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NUMERICAL SIMULATION AND ANALYSIS OF
MIGRATION-ACCUMULATION OF OIL RESOURCES

YIRANG YUAN

Abstract. Numerical simulation of migration-accumulation of oil resources in

porous media is to describe the history of oil migration and accumulation in

basin evolution. It is of great value to the evaluation of oil resources and to

the determination of the location and amount of oil deposits. This thesis puts

forward a mathematical model, a careful parallel operator splitting-up implicit

iterative scheme, parallel arithmetic program, parallel arithmetic information

and alternating-direction mesh subdivision. For the actual situation of Tanhai

region of Shengli Petroleum Field, our numerical simulation test results and

the actual conditions are coincident. For the model problem (nonlinear coupled

system) optimal order estimates in l2 norm are derived to determine the errors.

We have successfully solved the difficult problem in the fields of permeation fluid

mechanics and petroleum geology.

Key Words. migration-accumulation of oil resources; multilayer parallel arith-

metic; careful numerical simulation, l2 error estimates.

1. Introduction

The oil formation in sediment basins, its displacement, transport and accumula-
tion, and the final formation of oil deposits have been one of the key problems in the
exploration of oil-gas resources. How has oil been accumulated in the present loop
according to the mechanics of immiscible flow? How is oil distributed in basins?
All this is what the numerical simulation of accumulation of oil resources mainly
studies[1−5]. With the exploration of the oilfields, efforts have been made to find
covered and “potato piece” oil deposits, so basin simulation must be more and
more precise become large-scale and develop in parallel direction. In basin simula-
tion, the migration-accumulation of oil resources in particular, the traditional serial
computers can hardly solve this problem[4−6].

The fluid dynamics model of migration-accumulation has strong hyperbolic char-
acteristics. Therefore, the numerical method is very difficult in mathematics and
mechanics. In this field, Ungerer, P., Walte, D. H., Yukler, M. A. and others have
had famous publications[7−9]. They have studied the mathematical model and nu-
merical simulation of the two-dimensional section, which have found their practical
application in North Sea Oil Field. In China, Wang Jie, Cha Ming and others have
also done important jobs[4,10] centered on petroleum geology. In a word, first fruits
in monolayer problems have reaped [4,11−14]. This thesis, from the actual conditions

Received by the editors January 1, 2004 and, in revised form, March 22, 2004.
2000 Mathematics Subject Classification. 76M10, 65M06, 65N30, 76M25, 76S05, 76T05.
This research was supported by the Major State Basic Research Program of China (Grant

No. 1999032803), the National Natural Sciences Foundation of China (Grant Nos. 10271066
and 10372052) and the Doctorate Foundation of the Ministry of Education of China (Grant No.
20030422047).

68



NUMERICAL SIMULATION AND ANALYSIS OF MIGRATION-ACCUMULATION 69

and for highly accurate and careful parallel numerical simulation of oil resources
migration-accumulation, we put forward a mathematical model and a careful par-
allel operator splitting-up implicit iterative scheme, parallel arithmetic program,
parallel arithmetic information transmission and alternating-direction mesh subdi-
vision. Making use of the present SGI high-performance miniature computer group
(8CPU), we have conducted parallel arithmetic of the “careful numerical simulation
of migration-accumulation of oil resources”. We have made parallel computation
and analysis of four schemes, namely, the mesh step lengths are 800m., 400m.,
200m., and 100m. Our results are identical with the actual situation. For the
model problem (nonlinear coupled system) optimal order estimates in l2 norm are
derived to determine the errors. We have successfully solved the difficult problem
in the fields of permeation fluid mechanics and petroleum geology. This thesis dis-
cusses the numerical simulation of the migration-accumulation of oil resources, the
most difficult part in basin simulation and important in rational evaluation of oil
resources and exploration oil deposit locations.

2. The Mathematical Model
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Fig. 1 two-layer sketch map of regions Ω, Ω1

The mechanism of migration-accumulation of oil resources:
The primary driving force of migration-accumulation is the buoyancy caused by

both the density difference between the oil in the carrying bed and that of the
water in the porous structure, and the potential gradient formed by all the fluid
(water and oil) in the porous structure, while the fluid is trying to migrate to the
low-potential area.

The restricting force of migration-accumulation has something to do with the
capillary pressure which gets larger while the aperture becomes narrower. If the
capillary pressure exceeds the driving force, the migration will be held up. The
migration of oil and underground water is mainly a permeation process. Both the
oil and water potential fields determine the direction and magnitude of oil and
water permeations.

For the numerical simulation of secondary multilayer oil migration in porous
media, the flow in the first and third layers is considered as horizontal and in
the one between them as vertical. After careful analysis of the model and the
scientific numerical test, we propose a creative and rational numerical model. For
the mathematical model of multilayer migration-accumulation:

∇ · (K1
kro

µo
∇ψo) + Boq − (K3

kro

µ0

∂ψ0

∂z
)z=H1 = −Φs′(

∂ψ0

∂t
− ∂ψw

∂t
),

X = (x, y)T ∈ Ω1, t ∈ J = (0, T ],
(1a)
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∇ · (K1
krw

µw
∇ψw) + Bwq − (K3

krw

µw

∂ψw

∂z
)z=H1 = Φs′(

∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J,

(1b)
∂

∂z
(K3

kro

µo

∂ψo

∂z
) = −Φs′(

∂ψo

∂t
− ∂ψw

∂t
) , X = (x, y, z)T ∈ Ω, t ∈ J, (2a)

