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Abstract. The purpose of mathematical reservoir simulation models in petroleum

applications is to try to optimize the recovery of hydrocarbon from permeable

underground reservoirs. To accomplish this, one must be able to predict the

performance of the reservoir under various production schemes. There are two

essential issues, modeling and software architecture design, while developing a

comprehensive oil reservoir modeling platform that should be an integration

of subsurface models, facility network models and economic models. Effective

subsurface models must be constructed to describe the complex geomechani-

cal, physical, and multiphase fluid flow processes that accompany the various

recovery mechanisms. Upscaling needs to be utilized to provide effective rock

properties for coarse-grid models used for field-scale simulations. However, lo-

calized flow regimes at sub-coarse grid scales must often be resolved using local

grid refinement techniques. Finite volume element methods for accurate reso-

lution of localized geometrics can be coupled with cell-centered finite difference

methods used in many existing simulators. Aspects of coupling different grids,

different discretization schemes, and different physical equations via mortar

techniques will be presented. Reservoir simulation is an integration of various

technologies through the construction of a reservoir model as well as optimiza-

tion of production strategies. A comprehensive oil reservoir modeling platform

should be an integration of different software applications or components and

its software architecture should be scaleable, extendable and should have the

capability to create and modify a workflow. Beyond the traditional three-tier

software architecture, data, application, and user-interface, separation of con-

trol and business logic through those three tiers is proposed to achieve those

goals. The aspect of the software architecture design will be discussed.

Key Words. Eulerian-Lagrangian localized adjoint method, mixed finite ele-

ment method, petroleum reservoir simulation, separation of control and busi-

ness logic, three-tier software architecture

1. Introduction

With rapid advances in information technology and computing power, large-scale
oil reservoir simulations become the routine work in upstream asset development.
The objective of oil reservoir simulation is to understand the complex chemical,
physical, and fluid flow processes occurring in an underground porous medium suf-
ficiently well so as to be able to optimize oil production strategy that is usually
constrained by the volatile oil prices. To do this, one must be able to predict
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the performance of the reservoir under various recovery scenarios. Consequently,
a comprehensive oil reservoir modeling platform that is an integration of subsur-
face, facility network technologies and economics needs to be developed. There
are two essential issues in development of this platform. An integrated model of
reservoir, facility network and economic models must be efficiently constructed to
yield information about complex subsurface phenomena and surface facility net-
work accompanying different recovery scenarios. The software architecture design
of the platform should be extendable to plug-in new software components and be
flexible to create and to modify workflows that address various simulation scenarios.
Among various important physical, mathematical and software development issues,
we focus on the complex subsurface modeling processes and an improved software
architecture design in this paper.

There are four major stages to the subsurface modeling process. First, a physical
model of the flow processes is developed incorporating as much geology, chemistry,
and physics as is deemed necessary to describe the essential phenomena. This
requires the interaction of geologists, geophysicists, chemical and petroleum engi-
neers, etc. Second, a mathematical formulation of the physical model is obtained,
usually involving coupled systems of nonlinear, time-dependent partial differential
equations. The analyses of these systems of differential equations are often quite
complex mathematically. Third, once the properties of the mathematical model,
such as existence, uniqueness, and regularity of the solution, are sufficiently well un-
derstood, a discretized numerical model of the mathematical equations is produced.
A numerical model is determined that has the required properties of accuracy and
stability and which produces solutions representing the basic physical features as
well as possible without introducing spurious phenomena associated with the spe-
cific numerical scheme. Finally, a computer code capable of efficiently performing
the necessary computations for the numerical model is developed. The total mod-
eling process encompasses aspects of each of these four intermediate steps. This
involves the multidisciplinary interaction of a wide variety of scientists. It is rare
to find all of this expertise in one group or at one location. Thus the effective
simulation of these problems should entail collaboration of scientists, often across
disciplines and institutions, to address the enormous complexity of these models.
Finally, the modeling process is not complete with one pass through these four steps.
An optimized subsurface model should be developed by minimizing the difference
between simulation results and field and lab observations by iterations through
those four stages.

