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ON A ROBUST ITERATIVE METHOD FOR HETEROGENEOUS
HELMHOLTZ PROBLEMS FOR GEOPHYSICS APPLICATIONS

YOGI A. ERLANGGA, CORNELIS VUIK, AND CORNELIS W. OOSTERLEE

Abstract. In this paper, a robust iterative method for the 2D heterogeneous

Helmholtz equation is discussed. Two important ingredients of the method

are evaluated, namely the Krylov subspace iterative methods and multigrid

based preconditioners. For the Krylov subspace methods we evaluate GM-

RES and Bi-CGSTAB. The preconditioner used is the complex shifted Laplace

preconditioner [Erlangga, Vuik, Oosterlee, Appl. Numer. Math. 50(2004)

409–425] which is approximately solved using multigrid. Numerical examples

which mimic geophysical applications are presented.
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1. Introduction

Wave equation migration is becoming increasingly popular in seismic applica-
tions. This migration is currently based on a one-way scheme to allow applications
in 3D, in which the full wave equation simulation is simply too expensive. It is
already known, however, that one-way wave equations do not correctly image steep
events and do not accurately predict the amplitudes of the reflections [12].

In 2D, the linear system obtained from the discretization of the full wave equation
in the frequency domain can be efficiently solved with a direct solver and a nested
dissection ordering [6]. In 3D, the band size of the linear system becomes too large,
which makes the direct method inefficient. As an alternative, iterative methods can
be used.

Since 3D problems are our final goal, iterative methods become inevitable. In
this paper an evaluation of a robust iterative solver for Helmholtz problems is dis-
cussed. The solver mainly consists of two important ingredients: Krylov subspace
iterative methods, and a preconditioner including multigrid to accelerate the Krylov
subspace iterations.

Krylov subspace methods are chosen because the methods are efficient in terms
of memory requirement as compared to direct solvers. Multigrid is used as precon-
ditioner for the Krylov subspace methods. In our applications, however, multigrid
is not directly applied to the Helmholtz equation. As already pointed out in [3],
high wavenumber problems related to the Helmholtz equation raise difficulties for
multigrid in both error smoothing and coarse grid correction, the two main prin-
ciples of multigrid. Instead, we use multigrid on a Helmholtz-like preconditioner
that multigrid can handle it easily. In particular, we consider a Helmholtz operator
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with a complex shift. An operator-based preconditioner for the Helmholtz equation
is first proposed by Bayliss et. al [1] in the early eighties and solved with multigrid
in [8]. Laird and Giles [10] proposed a real positive definite Helmholtz operator
(i.e. the same Helmholtz operator but with sign reverse for the zeroth order term)
as the preconditioner. Our preconditioner [5] is a complex version of a Helmholtz
operator.

This paper is organized as follows. In §2, the Helmholtz equation and precondi-
tioners for iteratively solving it are discussed. Some properties of the preconditioned
linear system are explained in §3. Multigrid is briefly discussed in §5. We present
numerical examples and some conclusions in §6 and §7, respectively.

2. Helmholtz equation, preconditioner

For a given source function g, we are interested in the solution of the Helmholtz
equation

Aφ := −
d∑

j=1

∂2

∂x2
j

φ− (1− αi)k2φ = g, in Ω ⊂ Rd, d = 1, 2, 3,(1)

which governs wave propagations in the frequency domain. Here, φ = φ(x1, x2, x3) ∈
C is usually the pressure wave, and k, the wavenumber, varies in Ω due to spatial
variation of local speed of sound, c. This wavenumber is defined as k = ω/c, where
ω is the angular frequency related to the source function g. We call the medium
“barely attenuative” if 0 < α ¿ 1. In (1), i =

√−1, the complex identity.
Boundary conditions on Γ = ∂Ω are usually in the form of absorbing boundary

condition. There are several mathematical representations to satisfy this condition.
In [4] hierarchical, local boundary conditions are proposed. A perfectly matched
layer can also be used to ensure absorbing boundary (see [2]). In this paper we
use two types of the hierarchical absorbing boundary conditions: (i) the first order
formulation, namely

B1φ :=
∂φ

∂ν
− ikφ = 0, on Γ(2)

with ν the outward normal direction to the boundary, and (ii) the second order
formulation

B2φ :=
∂φ

∂ν
− ikφ− i

2k

∂2φ

∂τ2
= 0,(3)

with τ the tangential direction. The second order absorbing condition is more
accurate in handling inclined outgoing waves at the boundary than the first order
boundary condition, but it requires careful implementation.