∂

∂z
(K3

krw

µw

∂ψw

∂z
) = Φs′(

∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω, t ∈ J, (2b)

∇ · (K2
kro

µo
∇ψo) + Boq + (K3

kro

µ0

∂ψ0

∂z
)z=H2 = −Φs′(

∂ψo

∂t
− ∂ψw

∂t
),

X = (x, y)T ∈ Ω1, t ∈ J,

(3a)

∇ · (K2
krw

µw
∇ψw) + Bwq + (K3

krw

µw

∂ψw

∂z
)z=H2 = Φs′(

∂ψo

∂t
− ∂ψw

∂t
),

X ∈ Ω1, t ∈ J,

(3b)

where ψ0 and ψw are the potential functions, kro and krw are the relative per-
meabilities for the oil and water phases, respectively. K1, K2 and K3 are the
absolute permeabilities in respective layers. µ0 and µw are the viscosities for
the oil and water phases. s′ = ds

dpc
, where s is the water concentration, and pc

is the capillary pressure. Bo and Bw are the flow coefficients, Bo = kro

µo
(kro

µo
+

krw

µw
)−1 , Bw = krw

µw
(kro

µ0
+ krw

µw
)−1, q(x, t) are the source (sink) functions. By

Darcy law: −K3
kro

µ0

∂ψ0
∂z = qh, 0, −K3

krw

µw

∂ψw

∂z = qh, w. The initial conditions and
boundary conditions are given.

3. The Numerical Simulation Method

The fluid dynamics model of migration-accumulation has strong hyperbolic char-
acteristics. Therefore, the numerical simulation must be very stable for as long as
millions of years. The numerical method is very difficult in mathematics and me-
chanics. This thesis, starting from the actual conditions and the above characteris-
tics, puts forward a kind of careful parallel operator splitting-up implicit iterative
scheme.

3.1. The splitting-up implicit iterative scheme of the three-dimensional
problem.

z direction:
1
2
∆z̄(Azw∆zψ

∗
w) +

1
2
∆z̄(Azw∆zψ

(l)
w ) + ∆ȳ(Ayw∆yψ

(l)
w ) + ∆x̄(Azw∆xψ

(l)
w )

−Gψ∗w + Gψ∗o = Hl+1(
∑

Aw)(ψ∗w − ψ
(l)
w )−Bm

w qm+1 −Gψm
w + Gψm

o ,

(4a)

1
2

∆z̄(Azw∆zψ
∗
o) +

1
2
∆z̄(Azw∆zψ

(l)
o ) + ∆ȳ(Ayo∆yψ

(l)
o ) + ∆x̄(Axw∆xψ

(l)
o )

+Gψ∗w −Gψ∗o = Hl+1(
∑

Ao) (ψ∗o − ψ
(l)
o )−Bm

o qm+1 + Gψm
w −Gψm

o ,

(4b)

y direction:
1
2
∆ȳ(Ayw∆yψ∗∗w )− 1

2
∆ȳ(Ayw∆yψ

(l)
w )−Gψ∗∗w + Gψ∗∗o

= Hl+1(
∑

Aw)(ψ∗∗w − ψ∗w)−Gψ∗w + Gψ∗o ,

(4c)

1
2
∆ȳ(Ayo∆yψ∗∗o )− 1

2
∆ȳ(Ayo∆yψ

(l)
o ) + Gψ∗∗w −Gψ∗∗o

= Hl+1(
∑

Ao)(ψ∗∗o − ψ∗o) + Gψ∗w −Gψ∗o ,

(4d)
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x direction:
1
2
∆x̄(Axw∆xψ

(l+1)
w )− 1

2
∆x̄(Azw∆zψ

(l)
w )−Gψ

(l+1)
w + Gψ

(l+1)
o

= Hl+1(
∑

Aw)(ψ(l+1)
w − ψ∗∗w )−Gψ∗∗w + Gψ∗∗o ,

(4e)

1
2
∆x̄(Axo∆xψ

(l+1)
o )− 1

2
∆x̄(Axo∆xψ

(l)
o ) + Gψ

(l+1)
w −Gψ

(l+1)
o

= Hl+1(
∑

Ao)(ψ
(l+1)
o − ψ∗∗o ) + Gψ∗∗w −Gψ∗∗o ,

(4f)

where ∆x̄(Ax∆xψm+1)ijk = Ax,i+1/2,jk(ψi+1,jk − ψijk)m+1 − Ax,i−1/2,jk(ψijk −
ψi−1,jk)m+1, Axw,i+1/2,jk =

(
K∆y∆z

∆x
krw

µw

)
i+1/2,jk

, · · · .

