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3D PRESTACK DEPTH MIGRATION WITH FACTORIZATION
FOUR-WAY SPLITTING SCHEME

WENSHENG ZHANG AND GUANQUAN ZHANG

Abstract. 3D prestack depth migration is an important and commonly used

way to obtain the images of complex structures in seismic date processing.

In this paper, 3D prestack depth migration with hybrid four-way splitting

scheme is investigated. Wavefield extrapolation is based on the 3D acoustic

one-way. The hybrid four-way splitting algorithm based on factorization is de-

rived. Numerical calculations of 3D post-stack depth migration for an impulse

and 3D prestack depth migration for SEG/EAEG benchmark model are imple-

mented. The result of 3D post-stack depth migration show that the numerical

anisotropic errors can be reduced effectively and the errors are small when the

lateral velocity variations is small. Moreover, the 3D prestack depth migration

for SEG/EAEG model both with two-way and four-way hybrid splitting scheme

can yield its good images. The Message Passing Interface (MPI) programme

is adopted on PC cluster as the large scale computation of 3D prestack depth

migration. The parallel efficiency is high because of high parallel feature of 3D

prestack depth migration. The methods presented in this paper can be applied

in field data processing.

Key Words. 3D, acoustic wave equation, hybrid method, factorization, four-

way splitting, MPI.

1. Introduction

3D prestack depth migration is an important tool for complex structure imaging.
There are two kinds of imaging methods. One is the Kirchhoff integral method
based on ray tracing. The other is the non-Kirchhoff integral method based on
wavefield extrapolation. Kirchhoff integral method is a high-frequency approxima-
tion method, which has difficulties in imaging complex structures. However, it can
adapt sources and receivers configuration easily and has the advantage of less com-
putation cost. Therefore it is still the dominant method of 3D prestack migration in
oil industry. Non-Kirchhoff integral method, such as the finite-difference method,
the phase-shift method (Gazdag, 1978), the split-step Fourier (SSF) method (Stoffa
et al., 1990) and the Fourier finite-difference (FFD) method (Ristow and Ruhül,
1995), do wavefield extrapolation with one-way wave equation. It can yield precise
images even in the case of complex structures or large lateral velocity variations.
The FFD method is one of the most typical hybrid method, which combines both
advantages of the phase-shift method and the finite-difference method.
Prestack depth migration can be implemented in the common-shot domain or in
the common-offset domain. The full 3D common-offset prestack depth migration
still has more difficulties in application because of its huge computational cost.
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Compared with the shot-profile migration, the synthesized-shot migration has less
computation cost. The synthesized-shot migration, which is based on the wavefield
synthesis, first stacks or synthesises shot-gather records and sources, then extrapo-
lates the synthesized wavefield. Therefore, its computation cost is comparable with
that of multi-poststack migration. As the principle of the synthesized-shot migra-
tion is the same with that of the shot-profile migration, their imaging precisions
are comparable.
For 3D one-way wave equation, a direct solution with stable implicit finite-difference
scheme may lead to a non tri-diagonal system, which is computationally expen-
sive. In order to decrease computation cost, the alternatively directional implicit
(ADI) scheme is usually used. However, the two-way ADI algorithm may cause the
problem of numerical anisotropic errors, which reaches maximum at 45◦ and 135◦

directions. In order to eliminate these errors, several authors proposed the multi-
way splitting methods (Ristow and Rühl 1994; Collino and Joly, 1995). Among
the multi-way splitting methods, such as three-way, four-way and six-way split-
ting methods, the four-way method is preferred as its computational grid is the
retangle or square grid and there is no need to transform wavefield onto the trian-
gle or hexagonal grid which three-way or six-way splitting method requires. It is
well known that the seismic data observed on the surface is usually on the regular
retangle or square grid. In this paper, the four-way splitting method based on fac-
torization is proposed. It contributes to solve the tri-diagonal system both along
0◦, 90◦ and 45◦, 135◦ two ways respectively. Thus the high computational efficiency
can be expected. Numerical calculations of 3D post-stack depth migration for an
impulse and 3D prestack depth migration for SEG/EAEG benchmark model are
completed. The results of 3D post-stack depth migration show that the numerical
anisotropic errors can be eliminated effectively and the errors are small when the
lateral velocity variations are small. Moreover, the results of 3D prestack depth
migration both with hybrid two-way and four-way splitting schemes can give good
images of the geologically complex structures of the SEG/EAEG model.

