was mainly used for experiment and software development, its function was
primary, and its performance was secondary. In order to enhance the probability
of success, we reduced the cost as much as possible, so the number of nodes is
not large. Hardware and system configuration of the integrated PC-Clusters is as
follows:

Hardware configuration
(1) Node: one master (control) node, eight slave (computation) nodes;
(2) CPU: Intel Pentium III 800EB or higher;
(3) Memory: 2GB for master node, 1GB per slave node;
(4) Network card: two Intel 100/1000M PC cards, teaming, for master node,

one Intel 100/1000M PC card per slave node;
(5) Switch: 24/12Port 100/1000M Switch;
(6) Hard disk: 18GB inside for every node, 200GB RAID connected to master

node;
(7) Display: 21 inches display linked to master node.

System software configuration:
(1) Linux operating system RH7.1 or higher;
(2) MPI (Message Passing Interface) 1.2;
(3) The differential equation parallel solver package-PETSc (Portable, Parallel-

Extended Toolkit for Scientific Computation) from American National Lab.

3. Parallel solving strategies in PBRS software

Most computation examples indicated that it took 98 percent of all simulation
time when we used serial simulator to calculate Jacobian coefficients and to solve the
linear system coupled by grid equations and well equations. In order to obtain good
parallel efficiency, the computation and data involved in the two steps above must
be distributed into every parallel node. It is possible to realize parallel computing
for the other portions, but we have to consider that the higher communication
expense is not worth the candle.

In order to reduce the workload of parallel coding, it is convenient to adopt
Master/Slave parallel solution strategies. A more brief account of it is as follows:
slave process takes charge of Jacobian computation, performs the calculating task
of linear system and couples grid equations with well equations to solve linear



LARGE-SCALE RESERVOIR SIMULATIONS USING PC-CLUSTERS 155

system, master process is in charge of the other work such as input, output, well
management and the solving process controls, etc..

The parallel system works on the popular standard MPI interface (PETSc must
be supported by MPI), which increased the communication efficiency between pro-
cesses and source code could be migrated across different system environment.

4. Data distribution and memory management

Data used to a running reservoir simulator includes scalar data and grid array
data, and in principle the latter must be allocated to slave processes to be stored
locally, as it takes most memory space. Because of the output, several important
grid arrays such as pressure, saturation and gas-oil ratio, all are still stored in the
master process. Here the scalar data also includes a few small arrays that are
independent of the grid number and well number, such as relative permeability and
PVT table, etc.. It is negligible for the occupied memory, so they can repeatedly
be stored in every process.

4.1. Data partition. After obtaining the partition instruction from user, it is
easy to obtain the partition scheme. If we do only a little coding, the local grid
number of every region can be set with approximate scale each other, this will
benefit loading balance. In view of the need for automatic data exchange between
regions, the indices of region borderline are set first along one direction and then
along another direction. Some information may be used later must be accurately
stored after partition, such as regions, position of region borderline, its size and
indices, etc. In addition, the wells in every region are also ordered again, and the
relationship between its local and global indices must be reserved.

4.2. Memory management. After the master process is started, we read the
restart file and allocate for enough memory to read all primary information, neces-
sary backup data is stored, dynamic memory is released and a new one requested,
until the data stored in every region has been transported and then the backup data
is imported again. Dynamic memory of the slave process is requested to satisfy its
minimum needs.

5. Parallelizing of Jacobian Computation

Jacobian computation can be accurately parallelized. Because the Jacobian el-
ements of boundary grid equation are related to the boundary grid data of the
neighbor subregions, the grid system of every subregion can be extended outwards
from the inner border during this period, so current dummy grid system includes
all the grids in relation to Jacobian calculation in this subregion.

If NXD(I) and NYD(I) denote actual grid numbers in subregion along I and
J direction, NXV(I) and NYV(I) denote dummy grid numbers in subregion along
I and J direction, then region 2(the grids with bias as background are extended
dummy grids) in Figure 1 shows as follows:

NXD(2)=4, NYD(2)=5,

NXV(2)=6, NYV(2)=6.

Each subregion is regarded as an individual model to use Jacobian calculation
source code of primary serial program. After array data was set according to
natural order in dummy grid system, for I subregion, we only need to use NXV(I)
and NYV(I) to replace primary NX and NY. In Figure 1, NX=11, NY=9.
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Figure 1. Dummy grid system of Jacobian calculation in subregion.

1 2 3
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This can avoid the necessity of transferring information frequently in the process
of Jacobian computation, but the whole computation load is increased in contrast
to serial calculation. It can only be eliminated if logic filter is added in code, here
it is necessary to set a local integer array, after Jacobian calculation is finished it
is easy to map from dummy grid to actual grid for use in the latter linear system
solving.

6. Parallel solving linear system with PETSc

PETSc is a extensible, large scale parallel solving software package for Scien-
tific Computation, it can be run on many kinds of operating system, it is fit for
parallel solving of partial differential equations [1]. It consists of some basic tools
and many components included in data object, data and grid management, linear
equation solver(SLES), nonlinear equation solver(SNES) and differential equation
solver(TS). Data object mainly includes vectors(VEC) and matrices (MAT). SLES
mainly includes the KSP and PC components for subspace methods and precon-
ditioners. The user can use part or all of these components to develop parallel
application according to their own needs.

6.1. Local setting of linear system. In order to obtain better parallel efficiency
during parallel reservoir simulation using SLES in PETSc, the key is how to as-
semble matrices. According to the data partition scheme previously mentioned,
row elements derived from grid and well equations for a subregion are stored in
corresponding process, in this way it can ensure there is no data transfer between
subregions during local setting of matrices.

The developer and releaser of PETSc strongly suggests that users use two integer
arrays (D-NNZ and O-NNZ) to let the setting function get the location of nonzero
elements on diagonal block and non-diagonal block of the matrix. In this way,
it was easy for us to compress and store data based on rows in the procedure of
setting, and then we could get higher parallel solving efficiency. The first thing
to solve this problem is to use logic trace for the linear system setting procedure,
and exactly pass the location of nonzero elements, then produce a subroutine that
run in advance to set D-NNZ and O-NNZ arrays. We need not run this routine
every time we solve the problem, we only need to run it before the first Newton
iteration at any time step (including the first time step for this simulation) when
well production or injection status changes.
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Figure 2. Pressure field of the third layer serial computing for
2,618 days with single CPU.

6.2. Choice of parallel components of PETSc. There are many subspace it-
eration methods and serial preconditioners in SLES, but there are only two compo-
nents for parallel preconditioners, block Jacobian (BJACOBI) and addition Schwarz
(ASM). The different combinations of these components are used to solve different
problems. Numerical simulation examples indicate that the combination of two
subspace iterations for incomplete LU preconditioners and GMRES [2] and BCGS
[3] works well to reservoir simulation problem, other combinations can not com-
pete to it. Because BJACOBI is only a special case of ASM with no overlay, it
is adequate to choose ASM. Some options are given for end users to set concrete
parameters, and then the users can try to choose the parameters in detail to the
actual problems.

7. Communication between processes

Data transfer will occur between the master process and each slave process.
When a slave process is started, the data independent of time is first received from
the master process in one-shot time. The master process must receive the variables
of grid pressure, saturation and gas-oil ratio from a slave process for use with
material balance analysis and possible print output before each time step is ended.
In every Newton iterative step, the local maximal absolute value of the residual of
the finite differential equation and the unknown change must be transferred to the
master process, the iterative control data will be transferred to slave process again
after the master gathers this data.

Communication is also necessary between processes in which the neighbor regions
exist. During each Newton iterative step, the neighboring subregions must transfer
unknown changes in boundary grids for the use of variable update in subregion and
Jacobian computation in the next Newton iterative step.

8. Parallel examples and performance analysis on the first PC-Cluster
in Daqing

We have tested PBRS software with four different actual models with 2,000,
210,000, 440,000 and 1,160,000 cells, the result indicates:

(1) Taking the model with 210,000 cells for example, we compared the parallel
computation result by 8 CPUs and the serial computation result by single
CPU for 2,618 days. The difference of maximum balance errors of oil, gas,
and water is -0.0016, -0.0016 and 0.0033, respectively; the difference of
maximum single well daily oil production, daily gas production and water
cut is 0.07m3/day, −8m3/day and 0.02%, respectively; the MAP plots of
pressure field and saturation field (showed by Figure 2 to Figure 5) was
too similar to distinguish the difference by sight, they also do not depend
on region decomposition. Considering that they are all numerical solutions,
the results are correct in the numerical solution meaning.
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Figure 3. Pressure field of the third layer parallel computing for
2,618 days with 8 CPUs.

Figure 4. Saturation field of the forth layer serial computing for
2,618 days with single CPU.

Figure 5. Pressure field of the forth layer parallel computing for
2,618 days with 8 CPUs.

Table 1. Parallel efficiency and acceleration ratio of 210,000 cells.

Number Time Number of CPU time Efficiency Acceleration ratio

of CPUs steps Newton iterative /s Ep = Sp/p Sp = T1/Tp

1 320 5 14224
2 368 5 8759 82.0% 1.63
4 396 5 4508 79.1% 3.61
8 189 5 2386 74.5% 5.96
16 208 5 1395 64.0% 10.2

(2) The computation capability of assembled PC-cluster and developed parallel
black oil simulator PBRS reaches a million cells.

(3) The running speed of single CPU exceeds that of Origin2K parallel com-
puter, data communications between nodes in PC-cluster depend on the
network, on which the speed is lower than Origin2K, but the whole compu-
tation speed of model with more than million cells is higher than Origin2K,
for example, for the model with 1160,000 cells, it needs 70 hours to com-
pute with ten CPUs in Origin2K, but it only takes about 42 hours on the
PC-cluster we built first.

(4) Data communication of the PC-cluster depends on the network, with the
number of CPU and model scale increasing, data quantity increases, but
the efficiency and acceleration ratio decreases. It is impossible to run the
models with 440,000 and 1,160,000 cells with single CPU, so it is impossible
to compare the efficiency and acceleration ratio. Table 1 shows parallel
efficiency and acceleration ratio of 210,000 nodes.
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Table 2. The characterization of reservoir simulation in seven
typical field blocks.

Name of block Areas Number of Number Exploitation history Number of
/km2 layers of wells (put into production) grids

6∼16 well regions of
the north block of 8.2 91 279 28 472,017
Lamadian oil field (in 1974)

The east of the third
north block of 10.56 81 684 39 753,300
Sabei oil field (1963)

The east of the first
north block of 9.46 50 514 42 550,368

Sazhong oil field (1960)
The east of the

second south block of 5.5 65 251 38 455,000
Sanan oil field (1964)

X4∼6 regions of
the third north block 6.9 99 308 36 635,283
of Xingbei oil field (1966)

The east of X10∼11
block of 12.92 56 369 31 804,272

Xingnan oil field (1971)
The east block of 12.5 22 135 20 204,600
Tainan oil field (1982)

9. Actual examples of seven typical field blocks

We respectively chose a typical block from the first to the seventh oil production
districts in Daqing Oilfield in 2002. To each typical block we built a geological
model consisting of single sand layers based on fine geology studies, and carried out
reservoir simulations including up to 40-year history matching and effect prediction
on a series of development adjustment solutions to be optimized, Table 2 shows
the brief summary.

The total area has reached 66km2, which is about 5% of the old oil production
districts. The number of wells involved has reached 2540, which is about 10% of the
old oil production districts. The total OOIP of research blocks has reach 2.9×108t.

We used single sand sediment models as simulation zones in vertical grid partition
for the seven field blocks, it kept consistency with the fine geology studies. We
adopted a uniformity rectangle grid system in plane grid partition, which is designed
in the view of existed well pattern and of possible fill-in well. The design goal meets
the requirement of simulation precision and we reduced the grid number as much as
possible and took little account of finer and finer grids. But the description for the
target reservoirs has reached the topmost fine level in reservoir simulation history
in Daqing.

