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ROBIN TRANSMISSION CONDITIONS FOR OVERLAPPING
ADDITIVE SCHWARZ METHOD APPLIED TO LINEAR

ELLIPTIC PROBLEMS

HONGWEI LI AND JIACHANG SUN

Abstract. We consider overlapping Additive Schwarz Method(ASM) with

Robin conditions as the transmission conditions(interior boundary conditions).

The main difficulty left in this field is how to select the parameters for Robin

conditions – these parameters have strong effect on the convergence rate of

ASM. In this paper, we proposed the parameters for linear elliptic problems

which seemed to be near optimal.

Key Words. domain decomposition, additive Schwarz methods, Robin trans-

mission conditions.

1. Introduction

Classical additive Schwarz method(ASM) converges very slow for general prob-
lems. So, in most circumstances, this method can only be used as a preconditioner.
On the other hand, ASM has high parallelism and is very suitable for coarse grain
parallel computing. Many recent papers contribut to accelerating ASM. The tech-
nique is to replace the Dirichlet transmission conditions posed on the interfaces
with some more general or exact conditions such as absorbing conditions, open
conditions etc. The essence of these conditions is that they are more exact on the
interfaces so that the corresponding ASM should converge faster. However, these
conditions are always global coupled. So, in actual applications, these conditions
should be localized by some kind of approximations. Taylor expansion was first
used, and some other approximations were also introduced[6]. But it seems that
these approximations hold only for simple problems that Fourier analysis can apply.

In this paper, the Dirichlet transmission conditions of the classical overlapping
additive Schwarz method are replaced by Robin conditions directly. We hope that
by selecting proper parameters for the Robin conditions, the corresponding ASM
would converge more rapidly.

Robin transmission conditions were first introduced into domain decomposition
by P.L.Lions in [9, 10, 11]. Since then, many papers followed.

Generalized Schwarz splitting method with Robin transmission conditions was
proposed by Tang [12], which gave the initial impetus to our work in this field.
Optimized Schwarz methods, proposed by M.J. Gander, L.Halpern and F.Nataf,
try to get the optimal Robin parameters by Fourier analysis [6]. This idea was
further utilized in [1, 8, 5, 7, 4].
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Absorbing conditions for domain decomposition methods have been analyzed by
Zhao[2]. In that paper, Robin transmission conditions were analyzed by Taylor
expansion.

Though many authors and papers have talked about Robin transmission condi-
tions for additive Schwarz methods, the main difficulty – lacking of a simple and
uniform way to choose good Robin parameters, is still remaining, even if for simple
problems like Laplace equation.

This paper is motivated by generalized Schwarz splittings proposed by W.P.
Tang and optimized Schwarz methods proposed by M.J. Gander. And we try to
determine the optimal (or near optimal) Robin parameters for general linear elliptic
problems.

The key model problem for this paper is

−∆u + qu = f (Ω)(1)
u = g (∂Ω)(2)

where Ω = (0, 1)d, d = 2, 3, q > 0.
Suppose domain Ω is partitioned into two overlapping subdomains Ω1 and Ω2

︸ ︷︷ ︸

︷ ︸︸ ︷

Ω1

Ω2

Γ1 Γ2

Our aim is to derive the optimal(or near optimal) Robin parameters λ for the
following additive Schwarz method (two subdomain case)

For any given initial values u0, v0, solve the following problems iteratively until
convergence

−∆un + qun = f, (Ω1)(3)
∂un

∂n
+ λun =

∂vn−1

∂n
+ λvn−1 (Γ2)(4)

−∆vn + qvn = f, (Ω2)(5)
∂vn

∂n
+ λvn =

∂un−1

∂n
+ λun−1 (Γ1)(6)

where n denotes the outward normal direction of the subdomain under considera-
tion. We will call above method as RASM(λ), so that it can be distinguished from
ASM.

The main result of this paper is that for high dimensional model problems, the
optimal Robin parameters can be determined as λopt =

√
q + (d− 1)π2, d = 2, 3.