2. Methodology

2.1. four-way splitting scheme. Consider 3D acoustic wave equation
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where p(x, y, z;ω) is the pressure wavefiled at position (x, y, z), v(x, y, z) is the
media velocity. It is well known that the one-way wave equations for downgoing
wave and upcoming wave in the frequency-space domain are given by
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where ω is the circular frequency, i is the imaginary unit. The plus sign before the
square-root represents downgoing wave and the minus sign represents upcoming
wave. P (x, y, z, ω) is the wavefield in the frequency domain. Denote the square-
root with A, i.e.,
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Introducing a reference velocity v0(z), then this exact square-root operator can be
approximated as

A = A1 + A2 + A3, (4)
with A1, A2 and A3 are
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respectively, where a = 1

2 (1 − v0
v ), b = 1

4 ( v0
v )2 + v0

v + 1 (Ristow and Ruhl, 1995),

or a = 0.47824(1 − v0
v ), b = 0.37637(1 + v2

0
v2 ) (Zhang W., et al., 1999). One notes

that the ratio v0/v represents how the lateral velocity varies. The small it is, the
large the lateral velocity variations are. If v0/v = 1, then there is no lateral velocity
variations. With the above approximations, the formal solution of the equation (2)
can be written as

P (x, y, z + ∆z, ω) ≈ P (x, y, z, ω)e±i(A1+A2+A3)∆z. (6)

In the equation (6), A1 is the phase-shit operator to be applied in the frequency-
wavenumber domain, A2 is the well-known first-order correction term of Stoffa et
al. (1990), A3 is the finite-difference correction operator. The operator A1 can be
solved in the frequency-wavenumber domain with the help of fast Fourier transform.
After completing the wavefield extrapolation with A1, transforme the data of the
frequency-wavenumber domain into that of the frequency-space domain, and solve
the operator A2 as a correction of the phase-shift.
The operator A3 is commonly solved by the alternatively directional implicit scheme.
For downgoing wave, the one-way equation of wavefield extrapolation can be ex-
pressed as
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The finite-difference equation of equation (7) can be written as
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where Pn
ij is the wavefield of P (i∆x, j∆y, n∆z, ω) (the discreted index of ω is omit-

ted), δ2
x and δ2

y are the second-order difference operators with respect to x and y
respectively. The coefficients α1, α2, β1 and β2 are related with spatial sampling
steps, coefficients a and b, and can be written as
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Based on the operator splitting method, the following alternatively directional im-
plicit scheme of equation (8) can be obtained
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(10)

where P
n+1/2
ij is the intermediate wavefield. We note that the second-order dif-

ference operator in equation (10) can be factorized further. That is to say, the
second-order difference operator can be expressed as a product of the first-order
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backward difference operator and the first-order forward difference operator, so
equation (10) can be decomposed into the following system
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respectively. Here, δ+
x and δ−x are the first-order difference operators forward and

backward respectively with respect to x, δ+
y and δ−y are the first-order difference

operators forward and backward respectively with respect to y, for example,
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The system (10) or (11) is the traditional two-way splitting scheme. The four-way
solving algorithm may also be derived further by adding another two directions, i.e.,
45◦ and 135◦ directions. Suppose x1 is the 45◦ azimuth and y1 is the 135◦ azimuth,
then the alternatively directional implicit scheme along 45◦ and 135◦ two directions
can be written as
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where δ2
x1

and δ2
y1

are the two-order differential operator along x1 and y1 directions
respectively. Like before, the equation (14) can be approximately decomposed into
a system in which only the first-order difference operator is used
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respectively. Here, δ+
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are the one-order forward and backward difference

operators with respect to x1 respectively, and δ+
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have

δ+
x1

Pn
i,j = Pn

i+1,j+1 − Pn
i,j , δ−x1

Pn
i,j = Pn

i,j − Pn
i−1,j−1,

δ+
y1

Pn
i,j = Pn

i−1,j+1 − Pn
i,j , δ−y1

Pn
i,j = Pn

i,j − Pn
i+1,j−1.

