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Abstract. History matching is an inverse problem of partial differential

equation on mathematics. We adopt the constrained non-linear optimization

to handle this problem, defining the objective function as the weighted square

sum of differences between the wells simulation values and the corresponding

observation values. We develop an optimization computing program that in-

clude Zoutendijk feasible direction methodQuasi-Newton method (BFGS) and

improved Nelder-Mead simplex method, combined with a black-oil simulator,

and discuss the convergence characters of algorithms in case studies about

determining average porosity and directional permeability, determining low

permeability strip between two wells and determining oil-water relative per-

meability curves.
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1. Problem

History matching is absolutely necessary for a real reservoir simulation, which is
to find a suitable set of values for the simulator’s input parameters such that the
simulator correctly predicts the fluid outputs and the pressures of the wells on the
reservoir. It is an inverse problem of partial differential equation on mathematics,
and is not a well-posed problem [1-20]. Yet there must exist a solution reflecting real
formation condition for a real reservoir problem. So we would focus attention on
the stability of the history matching problem model and the algorithm feasibility,
not to be concerned with the existence and singleness of the solution.

2. Mathematic Model

We adopt the constrained non-linear optimization most in use for inverse prob-
lem of partial differential equation to handle history matching problem, define the
objective function as the weighted square sum of differences between the wells sim-
ulation values and the corresponding observation values:

(1) f(X) =
nw∑

i=1

nt∑

j=1

nk∑

k=1

ω(i, j, k)[yobj(i, j, k)− ycal(i, j, k)]2

where yobj , ycal denote the observation values and simulator computing values
respectively, ω denotes parameter scale coefficient i, j, k denote well number, time
segment and data kind respectively, nw, nt, nk are the maximum of i, j, k respec-
tively , X denotes optimal vector.

For a general history matching problemthe objective function is an implicit func-
tion of the optimal vectorit needs to carrying out a simulation run to gain a objec-
tive function value, it is the uppermost computing cost. Therefore dealing equality
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constrained history matching problem, should adopt elimination method to reduce
variable number, so as to optimization computing converge rapidly. So a general
history problem can be posted as an inequality constrained nonlinear optimization
problem

(2) min f(X) X ∈ En

s.t gi(X) ≥ 0 i = 1, · · · ,m

The optimal vector X, the objective function f(X) and the inequality constrained
function vector G(X) are different for different history matching problem.

3. Algorithms

We develop an optimization computing program that include Zoutendijk feasible
direction methodQuasi-Newton method (BFGS) and improved Nelder-Mead simplex
method [21], combined with a black-oil simulator, and discuss the convergence char-
acters of algorithms in some case studies.

Zoutendijk feasible direction method is a constrained nonlinear optimiza-
tion method, it is in different ways to deal linear constraints and nonlinear con-
straints.

For linear inequality constraints optimization problem

(3)
min f(X)
s.t AX ≥ b

where, f(X) is differential function, A is m × n matrix. X ∈ En, b is m dimen-
sion column vector. Zoutendijk feasible direction method transform determinating
descent feasible direction d to solving following linear programming problem, ac-
cording necessary conditions 5f(X)T d0, A1d ≥ 0,

(4)
min 5f(X)T d
s.t A1d ≥ 0
|dj | ≤ 1 j = 1, · · ·n

Linear search step restriction:

(5) λmax =

{
min{Bj

Dj
|Dj < 0}, D < 0

∞ D > 0

where, A1X = b1, A2X > b2, A =
[

A1

A2

]
, b =

[
b1

b2

]
, B = b2−A2Xi, D = A2di

For nonlinearinequality constraints optimization problem,

(6)
min f(X)
s.t gi(X) ≥ 0 i = 1, · · · ,m

whereX ∈ En, f(X), gi(X) are differentiable functions. Zoutendijk feasible direc-
tion method transform determinating descent feasible direction d to solving fol-
lowing linear programming problem, according necessary conditions 5f(X)T d < 0,
5gi(X)T d > 0, i ∈ I, I = {i|gi(X) = 0}

(7)

min Z
s.t 5f(x)T d− Z ≤ 0

5gi(x)T d− Z ≥ −gi(x), i = 1, · · · ,m
|dj | ≤ 1 i = 1, · · · ,m
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Linear search step restriction:

λmax = sup{λ|gi(Xk + λdk) ≥ 0, i = 1, 2, · · · ,m}
Zoutendijk feasible direction method obtain: steepest descent direction when search
point in the linear inequality constraints feasible region or steepest descent direction
pointing to inside feasible region, projection direction of the steepest descent on
the active constraint surfaces when search point on the linear inequality constraint
surfaces and steepest descent direction pointing to outside feasible region; angle
bisector direction between the steepest descent direction and the gradient vector of
active nonlinear inequality constraint surfaces when search point on the nonlinear
inequality constraint surfaces, the more far from nonlinear inequality constraint
surfaces, the more closed with steepest descent direction when search point in the
nonlinear inequality constraint region.