2. Analysis for one dimensional Laplace equation

Suppose the domain Ω = (0, 1), 0 < α1 < β1 < α2 < β2 < ... < αns−1 < βns−1 <
1. Ω1 = (0, β1), Ω2 = (α1, β2), . . ., Ωns−1 = (αns−2, βns−1),Ωns = (αns−1, 1).
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Figure 1. Domain Ω is decomposed into 4 subdomains

The model problem for this section is

(7) −d2u

d2x
= f(x), x ∈ Ω, u(0) = u(1) = 0

We know that the exact transmission conditions can be expressed as Steklov-
Poincaré operators which depend on the interior boundaries. So the transmission
conditions should be different on different interior boundaries. Therefore, when
being applied to multi-subdomains, RASM(λ) should take the following form

−d2un+1
1

d2x
= f(x), x ∈ Ω1,

un+1
1 (0) = 0

dun+1
1 (β1)
dx

+ λ̃1u
n+1
1 (β1) =

dun
2 (β1)
dx

+ λ̃1u
n
2 (β1)

−d2un+1
i

d2x
= f(x), x ∈ Ωi,

dun+1
i (αi−1)

dx
+ λi−1u

n+1
i (αi−1) = −dun

i−1(αi−1)
dx

+ λi−1u
n
i−1(αi−1)

dun+1
i (βi)
dx

+ λ̃iu
n+1
i (βi) =

dun
i+1(βi)
dx

+ λ̃iu
n
i+1(βi)

i = 2, 3, . . . , ns− 1.

−d2un+1
ns

d2x
= f(x), x ∈ Ωns,

un+1
ns (1) = 0

−dun+1
ns (αns−1)

dx
+ λns−1u

n+1
ns (αns−1) = −dun

ns−1(αns−1)
dx

+ λns−1u
n
ns−1(αns−1)

Notice that the Robin parameters can be different on different interior bound-
aries.

Theorem 2.1. Let λi =
1
αi

, λ̃i =
1

1− βi
, i=1,2,. . . , ns-1. then the above method

converges in ns iterations.

Proof. It suffices to give the proof in the case of f(x) ≡ 0. So we can suppose

un+1
i = Cn+1

i x + dn+1
i , i = 1, 2, . . . , ns.
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Using the transmission conditions and the corresponding parameters λi =
1
αi

, λ̃i =

1
1− βi

, i = 1, 2, . . . , ns, , we have
〈

dn+1
1 = 0

cn+1
1 + dn+1

1 = cn
2 + dn

2〈
dn+1
2 = dn

1

cn+1
2 + dn+1

2 = cn
3 + dn

3〈
dn+1
3 = dn

2

cn+1
3 + dn+1

3 = cn
4 + dn

4
...〈

dn+1
ns = dn

ns−1

cn+1
ns + dn+1

ns = 0

Now we need only to verify that for any given initial values c0
i , d0

i , we will have
cns
i = 0, dns

i = 0, i = 1, 2, . . . , ns. According to above formulas, for any i, we have

dn
i = dn−1

i−1 = dn−2
i−2 = · · · = dn−i+1

1

if n ≥ i, then dn−i+1
1 = 0, so dn

i = 0. Obviously, ns is the minimum number that
meets n ≥ i for any i. So

dns
i = 0, i = 1, 2, . . . , ns.

Secondly, let en
i = cn

i + dn
i , i = 1, 2, . . . , ns. It’s easy to verify that

ens
i = 0, i = 1, 2, . . . , ns.

Therefore, because of dns
i = 0, we have

cns
i = 0, i = 1, 2, . . . , ns

¤
Suppose domain Ω = (0, 1), Ω1 = (0, β1), Ωi = (αi−1, βi), i = 2, . . . , ns − 1,

Ωns = (αns−1, 1). n = ns×m, h = 1/(n + 2), αi = i×mh, βi = i× (m + 2)h, let
γi = i× (m + 1)h, i=1,ns-1.

For one dimensional problems, if no specification, the domain Ω will always take
this kind of decomposition in this paper.

Numerical experiments 2.1. Initial zero interior boundary values, central differ-
ence scheme. Right-hand term: f(x) = 2x(1− x), subdomain solver: CG. Conver-
gence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The optimal Robin parameters are determined
by Theorem (2.1). The results are showed in Table 1 and Table 2

Iter. time(s) Iter. num.

m ASM RASM(λopt) ASM RASM(λopt)

9 0.09 0. 217 4

19 0.64 0. 450 4

99 63.67 0.11 2405 4

Table 1. One dimensional, 4 subdomains. Comparison of itera-
tion time and iteration number

It should be pointed out that, in Theorem 2.1, ns is the minimum iterations for
the method to converge. The iteration number depends only on the domain size,
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Iter. time(s) Iter. num

m ASM RASM(λopt) ASM RASM(λopt)

9 0.62 0.01 803 8

19 4.84 0.02 1702 8

99 491.4 0.44 9240 8

Table 2. One dimensional, 8 subdomains. Comparison of itera-
tion time and iteration number

e.g. the number of subdomains. Furthermore, the optimal parameters λi, λ̃i are
not unique. In fact, we can confine ourself to take same Robin parameters on every
interior boundary pair {αi, βi}. In this case, we still can find a group of parameters
which satisfy that RASM(λ) converges in ns iterations.