(17)



3D FOUR-WAY SPLITTING SCHEME 187

The systems (11) and (15) form the hybrid four-way factorizational splitting scheme.
Both they can be solved by recursive and anti-recursive algorithm or other fast
algorithm like Thomas algorithm.

2.2. Wavefield synthesis method. The ideal of wavefield synthesis was origi-
nally proposed by Rietveld (Rietveld et al., 1994). And its synthesis application
for the SEG/EAEG model was given in abstract format by Zhang (Zhang W.,
2004). Here, we outline the main steps of wavefield synthesis as follows. Suppose
S(x, y, z0, ω) is the source wavefield in the frequency domain at position (x, y, z0),
and H(x, y, z0, ω) is the synthesized-operator in the frequency-space domain, which
can be written as (Rietveld et al., 1994)

H(x, y, z0, ω) = (eiωpr1 , eiωpr2 , · · · , eiωprn) (18)

in the frequency-space domain, where p is the ray parameter which describes the
incidence angle of the planewave, ri(xi, yi, z0) is the known spatial position, z0 is
the depth at which the wavefield synthesis carries out. Then the synthesized-source
Ssyn(x, y, z0, ω) can be written as

Ssyn(x, y, z0, ω) = S(x, y, z0, ω)H(x, y, z0, ω), (19)

Usually, a plane surface, i.e., z0 = 0 is chosen. However, this is not necessary, and
there is no need that z0 is either the depth of data acquisition surface or the constant
( represents a plane surface). With the synthesized-operator, the synthesized-record
Rsyn(x, y, z, ω) corresponding to the synthesized-source can be expressed similarly,
that is

Rsyn(x, y, z0; ω) = R(x, y, z0, ω)H(x, y, z0, ω), (20)
where R(x, y, z0, ω) is the shot-gather data in the frequency domain corresponding
to the source S(x, y, z0, ω). Therefore, the synthesized-source Ssyn(x, y, z, ω) and its
corresponding synthesized-record Rsyn(x, y, z, ω) can form a physical observation
geometry. That is to say, the synthesized-source corresponds with the downgoing
wavefield and the synthesized-record corresponds with the upcoming wavefield. It
is noted that there is another wavefield synthesis named phase-encoding method
proposed by Louis and Romero et al. (Louis and Romero et al., 2000). However,
for 3D prestack depth migration, the synthesized-shot number is very limited when
we keep good imaging quality (Zhang W., et al., 2002).

2.3. Imaging principle. The subsurface image can be obtained by extrapolating
the downgoing wavefield D(x, y, z, ω) and upcoming wavefield U(x, y, z, ω) simul-
taneously, and then applying the imaging condition (Claerbout, 1985)

I(x, y, z) =
∑
ω

U(x, y, z, ω)D(x, y, z, ω)∗ (21)

at each image point, where D(x, y, z, ω)∗ is the conjugate of the complex wavefield
D(x, y, z, ω). Another imaging condition yielding the reflection coefficient can be
written as

R(x, y, z) =
∑
ω

UD∗

ε + DD∗ , (22)

where R(x, y, z) is the reflection coefficient varying with spatial positions. One
notes that a small positive number ε is added to the denominator to keep stability
of the quotient. However, this imaging condition probably produce noise which
my destroy imaging quality. So the imaging condition (21) is preferred. The final
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images are obtained by summing all the partial images. For the imaging condition
of post-stack depth migration, the equation (21) is simplified as

I(x, y, z) =
∑
ω

U(x, y, z, ω), (23)

where U(x, y, z, ω) is the extrapolated upcoming wavefield.

