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A PSEUDO FUNCTION APPROACH IN RESERVOIR
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Abstract. In this paper we develop a pseudo function approach to obtain rela-

tive permeabilities for the numerical simulation of three-dimensional petroleum

reservoirs. This approach follows the idea of an experimental approach and

combines an analytical solution technique for two-phase flow with a numeri-

cal simulation technique for cross-sectional models of these three-dimensional

reservoirs. The advantages of this pseudo function approach are that the het-

erogeneity of these reservoirs in the vertical direction and various forces such

as capillary and gravitational forces can be taken into account in the derivation

of the relative permeabilities. Moreover, this approach considers more physi-

cal and fluid factors and is more robust and accurate than the experimental

approach. To reservoir engineers, the study of pseudo functions for the cross-

sectional models of different types itself is the study of numerical simulation

sensitivity of displacement processes in reservoirs. From this study they can

understand the reservoir production mechanism and development indices.

Key Words. Reservoir simulation, pseudo function, mechanics of porous

medium flow, cross-sectional model, non-dimensional cumulative production,
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1. Introduction

The derivation of relative permeabilities in laboratory experiments [3] is carried
out on core samples of porous media. The displacement mechanism in such samples
is restricted to homogeneous cores. Moreover, in general, gravitational forces are
ignored, and the magnitude of capillary forces is assumed to be very small. The
relative permeabilities derived under such restricted conditions take into account
only the microscopic heterogeneity of the porous media and viscous forces. If they
were applied to the numerical simulation of a three-dimensional reservoir model,
computational indices would be better than those observed in real situations. For a
three-dimensional reservoir, the depth of each layer in the vertical direction is typ-
ically of the order of 10 m, and the permeability difference between different layers
is of 10 times more. The heterogeneity in permeability can lead to the viscosity
increase in a water-displacing-oil or gas-displacing-oil process; consequently, water
or gas is produced at the very early stage from oil wells, and the amount of water
or gas dramatically increases in these wells. Also, for such a reservoir, the density
difference between the displacing fluid and displaced fluid often leads water and gas
to the bottom and top of oil layers, respectively. Even for a homogeneous reservoir,
the interface between different fluids can be non-homogeneous. In reality, capillary
forces exist. The gravitational and capillary forces have very different influences on
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water and oil layers. The water layers can easily lead to the equilibrium of fluid
motion in the vertical direction, and the layers with a lower water saturation can
suck water from the layers with a higher water saturation under the influence of
the capillary forces. But for the oil layers, the capillary forces offset the gravita-
tional forces in those layers with a lower permeability, and this effect leads water
in the higher permeability layers to the lower permeability layers. These two forces
influence each other. This paper studys how to incorporate these complex forces
(viscous, gravitational, and capillary) into the derivation of relative permeabilities
for a three-dimensional reservoir. By reducing this reservoir to a two-dimensional
cross-sectional reservoir and taking into account these forces in this reduced model,
the relative permeabilities are obtained using the idea of the classical experimental
approach and applied to the numerical simulation of the original three-dimensional
reservoir. The computational development indices for this reservoir can accurately
reflect various displacement mechanism factors in the study of numerical simulation
sensitivity.

The difference between our pseudo function approach and other earlier ap-
proaches [4, 5, 6] lies in the fact that we combine pseudo functions with the sen-
sitivity study by reservoir engineers and we derive these functions by combining
analytical solution and numerical reservoir simulation techniques. The physical
concepts in our approach is clear, its derivation is mathematically rigorous, and it
is applicable to different reservoirs.

The rest of this paper is outlined as follows. In the next section we review the
analytical solution technique. Then, in the third section we describe the derivation
of relative permeabilities. In the fourth section we apply our pseudo function ap-
proach to a reservoir example. Finally, concluding remarks are given in the final
section.

2. Analytical Solution of Two-Phase Flow

For a two-phase (e.g., water and oil) flow problem in a porous medium, Buckley
and Leverett obtained an analytical solution in 1942 [1]. To combine the present
pseudo function approach with an analytical solution approach, in this section we
briefly review the derivation of this analytical solution.