Take the value of kr according to the partial upper reaches principle, and other
terms can be defined similarly. G = −VpΦṡ/∆t, Vp = ∆x∆y∆z, the (l + 1) times
iterative computational formula of ṡ:

ṡ(l+1) = ω1

( s(l) − sm

p
(l)
c − pm

c

)
+ (1− ω1)ṡ(l), (5)

where l is the iterative time, 0 < ω1 < 1 is the mean factor.
For the purpose of high accuracy, we introduce the residual computational value:

Pz = ψ∗w − ψ(l)
w , Py = ψ∗ ∗w − ψ∗w , Pz = ψ(l+1)

w − ψ∗ ∗w , (6a)

Rz = ψ∗o − ψ(l)
o , Ry = ψ∗ ∗o − ψ∗o , Rz = ψ(l+1)

w − ψ∗ ∗o . (6b)
Finally, we put forward the careful parallel operator splitting-up implicit iterative

scheme.
z direction:

1
2

∆z̄(Azw∆zPz)− (G + Hl+1

∑
Aw)Pz + GRz

= −[∆(Aw∆ψ
(l)
w ) + Bm

w qm+1 −G(ψ(l)
w − ψm

w ) + G(ψ(l)
o − ψm

o )],
(7a)

1
2

∆z̄(Azo∆zRz)− (G + Hl+1

∑
Ao)Rz + GPz

= −[∆(Ao∆ψ
(1)
o ) + Bm

o qm+1 + G(ψ(l)
w − ψm

w )−G(ψ(l)
o − ψm

o )],
(7b)

y direction:
1
2
∆ȳ(Ayw∆yPy)− (G + Hl+1

∑
Aw)Py + GRy = −1

2
∆ȳ(Ayw∆yPz), (7c)

1
2
∆ȳ(Ayo∆yPy)− (G + Hl+1

∑
Ao)Ry + GPy = −1

2
∆ȳ(Ayo∆yRz), (7d)

x direction:
1
2
∆x̄(Axw∆xPz)− (G + Hl+1

∑
Aw)Px + GRx = −1

2
∆x̄(Axw∆x(Py + Pz)), (7e)

1
2
∆x̄(Axo∆xPz)− (G + Hl+1

∑
Ao)Rx + GPx = −1

2
∆x̄(Axo∆z(Ry + Rz)). (7f)

When the iterative error reaches our accuracy index, the iterative values ψ
(l+1)
o and

ψ
(l+1)
w are regarded as ψm+1

o and ψm+1
w . Again by

sm+1 = sm + ṡ(ψm+1
0 − ψm

0 − ψm+1
w + ψm

w ). (8)

In practical numerical computation, krw, kro, pc(s) must undergo data processing
and filtration so as to get the correct results.
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3.2. The mathematical model and numerical method of the quasi-three-
dimensional (single layer) problem.

If the actual thickness of the carrying bed is much smaller than the size of
the horizontal simulation area, we propose the solution by reducing it to a two-
dimensional problem in the following way. So it can also be called a quasi-three-
dimensional problem. By integrating z with equations (1a) and (1b), the average
results are:

∇ · (K̄ ∆zkro

µo
∇ψo) + Boq̄∆z = −Φ̄s′∆z(

∂ψo

∂t
− ∂ψw

∂t
), (9a)

∇ · (K̄ ∆zkrw

µw
∇ψw) + Bw q̄∆z = Φ̄s′∆z(

∂ψo

∂t
− ∂ψw

∂t
), (9b)

where ∆z is the thickness of the carrying bed.

K̄ =
1

∆z

∫ h2(x,y)

h1(x,y)

K(x, y, z)dz,

Φ̄ =
1

∆z

∫ h2(x,y)

h1(x,y)

Φ(x, y, z)dz, q̄ =
1

∆z

∫ h2(x,y)

h1(x,y)

q(x, y, z)dz,

where h1(x, y), h2(x, y) are the depths of the carrying beds for the upper and
lower boundaries, respectively.

For the quasi-three-dimensional problem we put forward a kind of careful parallel
operator splitting-up implicit iterative scheme.

x direction:

∆x̄(Axw∆xψ∗w) + ∆ȳ(Ayw∆yψ
(l)
w )−Gψ∗w + Gψ∗o

= Hl+1(
∑

Aw) (ψ∗w − ψ
(l)
w )−Bm

w qm+1 −Gψm
w + Gψm

o ,
(10a)

∆x̄(Axo∆xψ∗o) + ∆ȳ(Ayo∆yψ
(l)
o ) + Gψ∗w −Gψ∗o

= Hl+1(
∑

Ao) (ψ∗o − ψ
(l)
o )−Bm

o qm+1 + Gψm
w −Gψm

o ,
(10b)

y direction:

∆x̄(Axw∆xψ∗w) + ∆ȳ(Ayw∆yψ
(l+1)
w )−Gψ

(l+1)
w + Gψ

(l+1)
o

= Hl+1(
∑

Aw) (ψ(l+1)
w − ψ∗w)−Bm

w qm+1 −Gψm
w + Gψm

o ,
(10c)

∆x̄(Axo∆xψ∗o) + ∆ȳ(Ayo∆yψ
(l+1)
o ) + Gψ

(l+1)
w −Gψ

(l+1)
o

= Hl+1(
∑

Ao) (ψ(l+1)
o − ψ∗o)−Bm

o qm+1 + Gψm
w −Gψm

o ,
(10d)

where G = −VpΦs′/∆t, Vp = ∆x∆y, Hl+1 is the iterative factor,
∑

Aw = Aw,i+1/2,j

+Aw,i−1/2,j + · · ·+ Aw,i,j−1/2,
∑

A0 = · · · .
For high accuracy purpose, we introduce the residual computational value:

Px = ψ∗w − ψ
(l)
w , Py = ψ

(l+1)
w − ψ∗w,

Rx = ψ∗o − ψ
(l)
o , Ry = ψ

(l+1)
o − ψ∗o .