10. The conclusions

(1) The integrated techniques of PC-cluster for large scale reservoir simulation
have been tried in Daqing, and one PC-cluster has been built for use in
developing parallel simulation software.

(2) The approach of parallel simulation technique has been explored, namely,
network and MPI application software is used as communication tools on
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the LINUX PC-cluster. Through the use of parts of the PETSc components,
we have achieved parallelization for the existing serial simulator.

(3) During the process of research, we resolved a series of parallel key problems
about region decomposition strategy, Jacobian coefficient parallel calcula-
tion, well management parallel consideration, linear solver building and the
management of input and output, etc.

(4) We have achieved the development of parallel black oil simulation soft-
ware PBRS2.1 with independent copyright and partially broke away from
dependence on the commercial one. The popular application of reservoir
simulation and development technique has been accelerated in our oilfield,
and a steady foundation has been built in order that the kernel components
of reservoir simulator can be designed in Petrochina.

(5) The application has been used in actual work situations and it is possible for
large-scale numerical simulation technique to be widely applied in Daqing
Oilfield. The parallel simulation technique can provide finer and more re-
liable basis in order to determine development and adjustment projects.
From this point of view, the economic benefit that PC-clusters bring to us
is indirect and tremendous, in the way of economy, the enormous expenses
have been decreased by applying and developing this kind of computer
hardware and software.
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Abstract. Based on percolation mechanism of fractured reservoirs and simu-

lation technique, the numerical simulation software of fractured reservoirs has

been developed on PC-Linux environment, which is on the basis of DQHY sim-

ulator of three dimensions and three phases. It can treat dual-porosity/single-

permeability and dual-porosity/dual-permeability model. The results of exam-

ples indicate that the performance of fractured reservoirs could be simulated

with the software.

Key Words. the numerical simulation, fractured reservoirs, DQHY simulator,

PC-Linux, dual-porosity.

1. Introduction

The concept of dual-porosity media was put forward by Barenblatt, G.I in Rus-
sian when he studied single-phase flow crossing fractured porous media in 1960.
Later this concept was applied into fractured reservoir simulation, and popularized
to multiphase flow.

The use of the dual-porosity approach for the modeling of naturally fractured
reservoirs has become widely accepted in the oil industry. In this approach, it is
assumed that fractured porous media can be represented by two collocated continua
called matrix and fracture. The original idealized models assumed that the fracture
is the primary conduit for flow whereas the matrix acts as distributed sources and
sinks. Since the introduction of idealized model into the petroleum literature some
40 ago, so several improvements and refinements have been proposed. For exam-
ple, the dual-permeability model was introduced when it become evident for some
fractured reservoirs, the continuity of the matrix is very important consideration.
Much of the recent works on dual-permeability modeling are directed towards the
more accurate representation of matrix-fracture transfers for porosity model.

There are natural and artificial fractures in periphery oil field of Daqing, such
as Fuyang oil layer, Putaohua layer and Toutai oil field, there are also fractures
since old oil wells was fractured in interior of Daqing oil field. In order to improve
waterflood recovery and development level of periphery oil field at late period of high
water-cut, Daqing oil field requires the support of numerical simulation technique
for fractured reservoirs.

Based on mature percolation mechanism of fractured reservoirs inland and over-
seas, the numerical simulation software of fractured reservoirs has been developed
on PC-Linux environment, which is on the basis of DQHY simulator of three di-
mensions and three phases.
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fracture

matrix

Figure 1. Dual porosity system.

Figure 2. Partition of grids for dual porous media.

2. General theories

In order to describe fractures, it is first assumed that there is an ideal fractured
system with only vertical and horizontal fractures in reservoir (for 2-D problem),
showed by Figure 1, the matrix is surrounded by fractures, so dual porous media
consists of the fractured system (grid) and the matrix. In general, the most fluids
exist in matrixes for reservoirs, the volume of fracture is very small, there is only a
small quantity of fluids in it, but the conductive capability of the fracture is much
better than the matrix. Therefore the matrix blocks only acts as distributed sources
and sinks, the fracture is the primary conduit in the idealized dual porosity model.

The flow equations can be described by the following mathematical modeling
when multiphase fluids are flowing through the ideal media above [1]:





∂

∂t
(
ΦSα

Bα
)f = 5 · [KKrα

µαBα
(5Pα − ραg5D)]f − ταmaf + qαf ,

∂

∂t
(
ΦSα

Bα
)ma = ταmaf ,

(1)

where the subscripts f and ma refer to the fracture and matrix respectively, the
ταmaf is the matrix-fracture transfer term and has the form:

ταmaf = σVb(1− Φf )λα(ϕf − ϕma)α,(2)

where σ is the shape factor, λα is the phase mobility of phase α, Φf is the fracture
porosity and ϕ is flow potential.

We can obtain different fractured model if we choose different ταmaf , such as:
the gravity model, the subdomain model, pseudo function method and dual per-
meability model or any combination above, etc..
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matrix fracture calculating block

Figure 3. Dual porosity/single permeability model.

3. Numerical technique

Substantively, numerical simulation for fractured reservoirs is solving (1) and
(2) simultaneous partial difference equations. Showed as Figure 2, partition of
grids first is performed for dual porous media reservoir (for two dimensions). Each
calculating grid block includes many matrix blocks (it is not always integer) and
many fractures, but the borderline is not always superposed on fractures. Each
physical parameter has two different numerical values in each calculating grid block,
the two values respectively correspond to matrix and fracture. They are average
values of physical parameters including the matrix or the fracture in this grid. For
example, in the input model, the average matrix porosity and the average fractured
porosity for every grid must be respectively given, we can obtain the average matrix
pressure and the average fractured porosity in results, etc.

The contents above are the numerical description of geometric property about
fractured reservoirs. In addition, the relative permeability curve and capillary pres-
sure curve also should be respectively given for fractured reservoir simulation. Gen-
erally, the experiment results can be used directly for the matrix. Whereas relative
permeability curve is usually linear form for the fractures, but different end-scale
value and slope are only used for different reservoir.

It has mentioned that the different select for fracture-matrix transfer term would
derived different model, therefore the select of ταmaf - namely treating the flow
problem between fracture and matrix-will be the quick to establish fractured reser-
voir simulation.

The simulator can treat two kinds of flow. They all synthetically use the gravity
model and pseudo capillary pressure function method.

The model for the first flow is dual porosity/single permeability. It is assumed
that the flow only occurs between fracture and matrix. The direct flow between
matrixes is left out of consideration, shown as the arrowhead in Figure 3. The
model for second flow is dual porosity/dual permeability. It is assumed that the
flow not only occurs between fracture and matrix, but also between matrixes, shown
as the arrowhead in Figure 4.

In addition, full implicit difference scheme should be used in dual porosity/single
permeability model and IMPES difference scheme should be used in dual poros-
ity/dual permeability model. If we treat the high velocity flow problems, the for-
mer always has good stability, but the later maybe becomes unstable. So the latter
usually is used to treat those fractured problems that the matrix permeability is
not over five percent of fractured permeability.
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matrix fracture calculating block

Figure 4. Dual porosity/dual permeability model.

We know there are only three equations and three unknowns in each grid for
a single porous media black oil simulation, but it needs to add three additional
equations to describe fluids flow in another media for dual porous media simulation
and then adds three unknowns. Therefore the order of one simulation problem will
be increased by 2 times from single porous media to dual porous media. Based
on current solving technique, work load will be increased by 4∼9 times, so the
simulating speed of dual-porosity media is much slower than single-porosity media.

4. The software development of fractured reservoirs

The DQHY simulator was developed by Exploration & Development Research
Institute of Daqing Oilfield Co. Ltd. in 1987, the developed period of fractured
reservoir simulator would be curtailed based on this simulator. The fractured pa-
rameters had added into input and output options, for dual porosity/single perme-
ability model and dual porosity/dual permeability model, we reprogramed for the
module of finite difference scheme and solving linear equations with linear equation
solver (SLES) in PETSc software package.

Because there are PETSc, MPI and pgi compiling environment for the assembly
PC-Linux system, the simulation software of fractured reservoirs has been developed
on PC-Linux environment.

5. Application for examples

The concept model was computed with the simulation software for fractured
reservoirs. The concept model is described as followed:

The grid number is: 11×11×3, the size of uniform grid in horizon direction is:
60m×60m, the size of the matrix grid in horizon direction is: 30.3m×3m; The sizes
of three-layer grids in vertical direction respectively are: 57m,90m,90m, and the
net thickness in vertical direction respectively are: 5m,4m,4m, matrix and frac-
tured permeability is 1md, except the fractured permeability in the center horizon
direction is 100md, matrix porosity is 0.114, fractured porosity is 0.001, nine wells
are arranged with 300m well space, the center well is injection-water well, the others
are production wells, 8000 days production history are calculated.

CPU calculated time are showed as follows:
It takes 17.26s for full implicit solution of single porous media model, 31.97s

for full implicit solution of dual porous media/single permeability model, 5306.85s
for IMPES solution of dual porous media/dual permeability model. By this token,
the calculated time of dual porous media is much slower than one of single porous
media, especially for dual permeability model.
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Figure 5. Water cut changes with time for different media.

Fractured grid pressure field computing for 1500 days for dual

porous media/dual permeability model

Figure 6. Fractured grid pressure field computing for 1500 days
for dual porous media/dual permeability model.

Water cut curve is showed as follows Figure 5. The water cut change is smart
and presents ladderlike for dual porous media model because of the influence of
fractured permeability. It is different from single porous media model whose water
cut change is gentle.

Computing for 1500 days, matrix-fracture pressure and saturation figures are
showed by Figure 6 to Figure 13.

Because there are material exchange between matrix-matrix and matrix-fracture
for dual permeability model, their field distributions are uniform, which was seen
obviously by Figure 6 to Figure 13.

6. Conclusions

(1). The numerical Simulation software for Fractured Reservoirs in this paper
can simulate waterflood behavior and make the function of black oil simulator
extend, the result is reasonable and credible.

(2). On the basis of DQHY simulator of three dimensions and three phases,
making use of PETSc to develop the simulator on PC-Linux environment is fea-
sible, which could treat dual porosity/single permeability and dual porosity/dual
permeability model.
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Figure 7. Matrix grid pressure field computing for 1500 days for
dual porous media/dual permeability model.

Figure 8. Fractured grid pressure field computing for 1500 days
for dual porous media/single permeability model.

Figure 9. Matrix grid pressure field computing for 1500 days for
dual porous media/single permeability model.

(3). The software has been combined with the local preprocess and postprocess
system and directly applied to practical problem for fractured reservoirs and has
good practicability.
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Figure 10. Fractured grid oil saturation field computing for 1500
days for dual porous media/dual permeability model.

Figure 11. Matrix grid oil saturation field computing for 1500
days for dual porous media/dual permeability model.

Figure 12. Fractured grid oil saturation field computing for 1500
days for dual porous media/single permeability model.
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Figure 13. Matrix grid oil saturation field computing for 1500
days for dual porous media/single permeability model.
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EXPLORER, A VISUALIZATION SYSTEM FOR RESERVOIR
SIMULATIONS

JIFENG YAO

Abstract. In this paper, we introduce Explorer, a visualization system for

reservoir simulations. It is designed for large-scale data sets and many tech-

nologies have been used during its implementation, such as a 3-layer Client-

Commware-Server (CCS) structure, Object-Oriented method, VTK based ren-

dering and etc. Compared with current commercial softwares, Explorer has

many features including more data formats support, many user-defined prop-

erties and full support for Chinese characters.

Key Words. visualization system, post-processing, reservoir simulation,

1. Introduction

A visualization system is essential to reservoir simulation applications, which
makes it possible for both simulation and reservoir engineers to find out what is in-
side the outputs produced by computing programs. Explorer is such a visualization
system for both sequential and parallel reservoir simulators.

