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PRECONDITIONED HYBRID CONJUGATE GRADIENT
ALGORITHM FOR P-LAPLACIAN

GUANGMING ZHOU, YUNQING HUANG* AND CHUNSHENG FENG

Abstract. In this paper, a hybrid conjugate gradient algorithm with weighted

preconditioner is proposed. The algorithm can efficiently solve the minimiz-

ing problem of general function deriving from finite element discretization of

the p-Laplacian. The algorithm is efficient, and its convergence rate is mesh-

independent. Numerical experiments show that the hybrid conjugate gradient

direction of the algorithm is superior to the steepest descent one when p is

large.
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1. Introduction

Let Ω be a bounded open subset of R2 with a Lipschitz boundary ∂Ω. The
p-Laplacian with Dirichlet data is the following equation (1.1):

−div(| 5 u|p−2 5 u) = f, in Ω
u = 0, on ∂Ω

where 1 < p < ∞, f ∈ L2(Ω), and | · |2 = (·, ·)R2 .
When p = 2, the equation (1.1) becomes a linear Laplacian equation. The

equation (1.1) occurs in many mathematical models of physical process, for in-
stances, glaciology, nonlinear diffusion and filtration(see Philip [21]), power-law
materials(Atkinson and Champion [2]), and quasi-Newtonian flows(Atkinson and
Jones [3]). The equation (1.1) is viewed as one of the typical examples of a large
class of nonlinear problems. It contains most of the essential difficulties in studies
of finite element approximations for this class of degenerate nonlinear systems. For
this class of systems, many existing techniques in the finite element method, for
example, the linearization method and deformation procedure, do not seem to work
well.

Finite element approximations of p-Laplacian have been extensively studied in
the literature, for example, in [10, 1, 12, 7, 8, 20]. In particular, the quasi-norm
approach has proved quite successful in deriving sharp a priori and a posteriori error
bounds for the finite element approximation of the degenerate systems. A priori
and a posteriori error bounds for p-Laplacian are proposed by using quasi-norm
approach in the paper [14, 15, 16].
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Solving the equation (1.1) is equivalent to solve the following minimization prob-
lem:

min
v∈V

J(v) (1.2)

where V = W 1,p
0 (Ω),1 < p < ∞,and

J(v) =
1
p

∫

Ω

| 5 v|p −
∫

Ω

fv (1.3)

Huang, Li and Liu[13] proposed a steepest descent algorithm with weighted pre-
conditioner which is solved by an algbric multigrid method. The decent algorithm
has excellent computing efficiency for both p large or relatively small, for example,
p = 1000 and p = 1.5, which are obviously superior to past methods. Tai and
Xu[22] proposed a pure multigrid algorithm for solving the nonlinear problems in-
cluding the p-Laplacian. Some theoretical and numerical analysis show the good
efficiency.

It is well known that the conjugate gradients or their hybrid algorithms are more
efficient than the steepest descent algorithm when solving nonlinear programming.
Based on this thought, we proposed a hybrid conjugate gradient algorithm with
weighted preconditioner in this paper. The new algorithm is more efficient than
the descent one in the paper [13] for p-Laplacian for large p. The paper is organized
as follows. Section 2 is devoted to mathematical preliminaries. In Section 3, we
propose the hybrid conjugate gradient algorithm with weighted preconditioner. In
Section 4, we present numerical results in order to compare and evaluate the per-
formance of the new method and the steepest descent algorithm, and finally end,
in Section 5, with some conclusions and discussions.

2. Preliminaries

Obviously, the functional J(v) decided by (1.3) is strictly convex for 1 < p < ∞.
Furthermore, the equation (1.2) has a unique solution. It is well known that solving
the equation (1.2) is equivalent to the following nonlinear PDE-the p-Laplacian:

(WP ) a(u, v) =
∫

Ω

| 5 u|p−2 5 u5 v =
∫

Ω

fv, ∀v ∈ V. (2.1)

A direct calculation yields

J ′(u)(v) =
∫

Ω

| 5 u|p−2 5 u5 v −
∫

Ω

fv. (2.2)

One can refer to the paper [9] for other conclusions of J ′(u)(v) and J ′′(u)(v, w). We
now introduce the finite element spaces. Let Th be a regular triangulation of Ωh,
which is composed of disjoint open regular triangles Ki, that is , Ω̄h =

⋃
Kk∈T h K̄i,

where h = maxK∈T h hk, and hk denotes the diameter of the element K in Th.
When i 6= j, K̄i

⋂
K̄j is void, or only one common vertex, or a whole edge.

