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MESH OPTIMIZATION BASED ON THE CENTROIDAL
VORONOI TESSELLATION

DESHENG WANG AND QIANG DU

Abstract. The subject of mesh generation and optimization is very important

in many scientific applications. In this paper, we investigate the issue of mesh

optimization via the construction of Centroidal Voronoi Tessellations. Given

some initial Delaunay meshes with only average quality, it is shown that the

CVT based mesh optimization generates a robust, high quality mesh which

does not rely critically on the choice of the initial mesh. In comparison, other

smoothing techniques, such as the classical Laplacian smoothing, tend to be

more sensitive to the initial distributions of vertices. Thus, the CVT based

optimization may be advocated as a prefered choice for mesh optimization and

smoothing.

Key Words. Voronoi tessellations, Delaunay triangulation, optimal tessella-

tions, mesh optimization, mesh smoothing, Centroidal Voronoi tessellation

1. Introduction

The automatic unstructured triangular/tetrahedral mesh generation for complex
geometries is essential to the efficient solution of complex problems in various ap-
plications such as CFD, CEM and oil reservoir simulations. The advancing front
techniques, Octree methods and Voronoi Delaunay-based methods are three well-
studied techniques in unstructured mesh generation[1, 2, 3, 4, 5]. Regardless of the
method chosen, the resulting unstructured mesh often requires further improve-
ment and optimization. For example, much attention has been paid to the almost
regular triangular/tetrahedral meshing used in conjunction with the Yee’s scheme
in computational electro-magnetics and the MAC method in CFD[37, 38, 39]. Such
simulation requirement poses challenges on mesh improvement and optimization,
especially in complicated domains.

Traditionally, the procedures for unstructured mesh optimization generally fall
into the following basic categories[12, 29, 30, 31, 32, 33, 34, 35]: geometric op-
timization, meaning mesh smoothing or vertices relocation without changing the
node connectivity, through strategies such as the Laplacian smoothing and its vari-
ants; topological optimization, consisting of local reconnections such as edges/faces
flipping, while keeping node positions unchanged; and vertex insertion or deletion,
referring to operations such as the sink insertion[42]. These techniques are often
combined and performed in an iterative manner, and they form the core of the clas-
sical optimization methods. More recently, there have also been some studies on the
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use of global optimization approaches, such as the use of Winslow transforms, har-
monic mappings and algebraic or geometric mesh quality measures [29, 30, 31, 32].

In this paper, we focus on the application of Centroidal Voronoi tessellations
(CVTs) to mesh optimizations. The concept of CVT has been used in diverse ap-
plications, such as data and image analysis, communication and sensor network,
clustering, vector quantization, flow control, dimension reduction and resource
allocation[6, 8, 9]. CVTs are defined as special Voronoi tessellations of a region
such that the generating points of the tessellations are also the mass centroids of
the corresponding Voronoi regions with respect to a given density function[6]. In the
application to quality mesh generation, a CVT configuration provides an optimal
points distribution (with respect to a given density), its dual centroidal Voronoi-
Delaunay triangulation (CVDT) provides a high quality triangular (or tetrahedral)
mesh[7, 12]. The optimality can be illustrated through the minimization of an as-
sociated error or cost functional, and it can also be validated by the celebrated
Gersho’s conjecture which predicts the asymptotic equi-partition of the local error.
CVTs can often be constructed through the iterative Lloyd algorithm which moves
the generators to the mesh centers and re-start the Voronoi-Delaunay construction.
Thus, if Lloyd iteration is applied to an initial Delaunay triangular mesh to con-
struct a CVDT or a constrained CVDT of a given domain, the final triangular mesh
becomes a natural optimization of the initial mesh. CVT based mesh optimization
has been successfully applied to 2D/3D isotropic cases [7, 12, 16], and it has also
been generalized to anisotropic and surface mesh generation [10, 15]. A brief survey
can be found in [18].

Some earlier results reported on the CVT based mesh optimization show encour-
aging signs that it may be further developed into a robust procedure for improving
the mesh quality. In this paper, we carry out more numerical studies on the ef-
fectiveness of its applications to the isotropic 2D and 3D mesh optimization and
also make comparisons with other existing algorithms. For two dimensional exam-
ples, the Lloyd iterations with respect to the constant density yield meshes that
are almost regular triangular meshes. The comparisons between the classical opti-
mization techniques that combine mesh smoothing with edges/faces swapping and
the CVT based optimization technique indicate that the classical optimization is
much more sensitive to the initial mesh configuration or vertex distribution, while
the CVT based optimization provide meshes that are largely independent of such
initial conditions. Similarly, for the three dimensional application examples, we
can also see that the CVT based optimization results in meshes that are of higher
quality and are more structured than those obtained by the classical optimization.