With the rapid progress in computing technology, such as CPU speed, disk
capacity, network bandwidth and also the software improvements, reservoir sim-
ulation systems nowadays can generate large amounts of data (on the order of
several hundred gigabytes to terabytes), and it has brought great challenges to cur-
rent visualization systems, including data accessing, transmitting, processing and
displaying. Explorer has made a lot of effort to achieve high performance when
handling large-scale data sets.

In the following parts, we first introduce the so-called Client-Commware-Server
structure[1]. Compared with the traditional Client-Server structure which is widely
used in scientific visualization systems, this 3-layer structure can decrease the in-
teractions between the server for computing and the client for visualization and
make the whole system more independent and flexible. Then we discuss how the
Object-Oriented method is applied in Explorer. There are all together 4 kinds of
objects in Explorer: GUI objects, project administrator objects, document objects
and rendering objects. After that, several aspects of Explorer will be mentioned,
including a dictionary-like keyword parser, time-varying data manipulation, VTK
based rendering and Chinese character handling in OpenGL windows. The last
part of this paper is the conclusions and related work in the future.

2. The Client-Commware-Server Architecture

Most visualization systems use the Client-Server architecture (see Figure 1). The
computations run on the server and the visualization systems run on the client.

Received by the editors January 1, 2004 and, in revised form, March 22, 2004.
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They are connected by networks. (Sometimes the two parts may be located in the
same machine.)

Server for
compting

Client for
visualization

Data

Keep connecting

Interactions

Figure 1 visualization system based on client-server structure

The C-S architecture has many good aspects. First, as we all know, numeri-
cal computation and the visualization have different demands of computer abili-
ties. One needs powerful floating calculation ability while the other needs powerful
graphics processing ability. Normally these two kinds of abilities are hard and no
need to be provided by the same machine. By using the C-S structure, the numerical
computation and visualization can be accomplished on different hardwares. Besides
that, most applications need some kinds of interactions between the computation
and the visualization, such as stopping, restarting or modifying the computation
according to the visualization results, and the network between the server and the
client provides a tunnel for this communication.

The problem of the traditional C-S structure rests with its high reliance between
the two parts. It is hard to modify only a single part and not to affect the other
one, because they are tied in an inflexible way. The main difficulty relies on the
complexity of current networks and the operating systems and that is why we
introduce the 3-layer Client-Commware-Server (C-C-S) architecture (see Figure 2).

Scientific

computing

system

Server

side

Visualization

system

Client

side

Commware

Local

Commu-

nication

Network

communications

Server for Computing Client for visualization

Local

Commu-

nication

Figure 2 visualization system based on client-commware-server structure

Actually the name commware is borrowed from the well-known ”middleware”,
and to some extend the commware is a kind of middleware which is in charge of the
communications between the client and the server. Commware contains 2 parts:
one part is located on the server for computing and the other is on the client for
visualization. It hides all the details about the communications across different
platforms and networks which both the server and the client side don’t need to
take into account.
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Normally the reservior simulation programs are developed by experts of numer-
ical computing and the visualization system comes from professionals familiar with
computer graphics. It’s always difficult to merge people from different fields to-
gether and the commware makes it possible that the two kinds of specialists only
need to focus on their own concern and spend little on how to communicate with
each other. The only thing they have to do is to follow the specific protocols on
communication that we defined. Currently, the communication protocols defined
in commware includes 3 parts:

• Authorization. Reservior simulations often run on supercomputers most
of which have some kinds of user authorization mechanism, e.g. needing
a password to access. This part handles the authorization related com-
munications including encrypting user’s private information, transmitting
encrypted data over networks and set up the connection.

• Data transmitting. Besides the simple functions such as sending requests
and accepting the computing results, some complicated functions, including
break points resuming, real-time data transmitting, network fault tolerance,
are also considered here.

• Interactions. At present several basic and essential functions are defined
here, including starting, stopping or restarting simulations on the server.

3. The Object-Oriented method in Explorer

Object-Oriented (OO) programming has been widely available to developers for
over 20 years, and nowadays software based on this concept is pretty ubiquitous[2].
Its major goals are to improve programmer productivity by increasing software
extensibility and reusability and to control the complexity and cost of software
maintenance. Explorer also adopts OO method during its design and implementa-
tion.

Explorer uses Microsoft Visual C++, one of the most popular OO languages,
as the development environment. According to MS VC’s famous document-view
framework, there are four kinds of objects/classes in Explorer. They are

• GUI objects: They control the entire graphic user’s interfaces (GUI); in-
cluding answering messages sent by users and starting the corresponding
operations. GUI objects are simply derived from MFC (Microsoft Founda-
tion Classes).

• Project administrator objects: Explorer uses a project-case structure
to manage the simulation results. Generally a project is set up when new
data about a reservoir comes and one case stands for one simulation. Each
project may contain lots of cases because users often run the simulation
program many times in order to get the best result. All the project and
case related data are handled by the project administrator objects. They
are also in charge of recognizing different data formats and converting them
into the Explorer specific data format.

• Document objects: These objects are also derived from MFC and they
manage data for visualization and also the operations on the data side.
Explorer has two kinds of data now, one is the 2-dimension form data,
such as the production of wells and the other is the 3-dimension field data,
such as the pressure or the saturation of oil over the whole region. Each
kind of data is held by a corresponding document class and all the classes
or the objects have a relational hierarchy. All the general operations for
different data types, e.g. reading and writing data files, are arranged in
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the base document class and their respective functions are in the derived
classes. Together with the rendering objects, document objects are the key
elements of the whole system.

• Rendering/View objects: Rendering objects, which combine MFC’s
view class and the VTK (the Visualization Toolkit) library, do the actual
”drawing” of Explorer. Each rendering object has a corresponding docu-
ment objects which supplies the data for visualization. All the pictures the
users see on the screen are produced by rendering objects.

Figure 3 shows how the 4 objects above work together to form an integrated
system.
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Figure 3 Objects in Explorer

4. Implementation Issues

Explorer is developed by Microsoft Visual C++ and runs on the Windows plat-
forms. Currently its source code is more than 30,000 lines. Many techniques, such
as multi-threading and movie generation, are adopted in Explorer either to improve
its performance or to enhance its functionality. Several important implementation
issues of Explorer are addressed in the following sections.

4.1. Dictionary-like Keyword Parser.
Most reservoir simulation programs use keywords to organize their outputs. For

example, in Simbest II the keyword ”RATEWP” in an output file indicates that
the following array gives the production rate information of certain wells and the
keyword ”SW” is always put before a data array which stores the water saturation
of the whole field. Different simulation programs have different keyword sets and
Explorer have to recognize all the keywords it supports, the total amount of which
is up to several hundreds. Furthermore, when the simulation programs add new
keywords, Explorer must be capable to support them immediately. A dictionary-
like keyword parser used in Explorer makes these possible.

A keyword dictionary is built in Explorer and it’s easy to add, remove or modify
words contained in it. Each word needs a registration process, which defines an
action for this word. Normally the action stands for a function which will be called
when system comes across the given word. When a new keyword comes, the only
thing for the programmers is to write a function to handle this new word and add
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both the word and the function to the dictionary by the well-defined registration
process.

When a data file is ready, the keyword parser searches in the dictionary every
keyword it comes across in the file and calls the pre-defined functions to handle this
keyword. A Hash table is used here to improve the searching performance.

4.2. Time-varying Data Manipulation.
Reservoir simulation is a time-dependent process and it outputs time-varying

data. A simulation always contains many time steps and during each step the
simulation program writes the corresponding results to the output file. Normally
there are several parameters in the simulation programs for users to decide what
kinds of variables should be contained in the output file, e.g. pressure, oil saturation
or gas saturation. All the selected variables or arrays will be sorted in the output
file according to their time steps.

Nowadays the number of grid points used for reservoir simulation is up to several
million and the size of a double array which stores one variable may be tens of
megabytes. The data file size can be enormous if it contains dozens of variables and
lots of time steps and it’s always difficult to get the specific information from such
a large file. We noticed that during the post-processing, mostly the users wanted to
know how a single variable, for example, the production rate of an appointed well,
changed when time went by. However in the output file different variables with the
same time step are put together and this kind of data structure is not convenient for
visualization. So in Explorer when a data file from the simulation system is ready,
the first thing is to convert the data structure from the time steps based order to
variables based order. The original data file is separated to dozens of well-organized
small files. Basically these small files can be classified as 2-D plot data files (*.ppd)
and 3-D field data files (*.pmd). Each well or region has its own plot data file, for
example file well2.ppd stores all the variables of well no.2. Each filed data is also
stored in a single file, for example, p.ppd stores the pressure values during different
time steps. When users want to check how a variable changes during a simulation,
Explorer simply opens the data file relevant to this variable and display information
by time steps one after another.

4.3. VTK Based Rendering.
VTK (the Visualization Toolkit) is an open-source, object-oriented software sys-

tem for computer graphics, visualization, and image processing[3][4]. VTK is based
on OpenGL, the de facto industry standard for 3D graphics application develop-
ment, but it hides the complicated OpenGL APIs and is easy to use when having
learned about its basic object-oriented design and implementation methodology.

In Explorer, all the graphics related parts, including both the 2D graphics and
3D graphics, are accomplished by VTK. VTK is well combined with the MFC
view classes and a set of hierachical VTK-view classes are used to handle different
rendering requests.

VTK uses a graphics pipeline to transform graphical data into pictures and
many objects are involved during the rendering process, among which the most
important one is the vtkProp object. Props represent the things that we ”see”
in the scene on the screen and Explorer develops many specific props to show the
reservoir related things. For example, the CPrisXYPlotActor class which is derived
from the vtkProp class is used to generate x-y plots from one or more input data
sets as shown in Figure 4. The most complicated VTK-view class in Explorer is
the CPmdView class. It’s used to represent the reservoir in 3D and it is combined
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with many vtkProp derived actors for 3D reservoir structure, faults, wells, scalar
bar, titles, and etc.

Many useful functions have been implemented in Explorer, such as showing infor-
mation in specific layers or regions, selecting regions according their values ranges,
saving outputs to pictures or movies. Figure 5-6 show some snapshots of Explorer’s
3D outputs.

Figure 4 X-Y plot of Explorer

Figure 5 3D output sample (1)

4.4. Chinese Character Handling.
One of Explorer’s features is its full support for Chinese characters. (Actually

it now can support all the UNICODE characters such as Japanese and Korean.)
This problem is addressed here because most visualization system uses OpenGL
and OpenGL supports English characters only.
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Figure 6 3D output sample (2)

Unlike the menus, the buttons or the texts displayed in a normal window, the
OpenGL window is not controlled by the operating system. Simply putting non-
English characters in an OpenGL window can only get some weird lines or points.
Since Explorer uses VTK as its graphics library, we solve this problem by take an
inside look of VTK.

An open-source library, FTGL, is used in VTK to display characters in OpenGL
windows and FTGL uses another open-source library FreeType, which deals with
the vector character files (*.ttf, *.ttc). They are combined together and make VTK
have the ability to show vector characters. Operating systems of different language
versions all have a set of vector character files and the problem is how these vector
characters can be used in VTK based OpenGL windows. The answer relies on the
translation between different character code sets. Two codes sets are involved here.
One is the ASCII (American Standard Code for Information Interchange) supported
by OpenGL and the other is UNICODE which is used for many languages including
Chinese. If we can convert the Chinese characters for being displayed in VTK
windows into UNICODE and give a vector character file, FTGL can successful
draw the characters with FreeType library’s help. Fortunately many ways are
possible to accomplish such a translation and the function MultiByteToWideChar
is a good choice for the Windows platform. In Figure 5-6, we can see many Chinese
characters well displayed there.

