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L2-NORM ERROR BOUNDS OF CHARACTERISTICS
COLLOCATION METHOD FOR COMPRESSIBLE
MISCIBLE DISPLACEMENT IN POROUS MEDIA

NING MA, DANPING YANG AND TONGCHAO LU

Abstract. A nonlinear parabolic system is derived to describe compressible

miscible displacement in a porous medium in non-periodic space. The concen-

tration is treated by a characteristics collocation method, while the pressure is

treated by a finite element collocation method. Optimal order estimates in L2

is derived.

Key Words. compressible miscible displacement; characteristics line; colloca-

tion scheme; error estimate.

1. Introduction

The mathematical controlling model for compressible flow in porous media is
given by

(a) d(c)
∂p

∂t
+∇ · u = d(c)

∂p

∂t
−∇ · (a(c)∇p) = q, (x, y) ∈ Ω, t ∈ (0, T ]

(b) φ
∂c

∂t
+ b(c)

∂p

∂t
+ u · ∇c−∇ · (D∇c) = (c̄− c)q, (x, y) ∈ Ω, t ∈ (0, T ]

(1)

where c = c1 = 1− c2, a(c) = a(x, y, c) = k(x, y)/µ(c),

b(c) = b(x, y, c) = φ(x, y)c1{z1 −
2∑

j=1

zjcj}, d(c) = d(x, y, c) = φ(x, y)
2∑

j=1

zjcj .

ci denote the concentration of the ith component of the fluid mixture, and zi is
the ”constant compressibility” factor [1] for the ith component. The model is a
nonlinear coupled system of two partial differential equations. Let Ω = (0, 1)×(0, 1)
with the boundary ∂Ω, p(x, y, t) is the pressure in the mixture,u is the Darcy
velocity of the fluid, and c(x, y, t) is the relative concentration of the injected fluid.
k(x, y) and φ(x, y) are the permeability and the porosity of porous media, µ(c) is
the viscosity of fluid, D(x, y) is molecular dissipation coefficient, q and c̄(t) etc. are
just like the definition of [1,2].
We shall assume that no flow occurs across the boundary

(a) u · ν = 0 on ∂Ω,

(b) D∇c · ν = 0 on ∂Ω,
(2)
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where ν is the outer normal to ∂Ω, and the initial conditions
(a) p(x, y, 0) = p0(x, y), (x, y) ∈ Ω,

(b) c(x, y, 0) = c0(x, y), (x, y) ∈ Ω.
(3)

The collocation methods are widely used for solving practice problems in engi-
neering due to its easiness of implementation and high-order accuracy. But the most
parts of mathematical theory focused on one-dimensional or two-dimensional con-
stant coefficient problems [3-6]. In 1990’s the collocation method of two-dimensional
variable coefficients elliptic problems is given in [7].

The mathematical controlling model for compressible flow in porous media is
strongly nonlinear coupling system of partial differential equations of two different
types. Nonlinear terms introduce many difficulties for convergence analysis of algo-
rithms. In the present article, we use different collocation technique to treat equa-
tions of different types, usual collocation method to solve the equation for pressure
and characteristic collocation scheme to approximate the equation for concentra-
tion. We develop some technique to analyze convergence of collocation algorithm
for this strongly nonlinear system and prove the optimal order L2 error estimate.
And we shall assume the coefficients a(c), D(x, y), φ(x, y), d(c), b(c) to be bounded
above and below by positive constants independently of c as well as being smooth.

The organization of the rest of the paper is as follows. In Section 2, we will
present the formulation of the characteristic collocation scheme for nonlinear system
(1). In section 3, we will analyze convergent rate of the scheme defined in section
2. Throughout, the symbols K and ε will denote, respectively, a generic constant
and a generic small positive constant.

2. Fully Discrete Characteristic Collocation Scheme

In this section, we will give some basic notations and definition for collocation
methods, which will be used in this article. Then we will present the fully discrete
characteristic collocation scheme for nonlinear system (1).

2.1. Notations and definition for collocation methods.
We make the partition of the domain Ω, which is quasi-uniform and equally

spaced rectangular grid. The grid points are (xi, yj), i = 0, 1 · · ·Nx; j = 0, 1 · · ·Ny.
Let

δx : 0 = x0 < x1 < · · · < xNx = 1, δy : 0 = y0 < y1 < · · · < yNy = 1

be the grid points along x-direction and y-direction respectively, and

hx = xi − xi−1, hy = yj − yj−1, h = max{hx, hy}
be grid size along x-direction and y-direction and maximum size of partition re-
spectively. Introduce the following notations:

Ωij = (xi−1, xi)× (yj−1, yj), I = [0, 1]

Ii
x = [xi−1, xi], Ij

y = [yj−1, yj ],
for i = 1, 2 · · ·Nx and j = 1, 2 · · ·Ny. Define function spaces as follows:

M1(3, δx) = {v ∈ C1(I)| v ∈ P3(Ii
x), i = 1 · · ·Nx},

M1(3, δy) = {v ∈ C1(I)| v ∈ P3(Ij
y), j = 1 · · ·Ny},

where P3 denotes the set of polynomials of degree ≤ 3, and

M1,P (3, δx) = {v ∈M1(3, δx) : v(0) = v(1) = 0},
M1,P (3, δy) = {v ∈M1(3, δy) : v(0) = v(1) = 0},
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then let m1(3, δ) and m1,P (3, δ) be the spaces of piecewise Hermite bicubics defined
by

M1(3, δ) = M1(3, δx)
⊗

M1(3, δy),

and
M1,P (3, δ) = M1,P (3, δx)

⊗
M1,p(3, δy).