The remaining part of the paper is organized as follows. The basic procedures of
the mesh optimization based on the centroidal Voronoi tessellation are recalled in
Section 2. The effects of the mesh improvement based on the CVT and comparisons
with those of classical optimizations are discussed in Section3 and Section4, for 2D
and 3D isotropic meshing respectively. A final conclusion is made in Section5.

2. Mesh Optimization Based on Centroidal Voronoi Tessellation

Recently, the centroidal Voronoi tessellation (CVT) and its wide range of appli-
cations have been studied in [6, 7, 8, 9, 10, 11, 12]. Often, CVT provides optimal
points placement with respect to a given density function. When the density func-
tion is chosen properly with respect to a giving sizing field, its dual structure,
the so-called centroidal Voronoi Delaunay triangulation (CVDT), results in a high-
quality Delaunay mesh[7, 12]. We have applied this technique to mesh generation
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and optimization in isotropic 2D and 3D unstructured meshing[7, 12], and also
generalized it to anisotropic and surface quality mesh generation[10, 15]. In the
following, we recall some of the main concepts and properties of the CVT from [6],
and present the algorithm for constructing CVDT for the optimization of any given
Delaunay mesh.

2.1. Basic Concepts and Properties. Given a density function ρ defined on a
region V , the mass centroid z∗ of V is defined by

z∗ =

∫
v
yρ(y)dy∫

v
ρ(y)dy

.

We then have [6]:

Definition 2.1. Given the set of points {zi}k
i=1 in the domain Ω and a positive

density function ρ defined on Ω, a Voronoi tessellation is a centroidal Voronoi tes-
sellation (CVT) if zi = z∗i , i = 1, ..., k, i.e., the generators of the Voronoi regions
Vi, zi, are themselves the mass centroids of those regions. The dual Delaunay trian-
gulation is referred to as the Centroidal Voronoi-Delaunay triangulation (CVDT).

For any tessellation {Vi}k
i=1 of the domain Ω and a set of points {zi}k

i=1 ( in-
dependent of {Vi}k

i=1 ) in Ω, we can define the following cost (or error or energy)
functional:

F({Vi}k
i=1, {zi}k

i=1) =
k∑

i=1

∫
Vi

ρ(x)‖x− zi‖2dx .

The standard CVT’s along with their generators are critical points of this cost
functional. Using the concept of cost functional, we also have the definition of
Constrained CVT (CCVT) and its duality constrained CCVT (CCVDT); see [6,
7, 12] for the details. Also, in [15], the definition of CVT has been generalized to
anisotropic cases with a Riemannian metric and an one-sided distance.

Generally speaking, the practical construction of CVT and CVDT can be clas-
sified into two categories: the probabilistic and the deterministic methods[6, 20,
21, 23, 27, 28]. Here, we apply a deterministic algorithm based on the popu-
lar Lloyd’s method [6, 19, 28] which is an obvious iteration between constructing
Voronoi tessellations and centroids. And it enjoys the property that the functional
F is monotonically decreasing throughout the iteration. A detailed description of
the algorithm will be presented later. For studies on the probabilistic methods as
well as their parallelization, we refer to [11].

2.2. Application to Quality Mesh Generation. The construction of CVDT
(or CCVDT) through the Lloyd iteration can be viewed from a different angle as
a smoothing process of an initial mesh. The CVDT concept provides a good the-
oretical explanation to the smoothing process: by successively moving generators
to the mass centers (of the Voronoi regions), the cost functional is reduced. Here,
smoothing means both node-movement and node reconnection. If the density func-
tion can be chosen according to the sizing function, the cost functional may be
related to the distortion of the mesh shape and quality with respect to the mesh
sizing.Thus, the process of iteratively constructing CVDTs, like the the Lloyd’s
algorithm, contributes the reduction of the global distortion of element shape and
sizing. The final CVDT would have the minimal distortion, and hence shares good
elements quality with respect to the sizing distribution[7, 12] .
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A practically useful property of the CVT and CVDT is the equi-distribution of
cost[6, 7, 12]. It is not difficult to show that in the one dimensional case,∫