5. Conclusions and Future Work

Explorer is a post-processing system for current reservoir simulation programs
and it is intent on dealing with large-scale data sets. Many technologies have been
used during its design and implementation, such as the Client-Commware-Server
structure, the Object-Oriented method, VTK based rendering, and etc. Compared
to existing commercial software, Explorer has its own distinctive features, for ex-
ample full support for non-English characters. Explorer does not have as many
capabilities as the commercial software, but it tries to provide the users the most
practical functionalities in a very convenient way.
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In the near future, we will do our endeavor to improve Explorer in two ways.
On the one hand, we will try to add some new functionalities and features to
Explorer, such as full remote control and more supported data formats. On the
other hand, some new technologies for the next generation system, including GRID
based visualization, data compression, parallel visualization and large-scale display,
have been put into our schedule. Actually we’ve got some financial support and
the related research has already started.
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THE PARALLEL STRATEGY OF A LARGE SCALE
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Abstract. Aim at large scale fine reservoir numerical simulation application

research on Shenwei computer, the multilayer two dimension two phase par-

allel software transplanted successfully and a large scale integral simulation

about ten millions nodes were realized in the environment of Shenwei parallel

computer. The whole preconditioning alternating Schward and another many

improved algorithm, the parallel optimal methods about coefficient matrix and

saturation calculation made the parallel efficiency increased effectively about

multilayer two dimension two phase parallel software. Especially the deep

research about the communication and load-balanced technology fitting for

Shenwei computer make the parallel function of the software to large scale in-

crease. The multilayer two dimension two phase parallel software transplanted

and the parallel computer resource of homegrown Shenwei high behavior par-

allel computer with 112 CPUs was to simulate the production history of 12

sandgroups of the second Shahejian in second block of Shengtuo. The sim-

ulation scale is 10 millions nodes and the time exhausted is about 5 hours

which satisfies the application requisition of reservoir simulation. This verifies

the reliability and stability of the software and makes the whole parallel effi-

ciency to 79%. It is first time to bring out the independent copyright reservoir

simulation parallel software with satisfactory back and forth processing func-

tion in homegrown Shenwei computer. Especially the application of the whole

preconditioning alternating Schward region decomposition algorithm, the deep

research of load-balanced technology and the large scale application etc. are

all innovative.

Key Words. reservoir simulation, parallel calculation, model, speedup

1. Foreword

High-behavior computer is usually used for large scale parallel calculation in
fields of national defence, meteorology and air/space technology, etc. In July, 2000,
homegrown Shenwei computer, a huge computer system, came into the world. It is
very suitable for such calculation. The key of reservoir numerical simulation is to
solve large-scale sparse linear algebraic equation group-formed from large-scale par-
tial differential one, which needs mass of time. But it is a kind of parallel calculation
which can be done on various parallel computers. In this paper, parallelization of
reservoir numerical simulation and its application has been studied using ShenWei
computer and the multilayer two dimension two phase parallel software (developed
by ourselves). Also parallel strategy and parallel optimization is probed with good
effects. The simulation scale is 10 million blocks and the time exhausted is about
5 hours.
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2. Characteristics of Shenwei computer

Shenwei computer is a home-developed, huge computer system used for large
scale parallel processing. Considering users’ requirements, it is designed to be a
super parallel processing system with multiple instruction-flows/data-flows. It is
characterized with fast calculation speed, large memory capacity, high efficiency,
rich software collocation with completed function and good PFK, friendly interface
which is easy to study and use, stable and reliable function which makes mainte-
nance and re-assembling convenient. It is made up of host computer system, front
end, disk array and software with main system of isomorphism ,distributing shar-
ing, framework of planar grid- cubicle-net and 384 CPU. The highest calculation
speed of this system amounts to 384 billion times per second.

3. Parallelization of multilayer two dimension two phase software

Multilayer two dimension two phase parallel software is adapt to numerical sim-
ulation of terrestrial facies, layered, low-saturation, water-flooded sandstone reser-
voir. According to features of such reservoir, synchronous parallelization of inter-
layer and intralayer is adopted using region decomposition algorithm on Shenwei
computer.

3.1. Parallel strategy. In terms of characteristics of Shenwei computer, the key
technical strategy of software parallelization mainly aims to tackle two problems
as follows. The first is how to realize large scale simulation and the second is
how to make multilayer two dimension two phase software fit to high behavior and
huge parallel computer. To solve the former problem, distributing-sharing storage
techniques are adopted and for the latter one, multilevel parallelization is used.

3.1.1. Design of distributing-sharing storage manner. Distributing-sharing
is one of storage manners usually used by MPP. It can be classified into two cate-
gories: Cache or non-Cache. In the former system, one CPU should visit local Cache
firstly before visiting other CPU. If local Cache can not be reach, then it can visit
a remote CPU. While in latter system, one CPU can visit a remote CPU directly
to obtain contents he wants. In terms of contents which are modified frequently by
many CPU, the efficiency of Cache distributing-sharing will be higher than that of
non-Cache one. In terms of contents which are not modified frequently by many
CPU, the efficiency of Cache distributing-sharing will be much more higher. In
this study, sharing data should be visited and modified only during major process
process, so Cache distributing-sharing will be more effective. Distributing-sharing
storage technique is designed and applied.

Without distributing-sharing storage, the largest simulation scale of Shenwei
computer with 512M main store capacity will be about 3.5 4 million blocks . If 4
CPU–each with 256M distributing-share capacity-are adopted, totally 1G capacity
will be obtained. Then the largest simulation scale will be increased dramatically
and amount to 10 11 million nodes. Furthermore, If 16 such CPU are adopted,
the largest simulation scale will be above 40 million blocks. The application of
distributing-share is an effective method to enlarge storage capacity. Thus, different
simulation scales can be realized.

Without distributing-share storage, the largest simulation scale of Shenwei com-
puter with 512M main store capacity will be about 3.5 4 million nodes. If 4 PES–
each with 256M distributing-share capacity-are adopted, totally 1G capacity will
be obtained. Then the largest simulation scale will be increased dramatically and
amount to 10 11 million nodes. Furthermore, If 16 such PES is adopted, the largest
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simulation scale will be above 40 million nodes. The application of distributing-
share is an effective method to enlarge storage capacity. Thus, different simulation
scales can be realized.

3.1.2. Multilevel parallelization strategy. This study deals with two kinds
of parallelization–intralayer and interlayer. They can be used synchronously in
the same program. So how to organize these two parallelization manners are very
important.

In terms of interlayer parallelization, the whole program includes two unparal-
lelized parts (bottom hole pressure calculation and indexes determination), which
should be done through a maste-rcontrol process process, as well as two parallelized
parts (pressure and saturation calculation). While in terms of intralayer paralleliza-
tion, the generation of coefficient matrix can not be parallelized and also needs a
process which can bear main process process.

In order to improve efficiency of interlayer parallelization, dynamic scheduler
is adopted to provide task to each process. That is, there is a main process (dy-
namic scheduler) which is responsible for providing data needed by each parallelized
process; the parallelized processs should notify main process after they finish the
calculation; then main process will distribute another task (if exists) to them or in-
form them of rest (if no tasks left). Due to such characteristics, dynamic scheduler
can not participate in interlayer parallelized calculation. Otherwise its efficiency
can not be guaranteed. If all the conditions above are satisfied, dynamic scheduler
algorithm will be optimum choice for interlayer parallelization.

To sum up, the main model which includes interlayer and intralayer paralleliza-
tion is made up of processs of three levels

(1) Master-control process: it is responsible for calculation which can not be
parallelized, and as the same tine, it acts as the scheduler for interlayer
parallelization.

(2) Intralayer main process: it is responsible for receiving for layer data from
mastercontrol process, coefficient matrix calculation and division into pieces
of coefficient matrix, transition of such pieces to intralayer sub-processes,
collection of calculation results from sub-processes and determining the
astringency of these results, calculation of saturation, and sending the cal-
culated data to mastercontrol process.

(3) Intralayer sub-processs: they are responsible for incept of data from in-
tralayer main process, calculation of pressure and sending the calculated
data back to intralayer main process.

3.2. Parallel optimization.

3.2.1. Load-balanced optimization. Load-balanced optimization is the chief
matter in software parallelization. In terms of multilayer two dimension two phase
model, calculation load of different layers may be different dramatically in differ-
ent time-step/iterated sub-timestep even in the same timestep due to geological
heterogeneity or diversity of producing degree between them.

(1) Processing flow of dynamic load-balanced
Hereunder, algorithm flow will be introduced taken interlayer parallelized
calculation of pressure and saturation as an example. On the assumption
that KC layers remain to be calculated, there are KC tasks. In case that
(n+1) CPU participates in this calculation, there should be 1 mastercon-
trol process responsible for distributing these tasks. For the mastercontrol
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Figure 1. Comparison diagram of time during pressure calcula-
tion before and after load-balanced optimization.

process, data needed by each layer during iteration and calculation should
be gotten ready after completion of bottom hole pressure calculation. Then
it should distribute one layer-data needed during calculation-to each sub-
process and wait for information of fulfillment from them immediately fol-
lowed by incept of calculated data. If there are tasks left, that is, there
still exists layers needed to be calculated, it will send data of those layers
to the sub-processs who have finished their former tasks until all the lay-
ers are calculated. While sub-processs are responsible for incept of data
from mastercontrol process, calculation of these data and sending back the
calculated results.

(2) Analyses of dynamic load-balanced effects
In order to evaluate dynamic load-balanced effects, model of real reser-
voir in second block of Shengtuo oilfield has been studied. In this model,
there are 17 simulated layers with the scale of 2.6 million nodes and 26 of
calculation time-step. From Fig.1, time during pressure calculation before
load-balanced optimization is compared with that after optimization. After
dynamic scheduler is adopted, the parallel efficiency of 2 CPU will amount
to 1.0 and that of 4 CPU to 0.97, similar to linear acceleration. But be-
cause of 17 simulated layers, efficiency of 8 CPU will drop to about 0.77 due
to one layer will be left after each CPU finished calculation of two layers,
which will make the whole calculation time be relatively longer. However,
this efficiency is still much higher than that (0.45) before parallelization.

3.2.2. Communication optimization. Communication and I/O are the key fac-
tors which can affect program behavior. In this program we discussed, mass of
communication exists, making communication optimization more important. Dur-
ing the whole parallelization, communication load focus mainly on process of tasks
distributing from mastercontrol process to sub-processs and of intralayer paral-
lelization/interlayer iteration. The load of the former process is very heavy and can
not be replaced by other manners.
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(1) Communication optimization of load-balanced algorithm
Intralayer mastercontrol process should take over calculation results of

all the intralayer sub-process besides pressure calculation through itera-
tion. At the same time, it should process the calculated pressure results
of each PCU, resulting in new values. If the values are not convergent, it
should transmit them back to CPU for recalculation. This additional work
makes the intralayer mastercontrol process be another bottle-neck during
intralayer parallelization. In case that each sub-process can finish its pres-
sure processing independently, the efficiency may be improved largely. The
reasons are as follows: first, load of mastercontrol process will be lighten
due to data incorporation of each sub-process, which is concentrated on it
before, is distributed to sub-processs themselves; second, communication
load will be reduced dramatically. In original program, sub-processs should
transmit pressure field of the whole layer to mastercontrol process each
time after completion of intralayer iteration and the former should broad-
cast the new pressure field produced through incorporation back to the
latter. While in optimized algorithm, these two transmitting process are
replaced by boundary communication whose communication-load is much
less. Thus, the whole pressure field is sent to mastercontrol process only
when the calculated data are convergent. In the latter algorithm, load-
balance is considered to the largest degree and the work of sub-processs is
almost equivalent to that of mastercontrol process.

(2) Effects analyses of communication optimization
Effects of communication optimization are test using the same test model

as load-balance. After optimization, time using for iteration calculation will
reduce 1/3 than before and speedup will be enhanced correspondingly. Due
to communication optimization algorithm is mainly used to tackle problems
occurred during intralayer parallelization, the effects will be more obvious
if simulated scale and CPU number adopted increased.