A comprehensive oil reservoir modeling platform should provide such a collab-
orative environment to support the multi-disciplinary collaborations. The aspects
involved in the architecture design are three folds, an integrated central data reposi-
tory that extracts, transforms and archives large amounts of incongruous data from
domain specific data sources such as well log data, seismic data, well testing data,
production data, rock and fluid properties, etc. and the flexibility to efficiently
create, to manage and to modify a workflow that addresses various recovery sce-
narios. Beyond the traditional three tier software architecture, data, application
and user-interface, separation of control and business logic through those three tiers
is proposed to effectively and efficiently address those issues.

In this paper, we will discuss and survey some of the advanced numerical tech-
nologies that can be applied to improve the subsurface modeling as well as advanced
software architecture design that allows effective integration of subsurface technolo-
gies. Some simulation results will be presented to illustrate those concepts.
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2. Reservoir Characterization

The processes of both single- and multiphase flow involve convection, or physical
transport, of the fluids through a heterogeneous porous medium. The equations
used to simulate this flow at a macroscopic level are variations of Darcy’s law.
Darcy’s law has been derived via a volume averaging of the Navier-Stokes equations,
which govern flow through the porous medium at a microscopic or pore-volume
level. Reservoirs themselves have scales of heterogeneity ranging from pore-level
to field scale. In the standard averaging process for Darcy’s law, many important
physical phenomena which may eventually govern the macroscopic flow are lost.
We discuss certain techniques that are beginning to address these scaling problems.

Since the velocity variations are influenced at all relevant length scales by the
heterogeneous properties of the reservoir, much work must be done in volume av-
eraging or homogenizing or flow-based upscaling of terms like porosity and perme-
ability. Statistical methods that can be calibrated with existing field observations
have shown promise in this area [4, 18].

Many of the multiphase flow processes are characterized by the chemical and
physical interaction of the fluids. Therefore, diffusive or dispersive mixing of fluids
is sometime critical to the flow processes and should be understood and modeled
accurately. Molecular diffusion is typically quite small. However, hydrodynamic
dispersion, or the mechanical mixing caused by velocity variations and flow through
heterogeneous rock, can be extremely important and should be incorporated in some
way in our models.

The effects of dispersion in various flow processes have been discussed extensively
in the literature. Russell and Wheeler [53] and Young [59] have given excellent
surveys of the influence of dispersion and attempts to incorporate it in present
reservoir simulators. Various terms which affect the length of the dispersive mixing
zone include viscosity and velocity variations and reservoir heterogeneity. The
dispersion tensor has strong velocity dependence [26, 53]. Initial work on correlation
of dispersion coefficients presented with statistical simulations was presented in [36].

3. Model Equations for Porous Media Flow

3.1. Model Equantions. The basic one is the model of multi-phase and multi-
component fluids flow in compressible porous media. The simplified version such as
black oil model can be derived from the multi-phase and multi-component model
by honoring some specific assumptions. The mathematical formulation is based on
the Darcy’s law and mass balance equations as follows (see, e.g., [7]):

(1) uα = −Kkrα

µα
(∇pα − γαg), in Ω,

where ρα is the fluid density, K is the absolute permeability tensor and krα is
relative permeability that is generally a function of phase saturations, µα is the
dynamic fluid viscosity that depends on pressure and temperature, pα is the phase
pressure of multi-phase fluid, and g is the acceleration vector due to gravity. The
subscript α in the equation is referred to various phases, oil, water and gas.

Darcy’s law provides a relation between the volumetric flux in the mass con-
servation equation and the pressure in the fluid. This relation is valid for viscous
dominated flows which occur at relatively low velocities.

Physically, fluid mass should be conserved in terms of component that may
present in phases. It is common in petroleum reservoir simulation to assume that
mass exchange between hydrocarbon phases and water is negligible. Consequently,
the mass balance equation of hydrocarbon component can be derived accordingly:
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(2)
∂(φmi)

∂t
+∇ · (ρouoci

o) +∇ · (ρgugci
g) = F i, i = 1, . . . , Nc, in Ω, t > 0.