Theorem 2.2. Let λi = λ̃i =





1
αi

, i ≤ ns/2 + 1
1

1− βi
, i ≥ ns/2 + 1

RASM(λ) converges in ns

iterations.

3. Coercive Laplace equation

In order to analyze high dimensional problems, we need to study the following
Coercive Laplace equation first

(8) −u
′′

+ qu = f(x), x ∈ Ω = (0, 1), q > 0
u(0) = 0, u(1) = 0

For simplicity and concision, the two subdomain case will be taken for instance.
Suppose ns=2, Ω1 = (0, β1), Ω2 = (α1, 1). Applying RASM(λ) to problem (8), we
have

−d2vn+1

d2x
+ q vn+1 = f(x), x ∈ Ω1,(9)

vn+1(0) = 0,
dvn+1(β1)

dx
+ λvn+1(β1) =

dwn(β1)
dx

+ λwn(β1)(10)

−d2wn+1

d2x
+ qwn+1 = f(x), x ∈ Ω2,(11)

wn+1(1) = 0, −dwn+1(α1)
dx

+ λwn+1(α1) = −dvn(α1)
dx

+ λvn(α1)(12)

In this section, the above method will be analyzed in discrete form, and the
main means is matrix analysis. The continuous problems are approximated by
their discrete forms. Then the optimal Robin parameters will be determined in
discrete form.

For continuous problems, the optimal Robin parameters depend on two factors:
the problem itself and the pattern of domain decomposition. Therefore, if the corre-
sponding discrete scheme approximates the continuous problem quite exactly, then
the optimal parameters derived from matrix analysis should be good approxima-
tions to those for continuous case. In this way, the optimal Robin parameters for
certain discrete scheme obtained by matrix computations can be applied to other
discrete methods. Here, the central difference scheme is used to discrete the second
order term in (9)–(12).
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The discrete form of problem (9)–(12) can be thought of as block Jacobi iteration
method for the following linear algebraic equations

(13) Ãu = g

Ã =
(

A1 −E
−F A2

)
u =

(
v
w

)
g =

(
g1

g2

)

gi = h2f |Ωi
, i = 1, 2; v = u|Ω1 , w = u|Ω2

A1 =




2 + β −1
−1 2 + β −1

. . .
−1 2 + β − σ




m+1,m+1

E =




0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0
−σ 1 0 · · · 0




m+1,m+1

A2 =




2 + β − σ −1
−1 2 + β −1

. . .
−1 2 + β




m+1,m+1

F =




0 · · · 0 1 −σ
0 · · · 0 0 0
...

...
...

...
0 · · · 0 0 0




m+1,m+1

where β = 2 + qh2. And by simple calculations, we have

(14) σ =
1

1 + λh

Hereafter, the above method will be called DRASM(σ), which is the discrete coun-
terpart of RASM(λ). Notice that, DRASM(0) corresponds to the classical additive
Schwarz method, which takes Dirichlet conditions as the transmission conditions.

Now the problem is how to select the parameter σ, so that DRASM(σ) converges
as fast as possible. It is well known that, for any iteration method, the convergence
rate is determined by the spectrum radius of the iteration matrix, more small the
spectrum radius, more rapid the convergence speed.

when DRASM(σ) is applied to problem (13), The iteration matrix is

J =
(

A−1
1

A−1
2

)(
E

F

)
=

(
A−1

1 E
A−1

2 F

)

Now we need to calculate the spectrum radius of matrix J , e.g. the maximum
absolute eigenvalue of J

Define T1 = A−1
1 E, T2 = A−1

2 F . Suppose

A−1
1 = (tij)m+1,m+1 =




t11 t12 · · · t1,m+1

t21 t22 · · · t2,m+1

...
...

...
tm+1,1 tm+1,2 · · · tm+1,m+1




then by the property of algebraic complement and Laplace expansion, we have

A−1
2 =




tm+1,m+1 ? · · · ?
tm,m+1 ? · · · ?