Finally, we put forward the modified method of alternating direction implicit
iterative scheme.

x direction:
∆x̄(Axw∆xPx)− (G + Hl+1

∑
Aw)Px + GRx

= −[∆(Aw∆ψ
(l)
w ) + Bwq −G(ψ(l)

w − ψm
w ) + G(ψ(l)

o − ψm
o )] = −B1X

(l),
(11a)
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∆x̄(Axw∆xRx)− (G + Hl+1

∑
Ao)Rx + GPx

= −[∆(Ao∆ψ
(l)
o ) + Boq + G(ψ(l)

w − ψm
w )−G(ψ(l)

o − ψm
o )] = −B2X

(l).
(11b)

As for y direction, the computation is similar. When the iterative error reaches
our accuracy index, the iterative values ψ

(l+1)
w , ψ

(l+1)
o are regarded as ψm+1

w , ψm+1
o .

Again from (8) we find out Sm+1.

3.3. The numerical method of the multilayer problem.
The following quasi-three-dimensional numerical schemes can be used to do nu-

merical computation.
The first layer scheme:

∇ · (K̄1∆z1
kro

µo
∇ψo) + Boq̄∆z1 + q1

h,o = −Φ̄s′(
∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J, (12a)

∇ · (K̄1∆z1
krw

µw
∇ψw) + Boq̄∆z1 + q1

h,w = Φ̄s′(
∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J, (12b)

where

K̄1 =
1

∆z1

∫ h1
2(x,y)

h1
1(x,y)

K1(x, y, z)dz,

Φ̄ =
1

∆z1

∫ h1
2(x,y)

h1
1(x,y)

Φ(x, y, z)dz, q̄ =
1

∆z1

∫ h1
2(x,y)

h1
1(x,y)

q(x, y, z)dz.

The second layer scheme:

∇ · (K̄2∆z2
kro

µo
∇ψo) + Boq̄∆z2− q2

h,o = −Φ̄s′(
∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J, (13a)

∇ · (K̄2∆z2
krw

µw
∇ψo) + Bw q̄∆z2− q2

h,w = Φ̄s′(
∂ψo

∂t
− ∂ψw

∂t
), X ∈ Ω1, t ∈ J, (13b)

where K̄2 =
1

∆z2

∫ h2
2(x, y)

h2
1(x, y)

K1(x, y, z)dz, · · · , q1
h, o ≈ q2

h, o , q1
h, w ≈ q2

h, w.

Numerical Schemes (12) and (13) are combined by applying Darcy’s law. Compute
equations (12) and (13) respectively by the scheme proposed by the quasi-three-
dimensional problem (2.2). The two layers between them are coupled by Darcy’s
law, that is

q1
h,0 = q2

h,0 ≈ −1
2
{K̄1(

kro

µo
)1 + K̄2(

kro

µo
)2}(ψ0,2 − ψ0,1)/∆z, (14a)

q1
h,w = q2

h,w ≈ −1
2
{K̄1(

krw

µw
)1 + K̄2(

krw

µw
)2}(ψw,2 − ψw,1)/∆z. (14b)

Thus, this important problem can be successfully solved. This method can be used
in solving multilayer problems.

For the model problem, theory of differential equation prior estimates and tech-
niques are made use of. We can obtain the convergence theorem of this numerical
method.
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4. Validity Analysis of Careful Parallel Arithmetic

We adopt the geology parameters of Tanhai region. Simulation region: Taihai re-
gion, earth-coordinate (m) (20611700.00, 4169000.00) and (2071700.00, 4253000.00),
horizontal scale=8845.2km2. The simulation includes two layers, that is Sand third
middle section and Sand third upper section. According to the structure of Tanhai
region, Chengzikou-Qingyun ridge, Yihezhuang-Wudiningjin ridge, Chenjiazhuang-
Binxian ridge and Qingtuozi- Kendong ridge are located from northwest to south-
east. In between horizontally located are Chengbei hollow, Huanghekou hollow,
Bonan hollow, Gunan hollow and other oil-bearing hollows.

Simulation computation of the following four schemes:
Scheme 1: In x direction the mesh step length is 810m, and there are 130

meshes; in y direction the mesh step length is 840m, and there are 100 meshes. So
on the plane of each layer there are 13000 meshes.

Scheme 2: Each mesh in Scheme 1 is further divided into four. Thus in x
direction the number of meshes is 260, and the step length is 405m. In y direction
we have 200 meshes, and the step length of each is 420m. One layer has 52000
meshes, Two layers has 104000.

Scheme 3: Each mesh in Scheme 2 is further divided into four. Thus in x
direction the mesh step length is 202.5m, and there are 520 meshes; In y direction
the mesh step length is 220m, and there are 400 meshes. One layer has 208000
meshes, Two layers has 416000 meshes.

Scheme 4: Consider only numerical simulation of monolayer—Sand third upper
section. In x direction the mesh step length is 101.25m, and there are 1040 meshes;
in y direction the mesh step length is 100m, and there are 800meshes. So on the
plane of a simple layer there are 832000 meshes.

Simulation begins with the computation of Dongying Group, continues through
sediment interruption of the upper and lower third systems, Guantao group, Ming-
huazhen group and finally to the present fourth system, covering thirty million
geological years. Thus careful precise numerical parallel simulation computation
has been completed.