(3)
∂(φmw)

∂t
+∇ · (ρwuw) = Fw, i = 1, . . . , Nc, in Ω, t > 0.

Here mi or mw represents the total number of moles of hydrocarbon component i
or water component, ci

o and ci
g are the mole fraction of hydrocarbon component i in

oil and gas phase, respectively, ρo, ρg and ρw are the molar density of oil, gas and
water phase, φ is the porosity of rocks, and Nc is the total number of hydrocarbon
components. F i(i = 1, . . . , Nc, w) represents sink/source terms that should be a
function of different variables in regarding to various well constraints. Under the
assumption that pore volume of porous media is fully filled with fluids, the following
volumetric constraint holds [1, 13, 54]:

(4) ST = Sw + So + Sg = 1.

where Sw, So and Sg are the water, oil and gas saturations.
Assumption of thermodynamic phase equilibrium for a given pressure-volume-

temperature state at every moment is imposed to calculate the phase distribution.
Phase equilibrium is characterized by equalization of chemical potentials of each
component in different phases. Equation (1),(2), and (3) form a coupled system
of nonlinear partial differential equations that is coupled with phase equilibrium
constraints and volumetric constraint (4).

In order to solve such a system, an efficient linearization technique needs to be
applied to solve this system numerically. One of the important issues in linearization
process is the choice of solution unknowns that will result in various compositional
formulations [1, 3, 14, 17, 50, 54]. By the Gibbs phase rule one conclude that
the system is uniquely determined by Nc + 2 extensive variables, which are called
primary variables. Other variables are the functions of the primary variables.

In addition to Equations (1) – (3), initial and boundary conditions are specified.
The flow at injection and production wells is modeled in Equations (2) and (3) via
point or line sources and sinks.

The equations presented above describe multi-phase and multi-component fluid
flow in porous media. However, in order to use these equations effectively, pa-
rameters that describe the rock and fluid properties for the particular reservoir
application must be input into the model. The relative permeabilities, which are
nonlinear functions of water and gas saturations, can be estimated via laboratory
experiments using reservoir cores and resident fluids. However, the permeability
K and the porosity φ are effective values that must be obtained from local prop-
erties via scaling techniques. In addition, the inaccessibility of the reservoir to
measurement of even the local properties increases the difficulties [29, 34, 58].

3.2. Linearization Techniques. Once the primary varibles are chosen, an effec-
tive linearization technique should be proposed to decouple Equaitons (1) – (3).
There are various linearization strategies being discussed [1, 14, 50, 54]. In this
paper, we propose a sequential solution procedure for the linearization with the
choice of primary variables p,mi, (i = 1, . . . , Nc) and Sw. Here p is oil phase pres-
sure, mi is the total number of moles of i hydrocarbon component and Sw is water
saturation.

Notice that the constraint (4) is a function of the primary variables. If one
differentiates the constraint equation (4) with time t and replaces ∂Sw/∂t and
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∂mi/∂t with Equations (2) and (3) incorporated with Darcy’s law (1), one obtains
the following pressure equations [1, 50, 54]:

(5) βT
∂p

∂t
−K

[
Nc∑

i=1

∂ST

∂mi
∇ · (ρoλoc

i
o + ρgλgc

i
g)∇+

∂ST

∂Sw
∇ · (λw∇)

]
p = rp,

where βT is the total compressibility, λα = krα/µα, α = oil, gas, water and the
right-hand-side rp is volumetric discrepancy error [1, 54]. Equaiton (5) is a parabolic
PDE with respect to the pressure p and can be solved by finite difference, finite ele-
ment and finite volume methods. After numerical solution ph is obtained, one com-
putes the numerical phase velocities using Equation (1). Then mi(i = 1, . . . , Nc)
and Sw can be obtained using Equations (2) and (3). In this paper, we will discuss
the numerical solution methods for solving those equations.