Discretization of (1) using finite differences/elements/volumes leads to an indef-
inite linear system

Aφ = g(4)

for large wavenumbers. We use a 5-point finite difference approximation to (1) and
(2) (or (3)). Furthermore, only for sufficiently small k the problem is definite. For
definite elliptic problems, preconditioned Krylov subspace methods and multigrid
are two examples of good solvers and have been widely used. For the Helmholtz
equation, both methods, however, are found to be less effective, or even ineffective,
if k is large.

For Krylov subspace methods, the methods usually suffer from slow convergence.
In this kind of situation the methods rely on preconditioners. Finding good pre-
conditioners for the Helmholtz equation, however, is not a trivial task. Since A
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of (4) is not an M -matrix, standard ILU factorization may become unstable and
can result in an inaccurate approximation for the discrete Helmholtz equation. A
non standard ILU factorization is proposed in [7] where the Helmholtz operator
is split using parabolic factorization. For constant k, an impressive computational
performance is observed. The approach requires optimization parameters, which
are dependent on k. The performance of the preconditioner is very sensitive with
respect to these parameters. Similarly, [13] proposes operator splitting based on
separation of variables. For constant k, this splitting is exact. This is, however, not
the case if we allow heterogeneity in Ω. For such the problems, the Krylov subspace
iterations show break down.

Elman et al [3] recently proposed a multigrid based preconditioner for the Helmholtz
equation. In their approach a non-standard multigrid algorithm is used, based on a
mix of Jacobi-type iteration and GMRES. At the finest and coarsest level, the cheap
Jacobi-type iteration is used as smoother, while on intermediate levels GMRES is
used to reduce the residual. This multigrid algorithm is then used as the precondi-
tioner for GMRES. This approach results in an impressive numerical performance,
but is involved.

We propose the following operator as the preconditioner for (1) [5]:

M := −
d∑

j=1

∂2

∂x2
j

− (β1 + iβ2) k2, β1, β2 ∈ R,(5)

which is similar to A. To determine the pair (β1, β2), the prerequisite condition
is that as a preconditioner (5) is easily solvable. Since we will use multigrid to
solve (5) and its effectiveness to solve a definite linear system is well known, we
require that the operator (5) to be definite. As a consequence we choose β1 to be
non-positive.

3. h-independent property of the preconditioner

In this section, we derive the h-independent property of the preconditioned
Helmholtz linear system. Our analysis is based on the simplification that we replace
the boundary condition (2) by a Dirichlet boundary condition on Γ.

For simplicity, we use the following 1D Helmholtz problem with constant k:

−d2φ

dx2
− k2φ = 0, 0 < x < 1, φ(0) = 1 and φ(1) = 0,(6)

and the preconditioner operator

M1d := −d2φ

dx2
− (β1 + iβ2)k2φ.(7)

Spectrum. Using the above-mentioned assumption, we find that eigenvalues of
the preconditioned linear system can be expressed as

λn =
k2

n − k2

k2
n + (β1 + iβ2)k2

, kn = nπ, n = 1, 2, . . . .(8)

For the conjugate gradient method, we know that the convergence rate is deter-
mined by the condition number κ; the smaller the condition number is, the faster
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the convergence is. We have the following estimate [5]:

|λ|2max = max
(

1,
1

β2
1 + β2

2

)
,(9)

|λ|2min =
4

(1 + β1)2 + β2
2

( ε

k

)2

, 0 < ε ¿ 1(10)

κ2 =

{
1
4

(
1 + 1+2β1

β2
1+β2

2

)
(k/ε)2, β2

1 + β2
2 ≤ 1,

1
4

(
(1 + β1)2 + β2

2

)
(k/ε)2, β2

1 + β2
2 ≥ 1.

(11)

For β1 ≤ 0, we find that κ is minimal if β1 = 0 and β2 = ±1. We obtain, therefore,
a purely imaginary shift to the Laplace operator. From this analysis so far, there
should be no difference between choosing positive or negative sign of β2. Setting
β2 = −1, however, results in a complex, symmetric positive definite (CSPD) matrix
which is more favorable from an iterative method point of view.