Table 1 illustrates the general situation of schemes 1∼4, the computation time
of each geological year and the overall computation time of 30 million years. From
Table 1 we can see that when the mesh step length reduces from 800m to 400m, the
computation time increases 3.84 times. When the mesh step length reduces from
400m to 200m, the computation time increases 6.14 times.

Simulation results: Figures 2a and 2b show the oil concentration distribution, in
two layers (Sand third upper region and Sand third middle region) during 1.8×107

years. Figures 3a and 3b show the present oil concentration isograms in these two
layers during 3.0×107 years. The results of numerical simulation indicate that the
oil in Sand third middle region migrates along the fault towards Sand third upper
region and accumulates on the uplifted zone around the low-lying area and on the
slope, that is Chengdao area, Laohekao, Stake No.5 and Gudong area. The present
situation of oil exploration of Shengli Oilfield is basically the same.

The above computation and analysis indicate that our large-scale careful par-
allel numerical simulation system (when mesh step length is 200m) can perform
precise numerical simulation by using three-dimensional seismic interpretation re-
sults without losing a single small stratigraphic trap and, therefore, can be used to
evaluate present oil resources and explore new oilfields.
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Fig.2a 1.8× 107 year’s Sand Third Upper oil concentration isogram

Fig.2b 1.8× 107 year’s Sand Third Middle oil concentration isogram
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Fig.3a 3.0× 107 year’s Sand Third Upper oil concentration isogram

 

Fig.3b 3.0× 107 year’s Sand Third Middle oil concentration isogram

5. Numerical Analysis of the Model Problem

As for the numerical method of oil migration-accumulation of the multilayer in
porous media, for the sake of brevity we consider one model problem, the nonsta-
tionary flow computation of mutilayer fluid dynamics in porous media. We have to
find out the following nonlinear convection-dominated diffusion coupling systems
with initial-boundary value problem[11−14]:

Φ1(x, y)
∂u

∂t
+ ⇀

a(x, y, t) · ∇u−∇ · (K1(x, y, u)∇u)−K2(x, y, z)
∂w

∂z
|z=1

= Q1(x, y, t, u), (x, y)T ∈ Ω1, t ∈ J = (0, T ],
(15a)
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Φ2(x, y, z)
∂w

∂t
=

∂

∂z
(K2(x, y, z)

∂w

∂z
), (x, y, z)T ∈ Ω, t ∈ J, (15b)

Φ3(x, y)
∂v

∂t
+

⇀

b (x, y, t) · ∇v −∇ · (K3(x, y, v)∇v) + K2(x, y, z)
∂w

∂z
|z=0

= Q3(x, y, t, v), (x, y)T ∈ Ω1, t ∈ J,

(15c)

where

Ω = {(x, y, z)|0 < x < 1, 0 < y < 1, 0 < z < 1}, Ω1 = {(x, y)|0 < x < 1, 0 < y < 1}.
We assume the boundary condition:

u(x, y, t)|∂Ω1 = 0, v(x, y, t)|∂Ω1 = 0, w(x, y, z, t)|∂Ω = 0, t ∈ J, (16a)

w(x, y, z, t)|z=1 = u(x, y, t), w(x, y, z, t)|z=0 = v(x, y, t), (x, y)T ∈ Ω1, t ∈ J.
(16b)

The initial conditions:
u(x, y, 0) = u0(x, y), (x, y)T ∈ Ω1,

w(x, y, z, 0) = w0(x, y, z), (x, y, z)T ∈ Ω,

v(x, y, 0) = v0(x, y), (x, y)T ∈ Ω1.

(17)

The unknown functions u, w and v are the potential functions, ∇u, ∇v and ∂w
∂z

are Darcy’s velocity, Φα(α = 1, 2, 3) is the porosity, Kα(α = 1, 2, 3) is the

stratigraphical permeability, ⇀
a(x, y, t) = (a1(x, y, t), a2(x, y, t))T ,

⇀

b (x, y, t) =
(b1(x, y, t), b2(x, y, t))T are the convection coefficients. Q1(x, y, u), Q2(x, y, v)
are the external volumetric flow rates.

Let h = 1
N , tn = n∆t, U(xi, yj , t

n) = Un
ij , V (xi, yj , t

n) = V n
ij ,W (xi, yj , zk, tn) =

Wn
ijk. Let δx, δy, δz and δx̄, δȳ, δz̄ be the forward and backward difference quotients,

respectively. dtu
n
ij is the forward quotient of net function un

ij .
For equation (15a), the upwind finite difference fractional steps scheme is given

by

(Φ̂1 −∆t(1 +
h1

2
|an

1 |
K1(Un)

)−1δx(K1(Un)δx̄) + ∆tδan
1 ,Un,x)Un+1/2

ij

= Φ̂1,ijU
n
ij + ∆t{Kn

2,ij,N−1/2δz̄W
n+1
ij,N + Q(xi, yj , t

n, Un+1
ij )}, 1 < i < N,

(18a)

U
n+1/2
ij = 0, (xi, yj) ∈ ∂Ω1,h, (18b)

(Φ̂1 −∆t(1 +
h1

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳ) + ∆tδan
2 ,Un,y)Un+1

ij

= Φ̂1,ijU
n+1/2
ij , 1 < j < N,

(18c)

Un+1
ij = 0, (xi, yj) ∈ ∂Ω1,h, (18d)

where
δan

1 ,Un,xuij = an
1,ij [H(an

1,ij)K1(Un)−1
ij ·K1(Un)i−1/2,jδx̄ + (1−H(an

1,ij))K1(Un)−1
ij ·

K1(Un)i+1/2,jδx]uij , δan
2 ,Un,yuij = an

2,ij [H(an
2,ij)K1(Un)−1

ij · K1(Un)i,j−1/2δȳ +
(1−H(an

2,ij))K1(Un)−1
ij ·K1(Un)i,j+1/2δy]uij , K1(Un)−1

ij = (K1(Un)ij)−1,

H(z) =
{

1, z ≥ 0,
0, z < 0.