Vi

ρ(x)(x− xi)2dx ≈ c ∀i

for some constant c when the number of generators goes to infinity. This means,
asymptotically speaking, the cost is equally distributed in the Voronoi intervals[6].
For the multidimensional CVT, the Gersho conjecture [26] predicted that asymp-
totically, as the number of generators becomes large, all Voronoi regions are approx-
imately congruent to the same basic cell that only depends on the dimension. The
basic cell was shown to be the regular hexagon in two dimensions[24], and the dual
cell is the regular triangle, thus explaining why the CVDTs in 2D tend to provide
high quality meshes. The conjecture remains open for three and higher dimensions
[25, 26] while further numerical substantiation has been provided in [25] to the fact
that the basic cell in 3D is the conjectured BCC lattice polyhedra[16]. The conclu-
sion of the conjecture would lead to the cost equi-distribution principle. Moreover,
for large scale problems involving millions of grid points, the conjecture also would
imply that the unstructured Delaunay mesh may in fact be locally well-structured.
Even though the conjecture is still open in three and higher dimensions, it is nev-
ertheless practically prudent to apply the equi-distribution of the cost functional
based on the conjecture. With the cost functionals being related implicitly to the
distortion of the elements quality[7, 12], the equi-distribution principle can then
be understood as the equi-distribution of the distortion of the elements quality.
In other words, asymptotically, almost regular triangulation/tetrahedralization can
be generated. This idea has been applied to quality isotropic 2D and 3D mesh
generation and optimization[7, 12] where various meshing examples have provided
support to the claim of good element quality. More recently, similar techniques
were also successfully generalized to the anisotropic case and quality surface grid
generation in [10, 15, 17].

We now briefly recall how to construct the CVDT using the Lloyd method as
an natural optimization for the constrained Delaunay meshing of a given domain.
Given a bounded domain and a prescribed element sizing, suppose a constrained
boundary Delaunay triangulation/tetrahedralization of the domain with respect
to the sizing has been generated and stored[12, 13, 14, 16], we then perform the
optimization procedure, or say the Lloyd iteration, as follow:

Algorithm 2.1. (The Lloyd iteration) Given a set of vertices.
1) Construct the Voronoi region for each of the interior points that are allowed to
change their positions, and construct the mass center of the Voronoi region with
a properly defined density function ρ(p) derived from the sizing field H(p). Here,
ρ(p) = C/H(p)2+d, where d is the dimensions, C is a scaling constant (may be
simplified to identity).
2) Insert the computed mass centers into the constrained boundary Delaunay tri-
angulation/tetrahedralization through a constrained Delaunay insertion procedure[5,
12, 35].
3) Compute the difference D =

∑k
i=1 ‖Pi−Pimc‖2, {Pi} is the set of interior points

allowed to change, {Pimc} is the the set of corresponding computed mass center.
4) If D is less than a given tolerance, terminate; otherwise, return to step 1.

Later in the paper, the Lloyd iteration given above is applied to optimize various
constrained isotropic Delaunay mesh examples in 2D and 3D respectively. The mesh
improvement effects are probed with respect to different initial points distribution
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and the final element qualities of the converged CVDTs. Comparisons with the
classical mesh optimization techniques are also made. We note that generalizations
of the Lloyd method as well as its parallel implementations have been provided in
our earlier works[11].

To further demonstrate the effect of the CVT based mesh optimization, the
Laplacian smoothing and its variant (edge length weighted Laplacian smoothing)
together with local Delaunay edges swappings are performed to the same initial
meshes until convergence. The final results are compared which further highlight
the more effectiveness of the CVT-based optimization.

To be more precise, the Laplacian smoothing here takes the following simplest
form: a new position Pnew for an interior vertex Pi is computed by the formula:
Pnew = 1

Ni

∑Ni

j=1 Pj , with Pj being the adjacent vertices, and Ni the number of
adjacent vertices to Pi. It is heuristically simple and often has reasonable con-
vergence rate. It also smoothes local sizing and improves the quality of the worst
element. However, for a general initial mesh, its convergence does not guarantee
the global quality improvement and the element validity (i.e. sometimes, inverted
elements are generated). This is in part due to the fact that it is not related to
a rigorously proved reduction of some global measure. Its improvement to three
dimensional tetrahedral mesh is even more limited, and thus its application should
be more cautiously used[29, 30, 34, 35]. With such limitations, several variants
have been developed to retain the efficiency of Laplacian smoothing while improv-
ing its robustness[4, 29, 30, 34]. Here, we apply the edge-length weighted version
for which the position of Pnew is related to the global sizing field and the optimality
of element quality.