...
...

...
tm+1,1 ? · · · ?



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By some simple calculations, we have

T1 =




−σt1,m+1 t1,m+1 0 · · · 0
−σt2,m+1 t2,m+1 0 · · · 0

...
...

...
...

−σtm+1,m+1 tm+1,m+1 0 · · · 0




m+1,m+1

T2 =




0 · · · 0 tm+1,m+1 −σtm+1,m+1

0 · · · 0 tm,m+1 −σtm,m+1

...
...

...
...

0 · · · 0 t1,m+1 −σt1,m+1




m+1,m+1

By some simple matrix transformations of J , we see that the nonzero eigenvalues
of J are included in the eigenvalues of the following matrix

G =




0 0 −σtm,m+1 tm,m+1

0 0 −σtm+1,m+1 tm+1,m+1

tm+1,m+1 −σtm+1,m+1 0 0
tm,m+1 −σtm,m+1 0 0




However the nonzero eigenvalues of G can be easily derived as

λ1,2 = ±(tm,m+1 − σtm+1,m+1)

So, the spectrum radius of J is

(15) ρ(J) = |tm,m+1 − σtm+1,m+1|
Apparently, the optimal Robin parameter σ is

(16) σ =
tm,m+1

tm+1,m+1

In order to figure out tm,m+1 and tm+1,m+1, the following Lemma 3.1 and Lemma
3.2 are needed

Lemma 3.1. [3] Let β ≥ 2, and

Tn =




β −1
−1 β −1

. . .
−1 β




Dn(β) = det(Tn). Then

(17) Dn(β) =
{

sinh(n + 1)θ/ sinh θ, β > 2, 2 cosh θ = β
n + 1, β = 2

Moreover, if let t−1
n = (tij)n×n, then

(18) tij =
{

Dj−1(β)Dn−i(β)/Dn(β), i ≥ j
Di−1(β)Dn−j(β)/Dn(β), i < j

Lemma 3.2. Let

A =




β −1
−1 β −1

. . .
−1 β




n×n

, B =




β −1
−1 β −1

. . .
−1 β − σ




n×n
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and let A−1 = (tij)n×n, B−1 = (fij)n×n, D0(β) = 1, Dn(β) = det(A), Fn =
det(B). Then

(19) Fn = Dn(β)− σDn−1(β)

(20) fin =
Di−1(β)

Dn(β)− σDn−1(β)

Proof. By the theorem of Laplace expansion, expand Dn(β) and Fn according to
their last rows

Dn(β) = α + 2Dn−1(β)
Fn = α + (2− σ)Dn−1(β)

where α is some certain algebraic complement. So

Fn −Dn(β) = −σDn−1(β)

Therefore
Fn = Dn(β)− σDn−1(β)

Besides, if A?, B? are the adjoint matrixes of A and B respectively, then by the
property of adjoint matrix, we have

AA? = det(A)I, BB? = det(B)I

And by the definitions of adjoint matrix and the matrix A and B, the last columns
of A? and B? should have no difference at all.

Because of A−1 = 1
det(A)A

?, and A−1 can be determined by Lemma 3.1

tij =
{

Dj−1(β)Dn−i(β)/Dn(β), i ≥ j
Di−1(β)Dn−j(β)/Dn(β), i < j

Especially, let j = n, we have

tin =
Di−1(β)
Dn(β)

Therefore
det(A)tin = det(B)fin, i = 1, 2, . . . , n.
⇒ Dn(β)tin = Fnfin

⇒ fin =
Dn(β)tin

Fn

⇒ fin =
Di−1(β)

Dn(β)− σDn−1(β)
¤

Theorem 3.1. The optimal Robin parameter for our model problem is

(21) σ = sinh(mθ)/ sinh(m + 1)θ,

where θ satisfies

(22) 2 cosh θ = β, β = 2 + qh2.

and DRASM(σ) converges in two iterations.