4. Analyses of application example

The 1–2 sandgroups of second Shahejian in second block is located in west-south
flank of eastern high in Shengtuo oilfield. Controlled by boundary faults in the
east and north, it spreads as a fan to west-south. It is a layered sandstone reservoir
with high permeability, serious heterogeneity, mid-high viscosity, low saturation and
positive rhythm. Here the oil-bearing area of 20.9km2 and OOIP is 397.1 million
t, with edge water.

4.1. Prescription test of mid-large scale simulation. In practice, mid-large
scale simulation with 1 3million nodes is mostly required and should be a primary
target of application test. Models (2.88 million nodes) of second block in Shengtuo
are tested respectively when CPU numbers adopted are 1, 8, 16 and 32 to determine
optimum CPU number. The major test results are listed in following Table 1. From
this table, it is obvious that the efficiency can be improved using parallel calculation
and the whole time used can drop to about 1.5 hours from 5.4 hours when series
program is adopted with parallel efficiency of pressure calculation to be 84.6%.

4.2. Simulation of largest scale and its prescription test. Simulation of
largest scale and its prescription test are very important. Models of second block
in Shengtuo are tested respectively when simulation nodes are 6.5 or10 million
and when adopted modes are interlayer parallel or mixed parallel, resulting in
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Table 1. Time used for large scale simulation

CPU The whole Generation Pressure Saturation Indexes
number calculation of coefficient calculation calculation calculation

time (s) matrix(s) (s) (s) (s)
1 19421.0 406.6 12949.6 1226.4 1083.9
8 6266.3 55.6 1913.3 160.4 1228.5
16 5554.4 41.1 1752.1 138.3 1046.0
32 5272.0 56.9 1015.0 199.9 1085.2

determination of largest simulation scale with reasonable prescription as follows: it
will be 6.5 million nodes when interlayer parallel is adopted with exhausted time
about 6 hours, while it can amount to 10 million nodes when mixed parallel is
adopted with 112 CPU and the exhausted time is about 5 hours.The technology
using for this scale simulation is introduced above.

5. Conclusions

Parallelization processing of reservoir numerical simulation is the effective way
for its large-scale application and calculation. For different simulation of different
reservoirs, different parallel strategies and methods should be adopted. Communi-
cation and load-balance are the main problems faced by parallel efficiency. In terms
of parallel software, its simulation scale and calculation efficiency and elapse time
are the key factors to determine whether it can be applied widely or not.
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3D PRESTACK DEPTH MIGRATION WITH FACTORIZATION
FOUR-WAY SPLITTING SCHEME

WENSHENG ZHANG AND GUANQUAN ZHANG

Abstract. 3D prestack depth migration is an important and commonly used

way to obtain the images of complex structures in seismic date processing.

In this paper, 3D prestack depth migration with hybrid four-way splitting

scheme is investigated. Wavefield extrapolation is based on the 3D acoustic

one-way. The hybrid four-way splitting algorithm based on factorization is de-

rived. Numerical calculations of 3D post-stack depth migration for an impulse

and 3D prestack depth migration for SEG/EAEG benchmark model are imple-

mented. The result of 3D post-stack depth migration show that the numerical

anisotropic errors can be reduced effectively and the errors are small when the

lateral velocity variations is small. Moreover, the 3D prestack depth migration

for SEG/EAEG model both with two-way and four-way hybrid splitting scheme

can yield its good images. The Message Passing Interface (MPI) programme

is adopted on PC cluster as the large scale computation of 3D prestack depth

migration. The parallel efficiency is high because of high parallel feature of 3D

prestack depth migration. The methods presented in this paper can be applied

in field data processing.

Key Words. 3D, acoustic wave equation, hybrid method, factorization, four-

way splitting, MPI.

1. Introduction

3D prestack depth migration is an important tool for complex structure imaging.
There are two kinds of imaging methods. One is the Kirchhoff integral method
based on ray tracing. The other is the non-Kirchhoff integral method based on
wavefield extrapolation. Kirchhoff integral method is a high-frequency approxima-
tion method, which has difficulties in imaging complex structures. However, it can
adapt sources and receivers configuration easily and has the advantage of less com-
putation cost. Therefore it is still the dominant method of 3D prestack migration in
oil industry. Non-Kirchhoff integral method, such as the finite-difference method,
the phase-shift method (Gazdag, 1978), the split-step Fourier (SSF) method (Stoffa
et al., 1990) and the Fourier finite-difference (FFD) method (Ristow and Ruhül,
1995), do wavefield extrapolation with one-way wave equation. It can yield precise
images even in the case of complex structures or large lateral velocity variations.
The FFD method is one of the most typical hybrid method, which combines both
advantages of the phase-shift method and the finite-difference method.
Prestack depth migration can be implemented in the common-shot domain or in
the common-offset domain. The full 3D common-offset prestack depth migration
still has more difficulties in application because of its huge computational cost.
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Compared with the shot-profile migration, the synthesized-shot migration has less
computation cost. The synthesized-shot migration, which is based on the wavefield
synthesis, first stacks or synthesises shot-gather records and sources, then extrapo-
lates the synthesized wavefield. Therefore, its computation cost is comparable with
that of multi-poststack migration. As the principle of the synthesized-shot migra-
tion is the same with that of the shot-profile migration, their imaging precisions
are comparable.
For 3D one-way wave equation, a direct solution with stable implicit finite-difference
scheme may lead to a non tri-diagonal system, which is computationally expen-
sive. In order to decrease computation cost, the alternatively directional implicit
(ADI) scheme is usually used. However, the two-way ADI algorithm may cause the
problem of numerical anisotropic errors, which reaches maximum at 45◦ and 135◦

directions. In order to eliminate these errors, several authors proposed the multi-
way splitting methods (Ristow and Rühl 1994; Collino and Joly, 1995). Among
the multi-way splitting methods, such as three-way, four-way and six-way split-
ting methods, the four-way method is preferred as its computational grid is the
retangle or square grid and there is no need to transform wavefield onto the trian-
gle or hexagonal grid which three-way or six-way splitting method requires. It is
well known that the seismic data observed on the surface is usually on the regular
retangle or square grid. In this paper, the four-way splitting method based on fac-
torization is proposed. It contributes to solve the tri-diagonal system both along
0◦, 90◦ and 45◦, 135◦ two ways respectively. Thus the high computational efficiency
can be expected. Numerical calculations of 3D post-stack depth migration for an
impulse and 3D prestack depth migration for SEG/EAEG benchmark model are
completed. The results of 3D post-stack depth migration show that the numerical
anisotropic errors can be eliminated effectively and the errors are small when the
lateral velocity variations are small. Moreover, the results of 3D prestack depth
migration both with hybrid two-way and four-way splitting schemes can give good
images of the geologically complex structures of the SEG/EAEG model.

2. Methodology

2.1. four-way splitting scheme. Consider 3D acoustic wave equation

1
v2(x, y, z)

∂2p

∂t2
=

∂2p

∂x2
+

∂2P

∂y2
+

∂2p

∂z2
, (1)

where p(x, y, z;ω) is the pressure wavefiled at position (x, y, z), v(x, y, z) is the
media velocity. It is well known that the one-way wave equations for downgoing
wave and upcoming wave in the frequency-space domain are given by

∂P
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= ±i

ω

v

√
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where ω is the circular frequency, i is the imaginary unit. The plus sign before the
square-root represents downgoing wave and the minus sign represents upcoming
wave. P (x, y, z, ω) is the wavefield in the frequency domain. Denote the square-
root with A, i.e.,

A =
iω

v

√
1 +

v2

ω2
(

∂2
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+

∂2

∂y2
). (3)
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Introducing a reference velocity v0(z), then this exact square-root operator can be
approximated as

A = A1 + A2 + A3, (4)
with A1, A2 and A3 are

A1 =
iω

v0
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0
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(5)
respectively, where a = 1

2 (1 − v0
v ), b = 1

4 ( v0
v )2 + v0

v + 1 (Ristow and Ruhl, 1995),

or a = 0.47824(1 − v0
v ), b = 0.37637(1 + v2

0
v2 ) (Zhang W., et al., 1999). One notes

that the ratio v0/v represents how the lateral velocity varies. The small it is, the
large the lateral velocity variations are. If v0/v = 1, then there is no lateral velocity
variations. With the above approximations, the formal solution of the equation (2)
can be written as

P (x, y, z + ∆z, ω) ≈ P (x, y, z, ω)e±i(A1+A2+A3)∆z. (6)

In the equation (6), A1 is the phase-shit operator to be applied in the frequency-
wavenumber domain, A2 is the well-known first-order correction term of Stoffa et
al. (1990), A3 is the finite-difference correction operator. The operator A1 can be
solved in the frequency-wavenumber domain with the help of fast Fourier transform.
After completing the wavefield extrapolation with A1, transforme the data of the
frequency-wavenumber domain into that of the frequency-space domain, and solve
the operator A2 as a correction of the phase-shift.
The operator A3 is commonly solved by the alternatively directional implicit scheme.
For downgoing wave, the one-way equation of wavefield extrapolation can be ex-
pressed as

∂P

∂z
= i

a v
ω ( ∂2

∂x2 + ∂2

∂y2 )

1 + b v2

ω2 ( ∂2
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P (7)

The finite-difference equation of equation (7) can be written as

[1 + (α1 − iβ1)δ2
x + (α2 − iβ2)δ2

y]Pn+1
ij

= [1 + (α1 + iβ1)δ2
x + (α2 + iβ2)δ2

y]Pn
ij ,

(8)

where Pn
ij is the wavefield of P (i∆x, j∆y, n∆z, ω) (the discreted index of ω is omit-

ted), δ2
x and δ2

y are the second-order difference operators with respect to x and y
respectively. The coefficients α1, α2, β1 and β2 are related with spatial sampling
steps, coefficients a and b, and can be written as
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. (9)

Based on the operator splitting method, the following alternatively directional im-
plicit scheme of equation (8) can be obtained

[1 + (α1 − iβ1)δ2
x]Pn+1/2

ij = [1 + (α1 + iβ1)δ2
x]Pn

ij ,

[1 + (α2 − iβ2)δ2
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ij = [1 + (α2 + iβ2)δ2
y]Pn+1/2

ij ,
(10)

where P
n+1/2
ij is the intermediate wavefield. We note that the second-order dif-

ference operator in equation (10) can be factorized further. That is to say, the
second-order difference operator can be expressed as a product of the first-order
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backward difference operator and the first-order forward difference operator, so
equation (10) can be decomposed into the following system
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respectively. Here, δ+
x and δ−x are the first-order difference operators forward and

backward respectively with respect to x, δ+
y and δ−y are the first-order difference

operators forward and backward respectively with respect to y, for example,
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The system (10) or (11) is the traditional two-way splitting scheme. The four-way
solving algorithm may also be derived further by adding another two directions, i.e.,
45◦ and 135◦ directions. Suppose x1 is the 45◦ azimuth and y1 is the 135◦ azimuth,
then the alternatively directional implicit scheme along 45◦ and 135◦ two directions
can be written as
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where δ2
x1

and δ2
y1

are the two-order differential operator along x1 and y1 directions
respectively. Like before, the equation (14) can be approximately decomposed into
a system in which only the first-order difference operator is used
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−
x1

)Pn+ 2
4

i,j = (I + ᾱrδ
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where ᾱl, ᾱr, β̄l and β̄r are given by
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respectively. Here, δ+
x1

and δ−x1
are the one-order forward and backward difference

operators with respect to x1 respectively, and δ+
y1

and δ−y1
are one-order forward

and backward difference operators with respect to y1 respectively, for example we
have
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The systems (11) and (15) form the hybrid four-way factorizational splitting scheme.
Both they can be solved by recursive and anti-recursive algorithm or other fast
algorithm like Thomas algorithm.