With values β = (0,±1) we can also conclude that the spectrum is bounded
above by one, and this upper bound is independent of k. The lower bound of the
spectrum is of order O(1/k). This fact may become problematic as k increases; the
smallest eigenvalue move closer to the origin, and this may cause slow convergence
in the initial stage of the iteration.

h-independent property. From the previous section it appears that the con-
vergence is mainly determined by the smallest eigenvalue. We further extend the
analysis on the discrete level to see how this small eigenvalue behaves with respect
to the grid size h.

For k = 0, the Poisson problem, the eigenvalues of (3) are well known: µc
j =

(jπ)2, j = 1, 2, . . . . Using the standard central difference method on N + 1 grid
points and uniform grid size h = 1/N , the discrete eigenvalues are given by

µj =
4
h2

(
sin

πhj

2

)2

, j = 1, . . . , N.(12)

If ĵ is such that πhĵ
2 ¿ 1 using Taylor expansion we find that |µj −µc

j | = O(h2) for
j ≤ ĵ. Therefore, if AL is the Laplacian part of A, the smallest eigenvalues of the
continuous problem can be well approximated by the smallest eigenvalues of AL.

Suppose now that k 6= 0 and k2 6= µc
j for all j. For the smallest eigenvalues we

have

lim
h→0

min
j
|µj − k2| = |µc

m − k2| 6= 0,(13)

where |µc
m − k2| = minj |µc

j − k2|. Combining with (10) we have that

lim
h→0

λmin =
(µc

m − k2)2

2k4
.(14)

Since the maximal eigenvalues are bounded by 1, we conclude that the condition
number, and hence the convergence, is independent of h. Only initially that h
influences the convergence.
Remark. This result resembles the analysis given by Manteuffel and Parter in [11]
for general elliptic equations preconditioned with another elliptic equation. The
result there, however, is based on real-valued and definite operator. Even though
the same analysis is not provided in this paper, the result above is in the same line
with that in [11].
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Figure 1. Typical GMRES convergence. k = 40 and boundary
condition is: Dirichlet (left) and absorbing (right).

Table 1 shows the convergence of full GMRES [14] used to solve a 2D Helmholtz
problem, with various h. Dirichlet boundary conditions are imposed at the bound-
aries. A right preconditioner is solved exactly using a direct method. For decreasing
values of h these results indicate h-independent convergence. Even though our anal-
ysis is based on Dirichlet boundary conditions, the result remains valid numerically
for absorbing boundary conditions (see Table 1). Only for high wavenumbers that
the convergence is mildly dependent on h. But, as h → 0 the iteration number
likely converges to a certain value.

Table 1. Number of full GMRES iterations for different grid sizes
h = 1/N . The problem is 2D with: Dirichlet boundary conditions
(left), and absorbing boundary conditions (right). The iteration is
terminated after the norm of residual is reduced to 10−6.

Dirichlet Absorbing cond. (3)
k k

h−1
x = h−1

y = h−1 10 20 30 40 10 20 30 40

50 14 24 42 77 12 23 39 63
100 13 23 43 73 12 23 39 57
150 13 22 41 73 12 23 39 55
200 13 21 41 73 12 23 38 54

Figure 1 shows the convergence of full GMRES for k = 40. Even tough the con-
vergence exhibits some stages with slow convergence in the case of Dirichlet bound-
ary condition (left), the convergence is still monotonically decreasing, which is typi-
cal for GMRES. Replacing Dirichlet boundary conditions with absorbing boundary
conditions results in a more regular convergence behavior (Figure 1: right).

4. Krylov subspace method

In §3, we used GMRES to solve the preconditioned linear system (4). For large
problems, however, this algorithm can become expensive due to increasing amount
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of work. As the iteration number grows with the increase of k, the GMRES work
also increases almost quadratically. Furthermore, the number of vectors to be stored
also increase. One practical remedy for GMRES-type algorithms is restarting.