We now briefly recall the general procedure which is based on the edge unit
length computation (for details, see [35, 36]). Let P be an interior free vertex, and
Ki be the set of elements sharing P . Let Pi be the vertices of Ki other than P . Each
point Pi is associated with an optimal point P ∗i such that

−−−→
PiP

∗
i =

−−→
PiP/l(PiP ), for

which l(PiP
∗
i ) = 1 holds. The computation of the edge length l(PiP ) can be found

in [36]. Then, Pnew is defined as the centroid of (P ∗i ).
In the above Laplacian smoothing or it variant, it is not sufficient to only consider

the improvement made through vertices movement, for the new triangulation after
the Laplacian smoothing may no longer be Delaunay. Hence, it is necessary to
add local topological operations such as edges swappings into the improvement of
the mesh so as to keep the Delaunay property of the triangulation. Usually, they
are coupled in an iterative manner. Here, the Laplacian smoothing and the edge-
length weighted version are both coupled with the local edges swapping and these
combined optimizations are called the Delaunay-Laplacian (DL) optimization and
the Weighted Delaunay-Laplacian (WDL) optimization.

3. Optimization effects for 2D test examples

We note that, for a triangle A, its quality can be often defined by Q = 4
√

3|A|/
∑

L2
i

where |A| is the area of the element and Li is the length of the i-th edge. In order
to study the effects of CVT-based optimization for a given 2D mesh, two test exam-
ples are investigated here. One is a quadrilateral domain with uniform sizing and
the other is a washer shaper with nonuniform sizing. The points of the two initial
meshes are all generated using the advancing-front technique[1, 2]. Then, pertur-
bations are performed to the initial points so as to produce triangular meshes with
bad qualities. Such perturbations may be produced with a combination of random
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movements and movements to form clusters. To improve the meshes, Lloyd iter-
ations are performed, leading to converged CVDTs which are almost regular with
respect to the specified sizing and element quality.

Figure 1. A quadrilateral domain and a perfect mesh (top) and
the meshes after perturbations (bottom).

The first example is a quadrilateral domain which can be meshed with all equi-
lateral triangles. The domain and a perfect regular mesh is shown in Fig3. Such as
initial regular mesh is generated in advancing-front method and then the interior
points are repositioned by random perturbations or by perturbations to cluster all
points to the center of the domain. The two meshes after the relocation of vertices
are also shown in Fig3. Obviously the elements are of low qualities after the per-
turbations. To improve these meshes, DL, WDL, and CVT based optimizations are
performed respectively. The final converged meshes are different from each other,
which indicate different optimization effects. The meshes after the DL optimization
are shown in Fig3 and the element qualities of the meshes are presented in Table 1
(RandPert and ClusPert refer to the randomly perturbed and the clustered initial
distributions respectively). Both meshes and the mesh quality data demonstrate
that the DL optimization is very sensitive to the initial vertex distribution and is
it is not effective especially for the mesh with vertices that are highly clustered.
This is due to the fact that the optimization is done with no respect to any global
sizing measure. Thus, most of the initial vertices still remain in the center, see the
right of Fig3. The meshes generated by the WDL optimization are significantly
better with much more improvement. The mesh sizing is in more conformity with
the given uniform sizing, and element quality is also better. The meshes and the
element quality data are given in Fig3 and Table 2. It can be seen that the final
converged or optimized mesh is still somewhat different from the regular initial
mesh, thus showing the sensitivity of WLS to the initial vertex distribution. But
the Lloyd iterations (or the CVT based optimization) for these two different initial
meshes converge to the same mesh: the original regular mesh shown in Fig3 (so
that we do not actually need to provide any quality data), a demonstration that
the CVT based optimization is very effective and it performs better than the other
two classical ones due to their less sensitivity on the initial vertex distribution.

The second example is for meshing a washer-shaped domain shown in Fig 4.
The initial vertices are also generated by the advancing-front method. As in the
above, the interior vertices are perturbed or clustered near the inner circle. The
two distorted meshes are shown in Fig 4. These two meshes are then improved
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Figure 2. Meshes after the DL optimization of example 1 with
randomly perturbed and clustered initial meshes.

Example 1 RandPert ClusPert

average quality 0.986 0.927

minimum quality 0.776 0.391

minimum angle 35.24 13.89

maximum angle 98.95 121.0

Table 1. Mesh quality data after the DL Optimization

Figure 3. Meshes after the WDL optimization of example 1 with
randomly perturbed and clustered initial meshes.