4. Mixed Methods for Accurate Velocity Approximations

In reality, the subsurface geology is strongly heterogeneous, the absolute perme-
ability K can be very rough. In this case the exact solution of pressure of Equation
(4) is not neccessarily smooth and so the numerical solution ph might not be ac-
curate. As a result, the numerical Darcy’s velocities uh

o , uh
g and uh

w obtained from
Equation (1) by numerically differentiating ph and multiplying ph by a rough coef-
ficient K are even less accurate. This in turn affects the accuracy of thenumerical
approximations to other primary variables through the substitution of phase veloc-
ities into Equations (2) and (3). While pressure p may be rough, the total velocity
u = uo+ug +uw is usualy smooth. Consequently, we adopt an mixed finite element
method to solve the following system of first-order PDEs for pressure p and total
velocity u [50, 54]:

(6)
dp

dt
+∇ · u = Rp,u + λT K∇p = Ru.

Here λT = λo + λg + λw and the total derivative d/dt is defined:

(7)
d

dt
= βT

∂

∂t
+

Nc∑

i=1

∇∂ST

∂mi
(ρoλoc

i
o + ρgλgc

i
g)∇+∇∂ST

∂Sw
(λw∇),

After total velocity u is obtained from equation (6), the phase velocities can be
computed by:

(8) uα = fαuα + fαK
∑

j 6=α

λj [∇(pcjo − pcαo)− (γj − γα)g∇z],

where the fractional flow functions fα is defined as fα = λα/λT .
In this section, we describe mixed finite element methods for the accurate ap-

proximation of the total velocity u. Among the disadvantages of the conforming
discretizations are the lack of local mass conservation of the numerical model and
some difficulties in computing the phase velocities needed in the transport and sat-
uration equations. The straightforward numerical differentiation is far from being
justifiable in problems formulated in a highly heterogeneous medium with complex
geometry. On the other hand, the mixed finite element method [10] offers an at-
tractive alternative. In fact, this method conserves mass cell by cell and produces a
direct approximation of the two variables of interest—pressure and velocity. Below
we explain briefly the mixed finite element method for the pressure equation.

To describe the mixed method we introduce two Hilbert spaces. Let
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W = L2(Ω), V =
{
ϕ ∈ L2(Ω)3, ∇ ·ϕ ∈ L2(Ω)

}
.

The inner product in L2(Ω) is denoted by (·, ·). For the sake of simplicity, (·, ·) is
also used as the inner product in the product space L2(Ω)3.

The pressure equation is written in the following mixed weak form: for W =
L2(Ω) and V = H(div, Ω), find (p,u) ∈ W × V such that [10]

(9)
(Au,ϕ)− (p,∇ ·ϕ) = (Ru, ϕ), ∀ ϕ ∈ V , t > 0,
(pt, ψ) + (∇ · u, ψ) = (Rp, ψ), ∀ ψ ∈ W, t > 0,

p(0) ∈ L2(Ω) is the given initial pressure.

Here pt = dp/dt, A = (KλT )−1. We note that A is always symmetric and positive
definite which leads to a well defined problem.

We triangulate the domain Ω in tetrahedras with characteristic diameter h.
Next we introduce the finite element spaces Wh ⊂ W and V h ⊂ V of piecewise
polynomials with respect to the triangulation and time discretization tn = n∆t,
n = 0, 1, . . . . The mixed finite element approximation (Pn, V n) ∈ Wh × V h of
(p(tn),u(tn)) ∈ W × V is the solution of the following problem:

(10)

(Anun, ϕh)− (∇ ·ϕh, Pn) = (Rn
uv, ϕh), ∀ ϕh ∈ Vh,

1
∆t

(βn(Pn − Pn−1), ψh) + (∇ · un, ψh) = (Rn
p , ψh), ∀ ψh ∈ Wh,

P 0 ∈ Wh is expressed through given initial data.

This is an implicit Euler approximation of a nonlinear problem which can be solved
by Picard or Newton iterations.