Because of the limited higher order regularity for the solution of the p-Laplacian
(see [2, 3, 22]), we shall only discuss the continuous piecewise linear element in this
paper. Associated with Th is a finite dimensional subspace V h of C0(Ω̄h), such
that χ|K ∈ P1 for allχ ∈ V h and K ∈ Th, where P1 is the linear function space.
Let

V h
0 = {χ ∈ V h : χ(xk) = 0, for all xk ∈ ∂Ωh}

Then the finite element approximation of (WP ) is as follows (WP )h: Find un ∈ V h
0

such that
(WP )h

∫

Ωh

| 5 un|p−2 5 un 5 vn =
∫

Ωh

fvh (2.3)
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According to previous discussion,we know that (WP )h has a unique solution uh.
Also (WP )h is equivalent to the following minimization problem:

min
vh∈V h

0

J(vh). (2.4)

3. Hybrid conjugate gradient algorithm with weighted preconditioner

In this section,we formulate a hybrid conjugate gradient method with weighted
preconditioner for the p-Laplacian. Let vh, w ∈ V h

0 . The steepest descent direction
w of J(vh) is defined such that

J ′(vh)(w) = −‖J ′(vh)‖∗‖w‖. (3.1)

For convenience, when computing descent direction w, we shall formulate our algo-
rithm using the H1

0 (Ω) norm, which is the same as the norm in [13]. Convergence
rate of our algorithm is mesh independent.

Let w be the exact solution of (1.2), and un ∈ V h
0 be the current approxima-

tion.General formula finding next approximation un+1 is

un+1 = un + αndn, (3.2)

where αn is step length on search direction dn. αn is determined by a line search

J(un + αndn) = min
α≥0

J(un + αdn) (3.3)

Search direction dn can be computed by using many different ways. For all v ∈ V h
0 ,

if dn is equivalent to solutions of the following two PDE:∫

Ω

5wn 5 v = −J ′(un)(v) = −
∫

Ω

| 5 un|p−2 5 un 5 v +
∫

Ω

fv, (3.4)

∫

Ω

(ε+|5un|p−2)5wn5v = −J
′
(un)(v) = −

∫

Ω

|5un|p−25un5v+
∫

Ω

fv, (3.5)

respectively, corresponding algorithms are called preconditioned steepest descent
one and weighted preconditioned steepest descent one, respectively. In the paper
[13], it is proved that wn determined by (3.4) is the steepest descent direction
in H1

0 (Ω) space, and the direction wn determined by (3.5) is the steepest descent
direction with V ↪→ H1

0 (Ω) equipped a weighted norm ‖·‖2ε,un
=

∫
Ω
(ε+|∇un|p−2)|∇·

|2.
When n > 0, let

βn = max{0, min{βFR
n , βPRP

n }}, (3.6)
α̃n = min

α≥0
J(un + α(wn + βndn−1)). (3.7)

βFR
n , βPRP

n in (3.6) are computed by the following two formulae:

βFR
n =

‖wn‖2
‖wn−1‖2 ,

βPRP
n =

(wn − wn−1)T wn

‖wn−1‖2 ,

respectively. In this paper, search direction dn shall be determined by the following
rule(R):

If n = 0, then dn = wn;
If n > 0, then dn = wn when α̃n = 0; or

dn = wn + βndn−1. (3.8)
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In a way, using the above rule (R), instead of βn = βPRP
n or βn = max{0, βPRP

n },
is reasonable. There are two reasons. Firstly, if one computes βn according to
βn = βPRP

n ,instead of (3.6),then dn in (3.8) is likely close to −dn−1 when βPRP
n

is a very large negative number. Obviously, −dn−1 is not a good search direction.
Secondly, βFR

k has some nice convergence. The details can be found in [11].
Because of that dn determined by the rule(R) may be the steepest descent di-

rection, or FR-conjugate gradient one, or PRP-conjugate gradient one, we call the
following algorithm hybrid conjugate gradient algorithm with weighted precondi-
tioner:

Algorithm 1 Let n := 0. For a given initial value u0 and two small positive
constants ε1, ε2, do the following iterations:

Step 1 For all v ∈ V h
0 , solving the equation (3.5);

Step 2 If ‖wn‖ε1,un
/‖w0‖ε1,u0 < ε2, stop;

Step 3 Computing search direction dn according to the rule (R);
Step 4 Finding step length αn. If α̃n 6= 0, then αn = α̃n; or computing αn,

such that J(un + αnwn) = minα≥0 J(un + αwn);
Step 5 Updating iterative point. un := un + αnwn, n := n + 1; return Step 1.