Next, we take four Gauss points as collocation points in Ωij : (ξx
ik, ξy

jl), k, l = 1, 2,

ξx
ik = xi−1 + hxξk, ξy

jl = yj−1 + hyξl,

where
ξ1 = (3−

√
3)/6, ξ2 = (3 +

√
3)/6.

Let T3,δx
and T3,δy

be the interpolation operators of piecewise Hermite bicubics
of M1(3, δx) in x and M1(3, δy) in y, respectively, and T3,δ be the interpolation
operator of piecewise Hermite bicubics in m1(3, δ) on Ω, which may be defined by

T3,δv = T3,δx
T3,δy

v = T3,δy
T3,δx

v,

for sufficiently smooth function v.
Introduce the following summation notation:

< u, v >=
Nx∑

i=1

Ny∑

j=1

< u, v >ij=
Nx∑

i=1

Ny∑

j=1

1
4
hxhy

2∑

k,l=1

(uv)(ξx
ik, ξy

jl),

< u, v >x=
Nx∑

i=1

< u, v >ix=
Nx∑

i=1

hx

2

2∑

k=1

(uv)(ξx
ik),

< u, v >y=
Ny∑

j=1

< u, v >jy=
Ny∑

j=1

hy

2

2∑

l=1

(uv)(ξy
jl),

< u, v >=< < u, v >x, 1 >y=< < u, v >y, 1 >x, < u, u >= |‖u‖|2,
and discrete norms

‖|u‖|2H1
0 (Ω) =

∫ 1

0

< Dux, ux >y dx +
∫ 1

0

< Duy, uy >x dy, ∀u ∈M1(3, δ),

and

‖|u‖|2E =
∫ 1

0

< ux, ux >y dx +
∫ 1

0

< uy, uy >x dy, ∀u ∈M1(3, δ).

2.2. Fully discrete CCS.
At first time can be discretized 0 = t0 < t1 < · · · < tn = T, 4t = tn−tn−1. We

consider the concentration equation, let ψ = [φ2 +u2
1 +u2

2]
1
2 , and the characteristic

direction associated with the operator φct + u · ∇c is denoted by τ(x, y), hence

ψ
∂c

∂τ
= φ

∂c

∂t
+ u · ∇c.

The equation (1)(b) can be put in the form

(4) ψ
∂c

∂τ
+ b(c)

∂p

∂t
−∇ · (D∇c) = (c̄− c)q, (x, y) ∈ Ω, t ∈ (0, T ].

For (4), we use a backward difference quotient for ∂c/∂τ along the characteristic
line

(5) ψ
∂cn

∂τ
≈ ψ

cn(x, y)− cn−1(x̆, y̆)
4t[1 + |u|2/φ2]

1
2

= φ
cn − c̆n−1

4t
,
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where
f̆n = f(x̆n, y̆n, tn), fn = f(tn),

with
x̆n−1 = x− un

1

φ
4t, y̆n−1 = y − un

2

φ
4t.

Then, we have the following discrete equation

φ
cn
h − c̆n−1

h

4t
+ b(cn−1

h )
Pn − Pn−1

4t
−∇ · (D∇cn

h)

− (c̄n−1 − cn−1
h )q = 0, n = 1, 2 · · · .

(6)

Now by using the interpolation operator T3,δ and the Gauss points { (ξx
ik, ξy

jl),
1 ≤ i ≤ Nx; 1 ≤ j ≤ Ny; k, l = 1, 2}, we give the fully discrete characteristic
collocation scheme:

Characteristic Collocation Scheme: If (Cn−1, Pn−1) has been known at
t = tn−1, at t = tn the (Cn, Pn) should be

(a) C0 = T3,δc0(x, y), P 0 = T3,δp0(x, y),

(b) { d(Cn−1)
Pn − Pn−1

4t
−∇ · (a(Cn−1)∇Pn)− q }(ξx

ik, ξy
jl) = 0,

(c) { φ
Cn − Ĉn−1

4t
+ b(Cn−1)

Pn − Pn−1

4t
−∇ · (D∇Cn)

− (C̄n−1 − Cn−1)q }(ξx
ik, ξy

jl) = 0,

(d)
∂Cn

∂ν

∣∣∣∣
∂Ω

= 0

(7)

where
f̂n = f(x̂n, ŷn, tn), fn = f(tn)

and

(8) Un−1 = −a(Cn−1)∇Pn−1

with
x̂n−1 = x− Un

1

φ
4t, ŷn−1 = y − Un

2

φ
4t,

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, k, l = 1, 2 and n,m ≥ 0, computed in the order: at
first Pn can been computed from (7)(b), then from (8) and (7)(c) we can obtain Cn.