Example 1 RandPert ClusPert

average quality 0.991 0.940

minimum quality 0.871 0.600

minimum angle 41.67 30.0

maximum angle 88.73 120.0

Table 2. Mesh quality data after the WDL Optimization.

through DL, WDL and the CVT based optimization. Concerning the optimization
effects, similar conclusions as in the previous example can be drawn. The meshes
in Fig 5 and elements quality statistics contained in Table 3 further clarify that the
simple DL optimization is not effective for sizing related mesh improvement; while
Fig 6 and Table 4 demonstrate that the WDL optimization is much more effective,
both in terms of the sizing consistency and the element quality. However, observing
the different mesh configurations near the inner circle (see Fig 6), there are still
noticeable differences in the two converged meshes after the WDL optimization.
The meshes shown in Fig 7 after the CVT based optimizations and their mesh
quality data given in Table 5 once again illustrate that the Lloyd iteration can lead
to almost regular triangular meshes with the values of average quality up to 0.99.
The converged results are insensitive to the given initial vertex distribution.
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Figure 4. Perturbed initial meshes for example 2.

Figure 5. Meshes after the DL Optimization of example 2.

Example 2 RandPert ClusPert

average quality 0.978 0.926

minimum quality 0.798 0.328

minimum angle 34.98 11.3

maximum angle 97.35 120.1

Table 3. Mesh quality data after the DL Optimization

Example 2 RandPert ClusPert

average quality 0.973 0.958

minimum quality 0.751 0.447

minimum angle 34.1 20.3

maximum angle 103.6 134.9

Table 4. Mesh quality data after the WDL Optimization.

Example 2 RandPert ClusPert

average quality 0.989 0.991

minimum quality 0.861 0.854

minimum angle 40.1 41.1

maximum angle 88.4 91.3

Table 5. Mesh quality data after CVT-based optimization
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Figure 6. Meshes after the WDL Optimization of example 2.

Figure 7. Meshes after CVT based optimization of example 2.

4. Optimization effects in 3D applications

We now present two application examples in 3D to investigate the effect of the
CVT based optimization in more practical situations. One example is a cube con-
taining an interior sphere, a case often considered in simple external flow field
simulations. The other is the femur reconstructed from CT scans or cross sectional
contours and used for a biomedical simulation such as the fracture prediction and
simulation[40, 41]. In the above simulation examples, the generated mesh qual-
ity is often closely related to the computational efficiency, especially when explicit
marching schemes are used, and hence it is necessary to construct quality tetrahe-
dral meshes in such applications [40, 41].

For both examples, initial tetrahedral meshes are constructed by the classical
constrained Delaunay tetrahedralization method which includes surface mesh gen-
eration, initial unconstrained Delaunay 3D triangulation of boundary points, con-
strained boundary recovery, interior refinement and mesh optimization. Here, for
simplicity, interior vertices are generated along interior edges by the method of
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[35]. For mesh optimization, two methods are applied. One is the classical Com-
bined Optimization which includes optimization based on the Laplacian smoothing,
edges/faces flipping and the iterations between them [2, 4, 29, 33, 34].In each itera-
tion, three to five Laplacian smoothings are performed and complex edges or faces
flippings are conducted to improve the minimal dihedral angles. The other method
is the CVT based optimization which has been shown to be a successful approach
for generating various high quality 3D meshing examples in [12], and more recently,
for probing the qualities of optimal CVTs and the Gersho conjecture in three di-
mensions in [16]. Also, CVT has been applied together with simple swappings to
remove slivers[12, 16].

For the example with a cube containing a sphere as shown in Fig 8, the cutting
views of its two optimized meshes are shown in Fig 9, and the element quality
data of the initial mesh, the mesh after combined optimization, and the mesh after
the CVT based optimization with or without simple swappings, are given in Table
6. Here, element quality formulae follows that in [12, 16]. The bad elements or
the good elements are defined as those whose quality number is less than 0.3 or
larger than 0.5 respectively. From the cutting view, it can be seen that the CVT
based optimization generates more structured mesh than the counterpart obtained
via the combined optimization. From the mesh quality data in Table6, first, it
indicates that the combined optimization is very effective in removing slivers or
bad-quality tetrahedra (bad elements), thus making the technique very popular
among commercial meshing softwares[4, 29, 35]. In comparison, nevertheless, the
CVT based optimization can produce a mesh CV DT with an average element
quality about 0.81, better than the value 0.71 in the mesh obtained by the classical
combined optimization. Moreover, the CVDT has a larger number of tetrahedra
whose quality are closer to that of the regular one. Also, it can be found that there
is a small number of sliver-like elements (bad elements) in the CVDT and they
are neighboring the boundary of the domain as similarly reported in [12, 16]. But
just like in [12, 16], using simple edge or face swappings (SWAP ), these very bad
elements can be all deleted as demonstrated by the quality statistics of the mesh
produced with CV DT + SWAP . The final mesh is superior to the mesh after the
combined optimization both in terms of the minimum element quality (relating to
slivers), the average element quality (the global quality), and the more structured
configuration.