5. Eulerian-Lagrangian Techniques

Sustituting the phase velocities uo, ug and uw obtained from Equation (8) into
Equations (2) and (3) and assuming that water phase and rocks are incompressible,
we rewrite Equations (2) and (3) as follows:

(11) φ
∂mi

∂t
+∇ · (uimi)−∇ · (Di∇mi) = Ri,

and

(12) φ
∂Sw

∂t
+∇ · (ufw(Sw))−∇ · (Dw∇Sw) = Rw.

Here the right-hand-side are given as follows:

(13) Rw = ∇ ·
(

Nc∑

i=1

Di∇mi

)
+ qw, and Ri = ∇ ·




Nc∑

j=1;j 6=i

Dj∇mj


 + qi,

the barycentric velocity is defined as follows:

(14) ui =

[(
mi

o

mi

) (
fo

vo

)
+

(
mi

g

mi

) (
fg

vg

)]
u.

In Equation (11), the convective, hyperbolic part is a linear function of the
velocity. An operator-splitting technique has been developed to solve the purely
hyperbolic part by time stepping along the associated characteristics [23, 35, 51].
The analogue of Equation (11) can be written as follows:
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(15) φ
∂c

∂t
+ u · ∇c−∇ ·D∇c = q .

Here c stands for mi, u for ui and q for Ri. Next, the first and second terms
in Equation (15) are combined to form a directional derivative along what would
be the characteristics for the equation if the tensor D were zero. The resulting
equation is

(16) ∇ · (D∇c) + q = φ
∂c

∂t
+ u · ∇c ≡ φ

∂c

∂τ
.

The system obtained by modifying Equations (1) and (2) in this way is solved
sequentially. An approximation for u is first obtained at time level t = tn from
a solution of Equations (1) and (2) with the fluid viscosity µ evaluated via some
mixing rule at time level tn−1. Equations (1) and (2) can be solved as a mixed finite
element method for a more accurate fluid velocity as in the last section. Let Cn(x)
and Un(x) denote the approximations of c(x, t) and u(x, t), respectively, at time
level t = tn. The directional derivative is then discretized along the “characteristic”
mentioned above as

(17) φ
∂c

∂τ
(x, tn) ≈ φ

Cn(c)− Cn−1(x̄n−1)
∆t

,

where x̄n−1 is defined for an x as

(18) x̄n−1 = x− Un(x)∆t

φ
.

This technique is a discretization back along the “characteristic” generated by the
first-order derivatives from Equation (16). Although the advection-dominance in
the original Equation (16) makes it non-self-adjoint, the form with directional
derivatives is self-adjoint and discretization techniques for self-adjoint equations
can be utilized. This modified method of characteristics can be combined with
either finite difference or finite element spatial discretizations.

In multiphase and multi-component flow, it is common to assume that there is
no mass exchange between water and hydrocarbon components. The advection-
diffusion equaiton for water concentration is highly nonlinear and the equation is
given as follows:

In Equation (12), the convective part is nonlinear. A similar operator-splitting
technique with a focus on splitting the fractional flow function to solve the water
concentration Equation (19) needs reduced time steps because the pure hyperbolic
part may develop shocks. An operator-splitting technique has been developed for
multiphase flows [20, 21, 24, 25] which retains the long time steps in the character-
istic solution without introducing serious discretization errors.

Let S stand for Sw. The operator splitting gives the following set of equations:

(19) φ
∂S̄

∂t
+

d

dS
fm(S̄) · ∇S̄ ≡ φ

d

dτ
S̄ = 0 ,

(20) φ
∂S

∂τ
+∇ · (bm(S)S)− ε∇ · (D(S)∇S) = q(x, t) ,

tm ≤ t ≤ tm+1, together with proper initial and boundary conditions. As noted
earlier, the saturation S is coupled to the pressure/velocity equations, which will
be solved by mixed finite element methods described in the last section.

The splitting of the fractional flow function into two parts: fm(S) + b(S)S, is
constructed [25] such that fm(S) is linear in the shock region, 0 ≤ S ≤ S1 < 1,
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and b(S) ≡ 0 for S1 ≤ S ≤ 1. Further, Equation (19) produces the same unique
physical solution as

(21)
∂S

∂t
+∇ · (fm(S) + b(S)S) = 0

with an entropy condition imposed. This means that, for a fully developed shock,
the characteristic solution of Equation (19) always will produce a unique solution
and, as in the single-phase case, we may use long time steps ∆t without loss of
accuracy.