When x̂ is through the boundary ∂Ω, we
will do continuation according to specular re-
flection method, namely when x̂ is outside Ω,
we do the normal from x̂ to ∂Ω, and the nor-
mal intersects ∂Ω at Y . Then we do inner
normal at Y , and we choose point ẍ so as
to |x̂Y | = |ẍY |, and the value of c(ẍ) re-
places the one of c(x̂), in this way c and
C etc. functions are certain meaning. Be-
cause c satisfies (2)(b), the continuation is
right[10].

In next section, we will analyze existence and convergence of the solution of the
characteristic collocation scheme.
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3. Convergence Analysis

In this section, we first analyze the existence of the solution of the characteristic
collocation scheme, and then analyze convergence. We assume that
(R) c ∈ L∞(H6)

⋂
L∞(W 2

∞)
⋂

H1(W 2
∞)

⋂
H2(H1)

p ∈ L∞(H6)
⋂

H1(H6)
⋂

L∞(W 1
∞)

⋂
H2(H1).

3.1. Preliminary results.
We list some basic results in [3,8].
Lemma 3.1 . Let e = v − T3,δxv, then there exists constant K > 0 such that

(1) < e(l), e(l) >x ≤ Kh
2(4−l)
x ·

Nx∑

i=1

∫ xi

xi−1

∑

α≤4

(
∂αv

∂xα
)2dx, l = 0, 1

(2) < exx, exx >x ≤ Kh6
x ·

Nx∑

i=1

∫ xi

xi−1

∑

α≤5

(
∂αv

∂xα
)2dx

(3) | < ex, 1 >x |2 ≤ Kh9
x ·

Nx∑

i=1

∫ xi

xi−1

∑

α≤5

(
∂αv

∂xα
)2dx

(4) | < exx, 1 >x |2 ≤ Kh9
x ·

Nx∑

i=1

∫ xi

xi−1

∑

α≤6

(
∂αv

∂xα
)2dx.

There is the same conclusions in y direction.
Lemma 3.2 There exists constant K ≥ 0 such that for sufficiently smooth func-

tion v

‖v − T3,δv‖L2(Ω) ≤ Kh4(
Nx∑

i=1

Ny∑

j=1

‖v(4)‖L2(Ωij))
1
2 ,

‖vt − T3,δvt‖L2(Ω) ≤ Kh4(
Nx∑

i=1

Ny∑

j=1

‖v(4)
t ‖L2(Ωij))

1
2 .

The following conclusions are proved in [3,5].
Lemma 3.3 For any v ∈M1(3, δ), if we have

v(ξx
ik, 0) = v(ξx

ik, 1) = v(0, ξy
jl) = v(1, ξy

jl) = v(0, 0) = v(0, 1) = v(1, 0)

= v(1, 1) = v(ξx
ik, ξy

jl) = 0,

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and k, l = 1, 2, then v = 0.
Lemma 3.4 For any v ∈M1,P (3, δ),there exists constant K > 0 such that

‖|v‖|2E ≤ − < 4v, v > ≤ K|‖v‖|2E .

Lemma 3.5 Assume that the inverse supposition for m1(3, δ) holds [9], then
exists constant K > 0 such that for any v ∈M1(3, δ)

‖v‖2H1(Ω) ≤ K { < v, v > + |‖v‖|2H1
0 (Ω) }.

Lemma 3.6 Assume that v ∈M1(3, δ) holds, there exists constant K1 ≥ 0 and
K2 ≥ 0 such that

‖v‖L2(Ω) ≤ |‖v‖| ≤ K1 ‖v‖L2(Ω), ‖v‖L∞(Ω) ≤ K2h
−1 ‖v‖L2(Ω).

Proof. We may see 2.2 and 2.4 in [4].
Lemma 3.7. Assume that D(x, y) is sufficiently smooth. There exists constants

0 < K∗ ≤ K∗ such that for each v ∈M1,P (3, δ)

K∗ < −4v, v > ≤ − < ∇ · (D∇v), v > ≤ K∗ < −4v, v > .
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Proof. The Peano representation of the remainder in the two-point Gauss-
Legendre quadrature and Leibnitz’s formula, (see Theorem 4.2 in [7]), reads

< − ∂

∂x
(D

∂v

∂x
)(·, ηjl), v(·, ηjl) >x= I1(D, v, ηjl) + I2(D, v, ηjl),

where

I1(D, v, ηjl) =
∫ 1

0

[D(
∂v

∂x
)2](x, ηjl)dx

+ 4
Nx∑

k=1

(hx)4
∫

Ix
k

[D(
∂3v

∂x3
)2](x, ηjl)K(

x− xk−1

hx
)dx

= I3(D, v, ηjl) + I4(D, v, ηjl),

and

I2(D, v, ηjl) =
5∑

l=1

∑
i+j=6−l

0≤i,j≤3

αl
i,j

Nx∑

k=1

(hx)4 ×
∫

Ix
k

[
∂lD

∂xl

∂iv

∂xi

∂jv

∂xj
](x, ηjl)K(

x− xk−1

hx
)dx,

the constant αl
ij are independent of h and symmetrical αl

ij = αl
ji, and

0 ≤ K(β) =
1
24
{ (1− β)4 − 2[(ξ1 − β)3+ + (ξ2 − β)3+] } ≤ K, β ∈ [0, 1].