The surface mesh, the cutting view of tetrahedral mesh, and the quality statistics
of the meshes of the second example, i.e., the femur are presented in Figures 10 and
11, and Table 7 respectively. Both the mesh structure and the element quality data
show similarity to those of the first example and it further demonstrate that the
CVT based optimization is more effective than the classical combined optimization.
And in the dynamic analysis of the fracture prediction of the femur, it is found
that the generated CVDT results in larger time steps than that from the classical
optimization and this significantly saves simulation time [40, 41].

5. Conclusions and future work

In our present study, numerical investigations are conducted in both 2D and 3D
on the effect of CVT based optimizations. It can be seen that CVT based optimiza-
tions, or say, the convergence of Lloyd iterations, is much less sensitive to the initial
vertex distribution than the classical and weighted Laplacian based optimization.
The CVT based optimization is clearly more effective that the classical counter-
parts. Also, the converged mesh is more geometrically structured, largely due to
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Init CombOpt CVDT CVDT+SWAP

number of elements 26060 24364 23880 23779

0.7 < Q < 1.0 9882 14579 19814 21475

0.5 < Q < 0.7 12212 9183 3734 2090

0.3 < Q < 0.5 2990 601 201 214

0.0 < Q < 0.3 976 1 131 0.0

Qmin 0.0024 0.243 0.09 0.352

bad elements (%) 3.74 0.5 0.8 0.0

good elements(%) 84.7 97.5 98.6 99.1

average quality 0.641 0.719 0.803 0.810

Table 6. Elements quality statistics of optimized meshes of a cube
containing a sphere

Init CombOpt CVDT CVDT+SWAP

number of elements 31511 29441 25808 25757

0.7 < Q < 1.0 12140 16941 20602 22347

0.5 < Q < 0.7 14346 11577 4589 3101

0.3 < Q < 0.5 3774 919 399 309

0.0 < Q < 0.3 1251 4 218 0

Qmin 0.007 0.267 0.084 0.311

bad elements (%) 3.97 0.01 0.8 0.0

good elements(%) 84.0 96.8 97.6 98.8

average quality 0.639 0.713 0.791 0.803

Table 7. Elements quality statistics of optimized meshes of a femur

Figure 8. The frame line (left) and the surface mesh (right) of a
cube containing a sphere

the nice properties of the CVDT and due to the accompanied Gersho conjecture
which states that asymptotically the converged CVDT is a regular triangular mesh
in two space dimension and a BCC lattice based Delaunay mesh in the three di-
mensional space [24, 25, 26]. Such a conjecture has been proved in two dimension
and more recently, its three dimensional version has been numerically substanti-
ated via abundant numerical examples [16]. Hence, one may expect that the final
converged CVDT mesh is more structured locally and is of higher quality than that
constructed using the classical optimization method.
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Figure 9. The cutting view of meshes after the Combined Opti-
mization (left) and the CVT based Optimization (right)

Figure 10. The surface mesh of a femur

Figure 11. The cutting view of meshes after the Combined Op-
timization(left) and the CVT based Optimization(right)

We note that in more recent years, there have also been many studies on the
global optimization methods [29, 30, 31, 32]. We will leave a more careful compar-
ison with such global methods to future works.

Naturally, let us point out that in order for the CVT based optimization to be
successfully applied to large scale quality meshing, especially in the applications
areas such as oil reservoir simulations, and wave scattering simulations for three
dimensional CEM, the Lloyd iteration needs to accelerated in order to make the
CVT based optimization scheme more competitive both quality wise and efficiency
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wise. The acceleration can be realized through the localization of the Delaunay
triangulation or through the use of Multigrid type methods. Such initiatives are
under current investigations [20, 21]. Connections between meshes and algebraic
solvers and their co-adaptations are also useful issues to be examined further [22].
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