Unfortunately, the modified method of characteristics techniques described above
generally do not conserve mass. Also, the proper method for treating boundary
conditions in a conservative and accurate manner using these techniques is not
obvious. Recently, M.A. Celia, T.F. Russell, I. Herrera, and the author have devised
Eulerian-Lagrangian localized adjoint methods (ELLAM) [12, 47], a set of schemes
that are defined expressly for conservation of mass properties.

The ELLAM formulation was motivated by localized adjoint methods [11, 46],
which are one form of the optimal test function methods discussed above [5, 21, 25].

We next extend the ELLAM techniques to the nonlinear multiphase flow equa-
tions (see e.g., [19, 20, 21, 22, 28]). We consider the divergence form of the multi-
phase flow equation given by Equation (12) with φ assumed constant in time and
ignoring the gravity term for simplicity:

(22) LS ≡ φ
∂S

∂t
+∇ · (fwu)−∇ ·D∇S = qw, x ∈ Ω, t ∈ J,

(23) (fwu−D∇S) · ν = h, x ∈ ∂Ω, t ∈ J,

where ν is the outward unit normal to the boundary ∂Ω. Let Σ = Ω × J de-
note the space-time domain. Then we obtain a weak formulation of Equation
(22) by integrating against a test function w = w(x, t). This yields a weak form,∫

Σ

(LS)w dxdt =
∫

Σ

qw dxdt. We obtain the specific equation

(24)

∫

Ω

∫

J

φ(Sw)tdtdx +
∫

J

∫

Ω

∇ · (fwu−D∇S)wdtdx +
∫

Σ

D∇S · ∇w dxdt

−
∫

Σ

(φSwt + fwu · ∇w)dxdt =
∫

Σ

qww dxdt.

Then, as in [52], we begin to study the time dependence of the potentially useful test
functions by looking at a semidiscrete scheme on the time interval Jn+1 = [tn, tn+1]
or over the space time region

∑n+1 = Ω × Jn+1. By applying the divergence
theorem to (24), we obtain

(25)

∫

Ω

φS(x, tn+1)w(x, tn+1)dx +
∫

Σn+1
D∇S · ∇w dxdt

+
∫

Jn+1

∫

∂Ω

(fwu−D∇S) · ν wdσdt

−
∫

Σn+1
(φSwt + λwu · ∇w)dxdt

=
∫

Ω

φS(x, tn)w(x, tn)dx +
∫

Σn+1
qww dxdt.

In order to consider the ELLAM formulation from [12] directly, we should look
for solutions of the adjoint to treat the term of the form
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(26)
∫

Σn+1
SL∗w dxdt = 0 .

Since L is not a linear operator, we must perform some linearizations before we
apply the analogue of Equation (26) to treat the fourth term in Equation (25).

Motivated by [24], we define

(27) f̄(S)S ≡





dfw

ds
(S1)S, 0 ≤ S ≤ S1,

(1− r)
(1− S1)

S + c, S1 ≤ S ≤ 1,

where S1 is the top saturation of an established front. This is the piecewise lin-
earization of fw using the top saturation of the established front and its value
fw(S1). Then, we define b(s) by the difference of fw and f̄S. Thus,

(28) fw = f̄(S)S + b(S)S.

For 0 ≤ S ≤ S1, b(S)S is an antidiffusive term causing the fronts to tend to
sharpen. For S1 ≤ S ≤ 1, b(S)S is a diffusive term. Using these definitions, the
fourth term in Equation (25) can be written as

(29)

∫

Σn+1
S

(
φwt +

{
f̄(S) + b(S)

}
u · ∇w

)
dxdt

=
∫

Σn+1
S

(
φwt + f̄u · ∇w

)
dxdt +

∫

Σn+1
Sbu · ∇w dxdt.