Since I2(1, v, ηjl) = 0, we see that

D∗ < −∂2v

∂x2
(·, ηjl), v(·, ηjl) >x ≤ I1(D, v, ηjl), D∗ ∈ min

(x,y)∈Ω̄
D(x, y).

On the other hand, the Cauchy-Schwarz inequality in L2(Ix
k ) give

|I2(D, v, ηjl)| ≤ KKx
1

5∑

l=1

∑
i+j=6−l

0≤i,j≤3

Nx∑

k=1

(hx)4‖∂iv

∂xi
(·, ηjl)‖L2(Ix

k )‖
∂jv

∂xj
(·, ηjl)‖L2(Ix

k ),

where

Kx
1 = max

1≤l≤5
max

(x,y)∈Ω̄
|∂

lD

∂xl
(x, y)|.

Hence, by using the inverse inequality

‖u(i)‖L2(Ix
k ) ≤ Khl−i

x ‖u(l)‖L2(Ix
k ), 0 ≤ l ≤ i ≤ 3 , u ∈ P3,

with l = 1, 2 ≤ i ≤ 3, the Cauchy-Schwarz inequality in RNx , and the Poincáre
inequality ‖u‖L2(0,1) ≤ K‖u′‖L2(0,1), for u ∈ m1,P (3, δx), we get

|I2(D, v, ηjl)| ≤ KKx
1 hx‖∂v

∂x
(·, ηjl)‖2L2(0,1)

and

|I4(D, v, ηjl)| ≤ KD∗‖∂v

∂x
(·, ηjl)‖2L2(0,1), D∗ = max

(x,y)∈Ω̄
D(x, y).

Further, lemma 3.3 of [3] implies that

|I2| ≤ KKx
1 hx < −∂2v

∂x2
(·, ηjl), v(·, ηjl) >x

and

|I4| ≤ KD∗ < −∂2v

∂x2
(·, ηjl), v(·, ηjl) >x .
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Putting above estimates together, we have

(D∗ −KKx
1 hx) < −4v, v > ≤< − ∂

∂x
(D

∂v

∂x
), v >

≤ (D∗ + KKx
1 hx + KD∗) < −4v, v > .

For < − ∂

∂y
(D

∂v

∂y
), v > has the similar estimate. Let

K1 = max
1≤l≤5

max
(x,y)∈Ω̄

{ |∂
lD

∂xl
(x, y)|, |∂

lD

∂yl
(x, y)| }

and
K∗ = 2(D∗ −KK1h) K∗ = 2(D∗ + KK1h + KD∗).

For sufficient small h, K∗ and K∗ are positive. The lemma is proved.
Lemma 3.8 Under the same conditions as in lemma 3.7, there exists constant

0 < C∗ ≤ C∗ such that

C∗|‖v‖|2H1
0 (Ω) ≤ < −∇ · (D∇v), v > ≤ C∗ |‖v‖|2H1

0 (Ω), ∀v ∈M1,P (3, δ).

Proof. Since 2.1 section and the condition of D(x, y) satisfied, we obtain

D∗|‖v‖|2E ≤ |‖v‖|2H1
0 (Ω) ≤ D∗|‖v‖|2E , v ∈M1,P (3, δ)

Since lemma 3.4 and lemma 3.7, we have
K∗
D∗ |‖v‖|2H1

0 (Ω) ≤ K∗|‖v‖|2E ≤ K∗ < −4v, v >

≤ − < ∇ · (D∇v), v >≤ K∗ < −4v, v >

≤ K∗K|‖v‖|2E ≤ K∗K
D∗

|‖v‖|2H1
0 (Ω), v ∈M1,P (3, δ)

Let C∗ =
K∗
D∗ , C∗ =

K∗K
D∗

, the proof is completed.

3.2. Existence of the solution of CCS.
In this section we consider the existence and uniqueness of the numerical solution.

(7)(b)(c) can be rewritten as the discrete Galerkin method given by

(a) < d(Cn−1)
Pn − Pn−1

4t
−∇ · (a(Cn−1)∇Pn)− q, χ >= 0,

∀χ ∈M1,P (3, δ)

(b) < φ
Cn − Ĉn−1

4t
+ b(Cn−1)

Pn − Pn−1

4t
−∇ · (D∇Cn)

− (C̄n−1 − Cn−1)q, Z >= 0, ∀Z ∈M1,P (3, δ).

(9)

We only discuss the pressure equation, and the concentration equation is similar.
It is clear that any solution of (7)(b) is a solution of (9)(a). Thus, it is sufficient
to prove existence for (7)(b) and uniqueness for (9)(a) (lemma 4.1 of [3]). For
sufficiently small 4t, existence for (7)(b) follows from lemma 3.3, since it implies
that matrix generated by the time derivative term is nonsingular for any choice of
the basis for m1,P (3, δ), and uniqueness for solutions of (9)(a) also is implies by
lemma 3.3, since the matrix generated by time-derivative term in (9)(a) must be
nonsingular since d(c) is bounded below by a positive constant.