2.2. Wavefield synthesis method. The ideal of wavefield synthesis was origi-
nally proposed by Rietveld (Rietveld et al., 1994). And its synthesis application
for the SEG/EAEG model was given in abstract format by Zhang (Zhang W.,
2004). Here, we outline the main steps of wavefield synthesis as follows. Suppose
S(x, y, z0, ω) is the source wavefield in the frequency domain at position (x, y, z0),
and H(x, y, z0, ω) is the synthesized-operator in the frequency-space domain, which
can be written as (Rietveld et al., 1994)

H(x, y, z0, ω) = (eiωpr1 , eiωpr2 , · · · , eiωprn) (18)

in the frequency-space domain, where p is the ray parameter which describes the
incidence angle of the planewave, ri(xi, yi, z0) is the known spatial position, z0 is
the depth at which the wavefield synthesis carries out. Then the synthesized-source
Ssyn(x, y, z0, ω) can be written as

Ssyn(x, y, z0, ω) = S(x, y, z0, ω)H(x, y, z0, ω), (19)

Usually, a plane surface, i.e., z0 = 0 is chosen. However, this is not necessary, and
there is no need that z0 is either the depth of data acquisition surface or the constant
( represents a plane surface). With the synthesized-operator, the synthesized-record
Rsyn(x, y, z, ω) corresponding to the synthesized-source can be expressed similarly,
that is

Rsyn(x, y, z0; ω) = R(x, y, z0, ω)H(x, y, z0, ω), (20)
where R(x, y, z0, ω) is the shot-gather data in the frequency domain corresponding
to the source S(x, y, z0, ω). Therefore, the synthesized-source Ssyn(x, y, z, ω) and its
corresponding synthesized-record Rsyn(x, y, z, ω) can form a physical observation
geometry. That is to say, the synthesized-source corresponds with the downgoing
wavefield and the synthesized-record corresponds with the upcoming wavefield. It
is noted that there is another wavefield synthesis named phase-encoding method
proposed by Louis and Romero et al. (Louis and Romero et al., 2000). However,
for 3D prestack depth migration, the synthesized-shot number is very limited when
we keep good imaging quality (Zhang W., et al., 2002).

2.3. Imaging principle. The subsurface image can be obtained by extrapolating
the downgoing wavefield D(x, y, z, ω) and upcoming wavefield U(x, y, z, ω) simul-
taneously, and then applying the imaging condition (Claerbout, 1985)

I(x, y, z) =
∑
ω

U(x, y, z, ω)D(x, y, z, ω)∗ (21)

at each image point, where D(x, y, z, ω)∗ is the conjugate of the complex wavefield
D(x, y, z, ω). Another imaging condition yielding the reflection coefficient can be
written as

R(x, y, z) =
∑
ω

UD∗

ε + DD∗ , (22)

where R(x, y, z) is the reflection coefficient varying with spatial positions. One
notes that a small positive number ε is added to the denominator to keep stability
of the quotient. However, this imaging condition probably produce noise which
my destroy imaging quality. So the imaging condition (21) is preferred. The final
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images are obtained by summing all the partial images. For the imaging condition
of post-stack depth migration, the equation (21) is simplified as

I(x, y, z) =
∑
ω

U(x, y, z, ω), (23)

where U(x, y, z, ω) is the extrapolated upcoming wavefield.

3. Numerical calculations

3.1. 3D post-stack depth migration. 3D post-stack depth migration in the case
of variable velocity for an impulse response is presented first. The grid number for
x, y and z is 64, the spatial steps are all 15m. The time step is 4ms. We choose two
types of velocity model. One represents the case of small lateral velocity variations
with media velocity v(x, y, z) = 3000 + 0.1x + 0.1y + 0.1z(m/s). The ratio of
reference velocity v0(z) with media velocity v(x, y, z) varies from 0.941 to 0.942.
The other represents the case of large lateral velocity variations with media velocity
v(x, y, z) = 3000 + 2x + 2y + 2z(m/s). The ratio of reference velocity v0(z) with
media velocity v(x, y, z) varies from 0.442 to 0.564. The impulse of the known
recorded date is Ricker wavelet with 20Hz main frequency located at the position
of (x, y, z, t) = (480m, 480m, 500ms). Figure 1 is the level or horizontal slices of the
3D post-stack depth migration result for the case of small lateral velocity variations.
The sliced position is at the depth of 210m. Figure 1(a) is the slice by the traditional
two-way splitting scheme, figure 1(b) is that by the two-way splitting scheme but
splitting along 45◦ and 135◦ two directions, and figure 1(c) is that by the four-way
splitting scheme. Figure 2 are the x − z vertical slices of 3D migration result at
the position of y = 360m. And figure 2(a), figure 2(b) and figure 2(c) are the
slices by the traditional two-way splitting, 45◦ and 135◦ diagonal two-way splitting
and four-way splitting scheme respectively. Figure 3 is the level slices of 3D post-
stack depth migration result for the case of large lateral velocity variations. The
sliced position is at the depth of 360m. Figure 3(a) is the slice by the traditional
two-way splitting scheme, figure 3(b) is that by the two-way splitting scheme but
splitting along 45◦ and 135◦ two directions, and figure 3(c) is that by the four-way
splitting scheme. Figure 4 are the x − z vertical slices of 3D migration result at
the position of y = 280m. And figure 4(a), figure 4(b) and figure 4(c) are the
slices by the traditional two-way splitting, 45◦ and 135◦ diagonal two-way splitting
and four-way splitting scheme respectively. These results show that the numerical
anisotropic errors of traditional two-way scheme are eliminated effectively as shown
in figure 3. And that the numerical anisotropic errors is small for the media velocity
with small lateral variations as shown in figure 1.

3.2. 3D prestack depth migration. 3D prestack depth migration for SEG/EAEG
model with the hybrid method is completed. The SEG/EAEG model is a bench-
mark 3D complex model for testing the imaging abilities of 3D migration/inversion
methods. The data set used in this test has 50 sources lines each with 96 shots. The
line space is 160m and the shot space is 80m. The steps of ∆x, ∆y and ∆z are 40m,
40m and 20m respectively. The record length is 4992s with 8ms time sampling. Let
x is the inline direction and y the crossline direction. Figure 5 are the y−z vertical
slices of the velocity model and the 3D prestack depth migration result sliced at
x = 5100m along crossline direction. Figure 5(a) is the model slice, figure 5(b) is
the slice of migration result yielded by the two-way splitting algorithm, and figure



3D FOUR-WAY SPLITTING SCHEME 189

5(c) is the slice of migration result yielded by the four-way splitting algorithm.
Figure 6 are the x − z vertical slices of the velocity model and the 3D prestack
depth migration result sliced at y = 6020m along crossline direction. Figure 6(a) is
the model slice, figure 6(b) is the slice of migration result yielded by the two-way
splitting algorithm, and figure 6(c) is the slice of migration result yielded by the
four-way splitting algorithm. Figure 7 are the x−y level slices of the velocity model
and the 3D prestack depth migration result at z = 4200m. Figure 7(a) is the model
slice, figure 7(b) is the slice of migration result yielded by the two-way splitting al-
gorithm, and figure 7(c) is the slice of migration result yielded by the four-way
splitting algorithm. These results show that the 3D prestack depth migration for
SEG/EAEG benchmark model both with two-way and four-way splitting schemes
can yield good images of the complex structures.
The computations of 3D prestack depth migration are completed with Message
Passing Interface (MPI) parallel program on PC-cluster. The most efficient parallel
programs are ones which attempt to minimize the communication between proces-
sors while still requiring each processor to accomplish basically the same amount
of work. Ray parameter parallelism is adopted. In this parallelism, each processor
solve the same problem but with different ray parameter. The main computations
are the wavefield extrapolation for downgoing wave D and upgoing wave U and
they can be accomplished independently. The images for each ray parameter can
be obtained and final images are stacked together. So the computations have high
parallel speedup ratio. The communications between processors are set at the begin
of and the end of the computation. At the begin, the velocity model for migration
is sent to its corresponding processor from the main node and then every processor
does the same calculations. After images for each ray parameter is yielded, they
are sent back to the main node and stack to produce the whole imaging results.

4. Conclusions

The hybrid four-way splitting schemes based on factorization are investigated.
Numerical calculations both of the 3D post-stack depth migration for an impulse
and 3D prestack depth migration for SEG/EAEG benchmark model are imple-
mented. The results show that the numerical anisotropic errors can be reduced
effectively by the four-way splitting scheme and the errors are small when the lat-
eral velocity variations is small. Moreover, the 3D prestack depth migration for the
SEG/EAEG model both with two-way and four-way hybrid splitting scheme can
yield its good images. Generally, the two-way splitting hybrid method is preferred
in order to save computation cost. In order to improve computational efficiency,
the Message Passing Interface (MPI) programme is used in 3D prestack depth mi-
gration. The parallel efficiency is high because of high parallel feature of problem.
The methods presented in this paper can be applied in field data processing.
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Figure 1. Horizontal slices of 3D post-stack depth migration for an impulse response

with small lateral velocity variations. Hybrid wavefield extrapolation is used with (a)

traditional two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c) four-way splitting

respectively.
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Figure 2. Vertical slices of 3D post-stack depth migration for an impulse response with

small lateral velocity variations. Hybrid wavefield extrapolation is used with (a) traditional

two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c) four-way splitting respectively.
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Figure 3. Horizontal slices of 3D post-stack depth migration result for an impulse response

with large lateral velocity variations. Hybrid wavefield extrapolation is used with (a)

traditional two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c) four-way splitting

respectively.
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Figure 4. Vertical slices of 3D post-stack depth migration for an impulse response with

large lateral velocity variations. Hybrid wavefield extrapolation is used with (a) traditional

two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c) four-way splitting respectively.
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3D FOUR-WAY SPLITTING SCHEME 195

4

6

8

10

y/
km

2 4 6 8
x/km

(a)

4

6

8

10

y/
km

2 4 6 8
x/km

(b)



196 W. ZHANG AND G. ZHANG

4

6

8

10

y/
km

2 4 6 8
x/km

(c)
Figure 7. The x− y level slices of velocity model and 3D prestack depth migration result

sliced at the position of z = 4200m. (a) velocity model, (b) migration result yield by the

two-way hybrid method, (c) migration result yield by the four-way hybrid method.

Institute of Computational Mathematics and Scientific/Engineering, Computing, LSEC, Acad-
emy of Mathematics and Systems Science, CAS, Beijing, 100080, China



INTERNATIONAL JOURNAL OF c© 2005 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 2, Supp , Pages 197–208

ON A ROBUST ITERATIVE METHOD FOR HETEROGENEOUS
HELMHOLTZ PROBLEMS FOR GEOPHYSICS APPLICATIONS

YOGI A. ERLANGGA, CORNELIS VUIK, AND CORNELIS W. OOSTERLEE

Abstract. In this paper, a robust iterative method for the 2D heterogeneous

Helmholtz equation is discussed. Two important ingredients of the method

are evaluated, namely the Krylov subspace iterative methods and multigrid

based preconditioners. For the Krylov subspace methods we evaluate GM-

RES and Bi-CGSTAB. The preconditioner used is the complex shifted Laplace

preconditioner [Erlangga, Vuik, Oosterlee, Appl. Numer. Math. 50(2004)

409–425] which is approximately solved using multigrid. Numerical examples

which mimic geophysical applications are presented.

Key Words. Helmholtz equation, Krylov subspace methods, preconditioner,

multigrid

1. Introduction

Wave equation migration is becoming increasingly popular in seismic applica-
tions. This migration is currently based on a one-way scheme to allow applications
in 3D, in which the full wave equation simulation is simply too expensive. It is
already known, however, that one-way wave equations do not correctly image steep
events and do not accurately predict the amplitudes of the reflections [12].

In 2D, the linear system obtained from the discretization of the full wave equation
in the frequency domain can be efficiently solved with a direct solver and a nested
dissection ordering [6]. In 3D, the band size of the linear system becomes too large,
which makes the direct method inefficient. As an alternative, iterative methods can
be used.

