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ON TWO ITERATION METHODS FOR THE QUADRATIC
MATRIX EQUATIONS

ZHONG-ZHI BAI, XIAO-XIA GUO AND JUN-FENG YIN

Abstract. By simply transforming the quadratic matrix equation into an

equivalent fixed-point equation, we construct a successive approximation method

and a Newton’s method based on this fixed-point equation. Under suitable con-

ditions, we prove the local convergence of these two methods, as well as the

linear convergence speed of the successive approximation method and the qua-

dratic convergence speed of the Newton’s method. Numerical results show that

these new methods are accurate and effective when they are used to solve the

quadratic matrix equation.
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1. Introduction

The quadratic matrix equation (QME)

Q(X) ≡ X2 −BX − C = 0, B, C ∈ Cn×n(1)

occurs in a variety of applications. For example, it may arise in the quadratic
eigenvalue problem[3, 4, 6, 8, 12, 13]

Q(λ)x ≡ λ2x− λBx− Cx = 0, B,C ∈ Cn×n,

or the noisy Wiener-Hopf problems for Markov chains[5, 7, 10, 11]. Evidently, some
Riccati equations are QMEs, and vice versa, and theory of Riccati equations and
numerical methods for their solution are well developed[2, 9]; however, these two
classes of equations require different techniques for analysis and solution in general.
See also [1].

Recently, Higham and Kim[6] studied Newton’s methods with and without exact
line searches for solving the QME(1). In the Newton’s method, the quadratic matrix
function Q(X) is successively linearized at each of the current iterate X(k) which
is required to be located in a neighborhood of a solution X? of the QME(1), and
the next iterate X(k+1) is obtained by solving the corresponding Newton equation
which is a special case of the generalized Sylvester equation. And in the Newton’s
method with line search, the current Newton direction E(k) is used as a search
direction and the next iterate

X(k+1) = X(k) + t(k)E(k)
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is defined by exactly minimizing the objective function

p(t) = ‖Q(X(k) + t(k)E(k))‖2F
along this direction, i.e.,

t(k) = argmin0<t<2p(t),
where ‖ · ‖F denotes the Frobenius norm of a matrix. It was proved in [6] that the
latter has global convergence property.

In particular, when B is a diagonal matrix and C is an M -matrix, Guo[5] stud-
ied the existence and uniqueness of M -matrix solutions and iterative method for
finding the desired M -matrix solution of the QME(1) by transforming it into a
special nonsymmetric algebraic Riccati equation (ARE), and proved the monotone
convergence of the obtained iterative methods.

In this paper, for general matrices B, C ∈ Cn×n, we first simply transform the
QME(1) into an equivalent fixed-point equation, and then based on it we construct a
successive approximation method and a Newton’s method for solving the quadratic
matrix equation (1). Under suitable conditions, we prove the local convergence of
these two methods, as well as the linear convergence speed of the successive ap-
proximation method and the quadratic convergence speed of the Newton’s method.
Numerical results show that these new methods are more accurate and effective
than the known ones in [6, 5].

Without loss of generality, throughout this paper we will assume that the con-
stant matrix term C ∈ Cn×n in the QME(1) is nonsingular. In the case that the
matrix C is singular, we can shift the variable and make the constant matrix term
in the equivalently transformed quadratic matrix equation be nonsingular. More
specifically, by letting Y = σI −X we can rewrite the QME(1) as

Y 2 − (2σI −B)Y + (σ2I − σB − C) = 0,

where σ is a real constant. We can now choose the parameter σ such that the
matrix (σ2I − σB − C) is nonsingular. See [5].

2. Two iteration methods

If X? ∈ Cn×n is a solution of the QME(1), i.e.,

Q(X?) = X2
? −BX? − C = 0,

then we have
(X? −B)X? = C.