2.1. Two-phase flow. For the flow of two incompressible, immiscible fluids in
a porous medium, the mass balance equation for each of the fluid phases in the
x-direction is

(2.1) φ
∂sw

∂t
+

∂uw

∂x
= 0,

(2.2) φ
∂so

∂t
+

∂uo

∂x
= 0,

where w denotes the water phase, o indicates the oil phase, φ is the porosity of the
medium, and sα and uα are, respectively, the saturation and volumetric velocity of
the α-phase, α = w, o. The volumetric velocities uw and uo are given by the Darcy
law

(2.3) uw = −K
Krw(sw)

µw

∂p

∂x
,

(2.4) uo = −K
Kro(so)

µo

∂p

∂x
,
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where K is the absolute permeability of the porous medium, p is the pressure, and
µα and Krα are the viscosity and relative permeability of the α-phase, respectively,
α = w, o. In addition to (2.1)–(2.4), the customary property for the saturations is

(2.5) sw + so = 1.

The unknowns for the system of equations (2.1)–(2.5) are sα, uα, and p, α = w, o.

2.2. Characteristics. We introduce the phase mobility functions

λα(sα) =
Krα(sα)

µα
, α = w, o,

and the total mobility

λ(sw) = λw(sw) + λo(1− sw).

The fractional flow functions are defined by

fw(sw) =
λw(sw)
λ(sw)

, fo(sw) =
λo(1− sw)

λ(sw)
.

We also define the total velocity

(2.6) u = uw + uo.

By (2.1), (2.2), and (2.5), we see that

(2.7)
∂u

∂x
= 0,

so u is constant in x. Because uw = fw(sw)u, it follows that

(2.8)
∂uw

∂x
= fw

∂u

∂x
+ u

dfw(sw)
dsw

∂sw

∂x
= uFw(sw)

∂sw

∂x
,

where the distribution function of saturation is

Fw(sw) =
dfw(sw)

dsw
.

Now, we substitute (2.8) into (2.1) to see that

(2.9) φ
∂sw

∂t
+ uFw(sw)

∂sw

∂x
= 0.

This equation defines a characteristic x(t) along the interstitial velocity v by

(2.10)
dx

dt
= v(x, t) ≡ uFw(sw)

φ
.

Along this characteristic, it follows from (2.9) that sw is constant. Namely, it holds
that

(2.11)
dsw(x(t), t)

dt
=

∂sw

∂x

dx

dt
+

∂sw

∂t
= 0.
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2.3. Non-dimensional cumulative production. We consider a tube Q in the
x-direction with cross-sectional area A, and we define the cumulative liquid pro-
duction along this tube

(2.12) U(t) = A

∫ t

0

u dt.

From (2.10), along the characteristic x(t) we see that
∫ t

0

dx =
Fw(sw)

φ

∫ t

0

u dt,

so, by (2.12),

(2.13) x(sw, t) =
Fw(sw)

φA
U(t).

The non-dimensional fluid cumulative production is defined by

(2.14) Ū(t) =
U(t)
φAL

,

where L is the length of Q. Let swe be the value of saturation at x = L. Then it
follows from (2.13) and (2.14) that

(2.15) Ū(t) =
1

Fw(swe)
.

Also, we introduce the water cumulative production

(2.16) Uw(t) =
∫ t

tB

fw dU(t) = A

∫ t

tB

uw dt,

where tB is the water break-through time (i.e., the saturation equals the critical
value swc at t = tB) and we used (2.12) and the fact that uw = fw(sw)u. Define
the non-dimensional water cumulative production

(2.17) Ūw =
Uw

φAL
.

It follows from (2.16) and integration by parts that

Ūw =
1

φAL

∫ t

tB

fw dU(t) =
1

φAL

(
fwU −

∫ t

tB

U dfw

)
,

so, by the fact that dfw = Fw dsw, we see that

Ūw =
1

φAL

(
fwU −

∫ t

tB

UFw dsw

)
.

Then we apply (2.15) to obtain

(2.18) Ūw =
fw(swe)
Fw(swe)

− (swe − swc).

Similarly, we define the oil cumulative production

(2.19) Uo(t) =
∫ t

tB

fo dU(t) = A

∫ t

tB

uo dt,

and the corresponding non-dimensional one

(2.20) Ūo =
Uo

φAL
.
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It is easy to see that

(2.21) Ūo =
1− fw(swe)

Fw(swe)
+ (swe − swc),

and

(2.22) Ū = Ūw + Ūo.