3. Numerical calculations

3.1. 3D post-stack depth migration. 3D post-stack depth migration in the case
of variable velocity for an impulse response is presented first. The grid number for
x, y and z is 64, the spatial steps are all 15m. The time step is 4ms. We choose two
types of velocity model. One represents the case of small lateral velocity variations
with media velocity v(x, y, z) = 3000 + 0.1x + 0.1y + 0.1z(m/s). The ratio of
reference velocity v0(z) with media velocity v(x, y, z) varies from 0.941 to 0.942.
The other represents the case of large lateral velocity variations with media velocity
v(x, y, z) = 3000 + 2x + 2y + 2z(m/s). The ratio of reference velocity v0(z) with
media velocity v(x, y, z) varies from 0.442 to 0.564. The impulse of the known
recorded date is Ricker wavelet with 20Hz main frequency located at the position
of (x, y, z, t) = (480m, 480m, 500ms). Figure 1 is the level or horizontal slices of the
3D post-stack depth migration result for the case of small lateral velocity variations.
The sliced position is at the depth of 210m. Figure 1(a) is the slice by the traditional
two-way splitting scheme, figure 1(b) is that by the two-way splitting scheme but
splitting along 45◦ and 135◦ two directions, and figure 1(c) is that by the four-way
splitting scheme. Figure 2 are the x − z vertical slices of 3D migration result at
the position of y = 360m. And figure 2(a), figure 2(b) and figure 2(c) are the
slices by the traditional two-way splitting, 45◦ and 135◦ diagonal two-way splitting
and four-way splitting scheme respectively. Figure 3 is the level slices of 3D post-
stack depth migration result for the case of large lateral velocity variations. The
sliced position is at the depth of 360m. Figure 3(a) is the slice by the traditional
two-way splitting scheme, figure 3(b) is that by the two-way splitting scheme but
splitting along 45◦ and 135◦ two directions, and figure 3(c) is that by the four-way
splitting scheme. Figure 4 are the x − z vertical slices of 3D migration result at
the position of y = 280m. And figure 4(a), figure 4(b) and figure 4(c) are the
slices by the traditional two-way splitting, 45◦ and 135◦ diagonal two-way splitting
and four-way splitting scheme respectively. These results show that the numerical
anisotropic errors of traditional two-way scheme are eliminated effectively as shown
in figure 3. And that the numerical anisotropic errors is small for the media velocity
with small lateral variations as shown in figure 1.

3.2. 3D prestack depth migration. 3D prestack depth migration for SEG/EAEG
model with the hybrid method is completed. The SEG/EAEG model is a bench-
mark 3D complex model for testing the imaging abilities of 3D migration/inversion
methods. The data set used in this test has 50 sources lines each with 96 shots. The
line space is 160m and the shot space is 80m. The steps of ∆x, ∆y and ∆z are 40m,
40m and 20m respectively. The record length is 4992s with 8ms time sampling. Let
x is the inline direction and y the crossline direction. Figure 5 are the y−z vertical
slices of the velocity model and the 3D prestack depth migration result sliced at
x = 5100m along crossline direction. Figure 5(a) is the model slice, figure 5(b) is
the slice of migration result yielded by the two-way splitting algorithm, and figure
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5(c) is the slice of migration result yielded by the four-way splitting algorithm.
Figure 6 are the x − z vertical slices of the velocity model and the 3D prestack
depth migration result sliced at y = 6020m along crossline direction. Figure 6(a) is
the model slice, figure 6(b) is the slice of migration result yielded by the two-way
splitting algorithm, and figure 6(c) is the slice of migration result yielded by the
four-way splitting algorithm. Figure 7 are the x−y level slices of the velocity model
and the 3D prestack depth migration result at z = 4200m. Figure 7(a) is the model
slice, figure 7(b) is the slice of migration result yielded by the two-way splitting al-
gorithm, and figure 7(c) is the slice of migration result yielded by the four-way
splitting algorithm. These results show that the 3D prestack depth migration for
SEG/EAEG benchmark model both with two-way and four-way splitting schemes
can yield good images of the complex structures.
The computations of 3D prestack depth migration are completed with Message
Passing Interface (MPI) parallel program on PC-cluster. The most efficient parallel
programs are ones which attempt to minimize the communication between proces-
sors while still requiring each processor to accomplish basically the same amount
of work. Ray parameter parallelism is adopted. In this parallelism, each processor
solve the same problem but with different ray parameter. The main computations
are the wavefield extrapolation for downgoing wave D and upgoing wave U and
they can be accomplished independently. The images for each ray parameter can
be obtained and final images are stacked together. So the computations have high
parallel speedup ratio. The communications between processors are set at the begin
of and the end of the computation. At the begin, the velocity model for migration
is sent to its corresponding processor from the main node and then every processor
does the same calculations. After images for each ray parameter is yielded, they
are sent back to the main node and stack to produce the whole imaging results.