We cannot, in general, determine a test function w that satisfies φwt + f̄u ·∇w = 0,
even locally within each small space-time element. However, we will make a choice
of test functions that will make this term small. Analysis of the size of this term
will be presented elsewhere.

By choosing a test function w(x, t) that is constant in time along the charac-
teristics that define the moving Lagrangian frame of reference, we can make the
first term in Equation (29) small. If the test function were a standard chapeau
basis function in the x-direction, it would also make second term in Equation (25)
small. This would be an effective test function if the second term on the right
side of Equation (29) were zero or were small. However, in many multiphase flow
problems, the b(S)u term is not small and the use of characteristics has not sym-
metrized the form which is analagous to the form in Equation (25). As above, the
use of an upwinded form of the test function for constant x will efficiently treat the
b term from Equation (29) together with the D term from Equation (25).

We thus arrive at a choice of w(x, t) which is constant along the characteristics
determined by the directional derivative along τ with f̄ defined in Equation (27).
Using these test functions, our approximation scheme can be defined in the interior
of the region on prisms as in [52]. Also see [52] for treatments at the boundaries of
domain.

Recently ELLAM techniques have been extended to a wide variety of applications
[57, 50, 22, 38, 39, 40, 41, 42, 43, 55, 56]. Optimal order error estimates have
been developed for advection [39], advection-diffusion [42, 56], advection-reaction
[22, 38, 39, 40, 41, 42], and advection-diffusion-reaction [40, 55] systems.
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6. Software Architecture

Software Architecture is critical in high performance computation in petroleum
applications and it is even more critical in building an integrated petroleum appli-
cation platforms. Software architecture is defined as the structure or structures of
the programming system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them [2]. Over the past
decades, software architecture has received tremendous attention as an essential
field of study in software and its applications. In this section, we review impor-
tant milestone software architectures and their practical applications. We will then
propose a new innovative architecture and discuss its application in reservoir sim-
ulations.

6.1. Evolution of Software Architecture. At the very beginning of the soft-
ware development (say between 1950s and 1970s), the software architecture was
one-tier. That is, the developers and users concentrated on the input and output
behavior of a program, ignored the internal structure of the software, and treated
the entire program as one black box. This model worked for small programs and
mainframe computers where all the control functions were centralized and multi-
ple users accessed a computer by terminals. One fatal limitation of the one-tier
architecture is that it is not able to easily support programs that are distributed
in multiple hosts. In the middle of 1980s, as the development of computer network
and distributed computing systems, two-tier software architecture was developed.
The two-tier architecture usually consists of multiple clients and one server. Clients
and server usually reside at different hosts and coordinately provide the function-
ality of the application. On the client site, functions such as session, text input,
dialog, and display management are usually implemented. The data management
functionality is typically realized at server site. The two-tier architecture improves
usability, flexibility and scalability as compared to one-tier one. For example, a sys-
tem with two-tier architecture can easily accommodate hundreds of users (clients)
to access a service (server). Many of the web systems today are two-tier based. Nev-
ertheless, the two-tier architecture has its own limitations. The interoperability is
limited since the implementation of business logic relies on specific data manage-
ment systems. When there is need to interoperate with more than one type of data
management systems, the application has to be rewritten. The two-tier architec-
ture is also restricted in its maintainability. As part of application logic resides
on client, every upgrade or modification must be delivered, installed and tested on
each client, increasing workload and costs. Three-tier architecture emerged in the
1990s to overcome the limitations of the two-tier architecture. A third tier (middle
tier server) is added between the user interface (client) and the data management
(server) components. This middle tier provides process management where rules
and business logic are executed and can service more than 100 users with func-
tions such as application execution, queuing and database staging. The three-tier
software architecture is most appropriate in an effective distributed client/server en-
vironment. Compared to the two-tier, the three-tier architecture provides increased
performance, flexibility, maintainability, reusability and scalability while hiding the
complexity of distributed processing from the user. Due to these characteristics,
the three-tier architecture is a popular choice for network-centric information sys-
tems and Internet applications. However, as the size and complexity of the software
system grow, the three-tier architecture needs also to be improved as we discuss in
the next section.
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6.2. Basics of New 2x3 Architecture. For many large and complex software
systems, the thee-tier architecture seems to be insufficient. For example, these soft-
ware systems often require dynamically integration and configuration of multiple
heterogeneous applications, and meanwhile handling huge data sets which might
be dispersed geographically in different sites. The current available software ar-
chitectures, such as two-tier, three-tier, cannot meet these requirements because
they either mix-up the interface, data sources with application algorithms; or they
hardwire the system control with payload data processing. These observations are
validated via development of systems such as Virtual Network Laboratory [48],
regional data center, reservoir simulation system, etc. We believe that the key
issue is separation of control and payload processing. Here, terms “control” and
“payload” are borrowed from the field of network communication. Most if not all
communication protocols, which are proven to be very successful in the end, have
clear separation of controlling processing and payload process. Such separation is
essential since it distinguishes “how to do” (control) from “what to do” (payload).
Under many circumstances, the payload process, i.e., the logics for solving a specific
problem is well understood and developed independently. Control process is often
applied to a number available payload processing logics so that a high level problem
can be tackled. The separation of control from logic allows changes on control side
without the need to change any payload processing logic, and vice versa. In this
way, not only are the development and maintenance costs reduced greatly for large
and complex software, the flexibility in run-time process change is no longer beyond
the possibilities. Based on the principle of control and payload separation, we pro-
pose a scheme called 2x3 architecture in which there are two planes: control plan
and logic plane. With each plane, there are three tiers, namely interface, business
logic, and databases.