Proof. By (16), the optimal Robin parameter σ = tm,m+1/tm+1,m+1. Moreover,
by (15), the spectrum radius of the iteration matrix corresponding to DRASM(σ)
equals zero in this case. So DRASM(σ) converges in two iterations. And then we
need only to verify the following formula

tm,m+1

tm+1,m+1
=

sinh(mθ)
sinh(m + 1)θ
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By Lemma 3.2

(23) tm,m+1 =
Dm−1(β)

Dm+1(β)− σDm(β)

(24) tm+1,m+1 =
Dm(β)

Dm+1(β)− σDm(β)
Therefore

σ = tm,m+1/tm+1,m+1 = Dm−1(β)/Dm(β)
By Lemma 3.1, we have

Dm(β)
Dm+1(β)

=
sinh(mθ)

sinh(m + 1)θ
¤

We can express the optimal Robin parameter more directly. By (22)

2 cosh θ = β
⇒ eθ + e−θ = β

⇒ eθ =
β +

√
β2 − 4
2

On the other hand,

(25) σ =
sinh(mθ)

sinh(m + 1)θ
=

emθ − e−mθ

e(m+1)θ − e−(m+1)θ
= eθ (eθ)2m − 1

(eθ)2(m+1) − 1

As β > 2, eθ > 1. So, if m is a relative large natural number, then (eθ)2m À 1.
Therefore

(26) σ ≈ e−θ =
2

β +
√

β2 − 4
=

1

1 +
qh +

√
q2h2 + 4q

2
h

However, by (14), σ =
1

1 + λh
, so

(27) λ =
qh +

√
4q + q2h2

2
If h → 0, the discrete scheme should approximate the corresponding continuous
problem better and better, so λ should approximate the optimal Robin parameter
for the continuous problem better and better. Therefore, we have reason to think
that the optimal Robin parameter for the continuous problem should be

(28) λopt = lim
h→0

qh +
√

4q + q2h2

2
=
√

q

and the optimal Robin parameter for the corresponding discrete problem should be

(29) σopt =
1

1 + λopth

Numerical experiments 3.1. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term f(x) = 2x(1− x), q=10, subdomain solver: CG.
Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The optimal Robin parameter is deter-
mined by (28) and (29). Table 3 shows the results.
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Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 0.01 0. 38 6

19 0.05 0. 76 6

99 4.53 0.06 401 6

Table 3. One dimensional, two subdomains. Comparison of iter-
ation time and iteration steps. q = 10

Notation 3.1. By (26), if q > 0 and the subdomain size m is relatively large, then
the optimal Robin parameter σopt or λopt can be thought of as no coupling with the
relative position of the interior boundaries. Based on this observation, for multi-
subdomain problems, we can take the same Robin parameters on all the interior
boundaries.

Numerical experiments 3.2. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term: f(x) = 2x(1 − x), q=100, subdomain solver:
CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The optimal Robin parameter is
determined by (28) and (29). Table 4 shows the results.

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 0.05 0.01 81 10

19 0.39 0.03 171 11

99 42.16 0.5 927 11

Table 4. One dimensional, 8 subdomains. Comparison of itera-
tion time and iteration steps, q = 100

Notation 3.2. We will analyze high dimensional problems in the following sections,
and the optimal Robin parameters for high dimensional problems will be reduced to
a series of one dimensional problems just like the model problem in this section,
which has zero order term. So, for high dimensional problems, if no specification,
when reduced to one dimensional multi-subdomain problems, we always take the
same Robin parameters on all the interior boundaries.

In order to quantify the effects of q on the spectrum radius of the iteration
matrix, (15) needs to be analyzed further. By (23), (24) and (15) (substituting
fm,m+1 and fm+1,m+1 for tm,m+1 and tm+1,m+1 respectively), we have

(30) ρ(J) =
∣∣∣∣
Dm−1(β)− σDm(β)
Dm+1(β)− σDm(β)

∣∣∣∣
By (3.1)

ρ(J) =
∣∣∣∣

sinh(mθ)− σ sinh(m + 1)θ
sinh(m + 2)θ − σ sinh(m + 1)θ

∣∣∣∣

=

∣∣∣∣∣∣∣∣

sinh(mθ)
sinh(m + 1)θ

− σ

sinh(mθ)
sinh(m + 1)θ

− σ +
sinh(m + 2)θ − sinh(mθ)

sinh(m + 1)θ

∣∣∣∣∣∣∣∣
=

∣∣∣∣
ησ

ησ + τ

∣∣∣∣



ROBIN TRANSMISSION CONDITIONS FOR ADDITIVE SCHWARZ METHOD 93

where θ satisfies 2 cosh θ = β, β = 2 + qh2, and ησ =
sinh(mθ)

sinh(m + 1)θ
− σ, τ =

2 sinh θ cosh(m + 1)θ
sinh(m + 1)θ

= 2 sinh θ coth(m + 1)θ > 2 sinh θ > 0

It’s clear that, if q gets larger, then β and θ get larger, so τ larger. That’s to say
that, the sensitivity of ρ(J) on σ will decrease as q gets larger.