It then follows that both X? and (X? − B) are nonsingular matrices, provided C
is a nonsingular matrix. In this case, we can construct the following fixed-point
equation for the QME(1):

X = F(X), where F(X) = (X −B)−1C.(2)

Therefore, X? ∈ Cn×n is a solution of the QME(1) if and only if it is a fixed-point
of the matrix operator F(X), or equivalently, a zero point of the matrix equation

X −F(X) = 0.

Furthermore, by denoting

G(X) = X −F(X)

and using the first-order approximation to G(X), we have

G(X + E) = G(X) + J (X,E) +O(E2),
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where
J (X, E) = E + (X −B)−1E(X −B)−1C.

This straightforwardly results in the following fixed-point equation for the QME(1):

X = N (X) with N (X) = X + E,(3)

where E satisfies

J (X, E) = −G(X).(4)

We call N (X) the Newton operator and (4) the Newton equation of the nonlinear
matrix function G(X). Evidently, we also have the fact that X? ∈ Cn×n is a solution
of the QME(1) if and only if it is a fixed-point of the matrix operator N (X).

Based on (2) and (3)-(4), we can immediately define the following two iteration
methods, called as the successive approximation method and the Newton’s method,
respectively, for solving the QME(1) when the matrix C ∈ Cn×n is nonsingular.

Method 2.1. (The Successive Approximation Method).
Given an initial guess X(0) ∈ Cn×n, for k = 0, 1, 2, . . . until {X(k)} convergence,
compute

X(k+1) = (X(k) −B)−1C.

Method 2.2. (The Newton’s Method).
Given an initial guess X(0) ∈ Cn×n, for k = 0, 1, 2, . . . until {X(k)} convergence,
compute

X(k+1) = X(k) + E(k),

where E(k) is a solution of the ARE

(X(k) −B)E(k) + E(k)N (k) = (X(k) −B)(N (k) −X(k)),(5)

with

N (k) = (X(k) −B)−1C.(6)

These two methods, each has its own advantages and disadvantages. The succes-
sive approximation method is very simple and economical because at each iteration
step it only needs to solve the systems of linear equations

(X(k) −B)N (k) = C

with respect to N (k); however, it only has linear convergence speed. And the
Newton’s method has quadratic convergence speed, however, it is comparatively
complicated and costly because at each iteration step it needs to solve a nonlinear
ARE(5), besides computing N (k) according to (6).

3. Local convergence theorems

In this section, we will establish local convergence theorems for both succes-
sive approximation method and Newton’s method for solving the quadratic matrix
equation (1). We first prove the local convergence of the successive approximation
method.

Theorem 3.1. Let C ∈ Cn×n be a nonsingular matrix and X? ∈ Cn×n be a solution
of the QME(1) such that

‖C‖ ≤ c and ‖(X? −B)−1‖ ≤ β,
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where c and β are two positive constants. Assume that X(0) ∈ Cn×n and there
exists a δ > 0 such that ‖X(0) −X?‖ ≤ δ. Then, if

0 < β <

√
δ2 + 4c− δ

2c
,

the iterative sequence {X(k)} generated by the successive approximation method with
X(0) as the initial guess satisfies

‖X(k+1) −X?‖ ≤ γ‖X(k) −X?‖, k = 0, 1, 2, . . . ,

where

γ =
β2c

1− βδ
∈ (0, 1).

Proof. From the definition of the sequence {X(k)} we obtain

X(k+1) −X? = (X(k) −B)−1C − (X? −B)−1C

= −(X(k) −B)−1(X(k) −X?)(X? −B)−1C.(7)

In addition, we easily have the equality

(X(k) −B)− (X? −B) = X(k) −X?.(8)

Now, the proof can be proceeded by induction.
When k = 0, by (8) and the perturbation lemma in matrix analysis we can

obtain

‖(X(0) −B)−1‖ ≤ ‖(X? −B)−1‖
1− ‖(X? −B)−1‖‖X(0) −X?‖

≤ β

1− βδ
.