Quasi-Newton method (BFGS) is an unconstrained nonlinear optimization method,
it approximates the inverse matrix of the Hession matrix in Newton’s method in it-
eration method with the gradient vector. If we known the approximate matrix Hi

of the A−1
i let the approximate matrix Hi+1 of the A−1

i+1 be Hi+1 = Hi+Ei, Ei is ith
updated matrix. BFGS formula make choice H1 = I, and define the ith updated
matrix

(8) Ei =
(

1 +
qT

i Hiqi

pT
i qi

)
pipT

i

pT
i qi

− piqT
i Hi + HiqipT

i

pT
i qi

wherepi = Xi+1 −Xi, qi = 5f(Xi+1) −5f(Xi), when iteration steps reach the
variable number, the initial value of approximate matrix will be reset, iteration will
be restarted.

If 5f(Xi) 6= 0, i1, · · · , n, the constructed approximate matrix Hi(i1, · · · , n) is
positive definite matrix; If objective function is positive definite quadratic function,
the conjugated search direction is obtained and the minimum point must be reached
by this formula in finite step iterations.

In computing, we force Quasi-Newton method (BFGS) turn into Zoutendijk
feasible direction method on the next iteration when search stop on the inequality
constraint surfacesimproved Nelder-Mead simplex method can be used to handle in-
equality constraints optimization problemWhen descent feasible direction has been
obtained, a linear investigation with increasing step length will be carried out to
find high-low-high three points in the direction (or minimum point on inequality
constraint surface), then a three points quadratic interpolation will be performed.

4. Case Studies

Three case studies are carried out with algorithms above in matching well pres-
sures and water cut. The reservoir model is 1 layer and 11×11 blocks, one injection
well and three production wells (figure 1), distance between wells is 200m. Sim-
ulation carries out on a three phase black oil simulator with automatic history
matching function, with all implicit method equation solvers.

Determining average porosity and directional permeabilitys is carried out on a
model with 0.27 Porosity, 300md x directional permeability and 75md y directional
permeability. Constrained conditions are 1md ≤ Kx,Ky ≤ 3000md and 0.005 ≤
Por ≤ 0.5. Initial values are Kx = Ky = 180md,Por = 0.35. The result is:

The result indicates that the computing is convergent and optimal variables are
determinable.

Determining low permeability strip between two wells is carry out on a model with
0.27 Porosity, 300md x and y directional permeability, with 10md x directional
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permeability including six blocks low permeability strip (figure 2). Constrained
conditions are 1md ≤ Kxv ≤ 3000md. The result is:
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The result indicates that the computing is convergent and the determinability
of the optimal variables is relative to initial values.

Determining oil-water relative permeability curves
Assuming connate water saturation and residual oil saturation are fixed, and five

points on both oil relative permeability curve and water relative permeability curve
to be optimized. The initial values are on two straight lines. Optimal method use
BFGS. The constrained conditions are:

Kr0(Swc)−Kr1 > 0, Kr1 −Kr2 > 0,
Kr2 −Kr3 > 0, Kr3 −Kr4 > 0,
Kr4 −Kr5 > 0, Kr5 > 0,
Kr6 > 0, Kr7 −Kr6 > 0,
Kr8 −Kr7 > 0, Kr9 −Kr8 > 0,
Kr10 −Kr9 > 0, Krw(1− Sor)−Kr10 > 0,

The result indicates that the computing is convergent and most optimal variables
are determinable except the last two points.

5. Convergence

The following figures indicate the different convergence rate of improved Nelder-
Mead simplex methodsteepest descent method and Quasi-Newton method (BFGS) .
BFGS is the most rapid, steepest descent is the second, and the improved Nelder-
Mead simplex method is the slowest.

6. Experiences and Conclusions

(1) Case studies indicate: All three algorithms are stabile and feasible; in the
first four iterations, there are no evident difference on the results obtained from
Quasi-Newton method (BFGS) and steepest descent method; Quasi-Newton method
(BFGS) converges far more rapidly than steepest descent method in the latter
iterations; Nelder-Mead simplex method’s convergence rate is the slowest. But the
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evident difference between Quasi-Newton method (BFGS ) and steepest descent
method occurs after objective function descend near three orders, it is difficult to
say the significance of the difference in engineering here.

(2) Some experiences: Finding the relations about variables, performing variable
elimination, descending optimization model freedom and variable relativity as far as
possible; attaching importance to line search. When there are a great deal variables
to optimize, suggesting to optimize the averages of the interrelated variables first or
to introduce constraints temporarily, for example, the relative permeability curves
may be appointed in a definite function form.

(3) The fluctuation of the well water cut could occur when IMPES formula is used
in reservoir simulator, and it often makes optimizing process failed for determining
variable accurately.
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