Notation 3.3. High dimensional problems can be reduced to a series of one di-
mensional problems just like this section, which have zero order terms. So, for high
dimensional problems, we can consider only the reduced one dimensional problem
which has the minimum coefficient for the zero order term.

4. Two dimensional problem

We borrow the idea in [12] to reduce high dimensional problems to lower ones.
Consider the model problem

(31) −∆u(x, y) + qu(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1)
u(x, y)|∂Ω = g(x, y)

where q ≥ 0.
We take the following pattern of domain decomposition and grid partition.
Ω = (0, 1)× (0, 1), Ω1 = (0, β1)× (0, 1), Ωi = (αi−1, βi)× (0, 1), i = 2, . . . , ns−1,

Ωns = (αns−1, 1)×(0, 1). n = ns×m, h = 1/(n+2), αi = i×mh, βi = i×(m+2)h.
Let γi = i×(m+1)h, i = 1, ns−1. For two dimensional model problems, we always
take this kind of domain decomposition and grid partition if no specification.

Definition 4.1.

Tn(β) , Tridiagonal{−1, β,−1}n×n, (β ≥ 2)

and Denote Tn(x1, x2, x3) as Tn(x2) except the first diagonal element is x1, and the
last is x3.

Consider the two-subdomain case. when DRASM(σ) is applied to (31), the
coefficient matrix is

Ã =
(

A1 −E1

−F1 A2

)

where
A1 = T1 ⊗ In + Im ⊗ Tn(2)

A2 = T2 ⊗ In + Im ⊗ Tn(2)

E1 = E ⊗ In

F1 = F ⊗ In

and

T1 = Tm+1(β, β, β − σ)
T2 = Tm+1(β − σ, β, β)

E, F defined as before. β = 2 + qh2.
The iteration matrix for DRASM(σ) is

J =
(

A−1
1

A−1
2

)(
E1

F1

)
, M−1N
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It’s well known that Tn(2) has the following spectrum decomposition

(32) XnTn(2)XT
n = Dn = diag{di}, di = 4 sin2 iπ

2(n + 1)
, i = 1, . . . , n.

Let

U =
(

Im ⊗Xn

Im ⊗Xn

)

then
J ′ = UJUT = (UMUT )−1N = M̃−1N

where

M̃ =

(
Ã1

Ã2

)
Ãi = (Im ⊗Xn)Ai(Im ⊗Xn)T = Ti ⊗ In + Im ⊗Dn

Let P denotes the permutation matrix that makes the rows (k − 1)n + i and rows
2(i− 1)(m + 1) + k permute their positions for each other, k = 1, . . . , 2(m + 1), i =
1, . . . , n. Then

J1 = PJ ′PT =




J(d1)
J(d2)

. . .
J(dn)




where J(di) are the iteration matrices when DRASM(σ) is applied to the following
one dimensional problems

−u′′ + (q + dih
−2)u = f, (0, 1)

u(0) = u(1) = 0

However, According to Note (3.3), we need only consider the one dimensional
problem with minimum zero order coefficient. So we need only analyze the optimal
Robin parameter for J(d1). That’s to say,

(33) λopt =
√

q + d1h−2, σopt =
1

1 + λopth

On the other hand,

d1 = 4 sin2 π

2(n + 1)
= 4 sin2 πh

2
≈ π2h2

so

(34) λopt =
√

q + π2, σopt =
1

1 + λopth

This λopt will be taken as the optimal Robin parameter for the two dimensional
model problem. And numerical experiments showed that λopt is near optimal.

Numerical experiments 4.1. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term: f(x, y) = x(1− x) + y(1− y), q = 0, subdomain
solver: CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The Robin parameter is
determined by (34). The results are showed in Table 5 and Table 6.