In GMRES(m), where m is the restart parameter, the convergence depends on
the choice of m. There is no general rule to choose this parameter. The choice
of m can negatively affect the convergence especially if the full GMRES shows a
superlinear convergence. For our problem, see Figure 2, the convergence is very
suitable for restarting the GMRES iteration if a low wavenumber is used. (For this
type of problem, however, restarting GMRES is not necessary). The convergence,
however, becomes superlinear as k increases. We can expect that if m is not properly
chosen, the overall performance can be even worse. This is what we encounter, see
Table 2. In general, restarting GMRES results in a less efficient method for the
problem at hand.

Table 2. Comparison of GMRES(m) with different restart pa-
rameter m. Boundary conditions are as in (2). The number of
iterations and CPU time are shown for k = 40.

Restart m ∞ 5 10 15 25

Iter 57 115 99 97 91
CPU time 66.23 147.91 117.38 112.92 104.58

We also use algorithms based on short recurrence process, like Bi-CGSTAB [16]
and COCG [17]. For Bi-CGSTAB, however, one additional matrix/vector multipli-
cation and two preconditioner solves are required per each iteration as compared
with one matrix/vector multiplication and one preconditioner solve in GMRES.
Nevertheless, for large iteration number Bi-CSGTAB may be more efficient than
GMRES. COCG is more attractive, as it requires only one matrix/vector multipli-
cation and one preconditioner solve. COCG, however, can only be used for sym-
metric matrices. Therefore, it is important that the preconditioned form AM−1

(or M−1A) is also symmetric. In general, if A and M are symmetric, so is AM−1

(or M−1A).

Table 3. Number of matrix/vector multiplications for a typical
2D case with constant k with absorbing boundary condition (2).
30 gridpoints per wavelength are used. CPU time is shown between
parentheses.

k 5 10 20 30 40 50

GMRES 8(0.16) 12(1.71) 23(26.30) 39(160.60) 54(578.99) 76(1801.90)
Bi-CGSTAB 11(0.16) 19(2.34) 37(38.54) 69(268.95) 95(963.87) 115(3106.45)
COCG 8(0.14) 13(1.70) 24(25.86) 44(175.23) 64(653.54) 89(2089.72)

In Table 3 we compare GMRES, Bi-CGSTAB, and COCG for a 2D constant k
Helmholtz problem with absorbing conditions (2) at the boundaries. Again, direct
methods are used to solve the preconditioner. Here, GMRES is found to be more
effective than Bi-CGSTAB in terms of number of matrix/vector multiplications,
and slightly wins over COCG. As already mentioned, GMRES, however, has an
increase of storage as the number of iterations increases (in the case of higher
wavenumber k). (In §6, as we use multigrid to approximate M−1, GMRES proves
to be less efficient than Bi-CGSTAB). Also, COCG seems to be more promising
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than Bi-CGSTAB. The irregularity of COCG convergence may, however, make it
difficult to determine a reliable termination criterion (see Figure 2 for an example
of convergence for k = 40). A smoother convergence of COCG can be obtained by
including a residual smoothing technique [18] in the algorithm. We did not do this.
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Figure 2. Left: Relation between the wavenumber and the num-
ber of matrix/vector multiplications with constant k in Ω = (0, 1)2.
Right: Typical convergence history of some Krylov subspace meth-
ods. In this figure, the convergence is shown for k = 40, n = 2002.

5. Multigrid as preconditioner solver

The preliminary numerical experiments so far have confirmed that using direct
solvers for the preconditioner is practically too expensive. In this section we show
that multigrid iteration can handle the preconditioner in a more efficient way. An
important issue is that the preconditioning matrix derived from (5) is always com-
plex, symmetric and positive definite. For this type of linear systems, multigrid is
known to be efficient. The use of multigrid as a solver for this type of matrix is
discussed, e.g., in [9]. We refer to [15] for an introduction to multigrid.

Multigrid is based on two principles: error smoothing and coarse grid correction.
Starting with a fine grid, basic iterative methods exhibit an error smoothing effect,
if appropriately applied. A smooth error can be well approximated on a coarse grid.
This leads to a coarse grid correction. On a coarse grid, an iterative method is ap-
plied again to reduce the error. So, the same two principles are recursively repeated
until the coarsest grid is reached, where the problem can be solved exactly using a
direct method or approximately using an iterative method. As the result, the error
can be reduced fast, and the amount of work to reach certain error reduction is low
because a coarse grid procedure is a cheap procedure.