So CCS(7) and the discrete Galerkin method (9) each possess a unique solution
for 0 < t ≤ T ; moreover, these solutions are identical if the processes are started
from the same initial values.
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3.3. Error estimate.
In this section, we will obtain the optimal L2-norm error estimate.
Theorem 3.1. Suppose (R) and r = 3 hold, and 4t = o(h), then there exists a

constant K = K(Ω, a∗, b∗, d∗, φ∗, D∗, · · · ,K∗, K1,K2) such that, for h sufficiently
small,

max
0≤n≤[ T

4t ]
‖ cn − Cn ‖2 +

T/4t∑
n=0

‖ pn − Pn ‖2 4t ≤ K(4t2 + h8).

Proof. Let

c̃ = T3,δc, ζ = c− c̃, ξ = c̃− C, p̃ = T3,δp, η = p− p̃, π = p̃− P.

We first consider the pressure equation. Subtracting (9)(a) from the Galerkin
method of (1)(a), we obtain

< d(Cn−1)dtπ
n, χ > − < ∇ · (a(Cn−1)∇πn), χ >

=< [ d(Cn−1)− d(cn) ]dtp̃
n, χ > − < d(cn)dtη

n, χ >

+ < d(cn)(dtp
n − ∂pn

∂t
), χ > + < ∇ · (a(cn)∇ηn), χ >

+ < ∇ · [ (a(cn)− a(Cn−1))∇p̃n ], χ >, ∀χ ∈M1,P (3, δ)

(10)

where dtf
n =

fn − fn−1

4t
, and choosing the test function χ = πn in (10), and the

right terms can be denoted by T ′i , i = 1, 2 · · · 5 in turn. Then by lemma 3.1, lemma
3.2 and lemma 3.6, we have

|T ′1| =< [ d(Cn−1)− d(cn−1) + d(cn−1)− d(cn) ]dtp̃
n, πn >

=< [
∂d

∂c
(c1)(Cn−1 − cn−1) +

∂d

∂c
(c2)(cn−1 − cn) ]dtp̃

n, πn >

≤ K(|||ζn−1|||+ |||ξn−1|||+ |||cn−1 − cn|||) sup
n
|dtp̃

n| · |||πn|||

≤ K(h8 +4t2 + ||ξn−1||2) + ε||πn||2.

(11)

And

|T ′2| ≤ | < d(cn)
ηn − ηn−1

4t
, πn > |

≤ K|||ηt|||2 + ε|||πn||| ≤ Kh8||pt||2H4 + ε||πn||2,
(12)

where using lemma 3.1, lemma 3.2, lemma 3.6.
For T ′3, we can get from the standard backward-difference error equation or

Taylor expansion[10]

|T ′3| ≤ | < d(cn)(
pn − pn−1

4t
− ∂pn

∂t
), πn >≤ K(4t)2 + ε||πn||2.(13)

To obtain T ′4, we have the following conclusion. ξn, ζn are defined as the above,
such that for ε sufficiently small

< (Dζn
x )x, ξn >x | ≤ ε{(ξn

x , ξn
x )x+ < ξn, ξn >x}

+ K h8
x

Nx∑

i=1

∫ xi

xi−1

∑

α≤6

(
∂αcn

∂xα
)2dx.

(14)
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Because we let ξ̌n
i = h−1

x < ξn, 1 >i, by the definition of section 2.1 we obtain

< ξn, 1 >2
i =

h2
x

4
{ξn(ξx

i1) + ξn(ξx
i2)}2 ≤ K

h2
x

4
{(ξn(ξx

i1))
2 + (ξn(ξx

i2))
2}

= K
hx

2
{hx

2
[(ξn(ξx

i1))
2 + (ξn(ξx

i2))
2]}

≤ Khx < ξn, ξn >i= Khx|‖ξn‖|2i .
Thus

(15) |ξ̌n
i | ≤ Kh

− 1
2

x |‖ξn‖|i
And

(16) < (Dζn
x )x, ξn >x=< Dxζn

x , ξn >x + < Dζn
xx, ξn >x .

We estimate the first term of the right-side of (16)

| < Dxζn
x , ξn >i | ≤ | < Dxζn

x , ξn − ξ̌n
i >i |+ | < Dxζn

x , ξ̌n
i >i |

= S1 + S2.

By lemma 3.1 , Poincáre inequality [3], we obtain

|S1| ≤ K max{|Dx(ξx
i1)|, |Dx(ξx

i2)|} |‖ζn
x ‖|i · |‖ξn − ξ̌n

i ‖|i
≤ K max{|Dx(ξx

i1)|, |Dx(ξx
i2)|}h4

x (
∫ xi

xi−1

∑

α≤4

(
∂αcn

∂xα
)2dx)

1
2 · ‖ξn

x‖L2(Ii)

≤ ε(ξn
x , ξn

x )i + K · h8
x ·

∫ xi

xi−1

∑

α≤4

(
∂αcn

∂xα
)2dx.