4. Conclusions

The hybrid four-way splitting schemes based on factorization are investigated.
Numerical calculations both of the 3D post-stack depth migration for an impulse
and 3D prestack depth migration for SEG/EAEG benchmark model are imple-
mented. The results show that the numerical anisotropic errors can be reduced
effectively by the four-way splitting scheme and the errors are small when the lat-
eral velocity variations is small. Moreover, the 3D prestack depth migration for the
SEG/EAEG model both with two-way and four-way hybrid splitting scheme can
yield its good images. Generally, the two-way splitting hybrid method is preferred
in order to save computation cost. In order to improve computational efficiency,
the Message Passing Interface (MPI) programme is used in 3D prestack depth mi-
gration. The parallel efficiency is high because of high parallel feature of problem.
The methods presented in this paper can be applied in field data processing.
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Figure 1. Horizontal slices of 3D post-stack depth migration for an impulse response

with small lateral velocity variations. Hybrid wavefield extrapolation is used with (a)

traditional two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c) four-way splitting

respectively.



3D FOUR-WAY SPLITTING SCHEME 191

0

200

400

600

800

z(
m

)

0 200 400 600 800
x(m)

0

200

400

600

800

z(
m

)

0 200 400 600 800
x(m)

0

200

400

600

800

z(
m

)

0 200 400 600 800
x(m)

(a) (b) (c)

Figure 2. Vertical slices of 3D post-stack depth migration for an impulse response with

small lateral velocity variations. Hybrid wavefield extrapolation is used with (a) traditional

two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c) four-way splitting respectively.
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Figure 3. Horizontal slices of 3D post-stack depth migration result for an impulse response

with large lateral velocity variations. Hybrid wavefield extrapolation is used with (a)

traditional two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c) four-way splitting

respectively.

0

200

400

600

800

z(
m

)

0 200 400 600 800
x(m)

0

200

400

600

800

z(
m

)

0 200 400 600 800
x(m)

0

200

400

600

800

z(
m

)

0 200 400 600 800
x(m)

(a) (b) (c)



192 W. ZHANG AND G. ZHANG

Figure 4. Vertical slices of 3D post-stack depth migration for an impulse response with

large lateral velocity variations. Hybrid wavefield extrapolation is used with (a) traditional

two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c) four-way splitting respectively.
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Figure 6. The y − z vertical slices of velocity model and 3D prestack depth migration

result sliced at the position of x = 5100m. (a) velocity model, (b) migration result yield

by the two-way hybrid method, (c) migration result yield by the four-way hybrid method.
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Figure 6. The x− z vertical slices of velocity model and 3D prestack depth migration

result sliced at the position of y = 6020m. (a) velocity model, (b) migration result yield

by the two-way hybrid method, (c) migration result yield by the four-way hybrid method.
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Figure 7. The x− y level slices of velocity model and 3D prestack depth migration result

sliced at the position of z = 4200m. (a) velocity model, (b) migration result yield by the

two-way hybrid method, (c) migration result yield by the four-way hybrid method.
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