3. Derivation of Relative Permeabilities

In an experimental approach, water and oil relative permeabilities are derived
as follows: After the water and oil cumulative productions and the pressure drop
are obtained, the relative permeabilities are found in an inverse fashion from the
derivation of the analytical solution in the previous section. This idea also applies to
the present pseudo function approach. In the approach in this paper, we think of the
computational results from a cross-section model of a three-dimensional reservoir
as the experimental results, and then the derivation of relative permeabilities is
carried out in the same manner.

3.1. The derivation of formulas. We define the mobile resistance ratio

(3.1) r(sw) =
λo(swc)
λ(sw)

,

and we scale the space dimension by

x̄ =
x

L
.

Then we define the non-dimensional resistance ratio

(3.2) R =
∫ 1

0

r(sw) dx̄.

Note that, by (2.13) and (2.15),

dx̄ = Ū dFw,

so (3.2) becomes

(3.3) R =
∫ Fw(swe)

Fw(swc)

rŪ dFw =
1

Fw(swe)

∫ Fw(swe)

Fw(swc)

r dFw;

that is,

(3.4) RFw(swe) =
∫ Fw(swe)

Fw(swc)

r dFw.

Set Fwe = Fw(swe). From (3.4), we see that

(3.5) r =
d(RFwe)

dFwe
.

We also introduce the non-dimensional quantity

(3.6) γ =
Ūo + swc

Ū
.

Substituting (2.15) and (2.12) into (3.6) gives

(3.7) γ = 1− fw + swFwe.

We differentiate γ with respect to Fwe to have
dγ

dFwe
= − dfw

dFwe
+ sw + Fwe

dsw

dFwe
,
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so that, by the definition of Fw,

(3.8)
dγ

dFwe
= sw.

It follows from (3.7) that

(3.9) fw = 1− γ + swFwe.

Now, by the definition of fw and (3.1), we calculate Krw and Kro as follows:

(3.10) Krw(sw) =
µwfw(sw)
µor(sw)

Kro(swc),

(3.11) Kro(sw) =
1− fw(sw)

r(sw)
Kro(swc).

3.2. Steps for calculating Krw and Kro. We now summarize the steps for cal-
culating Krw and Kro. For a cross-sectional model, the computation of production
is performed under a fixed pressure condition. Below Q(t) denotes the instanta-
neous production at time t, and ∆p indicates the pressure drop at the two ends of
a cross-section. Now, the steps for calculating Krw and Kro are as follows:

• Record Uw, Uo, Q, and ∆p at time t;
• Calculate the non-dimensional cumulative production

Ūw =
Uw

φAL
, Ūo =

Uo

φAL
, Ū = Ūw + Ūo;

• Compute the non-dimensional mobile resistance ratio

(3.12) R =
∆p Qi

∆pi Q
,

where ∆pi and Qi are the initial pressure drop and production, respectively;
• Evaluate Fwe and γ by

Fwe =
1
Ū

, γ =
Ūo + swc

Ū
;

• Find the relationship between r, sw and Fwe by

r =
d(RFwe)

dFwe
, sw =

dγ

dFwe
;

• Obtain the relationship between fw and Fwe according to the equation

f(sw) = swFwe + 1− γ;

• Calculate Krw and Kro by

Krw(sw) =
µwfw(sw)
µor(sw)

Kro(swc), Kro(sw) =
1− fw(sw)

r(sw)
Kro(swc).

4. An Application

In the final section we study the pseudo function approach and verify its cor-
rectness by simulating a numerical example of waterflooding.

For the computation of each cross-sectional model, we need to record the follow-
ing quantities:

• the triple (φ,A, L),
• the initial production and pressure drop and the corresponding ones at any

time after the water break-through time, and
• the water and oil cumulative productions.
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We then calculate the water and oil relative permeabilities using the approach
outlined in §3.2.