The above strip domain decomposition pattern can be generalized to multi-
direction decomposition. The optimal Robin parameter can be generalized to this
situation in a simple and straightforward way, e.g. ignoring the coupling among
the different directions, and the optimal Robin parameter is still

(35) λopt =
√

q + π2, σopt =
1

1 + λopth
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Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 0.19 0.05 38 9

19 3.35 0.7 76 12

49 95.92 9.29 196 19

Table 5. Two dimensional, two subdomains, comparison of iter-
ation time and iteration numbers. Strip domain decomposition

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 2.55 0.31 113 13

19 45.22 3.54 234 15

29 237.96 13.79 358 23

Table 6. Two dimensional, 4 subdomains, comparison of iteration
time and iteration numbers. Strip domain decomposition

Numerical experiments 4.2. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term f(x, y) = x(1 − x) + y(1 − y), q = 0, subdomain
solver: CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The Robin parameter is
determined by (34). The results are showed in Table 7 and Table 8

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 0.68 0.17 63 14

19 9,98 1.54 129 18

29 39.07 3.8 195 21

Table 7. Two dimensional, 4 subdomains. Comparison of itera-
tion time and iteration numbers. Domain decomposition: 2× 2

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 3.44 0.62 126 18

19 47.75 5.08 258 23

29 196.35 12.68 393 27

Table 8. Two dimensional, 9 subdomains. Comparison of itera-
tion time and iteration numbers. Domain decomposition: 3× 3

5. Three dimensional problem

Consider the following model problem

(36) −∆u(x, y, z) + qu(x, y, z) = f(x, y, z), (x, y, z) ∈ (0, 1)3 = Ω
u(x, y, z)|∂Ω = g(x, y, z)

where q > 0.
We take the following pattern of domain decomposition and grid partition.
Ω = (0, 1) × (0, 1) × (0, 1), Ω1 = ×(0, 1) × (0, β1), Ωi = (0, 1) × (0, 1) ×

(αi−1, βi), i = 2, . . . , ns − 1, Ωns = (0, 1) × (0, 1) × (αns−1, 1). n = ns ×m, h =
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1/(n + 2), αi = i ×mh, βi = i × (m + 2)h. let γi = i × (m + 1)h, i = 1, ns − 1.
For three dimensional problems, we always take this kind of domain decomposition
and grid partition if no specification.

Consider the two-subdomain case. when DRASM(σ) is applied to (36), the
coefficient matrix can be expressed as

Ã =
(

A1 −E1

−F1 A2

)

where
A1 = T1 ⊗ In ⊗ In + Im ⊗ Tn(2)⊗ In + Im ⊗ In ⊗ Tn(2)

A2 = T2 ⊗ In ⊗ In + Im ⊗ Tn(2)⊗ In + Im ⊗ In ⊗ Tn(2)

E1 = E ⊗ In ⊗ In

F1 = F ⊗ In ⊗ In

where

T1 = Tm+1(β, β, β − σ)
T2 = Tm+1(β − σ, β, β)

E, F are defined as before. β = 2 + qh2. The iteration matrix is

J =
(

A−1
1

A−1
2

)(
E1

F1

)
, M−1N

According to (32) , there is a matrix Xn satisfies

XnTn(2)XT
n = Dn = diag{di}, di = 4 sin2 iπ

2(n + 1)
, i = 1, . . . , n.

Let

U =
(

Im ⊗ In ⊗Xn

Im ⊗ In ⊗Xn

)

we have
(Im ⊗ In ⊗Xn)(Ti ⊗ In ⊗ In)(Im ⊗ In ⊗Xn)T

= (Ti ⊗ In ⊗Xn)(Im ⊗ In ⊗Xn)
= Ti ⊗ In ⊗ In

(Im ⊗ In ⊗Xn)(Im ⊗ Tn ⊗ In)(Im ⊗ In ⊗Xn)T

= (Im ⊗ Tn ⊗Xn)(Im ⊗ In ⊗XT
n )

= Im ⊗ Tn ⊗ In

(Im ⊗ In ⊗Xn)(Im ⊗ In ⊗ Tn(2))(Im ⊗ In ⊗Xn)T

= [Im ⊗ In ⊗ (XnTn(2))][Im ⊗ In ⊗XT
n ]

= Im ⊗ In ⊗ (XnTn(2)XT
n )

= Im ⊗ In ⊗Dn

So
J ′ = UJUT = (UMUT )−1N = M̃−1N

where

M̃ =

(
Ã1

Ã2

)

and
Ãi = Ti ⊗ In ⊗ In + Im ⊗ Tn(2)⊗ In + Im ⊗ In ⊗Dn i = 1, 2.
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Let Bi = Ti ⊗ In + Im ⊗ Tn(2), Imn = Im ⊗ In, then the above formula can be
written as