The direction wn in Step 1 can be solved by fast AMG solvers.

4. Numerical experiments

We test Algorithm 1. The program language is Fortran 90. We used piecewise
linear triangle finite element approximation in all our computations, and always
used zero as an initial solution in all the iterations. The descent direction wn is
computed by an AMG solver. The stopping rule for the AMG iterations is to reduce
the relative defect to 10−8 and the maximin V-Cycles in 50. The stopping criterion
is ‖wn‖ε1,un/‖w0‖ε1,u0 < 10−6. We used a 0.618-section algorithm as the line search
procedure. The current step length is used as an initial value for the initialization
of the search interval at the next step. The parameters ε1 and ε2 are chosen to be
10−4 and 10−6, respectively. A great deal of numerical experiments showed that
efficiency of the algorithm is very high when ε1 = 10−4. Simultaneously, discretion
accuracy of object function and solution can be obtained.

Now we set out two numerical examples and their testing results.

Example 1 Ω = {(x, y)| = r2 = x2 + y2 < 1}, f = 1. The exact solution is

u = u(r) =
p− 1

p
(
1
2
)

1
p−1

(1− r
p

p−1 ). (4.1)

In the tables below, C1, C2, C3, C4 represent the meshes with 1601,6221,24444,
97118 nodes, respectively. ”ItN” and ”CPU” mean iterative numbers and CPU
time, respectively. ”‖ · ‖” indicates L2-norm.

Tables 1 to 5 show the computational results using the conjugate gradient algo-
rithm with weighted preconditioner(marked with WPCG) and the steepest descent
algorithm with weighted preconditioner(marked with WPSD) in the paper [13].
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Table 1 p = 1.14

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 17 17 18 17 17 16 16 15

CPU 0m26s 0m26s 1m39s 1m34s 5m59s 5m38s 23m16s 21m41s

‖u− uh‖ 1.60-5 1.59-5 5.35-6 5.40-6 2.52-6 4.66-6 4.85-6 3.09-6

‖uh − uI‖ 1.23-5 1.22-5 4.39-6 4.44-6 2.21-6 4.44-6 4.80-6 3.03-6

Table 2 p = 4

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 9 9 9 9 9 9 9 8

CPU 0m13s 0m13s 0m46s 0m46s 2m56s 2m40s 14m06s 10m48s

‖u− uh‖ 5.10-4 5.10-4 1.28-4 1.28-4 3.18-5 3.17-5 7.98-6 8.11-6

‖uh − uI‖ 6.75-5 6.66-5 1.66-5 1.63-5 4.03-6 4.03-6 1.70-6 1.05-6

Table 3 p = 20

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 31 21 28 20 23 19 24 20

CPU 0m40s 0m27s 2m18s 1m41s 7m33s 6m20s 32m08s 26m47s

‖u− uh‖ 1.39-3 5.10-4 3.77-4 3.77-4 9.65-5 9.66-5 2.57-5 2.61-5

‖uh − uI‖ 5.63-4 5.64-4 1.68-4 1.68-4 4.75-5 4.80-5 1.26-5 1.31-5

Table 4 p = 100

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 79 51 86 59 71 60 64 57

CPU 1m49s 1m7s 8m20s 4m56s 28m26s 19m48s 90m06s 78m06s

‖u− uh‖ 3.42-3 3.42-3 1.08-3 1.08-3 3.16-4 3.16-4 9.13-5 9.15-5

‖uh − uI‖ 2.61-3 2.61-3 8.74-4 8.74-4 2.67-4 2.67-4 7.81-5 7.84-5

Table 5 p = 1000

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 161 129 340 200 461 258 419 289