We compare our pseudo function approach with an experimental approach for
a three-dimensional model which is heterogeneous in the vertical direction and
homogeneous in the horizontal direction. The experimental approach is applied di-
rectly to this model to obtain the relative permeabilities. To apply the pseudo
function approach, we weight-average the absolute vertical permeability of the
three-dimensional reservoir with the depth of each layer as the weight to obtain
a cross-sectional two-dimensional model. Then the pseudo function approach is ap-
plied to this reduced two-dimensional model and is compared with the experimental
approach for the original three-dimensional model.

layer K × 10−3 µm2 swc (frac) pcmax (MPa) pcmin (MPa)
1 10 0.21 0.3730 -0.4636
2 20 0.22 0.2637 -0.3278
3 40 0.23 0.1865 -0.2318
4 70 0.24 0.1409 -0.1752
5 100 0.25 0.1179 -0.1466
6 200 0.26 0.0834 -0.1036
7 400 0.27 0.0589 -0.0733
8 700 0.28 0.0444 -0.0554
9 1,000 0.29 0.0373 -0.0463
10 2,000 0.30 0.0263 -0.0327

Table 1. The distribution of vertical permeabilities.

sw Krw Kro pc (MPa)
0.280 0.0 1 4.4580132E-02
0.305 0.001 0.809 6.9950912E-03
0.3266 0.003 0.707 4.2926008E-03
0.3483 0.006 0.606 2.4362588E-03
0.3699 0.01 0.513 1.0780764E-03
0.3915 0.015 0.421 2.3129978E-05
0.4131 0.021 0.369 -8.3082396E-04
0.5 0.035 0.26 -3.2011603E-03
0.6 0.048 0.15 -5.0774538E-03
0.7 0.065 0.07 -6.8351193E-03
0.8 0.085 0.0 -9.1273598E-03
1.0 0.2 0.0 -5.5419870E-02

Table 2. The relative permeability and capillary pressure data.

ps (MPa) 11.2 9 6 3 0.6
gas solubility 29.5 23.2 14.3 6.98 1.2
µo (mPa.s) 15.5 19.7 26.3 37.6 52.8
oil volume factor (frac) 1.0795 1.0632 1.0415 1.0208 1.0057
oil compressibility (1/MPa) 0.00045 0.00045 0.00045 0.00045 0.00045

Table 3. The oil PVT data.
We now consider a concrete example where there are 10 layers with the per-

meability in the top layer equal to 10 × 10−3 µm2 and in the bottom layer equal
to 2, 000 × 10−3 µm2. Thus this example is highly heterogeneous in the vertical
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direction, and the permeability difference between the top and bottom layers is 200
times more. The permeabilities in other layers are stated in Table 1 where pcmax

and pcmin denote the maximum and minimum values of the capillary pressure (i.e.,
at swc and 1), respectively. Other physical and fluid data are given in Tables 2–4
where ps means the saturated pressure.

item unit Data
NX, NY, NZ 20, 1, 10
Dx m 25
DY m 250
DZ m 1
perforated zone depth m 1,100
temperature C 74
initial pressure MPa 11.2
ps MPa 3
φ frac 0.3
final time year 20
water density g/cm3 1.015
water volume factor 1.022
µw mPa.s 0.42
water compressibility 1/MPa 0.00045
oil density g/cm3 0.972
µo mPa.s 37.6
oil compressibility 1/MPa 0.0003
gas weight 0.5615
oil-water viscosity ratio 89.5
injection-production pressure drop MPa 8

Table 4. The data for the three-dimensional model.
The relative permeabilities obtained by the experimental approach are shown in

Fig. 1 and these functions obtained by the pseudo function approach are displayed
in Fig. 2. The comparison between the oil cumulative productions using these two
approaches is illustrated in Fig. 3, which shows that the productions are almost
identical.

5. Concluding Remarks

In this paper we have developed a pseudo function approach to derive relative
permeabilities for the numerical simulation of three-dimensional reservoirs. This ap-
proach combines an analytical solution technique for a two-phase flow problem and
a numerical simulation technique for cross-sectional models of three-dimensional
reservoirs. It follows the idea of the laboratory experimental approach and takes
into account various complex factors in porous medium flow. The study of this
approach can be combined with the study of numerical simulation sensitivity by
reservoir engineers. Furthermore, the physical concepts in this approach is clear,
its derivation is mathematically rigorous, and it is applicable to different reservoirs.
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