Since 3D problems are our final goal, iterative methods become inevitable. In
this paper an evaluation of a robust iterative solver for Helmholtz problems is dis-
cussed. The solver mainly consists of two important ingredients: Krylov subspace
iterative methods, and a preconditioner including multigrid to accelerate the Krylov
subspace iterations.

Krylov subspace methods are chosen because the methods are efficient in terms
of memory requirement as compared to direct solvers. Multigrid is used as precon-
ditioner for the Krylov subspace methods. In our applications, however, multigrid
is not directly applied to the Helmholtz equation. As already pointed out in [3],
high wavenumber problems related to the Helmholtz equation raise difficulties for
multigrid in both error smoothing and coarse grid correction, the two main prin-
ciples of multigrid. Instead, we use multigrid on a Helmholtz-like preconditioner
that multigrid can handle it easily. In particular, we consider a Helmholtz operator
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with a complex shift. An operator-based preconditioner for the Helmholtz equation
is first proposed by Bayliss et. al [1] in the early eighties and solved with multigrid
in [8]. Laird and Giles [10] proposed a real positive definite Helmholtz operator
(i.e. the same Helmholtz operator but with sign reverse for the zeroth order term)
as the preconditioner. Our preconditioner [5] is a complex version of a Helmholtz
operator.

This paper is organized as follows. In §2, the Helmholtz equation and precondi-
tioners for iteratively solving it are discussed. Some properties of the preconditioned
linear system are explained in §3. Multigrid is briefly discussed in §5. We present
numerical examples and some conclusions in §6 and §7, respectively.

2. Helmholtz equation, preconditioner

For a given source function g, we are interested in the solution of the Helmholtz
equation

Aφ := −
d∑

j=1

∂2

∂x2
j

φ− (1− αi)k2φ = g, in Ω ⊂ Rd, d = 1, 2, 3,(1)

which governs wave propagations in the frequency domain. Here, φ = φ(x1, x2, x3) ∈
C is usually the pressure wave, and k, the wavenumber, varies in Ω due to spatial
variation of local speed of sound, c. This wavenumber is defined as k = ω/c, where
ω is the angular frequency related to the source function g. We call the medium
“barely attenuative” if 0 < α ¿ 1. In (1), i =

√−1, the complex identity.
Boundary conditions on Γ = ∂Ω are usually in the form of absorbing boundary

condition. There are several mathematical representations to satisfy this condition.
In [4] hierarchical, local boundary conditions are proposed. A perfectly matched
layer can also be used to ensure absorbing boundary (see [2]). In this paper we
use two types of the hierarchical absorbing boundary conditions: (i) the first order
formulation, namely

B1φ :=
∂φ

∂ν
− ikφ = 0, on Γ(2)

with ν the outward normal direction to the boundary, and (ii) the second order
formulation

B2φ :=
∂φ

∂ν
− ikφ− i

2k

∂2φ

∂τ2
= 0,(3)

with τ the tangential direction. The second order absorbing condition is more
accurate in handling inclined outgoing waves at the boundary than the first order
boundary condition, but it requires careful implementation.

Discretization of (1) using finite differences/elements/volumes leads to an indef-
inite linear system

Aφ = g(4)

for large wavenumbers. We use a 5-point finite difference approximation to (1) and
(2) (or (3)). Furthermore, only for sufficiently small k the problem is definite. For
definite elliptic problems, preconditioned Krylov subspace methods and multigrid
are two examples of good solvers and have been widely used. For the Helmholtz
equation, both methods, however, are found to be less effective, or even ineffective,
if k is large.

For Krylov subspace methods, the methods usually suffer from slow convergence.
In this kind of situation the methods rely on preconditioners. Finding good pre-
conditioners for the Helmholtz equation, however, is not a trivial task. Since A
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of (4) is not an M -matrix, standard ILU factorization may become unstable and
can result in an inaccurate approximation for the discrete Helmholtz equation. A
non standard ILU factorization is proposed in [7] where the Helmholtz operator
is split using parabolic factorization. For constant k, an impressive computational
performance is observed. The approach requires optimization parameters, which
are dependent on k. The performance of the preconditioner is very sensitive with
respect to these parameters. Similarly, [13] proposes operator splitting based on
separation of variables. For constant k, this splitting is exact. This is, however, not
the case if we allow heterogeneity in Ω. For such the problems, the Krylov subspace
iterations show break down.

Elman et al [3] recently proposed a multigrid based preconditioner for the Helmholtz
equation. In their approach a non-standard multigrid algorithm is used, based on a
mix of Jacobi-type iteration and GMRES. At the finest and coarsest level, the cheap
Jacobi-type iteration is used as smoother, while on intermediate levels GMRES is
used to reduce the residual. This multigrid algorithm is then used as the precondi-
tioner for GMRES. This approach results in an impressive numerical performance,
but is involved.

We propose the following operator as the preconditioner for (1) [5]:

M := −
d∑

j=1

∂2

∂x2
j

− (β1 + iβ2) k2, β1, β2 ∈ R,(5)

which is similar to A. To determine the pair (β1, β2), the prerequisite condition
is that as a preconditioner (5) is easily solvable. Since we will use multigrid to
solve (5) and its effectiveness to solve a definite linear system is well known, we
require that the operator (5) to be definite. As a consequence we choose β1 to be
non-positive.

3. h-independent property of the preconditioner

In this section, we derive the h-independent property of the preconditioned
Helmholtz linear system. Our analysis is based on the simplification that we replace
the boundary condition (2) by a Dirichlet boundary condition on Γ.

For simplicity, we use the following 1D Helmholtz problem with constant k:

−d2φ

dx2
− k2φ = 0, 0 < x < 1, φ(0) = 1 and φ(1) = 0,(6)

and the preconditioner operator

M1d := −d2φ

dx2
− (β1 + iβ2)k2φ.(7)

Spectrum. Using the above-mentioned assumption, we find that eigenvalues of
the preconditioned linear system can be expressed as

λn =
k2

n − k2

k2
n + (β1 + iβ2)k2

, kn = nπ, n = 1, 2, . . . .(8)

For the conjugate gradient method, we know that the convergence rate is deter-
mined by the condition number κ; the smaller the condition number is, the faster
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the convergence is. We have the following estimate [5]:

|λ|2max = max
(

1,
1

β2
1 + β2

2

)
,(9)

|λ|2min =
4

(1 + β1)2 + β2
2

( ε

k

)2

, 0 < ε ¿ 1(10)

κ2 =

{
1
4

(
1 + 1+2β1

β2
1+β2

2

)
(k/ε)2, β2

1 + β2
2 ≤ 1,

1
4

(
(1 + β1)2 + β2

2

)
(k/ε)2, β2

1 + β2
2 ≥ 1.

(11)

For β1 ≤ 0, we find that κ is minimal if β1 = 0 and β2 = ±1. We obtain, therefore,
a purely imaginary shift to the Laplace operator. From this analysis so far, there
should be no difference between choosing positive or negative sign of β2. Setting
β2 = −1, however, results in a complex, symmetric positive definite (CSPD) matrix
which is more favorable from an iterative method point of view.

With values β = (0,±1) we can also conclude that the spectrum is bounded
above by one, and this upper bound is independent of k. The lower bound of the
spectrum is of order O(1/k). This fact may become problematic as k increases; the
smallest eigenvalue move closer to the origin, and this may cause slow convergence
in the initial stage of the iteration.

h-independent property. From the previous section it appears that the con-
vergence is mainly determined by the smallest eigenvalue. We further extend the
analysis on the discrete level to see how this small eigenvalue behaves with respect
to the grid size h.

For k = 0, the Poisson problem, the eigenvalues of (3) are well known: µc
j =

(jπ)2, j = 1, 2, . . . . Using the standard central difference method on N + 1 grid
points and uniform grid size h = 1/N , the discrete eigenvalues are given by

µj =
4
h2

(
sin

πhj

2

)2

, j = 1, . . . , N.(12)

If ĵ is such that πhĵ
2 ¿ 1 using Taylor expansion we find that |µj −µc

j | = O(h2) for
j ≤ ĵ. Therefore, if AL is the Laplacian part of A, the smallest eigenvalues of the
continuous problem can be well approximated by the smallest eigenvalues of AL.

Suppose now that k 6= 0 and k2 6= µc
j for all j. For the smallest eigenvalues we

have

lim
h→0

min
j
|µj − k2| = |µc

m − k2| 6= 0,(13)

where |µc
m − k2| = minj |µc

j − k2|. Combining with (10) we have that

lim
h→0

λmin =
(µc

m − k2)2

2k4
.(14)

Since the maximal eigenvalues are bounded by 1, we conclude that the condition
number, and hence the convergence, is independent of h. Only initially that h
influences the convergence.
Remark. This result resembles the analysis given by Manteuffel and Parter in [11]
for general elliptic equations preconditioned with another elliptic equation. The
result there, however, is based on real-valued and definite operator. Even though
the same analysis is not provided in this paper, the result above is in the same line
with that in [11].
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Figure 1. Typical GMRES convergence. k = 40 and boundary
condition is: Dirichlet (left) and absorbing (right).

Table 1 shows the convergence of full GMRES [14] used to solve a 2D Helmholtz
problem, with various h. Dirichlet boundary conditions are imposed at the bound-
aries. A right preconditioner is solved exactly using a direct method. For decreasing
values of h these results indicate h-independent convergence. Even though our anal-
ysis is based on Dirichlet boundary conditions, the result remains valid numerically
for absorbing boundary conditions (see Table 1). Only for high wavenumbers that
the convergence is mildly dependent on h. But, as h → 0 the iteration number
likely converges to a certain value.

Table 1. Number of full GMRES iterations for different grid sizes
h = 1/N . The problem is 2D with: Dirichlet boundary conditions
(left), and absorbing boundary conditions (right). The iteration is
terminated after the norm of residual is reduced to 10−6.

Dirichlet Absorbing cond. (3)
k k

h−1
x = h−1

y = h−1 10 20 30 40 10 20 30 40

50 14 24 42 77 12 23 39 63
100 13 23 43 73 12 23 39 57
150 13 22 41 73 12 23 39 55
200 13 21 41 73 12 23 38 54

Figure 1 shows the convergence of full GMRES for k = 40. Even tough the con-
vergence exhibits some stages with slow convergence in the case of Dirichlet bound-
ary condition (left), the convergence is still monotonically decreasing, which is typi-
cal for GMRES. Replacing Dirichlet boundary conditions with absorbing boundary
conditions results in a more regular convergence behavior (Figure 1: right).

4. Krylov subspace method

In §3, we used GMRES to solve the preconditioned linear system (4). For large
problems, however, this algorithm can become expensive due to increasing amount
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of work. As the iteration number grows with the increase of k, the GMRES work
also increases almost quadratically. Furthermore, the number of vectors to be stored
also increase. One practical remedy for GMRES-type algorithms is restarting.

In GMRES(m), where m is the restart parameter, the convergence depends on
the choice of m. There is no general rule to choose this parameter. The choice
of m can negatively affect the convergence especially if the full GMRES shows a
superlinear convergence. For our problem, see Figure 2, the convergence is very
suitable for restarting the GMRES iteration if a low wavenumber is used. (For this
type of problem, however, restarting GMRES is not necessary). The convergence,
however, becomes superlinear as k increases. We can expect that if m is not properly
chosen, the overall performance can be even worse. This is what we encounter, see
Table 2. In general, restarting GMRES results in a less efficient method for the
problem at hand.

Table 2. Comparison of GMRES(m) with different restart pa-
rameter m. Boundary conditions are as in (2). The number of
iterations and CPU time are shown for k = 40.