Iterative methods which are known to have a smoothing effect are damped Jacobi
and Gauss-Seidel iteration. The smoothing properties of these types of iteration
methods are explained, e.g., in [15]. For coarse grid correction, a widely used coarse
grid procedure is the one that based on the Galerkin coarse grid operator defined
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as

MH := IH
h MhIh

H ,(15)

where indices h and H are related to the fine and coarse grid. In (15), IH
h and Ih

H

are the transfer operators from the fine to the coarse grid, and vice versa. IH
h is the

restriction operator, which maps fine grid functions to coarse grid functions. Ih
H is

the prolongation operator, which maps coarse grid functions to fine grid functions.
Here, we use bi-linear interpolation as the prolongator and for the restrictor we set
IH
h = (Ih

H)∗, which gives the full weighting operator.
Asymptotic convergence factors of multigrid as a solver for the preconditioning

matrix in 2D for different number of pre- and post-smoothing are shown in Table
4. The wavenumber is constant in Ω = (0, 1)2.

Table 4. Multigrid convergence factors for a discrete 2D precon-
ditioner operator (5) with β1 = 0 and β2 = 1 in Ω = (0, 1)2.
Dirichlet boundary conditions are used at the boundaries.

k = 10 k = 50
h−1 h−1

cycle npre npost 50 100 200 50 100 200

V 1 0 0.592 0.592 0.707 0.576 0.592 0.592
1 1 0.351 0.438 0.628 0.332 0.351 0.351

F 1 0 0.592 0.592 0.592 0.576 0.592 0.592
1 1 0.351 0.351 0.351 0.332 0.351 0.351

From Table 4 we see that standard multigrid methods can be used for complex-
valued linear systems. We obtain h-independent convergence with the F-cycle, while
the V-cycle results in a mildly h-dependent convergence. One pre-smoothing and
one post-smoothing also gives better convergent factors than one pre-smoothing
and no post-smoothing. We will use the F(1,1)-cycle in our numerical examples in
the next section for the preconditioner solve.

6. Numerical examples

In this section, we present some numerical results obtained from solving (1),
with boundary conditions of the form either (2) or (3). For the main iteration, we
use GMRES and Bi-CGSTAB. The preconditioner is (5) with β1 = 0 and β2 = 1
and is solved with multigrid. In order to reduce CPU time, we do not solve the
preconditioner accurately using multigrid. We use only one multigrid iteration.
Furthermore, we consider Jacobi iteration as the smoother with relaxation factor
ω = 0.8 (or 0.8-JAC).

As already mentioned, for the preconditioned COCG we require that the linear
system AM−1 to be symmetric. As we use the F(1,1)-cycle multigrid, this condition,
however, is not satisfied. Therefore, in this section we do not use COCG.

6.1. Constant wavenumber k. The first example is the same test case as in §3.
We first use the first order boundary condition (2) at the boundaries. The numerical
performance is presented in Table 5 in terms of matrix/vector multiplications and
CPU time.

Since multigrid only approximates M−1, the number of iterations is slightly
larger than those in Table 3. CPU time, however, decreases substantially. One fact
revealed from the results with multigrid is that GMRES now is less efficient than
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Bi-CGSTAB, even though GMRES requires fewer matrix/vector multiplications
than Bi-CGSTAB to reach convergence.

As already expected, COCG, which requires AM−1 to be symmetric, is found
not to be a good method due to the use of the F-cycle. Only for some values of low
wavenumber COCG iterations convergence.

Table 5. Convergence of GMRES and Bi-CGSTAB used to solve
(1) with first order boundary condition (2) and constant k. The
number of iterations and CPU time (between parentheses) are
shown.

k = 5 10 20 30 40 50

GMRES 12(0.01) 15(0.05) 37(1.46) 55(2.44) 74(7.14) 92(16.19)
Bi-CGSTAB 15(0.01) 21(0.05) 47(0.46) 81(2.01) 101(4.76) 121(9.82)

In Table 6, convergence results with the same model problem but with the second
order absorbing conditions (3) at the boundaries are shown. This boundary con-
dition affects the computational performance slightly; more iterations are required
to reach convergence.