Figure 1. The New 2x3 Software Architecture

Our new 2x3 architecture should be able to offer explicit benefits by control and
payload separation. Specifically, this architecture allows to

(1) Shortened development cycle and reduced development costs. The 2x3 ar-
chitecture allows the developer to modify the control process without the
need to change the underlying process logics. A new control process may
correspond to a new solution to a certain problem. On the other hand, the
developers are allowed to update any constituent process logics while the
high level control process remains unchanged as long as the interface be-
tween the control and logic are kept same. The separation of control from
logic let these two parts being taken care of by different groups, thus greatly
shortening the software’s time-to-shelf and cutting down the involved de-
velopment costs.
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(2) Provide better maintainability. The new 2x3 architecture offers better
maintainability since the maintenance workload is separated into the two
planes automatically. Moreover, people with domain specific expertise
knowledge are allowed to take part in the software maintenance cycle and
give domain specific supervision. This is especially true in a large integrated
software system where system components are from different domains and
dealing with vast different data sources. Some high level expertise need be
introduced to monitor the overall control process so that the integration
can be accomplished in the least effort and shortest time period.

(3) Improve system reliability. The software reliability is also improved with
the 2x3 architecture being enforced. The system errors can be quarantined
into different planes and different tiers, and are easier to be identified within
the integral software framework.

(4) Increase run-time efficient. The separation of control from logic in the 2x3
architecture also enables run-time process adjustments that are beyond the
possibilities of current architectures. It can also be expected that some use-
ful software debugging and testing could be produced and deployed easily
within such an architectural framework.

(5) Enhance Reusability. The reusability is enhanced by being possible in both
planes: control process and logic process. On the one hand, a single control
process, once being set up and verified, can be applied to different sets of
logic processes; on the other hand, a single logic process can be incorporated
into different control scenarios. Therefore both the control processes and
logic processes are reusable with little efforts.

6.3. Application of 2x3 Architecture. At Texas A&M University, we have de-
veloped tools and reference systems that allow us to fully leverage the benefits of
2x3 architectures in developing large and complex software systems. Here we de-
scribe a reservoir simulation system which is developed by this new methodology.
The payload part of the reservoir simulation system consists of multiple applica-
tion modules which are dynamically configured and integrated under the instruction
from the control plane. In our system, workflow is defined as a process that realizes
the execution of such integrated multiple applications. As such, our control con-
sists of workflow editor and verifier and workflow execution engine. For detailed
description of these components, see [49].
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