In practical computation, δz̄W
n+1
ij,N in (18a) is approximately

taken as δz̄W
n
ij,N , while Un+1

ij is taken as Un
ij .

For equation (15b), the finite difference scheme is expressed as

Φ2,ijk

Wn+1
ijk −Wn

ijk

∆t
= δz(Kn

2 δz̄W
n+1)ijk, 0 < k < N, (i, j) ∈ Ω1,h, (19)
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For equation (15c), the upwind finite difference fractional steps scheme is given by

(Φ̂3 −∆t(1 +
h1

2
|bn

1 |
K3(V n)

)−1δx(K3(V n)δx̄) + ∆tδbn
1 ,V n,x)V n+1/2

ij

= Φ̂3,ijV
n
ij + ∆t{−Kn

2,ij,1/2δzW
n+1
ij,0 + Q(xi, yj , t

n, V n+1
ij )},

i1(j) < i < i2(j),

(20a)

V
n+1/2
ij = 0, (xi, yj) ∈ ∂Ω1,h, (20b)

(Φ̂3 −∆t(1 +
h1

2
|bn

2 |
K3(V n)

)−1δy(K3(V n)δȳ) + ∆tδbn
2 ,V n,y)V n+1

ij

= Φ̂3,ijV
n+1/2
ij , j1(i) < j < j2(i),

(20c)

V n+1
ij = 0, (xi, yj) ∈ Ω1,h, (20d)

where
δbn

1 ,V n,xvij = bn
1,ij [H(bn

1,ij)K3(V n)−1
ij ·K3(V n)i−1/2,jδx̄ + (1−H(bn

1,ij)) ·K3(V n)−1
ij

K3(V n)i+1/2,jδx]uij , δbn
2 ,V n,yvij = bn

2,ij [H(bn
2,ij)K3(V n)−1

ij ·K3(V n)i,j−1/2δȳ + (1−
H(bn

2,ij))K3(V n)−1
ij ·K3(V n)i,j+1/2δy]vij . In practical computation, δzW

n+1
ij,0 in (20a)

is approximately taken as δzW
n
ij,0, and V n+1

ij as V n
ij .

The algorithm for a time step is as follows. Assuming that the approximate solu-
tion {Un

ij ,W
n
ijk, V n

ij } at time t = tn is known, one needs to find out the approximate
solution {Un+1

ij ,Wn+1
ijk , V n+1

ij } at time tn+1. First, from schemes (18a) and (18b),

method of speedup is used to get the solution of transition sheaf {Un+1/2
ij } along

x direction. Second, from schemes (18c) and (18d) we obtain solution {Un+1
ij }.

Next, from (20a) and (20b), by using method of speedup, we get the solution of
transition sheaf {V n+1/2

ij } along x direction; from (20c) and (20d) we obtain the
solution{V n+1

ij }. Finally, from scheme (19) we obtain {Wn+1
ijk }. Only in this way,

can we proceed continuously so that a complete time step can be taken. Finally,
because of the positive definite condition, this finite difference solution exists and
is the sole one.

Theorem Suppose that the exact solution of problems (15)∼(17) satisfies
smooth condition: ∂2u

∂t2 , ∂2v
∂t2 ∈ L∞(L∞(Ω1)), u, v ∈ L∞(W 4,∞(Ω1))

⋂
W 1,∞

(W 1,∞(Ω1)), ∂2w
∂t2 ∈ L∞(L∞(Ω)), w ∈ L∞(W 4,∞(Ω)). Adopt the second order

upwind finite difference fractional steps schemes (18), (19) and (20). Then the
following error estimates hold:

‖u− U‖L̄∞(J;l2) + ‖v − V ‖L̄∞(J;l2) + ‖w −W‖L̄∞(J;l2) + ‖u− U‖L̄2(J;h1)

+‖v − V ‖L̄2(J;h1) + ‖w −W‖L̄2(J;h1) ≤ M{∆t + h2},
(21)

where ‖g‖L̄∞(J;X) = Sup
n∆t≤T

‖fn‖X , ‖g‖L̄2(J;X) = Sup
L∆t≤T

{
L∑

n=0
‖gn‖2X∆t}1/2.

Proof Let ξ = u−U , ζ = v−V , ω = w−W , where u, v, w are exact solutions
of problems (15)∼(17), and U , V , W are the difference solutions of schemes (18),
(19) and (20).