Table 6. Convergence of GMRES and Bi-CGSTAB used to solve
(1) with first order boundary condition (3) and constant k. The
number of iterations and CPU time (between parentheses) are
shown.

k = 5 10 20 30 40 50

GMRES 18(0.01) 24(0.08) 38(0.52) 64(3.17) 66(6.25) 90(15.74)
Bi-CGSTAB 25(0.01) 35(0.08) 49(0.51) 83(2.21) 99(4.96) 115(9.05)

The solution using the second order absorbing condition is, however, much more
preferable than the solution using the first order one, as shown in Figure 3 for
k = 50. Although the wave velocities are similar, one can distinguish differences
in the wave amplitude in Figure 3, which are mainly due to the reflections from
the boundaries. The second order absorbing condition provides a better boundary
treatment than the first order one, indicated by fewer reflections from the bound-
aries.

For the next examples we only show convergence results with the second order
absorbing condition.

6.2. Layered model. The second example is a layered model in unit domain
Ω = (0, 1)2. The wavenumber in Ω varies as follows:

k(x, y) =





4
3kreff , if 0 ≤ y ≤ 1

3 ,

kreff , if 1
3 < y ≤ 2

3 ,

2kreff , if 2
3 < y ≤ 1.

(16)

The solutions for kreff = 50 are shown in Figure 4. As already expected, using
the second order absorbing condition results in a much reduced reflection from the
boundaries, as compared to the first order one.
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Figure 3. Real part of the solution from a 2D constant k problem,
with k = 50. Left: the first order absorbing condition. Right: the
second order absorbing condition (right).

The convergence results are shown in Table 7 for GMRES and Bi-CGSTAB.
In terms of matrix/vector multiplications, GMRES is somewhat better than Bi-
CGSTAB. With respect to CPU time, however, Bi-CGSTAB is faster than GMRES.

Table 7. Convergence of GMRES and Bi-CGSTAB from the 2D
layered problem with second order absorbing conditions (3).The
number of iterations and CPU time (between parentheses) are
shown.

kreff = 5 10 20 30 40 50

GMRES 25(0.02) 40(0.14) 69(1.16) 99(5.99) 116(14.58) 145(33.94)
Bi-CGSTAB 33(0.02) 55(0.13) 87(0.85) 125(3.26) 143(6.77) 177(13.91)
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Figure 4. Real part of the solution from a 2D layered problem
with kreff = 50. Left: the first order absorbing condition. Right:
the second order absorbing condition.
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6.3. Cross-well: a guided wave. The last example is from a wave guide model
in a physical domain Ω = (0, 130) × (0, 150) m2. This model mimics a cross-
well situation, where guided wave propagation occurs. A source is positioned at
the depth of 60 meter inside a low velocity zone (see Figure 5). Instead of using
wavenumber, the source is determined in terms of wave frequency, f , which is
related to k as k = 2πf/c, with c the local speed of sound (in ms−1). The solutions
are also shown in Figure 5, for the two boundary conditions. From this figure, we
can see that most of the energy is inside the low velocity layer and creates a guided
wave.
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Figure 5. Real part of the solution of the 2D guided wave prob-
lem using the first order absorbing condition (mid), and using the
second order absorbing condition (right). The frequency is 300 Hz.

Table 8 shows numerical performance of Bi-CGSTAB with 650×750 grid points,
where the second order absorbing condition is imposed at the boundaries. We
omit the computation using GMRES because of memory requirements. For various
frequencies the method converges satisfactorily to the specified accuracy.

Table 8. Convergence results of Bi-CGSTAB from the 2D guided
wave problem. The second order absorbing condition is used

f (Hz) 50 100 200 300

Iter 44 120 118 155

7. Conclusion

An iterative solution method for the heterogeneous Helmholtz equation is de-
scribed and numerical examples have been shown to indicate the performance of
the method. The method is based on a Krylov subspace iterative method and a
multigrid based preconditioner. Two Krylov subspace methods have been studied:
Bi-CGSTAB and GMRES. Even though Bi-CGSTAB requires more matrix/vector
multiplications than GMRES, it is more efficient from a practical point of view.

Standard multigrid methods are found to be extendable to the complex-valued
linear system (where in our case is the preconditioning matrix). Using multigrid
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to solve the preconditioner, one loses only some iteration numbers, but enables to
reduce CPU time substantially.

The method is also extendable to heterogeneous Helmholtz problems. From our
numerical results, the method shows acceptable performance, without any potential
of breakdown.
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