(17)

By lemma 3.1 and (15) , we obtain

|S2| ≤ K max{|Dx(ξx
i1)|, |Dx(ξx

i2)|} | < ζn
x , 1 >i | · |ξ̌n

i |

≤ K max{|Dx(ξx
i1)|, |Dx(ξx

i2)|}h4
x (

∫ xi

xi−1

∑

α≤5

(
∂αcn

∂xα
)2dx)

1
2 · |‖ξn‖|i

≤ ε < ξn, ξn >i +K · h8
x ·

∫ xi

xi−1

∑

α≤5

(
∂αcn

∂xα
)2dx.

(18)

Next we estimate the second term of (16)

| < Dζn
xx, ξn >i | ≤ | < Dζn

xx, ξn − ξ̌n
i >i |+ | < Dζn

xx, ξ̌n
i >i |

= S′1 + S′2.

Similar to (17)

|S′1| ≤ K max{|D(ξx
i1)|, |D(ξx

i2)|} |‖ζn
xx‖|i · |‖ξn − ξ̌n

i ‖|i
≤ K max{|D(ξx

i1)|, |D(ξx
i2)|}h4

x (
∫ xi

xi−1

∑

α≤5

(
∂αcn

∂xα
)2dx)

1
2 · ‖ξn

x‖L2(Ii)

≤ ε(ξn
x , ξn

x )i + K · h8
x ·

∫ xi

xi−1

∑

α≤5

(
∂αcn

∂xα
)2dx.

(19)

Similar to (18)
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|S′2| ≤ K max{|D(ξx
i1)|, |D(ξx

i2)|} | < ζn
xx, 1 >i | · |ξ̌n

i |

≤ K max{|D(ξx
i1)|, |D(ξx

i2)|}h4
x (

∫ xi

xi−1

∑

α≤6

(
∂αcn

∂xα
)2dx)

1
2 · |‖ξn‖|i

≤ ε < ξn, ξn >i +K · h8
x ·

∫ xi

xi−1

∑

α≤6

(
∂αcn

∂xα
)2dx.

(20)

By summing over i , it follows that

| < (Dζn
x )x, ξn >x | = |

Nx∑

i=1

< (Dζn
x )x, ξn >i |

= |
Nx∑

i=1

[< Dxζn
x , ξn >i + < Dζn

xx, ξn >i]|

≤ ε{(ξn
x , ξn

x )x+ < ξn, ξn >x}+ K h8
x

Nx∑

i=1

∫ xi

xi−1

∑

α≤6

(
∂αcn

∂xα
)2dx.

And there is the same conclusion in y direction, in this time let
ξ̌n
j = h−1

y < ξn, 1 >j , the (14) is right. And because of

| < (Dζn
x )x, ξn > | = |

Ny∑

j=1

hy

2
[< (Dζn

x )x, ξn >x (ξy
j1)+ < (Dζn

x )x, ξn >x (ξy
j2)] |

we have the following conclusion.

| < (Dζn
x )x, ξn > | ≤ ε{(ξn

x , ξn
x )+ < ξn, ξn >}

+ K h8
Nx∑

i=1

Ny∑

j=1

∫

Ωij

∑

α≤6

(
∂αcn

∂xα
)2dΩ,

(21)

where α is a two-fold index, and there is the same conclusion in y direction.
Then for T ′4 similar to (17)-(20), lemma 3.6 and lemma 3.7, we obtain

|T ′4| = | < ∇ · (a(cn)∇ηn), πn > |
≤ | < a(cn)4ηn, πn > |
+ | < a(cn)x(ηn)x, πn > |+ | < a(cn)y(ηn)y, πn > |.
≤ Kh8 + ε(||πn||2 + ||∇πn||2)

(22)

For T ′5, we shall need an induction hypothesis. We assume that

||Cn||W 1∞ ≤ K, 0 ≤ n ≤ l − 1.(23)

We start this induction by seeing that

||C0||W 1∞ ≤ ||c̃0||W 1∞ + ||ξ0||W 1∞ ≤ ||c̃0||W 1∞ ≤ K,

for h sufficiently small. We shall check that if n = l, (23) is right at the end of the
proof. Similar to the proof of T ′1 and T ′4 and using lemma 3.1, lemma 3.2, lemma
3.6 and (23), we can get

|T ′5| ≤ | < [ a(cn)− a(Cn−1) ]∆p̃n, πn > |
+ | < ∇[ a(cn)− a(Cn−1) ] · ∇p̃n), πn > |
≤ K(||ξn−1||21 + h8 +4t2) + ε(||πn||2 + ||∇πn||2).

(24)
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Next using the inequality a(a − b) ≥ 1
2 (a2 − b2), we see that the first left-hand

side term of (10),

< d(Cn−1)dtπ
n, πn >

≥ 1
24t

{ < d(Cn−1)πn, πn > − < d(Cn−1)πn−1, πn−1 > }(25)

Similar to the proof of lemma 3.7 and (23), the second left-hand side term of
(10) get

(26) − < ∇ · (a(Cn−1)∇πn), πn > ≥ (a∗ −KK2h) ‖ ∇πn ‖2,
then for sufficiently small h there exists constant C > 0, we have a∗ − KK2h ≥
C > 0.