It then follows from (7) that

‖X(1) −X?‖ ≤ ‖(X(0) −B)−1‖‖(X? −B)−1‖‖C‖‖X(0) −X?‖

≤ β2c

1− βδ
‖X(0) −X?‖

:= γ‖X(0) −X?‖.
That is to say, the conclusion holds for k = 0. Moreover, the above estimate
immediately yields that

‖X(1) −X?‖ ≤ δ.

Now, assume that
‖X(k) −X?‖ ≤ γ‖X(k−1) −X?‖.

Then it holds that
‖X(k) −X?‖ ≤ δ.

For k, again by (8) and the perturbation lemma in matrix analysis we can obtain

‖(X(k) −B)−1‖ ≤ ‖(X? −B)−1‖
1− ‖(X? −B)−1‖‖X(k) −X?‖

≤ β

1− βδ
.

It then follows from (7) again that

‖X(k+1) −X?‖ ≤ ‖(X(k) −B)−1‖‖(X? −B)−1‖‖C‖‖X(k) −X?‖

≤ β2c

1− βδ
‖X(k) −X?‖

:= γ‖X(k) −X?‖.
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That is to say, the conclusion holds for k, too. Moreover, the above estimate
immediately yields that

‖X(k+1) −X?‖ ≤ δ.

Therefore, by the induction principle, we have proved the conclusion.
Theorem 3.1 shows that the iterative sequence {X(k)} generated by the successive

approximation method converges linearly to a solution X? of the QME(1), provided
the initial guess {X(0)} is sufficiently close to X?.

We now turn to demonstrate the local convergence of the Newton’s method for
solving the QME(1). To this end, we first prove the following properties of the
mappings G(X) with respect to X and J (X,E) with respect to E.

Lemma 3.1. Let X? ∈ Cn×n be a solution of the QME(1) and X be in a neigh-
borhood of X?. The following properties hold for the mappings G(X) and J (X,E):

(i) J (X, E) is a linear mapping with respect to E;
(ii) G(X) is a smooth mapping and it holds that

‖G(X + E)− G(X)− J (X, E)‖ ≤ 1
2

(
1 + ‖(X −B)−1‖2‖C‖) ‖E‖2.

Proof. The linearity of the mapping J (X,E) with respect to E is evident. We
now verify the validity of (ii). Obviously, G(X) is a smooth mapping. By making
use of the mean-value theorem we obtain

G(X + E)− G(X) =
∫ 1

0

J (X, tE) dt.

It then follows that

‖G(X + E)− G(X)− J (X, E)‖ =
∥∥∥∥
∫ 1

0

J (X, tE) dt− J (X,E)
∥∥∥∥

≤
∫ 1

0

‖J (X, tE)− J (X, E)‖ dt

=
∫ 1

0

‖J (X, (1− t)E)‖ dt

=
∫ 1

0

‖tE + (X −B)−1 · tE · (X −B)−1C‖ dt

≤ 1
2

(
1 + ‖(X −B)−1‖2‖C‖) ‖E‖2,

here we have used the linearity of the mapping J (X, E) with respect to E.
Now, we are ready to establish the local convergence theorem of the Newton’s

method for the QME(1).

Theorem 3.2. Let C ∈ Cn×n be a nonsingular matrix and X? ∈ Cn×n be a solution
of the QME(1) such that

‖C‖ ≤ c and ‖(X? −B)−1‖ ≤ β,

where c and β are two positive constants. Assume that X(0) ∈ Cn×n and there
exists a δ > 0 such that ‖X(0) −X?‖ ≤ δ. Then, if

βδ < 1 and
(

1 +
(1− βδ)2

β2c

)
δ < 2,
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the iterative sequence {X(k)} generated by the Newton’s method with X(0) as the
initial guess satisfies

‖X(k+1) −X?‖ ≤ γ‖X(k) −X?‖2, k = 0, 1, 2, . . . ,

where

γ =
1
2

(
1 +

(1− βδ)2

β2c

)
.

Proof. For the Newton sequence {X(k)} we have

X(k+1) −X? = X(k) −X? + E(k).