Restart m ∞ 5 10 15 25

Iter 57 115 99 97 91
CPU time 66.23 147.91 117.38 112.92 104.58

We also use algorithms based on short recurrence process, like Bi-CGSTAB [16]
and COCG [17]. For Bi-CGSTAB, however, one additional matrix/vector multipli-
cation and two preconditioner solves are required per each iteration as compared
with one matrix/vector multiplication and one preconditioner solve in GMRES.
Nevertheless, for large iteration number Bi-CSGTAB may be more efficient than
GMRES. COCG is more attractive, as it requires only one matrix/vector multipli-
cation and one preconditioner solve. COCG, however, can only be used for sym-
metric matrices. Therefore, it is important that the preconditioned form AM−1

(or M−1A) is also symmetric. In general, if A and M are symmetric, so is AM−1

(or M−1A).

Table 3. Number of matrix/vector multiplications for a typical
2D case with constant k with absorbing boundary condition (2).
30 gridpoints per wavelength are used. CPU time is shown between
parentheses.

k 5 10 20 30 40 50

GMRES 8(0.16) 12(1.71) 23(26.30) 39(160.60) 54(578.99) 76(1801.90)
Bi-CGSTAB 11(0.16) 19(2.34) 37(38.54) 69(268.95) 95(963.87) 115(3106.45)
COCG 8(0.14) 13(1.70) 24(25.86) 44(175.23) 64(653.54) 89(2089.72)

In Table 3 we compare GMRES, Bi-CGSTAB, and COCG for a 2D constant k
Helmholtz problem with absorbing conditions (2) at the boundaries. Again, direct
methods are used to solve the preconditioner. Here, GMRES is found to be more
effective than Bi-CGSTAB in terms of number of matrix/vector multiplications,
and slightly wins over COCG. As already mentioned, GMRES, however, has an
increase of storage as the number of iterations increases (in the case of higher
wavenumber k). (In §6, as we use multigrid to approximate M−1, GMRES proves
to be less efficient than Bi-CGSTAB). Also, COCG seems to be more promising
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than Bi-CGSTAB. The irregularity of COCG convergence may, however, make it
difficult to determine a reliable termination criterion (see Figure 2 for an example
of convergence for k = 40). A smoother convergence of COCG can be obtained by
including a residual smoothing technique [18] in the algorithm. We did not do this.
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Figure 2. Left: Relation between the wavenumber and the num-
ber of matrix/vector multiplications with constant k in Ω = (0, 1)2.
Right: Typical convergence history of some Krylov subspace meth-
ods. In this figure, the convergence is shown for k = 40, n = 2002.

5. Multigrid as preconditioner solver

The preliminary numerical experiments so far have confirmed that using direct
solvers for the preconditioner is practically too expensive. In this section we show
that multigrid iteration can handle the preconditioner in a more efficient way. An
important issue is that the preconditioning matrix derived from (5) is always com-
plex, symmetric and positive definite. For this type of linear systems, multigrid is
known to be efficient. The use of multigrid as a solver for this type of matrix is
discussed, e.g., in [9]. We refer to [15] for an introduction to multigrid.

Multigrid is based on two principles: error smoothing and coarse grid correction.
Starting with a fine grid, basic iterative methods exhibit an error smoothing effect,
if appropriately applied. A smooth error can be well approximated on a coarse grid.
This leads to a coarse grid correction. On a coarse grid, an iterative method is ap-
plied again to reduce the error. So, the same two principles are recursively repeated
until the coarsest grid is reached, where the problem can be solved exactly using a
direct method or approximately using an iterative method. As the result, the error
can be reduced fast, and the amount of work to reach certain error reduction is low
because a coarse grid procedure is a cheap procedure.

Iterative methods which are known to have a smoothing effect are damped Jacobi
and Gauss-Seidel iteration. The smoothing properties of these types of iteration
methods are explained, e.g., in [15]. For coarse grid correction, a widely used coarse
grid procedure is the one that based on the Galerkin coarse grid operator defined
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as

MH := IH
h MhIh

H ,(15)

where indices h and H are related to the fine and coarse grid. In (15), IH
h and Ih

H

are the transfer operators from the fine to the coarse grid, and vice versa. IH
h is the

restriction operator, which maps fine grid functions to coarse grid functions. Ih
H is

the prolongation operator, which maps coarse grid functions to fine grid functions.
Here, we use bi-linear interpolation as the prolongator and for the restrictor we set
IH
h = (Ih

H)∗, which gives the full weighting operator.
Asymptotic convergence factors of multigrid as a solver for the preconditioning

matrix in 2D for different number of pre- and post-smoothing are shown in Table
4. The wavenumber is constant in Ω = (0, 1)2.

Table 4. Multigrid convergence factors for a discrete 2D precon-
ditioner operator (5) with β1 = 0 and β2 = 1 in Ω = (0, 1)2.
Dirichlet boundary conditions are used at the boundaries.

k = 10 k = 50
h−1 h−1

cycle npre npost 50 100 200 50 100 200

V 1 0 0.592 0.592 0.707 0.576 0.592 0.592
1 1 0.351 0.438 0.628 0.332 0.351 0.351

F 1 0 0.592 0.592 0.592 0.576 0.592 0.592
1 1 0.351 0.351 0.351 0.332 0.351 0.351

From Table 4 we see that standard multigrid methods can be used for complex-
valued linear systems. We obtain h-independent convergence with the F-cycle, while
the V-cycle results in a mildly h-dependent convergence. One pre-smoothing and
one post-smoothing also gives better convergent factors than one pre-smoothing
and no post-smoothing. We will use the F(1,1)-cycle in our numerical examples in
the next section for the preconditioner solve.

6. Numerical examples

In this section, we present some numerical results obtained from solving (1),
with boundary conditions of the form either (2) or (3). For the main iteration, we
use GMRES and Bi-CGSTAB. The preconditioner is (5) with β1 = 0 and β2 = 1
and is solved with multigrid. In order to reduce CPU time, we do not solve the
preconditioner accurately using multigrid. We use only one multigrid iteration.
Furthermore, we consider Jacobi iteration as the smoother with relaxation factor
ω = 0.8 (or 0.8-JAC).

As already mentioned, for the preconditioned COCG we require that the linear
system AM−1 to be symmetric. As we use the F(1,1)-cycle multigrid, this condition,
however, is not satisfied. Therefore, in this section we do not use COCG.

6.1. Constant wavenumber k. The first example is the same test case as in §3.
We first use the first order boundary condition (2) at the boundaries. The numerical
performance is presented in Table 5 in terms of matrix/vector multiplications and
CPU time.

Since multigrid only approximates M−1, the number of iterations is slightly
larger than those in Table 3. CPU time, however, decreases substantially. One fact
revealed from the results with multigrid is that GMRES now is less efficient than
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Bi-CGSTAB, even though GMRES requires fewer matrix/vector multiplications
than Bi-CGSTAB to reach convergence.

As already expected, COCG, which requires AM−1 to be symmetric, is found
not to be a good method due to the use of the F-cycle. Only for some values of low
wavenumber COCG iterations convergence.

Table 5. Convergence of GMRES and Bi-CGSTAB used to solve
(1) with first order boundary condition (2) and constant k. The
number of iterations and CPU time (between parentheses) are
shown.

k = 5 10 20 30 40 50

GMRES 12(0.01) 15(0.05) 37(1.46) 55(2.44) 74(7.14) 92(16.19)
Bi-CGSTAB 15(0.01) 21(0.05) 47(0.46) 81(2.01) 101(4.76) 121(9.82)

In Table 6, convergence results with the same model problem but with the second
order absorbing conditions (3) at the boundaries are shown. This boundary con-
dition affects the computational performance slightly; more iterations are required
to reach convergence.

Table 6. Convergence of GMRES and Bi-CGSTAB used to solve
(1) with first order boundary condition (3) and constant k. The
number of iterations and CPU time (between parentheses) are
shown.

k = 5 10 20 30 40 50

GMRES 18(0.01) 24(0.08) 38(0.52) 64(3.17) 66(6.25) 90(15.74)
Bi-CGSTAB 25(0.01) 35(0.08) 49(0.51) 83(2.21) 99(4.96) 115(9.05)

The solution using the second order absorbing condition is, however, much more
preferable than the solution using the first order one, as shown in Figure 3 for
k = 50. Although the wave velocities are similar, one can distinguish differences
in the wave amplitude in Figure 3, which are mainly due to the reflections from
the boundaries. The second order absorbing condition provides a better boundary
treatment than the first order one, indicated by fewer reflections from the bound-
aries.

For the next examples we only show convergence results with the second order
absorbing condition.

6.2. Layered model. The second example is a layered model in unit domain
Ω = (0, 1)2. The wavenumber in Ω varies as follows:

k(x, y) =





4
3kreff , if 0 ≤ y ≤ 1

3 ,

kreff , if 1
3 < y ≤ 2

3 ,

2kreff , if 2
3 < y ≤ 1.

(16)

The solutions for kreff = 50 are shown in Figure 4. As already expected, using
the second order absorbing condition results in a much reduced reflection from the
boundaries, as compared to the first order one.
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Figure 3. Real part of the solution from a 2D constant k problem,
with k = 50. Left: the first order absorbing condition. Right: the
second order absorbing condition (right).

The convergence results are shown in Table 7 for GMRES and Bi-CGSTAB.
In terms of matrix/vector multiplications, GMRES is somewhat better than Bi-
CGSTAB. With respect to CPU time, however, Bi-CGSTAB is faster than GMRES.

Table 7. Convergence of GMRES and Bi-CGSTAB from the 2D
layered problem with second order absorbing conditions (3).The
number of iterations and CPU time (between parentheses) are
shown.

kreff = 5 10 20 30 40 50

GMRES 25(0.02) 40(0.14) 69(1.16) 99(5.99) 116(14.58) 145(33.94)
Bi-CGSTAB 33(0.02) 55(0.13) 87(0.85) 125(3.26) 143(6.77) 177(13.91)
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Figure 4. Real part of the solution from a 2D layered problem
with kreff = 50. Left: the first order absorbing condition. Right:
the second order absorbing condition.
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6.3. Cross-well: a guided wave. The last example is from a wave guide model
in a physical domain Ω = (0, 130) × (0, 150) m2. This model mimics a cross-
well situation, where guided wave propagation occurs. A source is positioned at
the depth of 60 meter inside a low velocity zone (see Figure 5). Instead of using
wavenumber, the source is determined in terms of wave frequency, f , which is
related to k as k = 2πf/c, with c the local speed of sound (in ms−1). The solutions
are also shown in Figure 5, for the two boundary conditions. From this figure, we
can see that most of the energy is inside the low velocity layer and creates a guided
wave.
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Figure 5. Real part of the solution of the 2D guided wave prob-
lem using the first order absorbing condition (mid), and using the
second order absorbing condition (right). The frequency is 300 Hz.

Table 8 shows numerical performance of Bi-CGSTAB with 650×750 grid points,
where the second order absorbing condition is imposed at the boundaries. We
omit the computation using GMRES because of memory requirements. For various
frequencies the method converges satisfactorily to the specified accuracy.

Table 8. Convergence results of Bi-CGSTAB from the 2D guided
wave problem. The second order absorbing condition is used

f (Hz) 50 100 200 300

Iter 44 120 118 155

7. Conclusion

An iterative solution method for the heterogeneous Helmholtz equation is de-
scribed and numerical examples have been shown to indicate the performance of
the method. The method is based on a Krylov subspace iterative method and a
multigrid based preconditioner. Two Krylov subspace methods have been studied:
Bi-CGSTAB and GMRES. Even though Bi-CGSTAB requires more matrix/vector
multiplications than GMRES, it is more efficient from a practical point of view.

Standard multigrid methods are found to be extendable to the complex-valued
linear system (where in our case is the preconditioning matrix). Using multigrid
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to solve the preconditioner, one loses only some iteration numbers, but enables to
reduce CPU time substantially.

The method is also extendable to heterogeneous Helmholtz problems. From our
numerical results, the method shows acceptable performance, without any potential
of breakdown.
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