(37) Ãi = Bi ⊗ In + Imn ⊗Dn

From (37), we can see that, Bi are the coefficient matrices when DRASM(σ) is
applied to two dimensional model problem (31). Using the same method as in above
section to reduce two dimensional problem to one dimensional problems, we can
also reduce our three dimensional problem to two dimensional problems. That’s to
say that the optimal Robin parameter for our three dimensional problem can be
approximated by the following two dimensional problems

−∆u(x, y) + (q + dih
−2)u(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)2

u(x, y)|∂Ω = g(x, y)

According to Note (3.3), we need only consider the minimum eigenvalue d1. So
by (34), the optimal Robin parameter λ for the three dimensional model problem
can be written as

(38) λopt =
√

q + d1h−2 + d1h−2 =
√

q + 2π2, σopt =
1

1 + λopth

It’s obvious that when DRASM(σ) is applied to three dimensional problems, its
sensitivity to optimal Robin parameter gets decreased compared to two dimensional
problems.

Numerical experiments 5.1. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term f(x, y, z) = x(1− x) + y(1− y) + z(1− z), q=0,
subdomain solver CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The Robin pa-
rameter is determined by (38). The results are showed in Table 9 and Table 10.

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 3.87 1.54 28 8

19 77.08 25.28 57 10

29 622.46 97.57 87 12

Table 9. Three dimensional, two subdomains. Comparison of
iteration time and iteration numbers, strip domain decomposition

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 18.90 5.68 79 10

19 718.22 99.56 163 11

Table 10. Three dimensional, 4 subdomains. Comparison of it-
eration time and iteration numbers, strip domain decomposition

The above strip domain decomposition pattern can also be generalized to multi-
direction decomposition in a simple and straightforward way, e.g. ignoring the
coupling among the different directions, and the optimal Robin parameter is still
taken as the same.
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Numerical experiments 5.2. Initial zero interior boundary values, central dif-
ference scheme. Right-hand term f(x, y, z) = x(1− x) + y(1− y) + z(1− z), q = 0,
subdomain solver: CG. Convergence criterion: ‖rn‖/‖r0‖ ≤ 10−5. The Robin
parameter is determined by (38). The results are showed in Table 11.

Iter.time(s) Iter.num

m ASM DRASM(σopt) ASM DRASM(σopt)

9 1.63 0.46 61 13

19 53.51 7.98 124 17

29 484.45 46.94 187 19

Table 11. Three dimensional, 8 subdomains. Comparison of iter-
ation time and iteration numbers. Domain decomposition pattern:
2× 2× 2

6. Conclusions and Remarks

The main point of this paper is that for model problems, the optimal (near
optimal) Robin parameters have been determined as

(39) λopt =
√

q + (d− 1)π2, d = 2, 3

we started out with one dimensional problems, derived out the optimal Robin
parameters by discrete scheme and matrix analysis, then after some reductions
and approximations, the near optimal Robin parameters for continuous problems
are obtained. For large scale model problems, the optimal Robin parameter can
accelerate classical additive Schwarz method by tens of magnitude.

The optimal Robin parameters are near optimal, and DRASM(σopt) has a weak
dependence on the grid size h. For high dimensional problems, the convergence rate
is less sensitive to the optimal Robin parameters. So near optimal and optimal have
little difference in practice. And this is also the main reason that we can take the
same Robin parameter on all the different interior boundaries. Indeed, we can take
the following Robin parameter for our two or three dimensional model problems

(40) λopt =
√

q + 3π2

It comes from the considerations not only the minimum eigenvalue d1 ≈ π2, but
also the second minimum eigenvalue d2 ≈ 4π2. Numerical experiments showed
that this parameter may work somewhat better than (39) in some cases, though
the advantage is negligible.

The key idea different from other papers is that we gave up the efforts to seek
for the real optimal Robin parameters. Instead, we just try to find the ”near
optimal” or good enough Robin parameters. In some cases, the Robin parameters
determined by our approach may be far away from the optimal in some sense, but
the Robin parameters may still work perfect in reality. Because in these situations,
the problem may converge fast for a relative large scope of Robin parameters. It’s
no need to look for the real optimal one.

The optimal Robin parameter is just for our model problems, which is of constant
coefficients and rectangle domain. Note that the optimal Robin parameter λopt can
be thought of as a constant for continuous problems, so in practice it can be applied
to other discrete methods.

We would like to point out that, for variable coefficient problems, our Robin
parameters are still near optimal and work well. We will analyze the convection-
diffusion problems and general variable coefficient problems in other papers.
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