By the linearity of the mapping J (X, E) with respect to E and the definition of
the Newton sequence {X(k)}, we can obtain

J (X(k), X(k+1) −X?) = J (X(k), X(k) −X?) + J (X(k), E(k))

= J (X(k), X(k) −X?)− G(X(k))

= G(X?)− G(X(k))− J (X(k), X? −X(k)).

It then follows from the estimate

‖J (X(k), X(k+1) −X?)‖
=

∥∥∥(X(k+1) −X?) + (X(k) −B)−1(X(k+1) −X?)(X(k) −B)−1C
∥∥∥

≥
∣∣∣‖X(k+1) −X?‖ − ‖(X(k) −B)−1(X(k+1) −X?)(X(k) −B)−1C‖

∣∣∣

≥
∣∣∣1− ‖(X(k) −B)−1‖2‖C‖

∣∣∣ ‖X(k+1) −X?‖
and Lemma 3.1 (ii) we straightforwardly get

‖X(k+1) −X?‖ ≤ 1
2

1 + ‖(X(k) −B)−1‖2‖C‖
|1− ‖(X(k) −B)−1‖2‖C‖|‖X

(k) −X?‖2.(9)

Analogously to the proof of Theorem 3.1 we have

‖(X(k) −B)−1‖ ≤ ‖(X? −B)−1‖
1− ‖(X? −B)−1‖‖X(k) −X?‖

.(10)

Under the assumptions of the theorem, by making use of the estimates (10) and
(9) we know that

‖(X(0) −B)−1‖ ≤ β

1− βδ
and

‖X(1) −X?‖ ≤ 1
2

1 + ‖(X(0) −B)−1‖2‖C‖
|1− ‖(X(0) −B)−1‖2‖C‖|‖X

(0) −X?‖2

≤ 1
2

1 + β2c/(1− βδ)2

β2c/(1− βδ)2
‖X(0) −X?‖2

=
1
2

(
1 +

(1− βδ)2

β2c

)
‖X(0) −X?‖2

= γ‖X(0) −X?‖2.
That is to say, the conclusion what we are proving holds for k = 0.

Assume this conclusion be true for some positive integer k − 1. Then we have

‖X(k) −X?‖ ≤ γ‖X(k−1) −X?‖2 ≤ γδ‖X(k−1) −X?‖ ≤ ‖X(k−1) −X?‖
≤ . . . ≤ ‖X(0) −X?‖ ≤ δ.
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By making use of the estimates (10) and (9) again we can obtain

‖(X(k) −B)−1‖ ≤ β

1− βδ

and

‖X(k+1) −X?‖ ≤ 1
2

1 + ‖(X(k) −B)−1‖2‖C‖
|1− ‖(X(k) −B)−1‖2‖C‖|‖X

(k) −X?‖2

≤ 1
2

1 + β2c/(1− βδ)2

β2c/(1− βδ)2
‖X(k) −X?‖2

=
1
2

(
1 +

(1− βδ)2

β2c

)
‖X(k) −X?‖2

= γ‖X(k) −X?‖2.
That is to say, the conclusion what we are proving holds for k, too. By induction
principle, we have completed our proof.

4. Numerical results

In the study of noisy Wiener-Hopf problems for Markov chain, we need to find,
for a given diagonal matrix V and a given positive number ε, specific Q-matrices 1

Γ± satisfying
1
2
ε2Z2 ∓ V Z + Q = 0,(11)

respectively. Here, V has positive and negative diagonal elements2 and ε is the level
of noise from Brownian motion independent of the Markov chain. The solutions Γ±
will be generators of two Markov chains. See [7, 10, 11] for more details. From the
discussion in [5] we know that one of the equations in (11) does not necessarily have
a unique Q-matrix solution, and Γ+ (resp. Γ−) is the unique singular Q-matrix
solution when the “−” equation (resp. “+” equation) in (11) has no nonsingular
Q-matrix solutions. Moreover, Γ+ (resp. Γ−) is the unique nonsingular Q-matrix
solution when the “−” equation (resp. “+” equation) in (11) has singular and
nonsingular Q-matrix solutions. If a Markov chain has a singular (nonsingular)
Q-matrix as a generator, then the chain will live forever (die out).