CPU 4m01s 2m55s 27m47s 17m14s 152m25s 85m40s 546m22s 396m23s

‖u− uh‖ 6.26-3 6.26-3 2.81-3 2.81-3 1.17-3 1.17-3 4.46-4 4.46-4

‖uh − uI‖ 5.50-3 5.50-3 2.63-3 2.63-3 1.13-3 1.13-3 4.35-4 4.35-4

It is easy to see that the convergence of the two algorithms are almost mesh
independent for a fixed p, and convergent rate tends to O(h) as p → ∞. Mostly,
we can see that iterative numbers and CPU time of WPCG algorithm are less than
that of WPSD algorithm by comparing results of the two algorithms when p is
large. Therefore, we can conclude,to a certain extent, that hybrid conjugate gradi-
ent direction is superior to the steepest descent one when p is large. In addition,
numerical overflow happen when 0 < p < 1.1 or p > 1000. We can utilize WPSD
algorithm to get some results when p = 1.1, but at the same time, when WPCG
algorithm is used, numerical overflow came forth.

Example 2 Ω = {(x, y)|x2 + y2 < 1}, f = 2(x + y − x2 − y2).
We have no way to get analytic solution of the problem, so we only display

iterative number and CPU time. Table 6 and 7 show the results which are obtained
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by using WPSD and WPCG algorithm when p = 4, p = 100, respectively. From
this example, we can also see that WPCG algorithm is superior to WPSD algorithm
in the paper [13] when p is large.

Table 6 p = 4

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 13 12 14 13 15 15 17 16

CPU 0m17s 0m16s 1m11s 1m06s 4m48s 4m53s 20m20s 20m40s

Table 7 p = 100

C1 C2 C3 C4

WPSD WPCG WPSD WPCG WPSD WPCG WPSD WPCG

ItN 193 94 197 122 196 175 232 206

CPU 4m33s 2m17s 16m33s 10m41s 64m27s 58m46s 305m05s 272m11s

‘

Remark In the paper [13], for steepest decent algorithm with weighted precon-
ditioner(WPSD), the inequality

J(un)− J(un+1) ≥ c(J(un)− J(u))2

‖u0 − u‖2
V h
0

, (4.2)

where c is a positive number, u exact solution of the equation (1.1), u0 initial
value, is proved. It is the inequality (4.2) that guarantees convergence of WPCD
algorithm. For Algorithm 1 in this paper, it is very difficult to prove above result
(4.2). In order to ensure convergence of WPCG algorithm, we can use a restarting
technique, change the rule (R) and get the rule (R∗):

For a given positive integer,
If n can be divided exactly by l, namely, mod(n, l) = 0, then dn = wn;
If mod(n, l) 6= 0, then dn = wn when α̃n = 0; or dn is decided by (3.8).

In Algorithm 1, if the rule (R∗) is used, instead of the rule (R), corresponding
algorithm(marked with WPCG2) is obviously convergent according to the conclu-
sions in the paper [13].

In Table 8, numerical results of WPCG2 algorithm in which l = 10 are displayed
when p = 1000.

Table 8 p = 1000

C1 C2 C3 C4

WPCG2 WPCG WPCG2 WPCG WPCG2 WPCG WPCG2 WPCG

ItN 129 134 200 199 258 252 289 272

CPU 2m55s 3m43s 17m14s 18m16s 85m40s 86m05s 396m23s 372m22s

‖u− uh‖ 6.26-3 6.26-3 2.81-3 2.81-3 1.17-3 1.17-3 4.46-4 4.46-4

‖uh − uI‖ 5.50-3 5.50-3 2.65-3 2.63-3 1.13-3 1.13-3 4.35-4 4.35-4

From Table 8 one can see that performance of WPCG2 algorithm is almost the
same as that of Algorithm 1. For other p, the similar performance also happens.

5. Conclusions and discussions

Based on quasi-norm and the steepest descent algorithm with weighted precondi-
tioner, we have replaced the steepest descent direction by hybrid conjugate gradient
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direction, proposed the hybrid conjugate gradient algorithm with weighted precon-
ditioner, and stated convergence of the new algorithm with restarting technique.
From the numerical results, we conclude that performance of the new algorithm is
superior to the one in the paper [13] when p is large. The new algorithm, of course,
has its weakness. For example, it is still a unsolvable problem how to computing
the equation (1.1) when p is very close to 1.
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