First, consider (18). For (18a)∼(18d), by eliminating Un+1/2, we get the follow-
ing equivalent form:
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Φ̂1,ij

Un+1
ij − Un

ij

∆t
− {(1 +

h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄)

+(1 +
h

2

∣∣an
2,ij

∣∣
K1(Un)ij

)−1δy(K1(Un)δȳ)}Un+1
ij + δan

1 ,Un,xUn+1
ij

+δan
2 ,Un,yUn+1

ij + ∆t(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)

· δx̄(Φ̂−1
1 (1 +

h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳUn+1)·)ij

−∆t{(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 δan

2 ,Un,yUn+1))ij

+δan
1 ,Un,x(Φ̂−1

1 (1 +
h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳUn+1))ij

−δan
1 ,Un,x(Φ̂−1

1 δan
2 ,Un,yUn+1)ij}

= Kn
2,ij,N−1/2δz̄W

n+1
ij,N + Q(Un+1

ij ), 1 ≤ i, j ≤ N − 1,

(22a)

Un+1
ij = 0, (xi, yj) ∈ ∂Ω1. (22b)

Next, for (20a)∼(20d), by eliminating V n+1/2, we get the following equivalent form:

Φ̂3,ij

V n+1
ij − V n

ij

∆t
− {(1 +

h

2

∣∣bn
1,ij

∣∣
K3(V n)ij

)−1δx(K3(V n)δx̄)

+(1 +
h

2

∣∣bn
2,ij

∣∣
K3(V n)ij

)−1δy(K3(V n)δȳ)}V n+1
ij + δbn

1 ,V n,xV n+1
ij

+δbn
2 ,V n,yV n+1

ij + ∆t(1 +
h

2

∣∣bn
1,ij

∣∣
K3(V n)ij

)−1δx(K3(V n)

· δx̄(Φ̂−1
3 (1 +

h

2
|bn

2 |
K3(V n)

)−1δy(K3(V n)δȳV n+1)·)ij

−∆t{(1 +
h

2

∣∣bn
1,ij

∣∣
K3(V n)ij

)−1δx(K3(V n)δx̄(Φ̂−1
3 (δbn

2 ,V n,yV n+1)·)ij

+δbn
1 ,V n,x(Φ̂−1

3 (1 +
h

2
|bn

2 |
K3(V n)

)−1δy(K3(V n)δȳV n+1))ij

−δbn,V n,x(Φ̂−1
3 δbn

2 ,V n,yV n+1)ij}
= −Kn

2,ij,1/2δzW
n+1
ij,0 + Q(V n+1

ij ), 1 ≤ i, j ≤ N − 1,

(23a)

V n+1
ij = 0, (xi, yj) ∈ ∂Ω1. (23b)

For problems (15)∼(17), we have the following error equations:

Φ̂1,ij

ξn+1
ij − ξn

ij

∆t
− {(1 +

h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄ξn+1)ij

+[(1 +
h

2

∣∣an+1
1,ij

∣∣
K1(un+1)ij

)−1δx(K1(un+1)δx̄un+1)ij

−(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄un+1)ij ]}

−{(1 +
h

2

∣∣an
2,ij

∣∣
K1(Un)ij

)−1δy(K1(Un)δȳξn+1)ij
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+[(1 +
h

2

∣∣an+1
2,ij

∣∣
K1(un+1)ij

)−1δy(K1(un+1)δȳun+1)ij

−(1 +
h

2

∣∣an
2,ij

∣∣
K1(Un)ij

)−1δy(K1(Un)δȳun+1)ij ]}
+{δan

1 ,Un,xξn+1
ij + δan+1

1 ,un+1,xun+1
ij − δan

1 ,Un,xun+1
ij }

+{δan
2 ,Un,yξn+1

ij + δan+1
2 ,un+1,yun+1

ij − δan
2 ,Un,yun+1

ij }

+∆t{(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 (1 +

h

2
|an

2 |
K1(Un)

)−1

· δy(K1(Un)δȳξn+1)·)ij + [(1 +
h

2

∣∣an+1
1,ij

∣∣
K1(un+1)ij

)−1δx(K1(un+1)

· δx̄(Φ̂−1
1 (1 +

h

2

∣∣an+1
2

∣∣
K1(un+1)

)−1δy(K1(un+1)δȳun+1)·)ij

−(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 (1

+
h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳun+1)·)ij ]}

−∆t{(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 δan

2 ,Un,yξn+1))ij

+[(1 +
h

2

∣∣an+1
1,ij

∣∣
K1(un+1)ij

)−1δx(K1(un+1)δx̄(Φ̂−1
1 δan+1

2 ,un+1,yun+1))ij

−(1 +
h

2

∣∣an
1,ij

∣∣
K1(Un)ij

)−1δx(K1(Un)δx̄(Φ̂−1
1 δan

2 ,Un,yun+1))ij ]}

−∆t{δan
1 ,Un,x(Φ̂−1

1 (1 +
h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳξn+1))ij

+[δan+1
1 ,un+1,x(Φ̂−1

1 (1 +
h

2

∣∣an+1
2

∣∣
K1(un+1)

)−1δy(K1(un+1)δȳun+1))ij

−δan
1 ,Un,x(Φ̂−1

1 (1 +
h

2
|an

2 |
K1(Un)

)−1δy(K1(Un)δȳun+1))ij ]}
+∆t{δan

1 ,Un,x(Φ̂−1
1 δan

2 ,Un,yξn+1)ij

+[δan+1
1 ,un+1,x(Φ̂−1

1 δan+1
2 ,un+1,yun+1)ij − δan

1 ,Un,x(Φ̂−1
1 δan

2 ,Un,yun+1)ij ]}
= Kn

2,ij,N−1/2δz̄ω
n+1
ij,N + Q(un+1

ij )−Q(Un+1
ij ) + εn+1

1,ij , 1 ≤ i, j ≤ N − 1,

(24a)

ξn+1
ij = 0, (xi, yj) ∈ ∂Ω1, (24b)

where
∣∣εn+1

1,ij

∣∣ ≤ M{
∥∥∥∥

∂2u

∂t2

∥∥∥∥
L∞(L∞)

, ‖u‖L∞(W 4,∞)}{∆t + h2}.