We will apply our new successive approximation method and Newton’s method
to find the matrices Γ±. As in [5] we will also limit our attention to the more
difficult case that Q is an irreducible singular Q-matrix. This is the case of primary
interest in the study of noisy Wiener-Hopf problems. It means that the original
Markov chain will live forever.

In the quadratic matrix equations in (11) we may assume ε =
√

2 as we can
always divide the equations in (11) by ε2

2 . Thus, we only need to consider the
quadratic matrix equations

Z2 − V Z + Q = 0(12)

and

Z2 + V Z + Q = 0.(13)

To find the solution Γ+ of (12), we let X := Z, B := V and C := −Q. The solution
Γ− of (13) can be found by taking X := Z, B := −V and C := −Q.

1A Q-matrix has nonnegative off-diagonal elements and nonpositive row sums; Q is the gener-
ator of an irreducible continuous-time finite Markov chain.

2This is essentially where the name Wiener-Hopf comes from.
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Example 4.1. [5] We consider the quadratic matrix equations (12) and (13) with

V =
(

aI10 0
0 bI10

)
, Q =




−1 1

−1
. . .
. . . . . .

. . . 1
1 −1



∈ R20×20,

where a and b are parameters to be specified. We consider four cases:
(a) a = 1, b = −1, so Γ± are both singular Q-matrices;
(b) a = 2, b = −1, so Γ+ (Γ−) is a singular (nonsingular) Q-matrices;
(c) a = 2, b = −0.1, so Γ+ (Γ−) is a singular (nonsingular) Q-matrices;
(d) a = 1, b = −3, so Γ+ (Γ−) is a nonsingular (singular) Q-matrices.

For each case, the approximations Γ̃± for Γ± are found by the successive approx-
imation method (SA) and the Newton’s method (NM) presented in this paper, the
fixed-point iteration (FP) and the Newton’s method (NM0) presented in [5]. We
list the numerical results in Tables 1 and 2.

All results are obtained by using MATLAB 6.5 on a personal computer (Pentium
IV/2.4G), with machine precision 2.2×10−16. In the tables, we use “IT” to denote
the number of iteration steps, “RES” the errors defined by

RES := ‖(Γ̃±)2 ∓ V Γ̃± + Q‖∞.

The stopping criterion for each iteration method is ‖X(k) − X(k−1)‖∞ < 10−5,
where X(k) is the current, say the k-th, iteration value.

From Tables 1 and 2, we see that the successive approximation method is better
than the fixed-point iteration, and the Newton’s method in this paper outperforms
the Newton’s method in [5], in the sense of iteration step and approximation accu-
racy. Therefore, our new methods are more accurate and effective than the known
ones in [6, 5], correspondingly.

Table 1. Numerical Results for the Quadratic Matrix Equation (12)

Method IT RES
(a) (b) (c) (d) (a) (b) (c) (d)

SA 43 57 26 104 1.3E-5 1.1E-5 5.0E-6 2.6E-5
FP 62 72 40 116 1.4E-5 1.6E-5 1.1E-5 3.2E-5
NW 5 5 4 5 1.1E-15 1.6E-15 3.7E-13 5.6E-15
NW0 6 6 5 6 2.6E-14 3.5E-14 1.0E-13 5.3E-14

Table 2. Numerical Results for the Quadratic Matrix Equation (13)

Method IT RES
(a) (b) (c) (d) (a) (b) (c) (d)

SA 43 67 43 66 1.3E-5 1.9E-5 1.3E-5 1.4E-5
FP 62 84 54 74 1.4E-5 2.3E-5 2.1E-5 1.5E-5
NW 5 5 5 4 1.7E-15 3.5E-15 3.1E-15 1.2E-13
NW0 6 6 6 5 2.0E-14 3.3E-14 2.6E-14 8.0E-14
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