By (11)-(26), we multiplied by 24t and sum in time n, for ε sufficiently small,

m∑
n=1

( < d(Cn−1)πn, πn > − < d(Cn−1)πn−1, πn−1 >) + C

m∑
n=1

||∇πn||24t

≤ K(h8 +4t2 +
m−1∑
n=1

||ξn||214t) + ε

m∑
n=1

(||πn||2 + ||∇πn||2)4t,

and

d′∗

m−1∑
n=1

||πn||24t + d∗||πm||2 +
m∑

n=1

||∇πn||24t

≤ K(h8 +4t2 +
m−1∑
n=1

||ξn||214t).

(27)

We can turn to the derivation of a corresponding evolution inequality for ξn.
Subtracting (9)(b) from the discrete Galerkin scheme of (1)(b), we obtain

< φ
ξn − ξn−1

4t
, Z >− < ∇ · (D∇ξn), Z >

= − < φ
∂cn

∂t
+ un · ∇cn − φ

cn − c̆n−1

4t
, Z >

+ < φ
c̆n−1 − ĉn−1

4t
, Z > − < φ

ξn−1 − ξ̂n−1

4t
, Z >

− < φ
ζn − ζ̂n−1

4t
, Z > + < ∇ · (D∇ζn), Z >

+ < [−(ξn−1 + ζn−1) + (cn−1 − cn) ] q, Z >

+ < b(Cn−1)
Pn − Pn−1

4t
− b(cn)

∂pn

∂t
, Z > ∀Z ∈M1,P (3, δ).

(28)

To obtain L2 estimate for ξ, we choose Z = ξn as test function in (28), and we
denote the resulting right-hand side terms by T1, T2, · · · , T7. First we shall discuss
the right-hand side of (28).

For T1, similar to the discussion in [2,10], so that

ψ
∂cn

∂τ
= φ

∂cn

∂t
+ un · ∇cn,
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The standard backward-difference error equation is given by

∂cn

∂t
− cn − cn−1

4t
=

1
4t

∫ tn

tn−1
(t− tn−1)

∂2c

∂t2
dt,

analogously, along the tangent to the characteristic

ψ
∂cn

∂τ
− φ

cn − c̆n−1

4t

=
φ

4t

∫ (x,y,tn)

(x̆,y̆,tn−1)

√
(x(τ)− x̆)2 + (y(τ)− y̆)2 + (t(τ)− tn−1)2

∂2c

∂τ2
dτ

(29)

So by the definition of section 2.1, we obtain

< ψ
∂cn

∂τ
− φ

cn − c̆n−1

4t
, ψ

∂cn

∂τ
− φ

cn − c̆n−1

4t
>

=
Nx∑

i=1

Ny∑

j=1

1
4
hxhy

2∑

k,l=1

·

{( φ

4t

∫ (x,y,tn)

(x̆,y̆,tn−1)

√
(x− x̆)2 + (y − y̆)2 + (t− tn−1)2

∂2c

∂τ2
dτ)(ξx

ik, ξy
jl)}2.

Let Eij be the plane from (ξ̆x
ik, ξ̆y

jl, t
n−1) to (ξx

ik, ξy
jl, t

n) along the characteristic
direction, then

|||ψ∂cn

∂τ
− φ

cn − c̆n−1

4t
|||2

≤ Ch2
Nx∑

i=1

Ny∑

j=1

2∑

k,l=1

max
(x,y)∈Eij

| ∂
2c

∂τ2
|2{ φ

4t
· (ψ4t

φ
)
∫ (ξik,ξjl,t

n)

(ξ̆ik,ξ̆jl,tn−1)

dτ}2

≤ K4t2h2 max
(x,y)∈E

| ∂
2c

∂τ2
|2

Thus, we can obtain the estimate of T1

|T1| ≤ K|‖ψ∂cn

∂τ
− φ

cn − c̆n−1

4t
‖| · |‖ξn‖|

≤ K4t2h2 max
(x,y)∈E

| ∂
2c

∂τ2
|2 + ε|‖ξn‖|2.

(30)

By (8), we get

|T2| = | < φ
c̆n−1 − ĉn−1

4t
, ξn > | = | < ∇c̄ · (un − Un), ξn > |

= | < ∇c̄ · [a(cn)∇ηn + a(Cn)∇πn + (a(cn)− a(Cn))∇p̃n], ξn > |.
Similar to the estimation of T ′4 in the pressure equation, (23) and lemma 3.1, we
can get

|T2| ≤ K(h8 +4t2 + ||ξn||2) + ε(||ξn||21 + ||∇πn||2).(31)

To handle T3, we shall need another induction hypothesis. We assume that

||∇Pn||L∞ ≤ K, 0 ≤ n ≤ l − 1.(32)

If l = 1, we can start the induction by (27) to get

||∇P 0||L∞ ≤ ||∇p̃0||L∞ + ||∇π0||L∞ ≤ K + Kh−1(h4 +4t) ≤ K,
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for h sufficiently small and 4t = o(h). We shall check that if n = l (32) is right at
the end of the proof. Then for T3, we can obtain by lemma 3.6, [2,10], the induction
hypotheses (23) and (32),

|T3| ≤ K|||ξ
n−1 − ξ̂n−1

4t
||| · |||ξn||| ≤ ε||ξ

n−1 − ξ̂n−1

4t
||2 + K||ξn||2

≤ ε||∇ξn−1||2 + K||ξn||2.
(33)