Φ2,ijk

ωn+1
ijk − ωn

ijk

∆t
= δz(Kn

2 δz̄ω
n+1)ijk + εn+1

2,ijk, 1 ≤ i, j, k ≤ N − 1, (25)

where
∣∣∣εn+1

2,ijk

∣∣∣ ≤ M{
∥∥∥∥

∂2w

∂t2

∥∥∥∥
L∞(L∞)

, ‖w‖L∞(W 4,∞)}{∆t + h2}.

Testing (24a) and (25) against 2∆tξn+1
ij and 2∆tωn+1

ijk , summing them up by
parts, and using (24b) we can obtain
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∥∥∥Φ̂1/2
2 ξn+1

∥∥∥
2

−
∥∥∥Φ̂1/2

1 ξn
∥∥∥

2

+ (∆t)2
∥∥∥Φ1/2

2 dtξ
n
∥∥∥

2

+ ∆t{
∥∥∥K

n,1/2
1 δx̄ξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
1 δȳξn+1

∥∥∥
2

} ≤ M{(∆t)2 + h4 +
∥∥ξn+1

∥∥2 + ‖ξn‖2}∆t.

(26)

Similarly, for equation (23) we have
∥∥∥Φ̂1/2

2 ζn+1
∥∥∥

2

−
∥∥∥Φ̂1/2

3 ζn
∥∥∥

2

+ (∆t)2
∥∥∥Φ1/2

2 dtζ
n
∥∥∥

2

+ ∆t
∥∥∥K

n,1/2
3 δx̄ζn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δȳζn+1

∥∥∥
2

} ≤ M{(∆t)2 + h4 +
∥∥ζn+1

∥∥2 + ‖ζn‖2}∆t.

(27)

For error equation (25) we have
∥∥∥Φ1/2

2 ωn+1
∥∥∥

2

−
∥∥∥Φ1/2

2 ωn
∥∥∥

2

+ (∆t)2
∥∥∥Φ1/2

2 dtω
n
∥∥∥

2

+ 2∆t
∥∥∥K

1/2
2 δz̄ω

n+1
∥∥∥

2

≤ 2∆t
N−1∑
i,j=1

{Kn
2,ij,N−1/2δz̄ω

n+1
ij,N · ξn+1

ij −Kn
2,ij,1/2δzω

n+1
ij,O · ζn+1

ij }h2

+M∆t{(∆t)2 + h4 +
∥∥ωn+1

∥∥2}.

(28)

Combining (26)∼(28), summing up 0 ≤ n ≤ L, and noting that ξ0 = ζ0 = ω0 = 0,
we have

{
∥∥∥Φ̂1/2

1 ξL+1
∥∥∥

2

+
∥∥∥Φ̂1/2

3 ζL+1
∥∥∥

2

+
∥∥∥Φ1/2

2 ωL+1
∥∥∥

2

}

+∆t
L∑

n=0
{
∥∥∥Φ̂1/2

1 dtξ
n
∥∥∥

2

+
∥∥∥Φ̂1/2

3 dtζ
n
∥∥∥

2

+
∥∥∥Φ1/2

2 dtω
n
∥∥∥

2

}∆t

+
L∑

n=0
{
∥∥∥K

n,1/2
1 δx̄ξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
1 δȳξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δx̄ζn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δȳζn+1

∥∥∥ +
∥∥∥Φ1/2

2 δz̄ω
n+1

∥∥∥
2

}∆t

≤ M{
L∑

n=0
[
∥∥ξn+1

∥∥2 +
∥∥ζn+1

∥∥2 +
∥∥ωn+1

∥∥2]∆t + (∆t)2 + h4}.

(29)

Applying the discrete Gronwall inequality, we have
∥∥∥Φ̂1/2

1 ξL+1
∥∥∥

2

+
∥∥∥Φ̂1/2

3 ζL+1
∥∥∥

2

+
∥∥∥Φ1/2

2 ωL+1
∥∥∥

2

+∆t
L∑

n=0
{
∥∥∥Φ̂1/2

1 dtξ
n
∥∥∥

2

+
∥∥∥Φ̂1/3

3 dtζ
n
∥∥∥

2

+
∥∥∥Φ1/2

2 dtω
n
∥∥∥

2

}∆t

+
L∑

n=0
{
∥∥∥K

n,1/2
1 δx̄ξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
1 δȳξn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δx̄ζn+1

∥∥∥
2

+
∥∥∥K

n,1/2
3 δȳζn+1

∥∥∥ +
∥∥∥K

n,1/2
2 δz̄ω

n+1
∥∥∥}∆t

≤ M{(∆t)2 + h4}.

(30)
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