Next we estimate T4,

|T4| ≤ K( | < φ
ζn − ζn−1

4t
, ξn > |+ | < φ

ζn−1 − ζ̂n−1

4t
, ξn > | ),

by the Taylor expansion, Cauchy inequality and lemma 3.1, lemma 3.6, we obtain

| < φ
ζn − ζn−1

4t
, ξn > | ≤ K|||ζn

t |||2 + ε|||ξn|||2 ≤ Kh8||cn
t ||2H4 + ε||ξn||2,

and by two dimensional Taylor expansion and (32), similar to (17) and (18), it
follows that

| < φ
ζn−1 − ζ̂n−1

4t
, ξn > |

≤ K( | < Un
1 ζn−1

x , ξn > |+ | < Un
2 ζn−1

y , ξn > | ) + K4t|||ξn|||
≤ K (h8‖cn−1‖2H5(Ω) +4t2) + ε(||ξn||2 + ||∇ξn||2),

so we can get

(34) |T4| ≤ K h8(‖cn−1‖2H5 + ‖cn
t ‖2H4) + K4t2 + ε(||ξn||2 + ||∇ξn||2).

Then, similar to T4, by (14) and (21), we have

|T5| = | < ∇ · (D∇ζn), ξn > |
≤ | < (Dζn

x )x, ξn > |+ | < (Dζn
y )y, ξn > |

≤ K h8‖cn‖2H6 + ε(||ξn||2 + ||∇ξn||2).
(35)

And using lemma 3.1, lemma 3.2, lemma 3.6, we shall get

|T6| ≤ K( h8 +4t2 + ||ξn−1||2) + ε||ξn||2.(36)

Similar to the pressure equation estimate (10), T7 can be written as

|T7| ≤ | < d(Cn−1)dtπ
n, ξn > |+ | < [ d(Cn−1)− d(cn) ]dtp̃

n, ξn > |

+ | < d(cn)dtη
n, ξn > |+ | < d(cn)(dtp

n − ∂pn

∂t
), ξn > |

≤ K(h8 +4t2 + ||ξn−1||2) + ε||ξn||2

+ | < d(Cn−1)
πn − πn−1

4t
, ξn > |.

(37)

Thus we obtain the estimate of the right-side of (28) by the preceding, next for
the left-hand side of (28) we use the inequality 1

2 (a2 − b2) ≤ a(a − b) and lemma
3.8, such that

1
24t

{< φξn, ξn >− < φξn−1, ξn−1 >}+ C∗|||ξn|||2H1
0 (Ω)

≤ < φ
ξn − ξn−1

4t
, ξn > − < ∇ · (D∇ξn), ξn > .

(38)
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So by (30)-(38), we now have

1
24t

{< φξn, ξn >− < φξn−1, ξn−1 >}+ C∗|||ξn|||2H1
0 (Ω)

≤ K(4t2 +4t2h2 + h8 + ||ξn−1||2 + ||ξn||2)

+ ε(||ξn||21 + ||∇πn||2) + | < d(Cn−1)
πn − πn−1

4t
, ξn > |.

(39)

If (39) is multiplied by 24t and summed in time n (ξ0 = 0,4t = o(h) ), then it
follows that

< φξm, ξm > + C∗
m∑

n=1

|||ξn|||2H1
0 (Ω)4t

≤ K (4t2 + h8 +
m∑

n=1

||ξn||24t ) + ε

m∑
n=1

(||ξn||21 + ||∇πn||2)4t

+ 2
m∑

n=1

| < d(Cn−1)(πn − πn−1), ξn > |,

(40)

where the right-hand side last term of (40) can be written as
m∑

n=1

| < d(Cn−1)(πn − πn−1), ξn > |

≤ d′∗
m−1∑
n=1

||πn||24t + d∗||πm||2 + ε

m∑
n=1

||ξn||24t.

(41)

So the relations (40) and (41) can be combined with (27) and the Gronwall lemma
for sufficiently small ε to show that

(42) max
1≤n≤m

‖ξn‖2 + C∗
m∑

n=1

|||ξn|||2H1
0 (Ω)4t ≤ K{4t2 + h8},

then lemma 3.5 and (42) can be combined with (27) to show that

(43)
m∑

n=1

||∇πn||24t ≤ K{ 4t2 + h8 },

At last we shall check the induction hypotheses (32) and (23)

||∇P l||L∞ ≤ ||∇p̃l||L∞ + ||∇πl||L∞ ≤ K + Kh−1||∇πl||
≤ K + Kh−2(4t + h4) ≤ K,

||Cl||W 1∞ ≤ ||c̃l||W 1∞ + ||ξl||W 1∞ ≤ K + Kh−2||ξl||
≤ K + Kh−2(4t + h4) ≤ K,

for h sufficiently small , and the proof is complete.
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